kernel - Minor pmap optimizations, minor swap_pager*() optimizations
[dragonfly.git] / sys / vm / swap_pager.c
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1998-2010 The DragonFly Project.  All rights reserved.
5  * 
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com>
8  * 
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  * 
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  * 
36  * Copyright (c) 1994 John S. Dyson
37  * Copyright (c) 1990 University of Utah.
38  * Copyright (c) 1991, 1993
39  *      The Regents of the University of California.  All rights reserved.
40  *
41  * This code is derived from software contributed to Berkeley by
42  * the Systems Programming Group of the University of Utah Computer
43  * Science Department.
44  *
45  * Redistribution and use in source and binary forms, with or without
46  * modification, are permitted provided that the following conditions
47  * are met:
48  * 1. Redistributions of source code must retain the above copyright
49  *    notice, this list of conditions and the following disclaimer.
50  * 2. Redistributions in binary form must reproduce the above copyright
51  *    notice, this list of conditions and the following disclaimer in the
52  *    documentation and/or other materials provided with the distribution.
53  * 3. Neither the name of the University nor the names of its contributors
54  *    may be used to endorse or promote products derived from this software
55  *    without specific prior written permission.
56  *
57  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67  * SUCH DAMAGE.
68  *
69  *                              New Swap System
70  *                              Matthew Dillon
71  *
72  * Radix Bitmap 'blists'.
73  *
74  *      - The new swapper uses the new radix bitmap code.  This should scale
75  *        to arbitrarily small or arbitrarily large swap spaces and an almost
76  *        arbitrary degree of fragmentation.
77  *
78  * Features:
79  *
80  *      - on the fly reallocation of swap during putpages.  The new system
81  *        does not try to keep previously allocated swap blocks for dirty
82  *        pages.  
83  *
84  *      - on the fly deallocation of swap
85  *
86  *      - No more garbage collection required.  Unnecessarily allocated swap
87  *        blocks only exist for dirty vm_page_t's now and these are already
88  *        cycled (in a high-load system) by the pager.  We also do on-the-fly
89  *        removal of invalidated swap blocks when a page is destroyed
90  *        or renamed.
91  *
92  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
93  * @(#)swap_pager.c     8.9 (Berkeley) 3/21/94
94  * $FreeBSD: src/sys/vm/swap_pager.c,v 1.130.2.12 2002/08/31 21:15:55 dillon Exp $
95  */
96
97 #include "opt_swap.h"
98 #include <sys/param.h>
99 #include <sys/systm.h>
100 #include <sys/conf.h>
101 #include <sys/kernel.h>
102 #include <sys/proc.h>
103 #include <sys/buf.h>
104 #include <sys/vnode.h>
105 #include <sys/malloc.h>
106 #include <sys/vmmeter.h>
107 #include <sys/sysctl.h>
108 #include <sys/blist.h>
109 #include <sys/lock.h>
110 #include <sys/kcollect.h>
111
112 #include <vm/vm.h>
113 #include <vm/vm_object.h>
114 #include <vm/vm_page.h>
115 #include <vm/vm_pager.h>
116 #include <vm/vm_pageout.h>
117 #include <vm/swap_pager.h>
118 #include <vm/vm_extern.h>
119 #include <vm/vm_zone.h>
120 #include <vm/vnode_pager.h>
121
122 #include <sys/buf2.h>
123 #include <vm/vm_page2.h>
124
125 #ifndef MAX_PAGEOUT_CLUSTER
126 #define MAX_PAGEOUT_CLUSTER     SWB_NPAGES
127 #endif
128
129 #define SWM_FREE        0x02    /* free, period                 */
130 #define SWM_POP         0x04    /* pop out                      */
131
132 #define SWBIO_READ      0x01
133 #define SWBIO_WRITE     0x02
134 #define SWBIO_SYNC      0x04
135 #define SWBIO_TTC       0x08    /* for VM_PAGER_TRY_TO_CACHE */
136
137 struct swfreeinfo {
138         vm_object_t     object;
139         vm_pindex_t     basei;
140         vm_pindex_t     begi;
141         vm_pindex_t     endi;   /* inclusive */
142 };
143
144 struct swswapoffinfo {
145         vm_object_t     object;
146         int             devidx;
147         int             shared;
148 };
149
150 /*
151  * vm_swap_size is in page-sized chunks now.  It was DEV_BSIZE'd chunks
152  * in the old system.
153  */
154
155 int swap_pager_full;            /* swap space exhaustion (task killing) */
156 int swap_fail_ticks;            /* when we became exhausted */
157 int swap_pager_almost_full;     /* swap space exhaustion (w/ hysteresis)*/
158 swblk_t vm_swap_cache_use;
159 swblk_t vm_swap_anon_use;
160 static int vm_report_swap_allocs;
161
162 static struct krate kswaprate = { 1 };
163 static int nsw_rcount;          /* free read buffers                    */
164 static int nsw_wcount_sync;     /* limit write buffers / synchronous    */
165 static int nsw_wcount_async;    /* limit write buffers / asynchronous   */
166 static int nsw_wcount_async_max;/* assigned maximum                     */
167 static int nsw_cluster_max;     /* maximum VOP I/O allowed              */
168
169 struct blist *swapblist;
170 static int swap_async_max = 4;  /* maximum in-progress async I/O's      */
171 static int swap_burst_read = 0; /* allow burst reading */
172 static swblk_t swapiterator;    /* linearize allocations */
173 int swap_user_async = 0;        /* user swap pager operation can be async */
174
175 static struct spinlock swapbp_spin = SPINLOCK_INITIALIZER(&swapbp_spin, "swapbp_spin");
176
177 /* from vm_swap.c */
178 extern struct vnode *swapdev_vp;
179 extern struct swdevt *swdevt;
180 extern int nswdev;
181
182 #define BLK2DEVIDX(blk) (nswdev > 1 ? blk / SWB_DMMAX % nswdev : 0)
183
184 SYSCTL_INT(_vm, OID_AUTO, swap_async_max,
185         CTLFLAG_RW, &swap_async_max, 0, "Maximum running async swap ops");
186 SYSCTL_INT(_vm, OID_AUTO, swap_burst_read,
187         CTLFLAG_RW, &swap_burst_read, 0, "Allow burst reads for pageins");
188 SYSCTL_INT(_vm, OID_AUTO, swap_user_async,
189         CTLFLAG_RW, &swap_user_async, 0, "Allow async uuser swap write I/O");
190
191 #if SWBLK_BITS == 64
192 SYSCTL_LONG(_vm, OID_AUTO, swap_cache_use,
193         CTLFLAG_RD, &vm_swap_cache_use, 0, "");
194 SYSCTL_LONG(_vm, OID_AUTO, swap_anon_use,
195         CTLFLAG_RD, &vm_swap_anon_use, 0, "");
196 SYSCTL_LONG(_vm, OID_AUTO, swap_free,
197         CTLFLAG_RD, &vm_swap_size, 0, "");
198 SYSCTL_LONG(_vm, OID_AUTO, swap_size,
199         CTLFLAG_RD, &vm_swap_max, 0, "");
200 #else
201 SYSCTL_INT(_vm, OID_AUTO, swap_cache_use,
202         CTLFLAG_RD, &vm_swap_cache_use, 0, "");
203 SYSCTL_INT(_vm, OID_AUTO, swap_anon_use,
204         CTLFLAG_RD, &vm_swap_anon_use, 0, "");
205 SYSCTL_INT(_vm, OID_AUTO, swap_free,
206         CTLFLAG_RD, &vm_swap_size, 0, "");
207 SYSCTL_INT(_vm, OID_AUTO, swap_size,
208         CTLFLAG_RD, &vm_swap_max, 0, "");
209 #endif
210 SYSCTL_INT(_vm, OID_AUTO, report_swap_allocs,
211         CTLFLAG_RW, &vm_report_swap_allocs, 0, "");
212
213 __read_mostly vm_zone_t swap_zone;
214
215 /*
216  * Red-Black tree for swblock entries
217  *
218  * The caller must hold vm_token
219  */
220 RB_GENERATE2(swblock_rb_tree, swblock, swb_entry, rb_swblock_compare,
221              vm_pindex_t, swb_index);
222
223 int
224 rb_swblock_compare(struct swblock *swb1, struct swblock *swb2)
225 {
226         if (swb1->swb_index < swb2->swb_index)
227                 return(-1);
228         if (swb1->swb_index > swb2->swb_index)
229                 return(1);
230         return(0);
231 }
232
233 static
234 int
235 rb_swblock_scancmp(struct swblock *swb, void *data)
236 {
237         struct swfreeinfo *info = data;
238
239         if (swb->swb_index < info->basei)
240                 return(-1);
241         if (swb->swb_index > info->endi)
242                 return(1);
243         return(0);
244 }
245
246 static
247 int
248 rb_swblock_condcmp(struct swblock *swb, void *data)
249 {
250         struct swfreeinfo *info = data;
251
252         if (swb->swb_index < info->basei)
253                 return(-1);
254         return(0);
255 }
256
257 /*
258  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
259  * calls hooked from other parts of the VM system and do not appear here.
260  * (see vm/swap_pager.h).
261  */
262
263 static void     swap_pager_dealloc (vm_object_t object);
264 static int      swap_pager_getpage (vm_object_t, vm_page_t *, int);
265 static void     swap_chain_iodone(struct bio *biox);
266
267 struct pagerops swappagerops = {
268         swap_pager_dealloc,     /* deallocate an OBJT_SWAP object       */
269         swap_pager_getpage,     /* pagein                               */
270         swap_pager_putpages,    /* pageout                              */
271         swap_pager_haspage      /* get backing store status for page    */
272 };
273
274 /*
275  * SWB_DMMAX is in page-sized chunks with the new swap system.  It was
276  * dev-bsized chunks in the old.  SWB_DMMAX is always a power of 2.
277  *
278  * swap_*() routines are externally accessible.  swp_*() routines are
279  * internal.
280  */
281
282 int nswap_lowat = 128;          /* in pages, swap_pager_almost_full warn */
283 int nswap_hiwat = 512;          /* in pages, swap_pager_almost_full warn */
284
285 static __inline void    swp_sizecheck (void);
286 static void     swp_pager_async_iodone (struct bio *bio);
287
288 /*
289  * Swap bitmap functions
290  */
291
292 static __inline void    swp_pager_freeswapspace(vm_object_t object,
293                                                 swblk_t blk, int npages);
294 static __inline swblk_t swp_pager_getswapspace(vm_object_t object, int npages);
295
296 /*
297  * Metadata functions
298  */
299
300 static void swp_pager_meta_convert(vm_object_t);
301 static void swp_pager_meta_build(vm_object_t, vm_pindex_t, swblk_t);
302 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
303 static void swp_pager_meta_free_all(vm_object_t);
304 static swblk_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
305
306 /*
307  * SWP_SIZECHECK() -    update swap_pager_full indication
308  *      
309  *      update the swap_pager_almost_full indication and warn when we are
310  *      about to run out of swap space, using lowat/hiwat hysteresis.
311  *
312  *      Clear swap_pager_full ( task killing ) indication when lowat is met.
313  *
314  * No restrictions on call
315  * This routine may not block.
316  * SMP races are ok.
317  */
318 static __inline void
319 swp_sizecheck(void)
320 {
321         if (vm_swap_size < nswap_lowat) {
322                 if (swap_pager_almost_full == 0) {
323                         kprintf("swap_pager: out of swap space\n");
324                         swap_pager_almost_full = 1;
325                         swap_fail_ticks = ticks;
326                 }
327         } else {
328                 swap_pager_full = 0;
329                 if (vm_swap_size > nswap_hiwat)
330                         swap_pager_almost_full = 0;
331         }
332 }
333
334 /*
335  * Long-term data collection on 10-second interval.  Return the value
336  * for KCOLLECT_SWAPPCT and set the values for SWAPANO and SWAPCCAC.
337  *
338  * Return total swap in the scale field.  This can change if swap is
339  * regularly added or removed and may cause some historical confusion
340  * in that case, but SWAPPCT will always be historically accurate.
341  */
342
343 #define PTOB(value)     ((uint64_t)(value) << PAGE_SHIFT)
344
345 static uint64_t
346 collect_swap_callback(int n)
347 {
348         uint64_t total = vm_swap_max;
349         uint64_t anon = vm_swap_anon_use;
350         uint64_t cache = vm_swap_cache_use;
351
352         if (total == 0)         /* avoid divide by zero */
353                 total = 1;
354         kcollect_setvalue(KCOLLECT_SWAPANO, PTOB(anon));
355         kcollect_setvalue(KCOLLECT_SWAPCAC, PTOB(cache));
356         kcollect_setscale(KCOLLECT_SWAPANO,
357                           KCOLLECT_SCALE(KCOLLECT_SWAPANO_FORMAT, PTOB(total)));
358         kcollect_setscale(KCOLLECT_SWAPCAC,
359                           KCOLLECT_SCALE(KCOLLECT_SWAPCAC_FORMAT, PTOB(total)));
360         return (((anon + cache) * 10000 + (total >> 1)) / total);
361 }
362
363 /*
364  * SWAP_PAGER_INIT() -  initialize the swap pager!
365  *
366  *      Expected to be started from system init.  NOTE:  This code is run 
367  *      before much else so be careful what you depend on.  Most of the VM
368  *      system has yet to be initialized at this point.
369  *
370  * Called from the low level boot code only.
371  */
372 static void
373 swap_pager_init(void *arg __unused)
374 {
375         kcollect_register(KCOLLECT_SWAPPCT, "swapuse", collect_swap_callback,
376                           KCOLLECT_SCALE(KCOLLECT_SWAPPCT_FORMAT, 0));
377         kcollect_register(KCOLLECT_SWAPANO, "swapano", NULL,
378                           KCOLLECT_SCALE(KCOLLECT_SWAPANO_FORMAT, 0));
379         kcollect_register(KCOLLECT_SWAPCAC, "swapcac", NULL,
380                           KCOLLECT_SCALE(KCOLLECT_SWAPCAC_FORMAT, 0));
381 }
382 SYSINIT(vm_mem, SI_BOOT1_VM, SI_ORDER_THIRD, swap_pager_init, NULL);
383
384 /*
385  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
386  *
387  *      Expected to be started from pageout process once, prior to entering
388  *      its main loop.
389  *
390  * Called from the low level boot code only.
391  */
392 void
393 swap_pager_swap_init(void)
394 {
395         int n, n2;
396
397         /*
398          * Number of in-transit swap bp operations.  Don't
399          * exhaust the pbufs completely.  Make sure we
400          * initialize workable values (0 will work for hysteresis
401          * but it isn't very efficient).
402          *
403          * The nsw_cluster_max is constrained by the number of pages an XIO
404          * holds, i.e., (MAXPHYS/PAGE_SIZE) and our locally defined
405          * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
406          * constrained by the swap device interleave stripe size.
407          *
408          * Currently we hardwire nsw_wcount_async to 4.  This limit is 
409          * designed to prevent other I/O from having high latencies due to
410          * our pageout I/O.  The value 4 works well for one or two active swap
411          * devices but is probably a little low if you have more.  Even so,
412          * a higher value would probably generate only a limited improvement
413          * with three or four active swap devices since the system does not
414          * typically have to pageout at extreme bandwidths.   We will want
415          * at least 2 per swap devices, and 4 is a pretty good value if you
416          * have one NFS swap device due to the command/ack latency over NFS.
417          * So it all works out pretty well.
418          */
419
420         nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
421
422         nsw_rcount = (nswbuf_kva + 1) / 2;
423         nsw_wcount_sync = (nswbuf_kva + 3) / 4;
424         nsw_wcount_async = 4;
425         nsw_wcount_async_max = nsw_wcount_async;
426
427         /*
428          * The zone is dynamically allocated so generally size it to
429          * maxswzone (32MB to 256GB of KVM).  Set a minimum size based
430          * on physical memory of around 8x (each swblock can hold 16 pages).
431          *
432          * With the advent of SSDs (vs HDs) the practical (swap:memory) ratio
433          * has increased dramatically.
434          */
435         n = vmstats.v_page_count / 2;
436         if (maxswzone && n < maxswzone / sizeof(struct swblock))
437                 n = maxswzone / sizeof(struct swblock);
438         n2 = n;
439
440         do {
441                 swap_zone = zinit(
442                         "SWAPMETA", 
443                         sizeof(struct swblock), 
444                         n,
445                         ZONE_INTERRUPT);
446                 if (swap_zone != NULL)
447                         break;
448                 /*
449                  * if the allocation failed, try a zone two thirds the
450                  * size of the previous attempt.
451                  */
452                 n -= ((n + 2) / 3);
453         } while (n > 0);
454
455         if (swap_zone == NULL)
456                 panic("swap_pager_swap_init: swap_zone == NULL");
457         if (n2 != n)
458                 kprintf("Swap zone entries reduced from %d to %d.\n", n2, n);
459 }
460
461 /*
462  * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate
463  *                      its metadata structures.
464  *
465  *      This routine is called from the mmap and fork code to create a new
466  *      OBJT_SWAP object.  We do this by creating an OBJT_DEFAULT object
467  *      and then converting it with swp_pager_meta_convert().
468  *
469  *      We only support unnamed objects.
470  *
471  * No restrictions.
472  */
473 vm_object_t
474 swap_pager_alloc(void *handle, off_t size, vm_prot_t prot, off_t offset)
475 {
476         vm_object_t object;
477
478         KKASSERT(handle == NULL);
479         object = vm_object_allocate_hold(OBJT_DEFAULT,
480                                          OFF_TO_IDX(offset + PAGE_MASK + size));
481         swp_pager_meta_convert(object);
482         vm_object_drop(object);
483
484         return (object);
485 }
486
487 /*
488  * SWAP_PAGER_DEALLOC() -       remove swap metadata from object
489  *
490  *      The swap backing for the object is destroyed.  The code is 
491  *      designed such that we can reinstantiate it later, but this
492  *      routine is typically called only when the entire object is
493  *      about to be destroyed.
494  *
495  * The object must be locked or unreferenceable.
496  * No other requirements.
497  */
498 static void
499 swap_pager_dealloc(vm_object_t object)
500 {
501         vm_object_hold(object);
502         vm_object_pip_wait(object, "swpdea");
503
504         /*
505          * Free all remaining metadata.  We only bother to free it from 
506          * the swap meta data.  We do not attempt to free swapblk's still
507          * associated with vm_page_t's for this object.  We do not care
508          * if paging is still in progress on some objects.
509          */
510         swp_pager_meta_free_all(object);
511         vm_object_drop(object);
512 }
513
514 /************************************************************************
515  *                      SWAP PAGER BITMAP ROUTINES                      *
516  ************************************************************************/
517
518 /*
519  * SWP_PAGER_GETSWAPSPACE() -   allocate raw swap space
520  *
521  *      Allocate swap for the requested number of pages.  The starting
522  *      swap block number (a page index) is returned or SWAPBLK_NONE
523  *      if the allocation failed.
524  *
525  *      Also has the side effect of advising that somebody made a mistake
526  *      when they configured swap and didn't configure enough.
527  *
528  * The caller must hold the object.
529  * This routine may not block.
530  */
531 static __inline swblk_t
532 swp_pager_getswapspace(vm_object_t object, int npages)
533 {
534         swblk_t blk;
535
536         lwkt_gettoken(&vm_token);
537         blk = blist_allocat(swapblist, npages, swapiterator);
538         if (blk == SWAPBLK_NONE)
539                 blk = blist_allocat(swapblist, npages, 0);
540         if (blk == SWAPBLK_NONE) {
541                 if (swap_pager_full != 2) {
542                         if (vm_swap_max == 0) {
543                                 krateprintf(&kswaprate,
544                                         "Warning: The system would like to "
545                                         "page to swap but no swap space "
546                                         "is configured!\n");
547                         } else {
548                                 krateprintf(&kswaprate,
549                                         "swap_pager_getswapspace: "
550                                         "swap full allocating %d pages\n",
551                                         npages);
552                         }
553                         swap_pager_full = 2;
554                         if (swap_pager_almost_full == 0)
555                                 swap_fail_ticks = ticks;
556                         swap_pager_almost_full = 1;
557                 }
558         } else {
559                 /* swapiterator = blk; disable for now, doesn't work well */
560                 swapacctspace(blk, -npages);
561                 if (object->type == OBJT_SWAP)
562                         vm_swap_anon_use += npages;
563                 else
564                         vm_swap_cache_use += npages;
565                 swp_sizecheck();
566         }
567         lwkt_reltoken(&vm_token);
568         return(blk);
569 }
570
571 /*
572  * SWP_PAGER_FREESWAPSPACE() -  free raw swap space 
573  *
574  *      This routine returns the specified swap blocks back to the bitmap.
575  *
576  *      Note:  This routine may not block (it could in the old swap code),
577  *      and through the use of the new blist routines it does not block.
578  *
579  * This routine may not block.
580  */
581
582 static __inline void
583 swp_pager_freeswapspace(vm_object_t object, swblk_t blk, int npages)
584 {
585         struct swdevt *sp = &swdevt[BLK2DEVIDX(blk)];
586
587         lwkt_gettoken(&vm_token);
588         sp->sw_nused -= npages;
589         if (object->type == OBJT_SWAP)
590                 vm_swap_anon_use -= npages;
591         else
592                 vm_swap_cache_use -= npages;
593
594         if (sp->sw_flags & SW_CLOSING) {
595                 lwkt_reltoken(&vm_token);
596                 return;
597         }
598
599         blist_free(swapblist, blk, npages);
600         vm_swap_size += npages;
601         swp_sizecheck();
602         lwkt_reltoken(&vm_token);
603 }
604
605 /*
606  * SWAP_PAGER_FREESPACE() -     frees swap blocks associated with a page
607  *                              range within an object.
608  *
609  *      This is a globally accessible routine.
610  *
611  *      This routine removes swapblk assignments from swap metadata.
612  *
613  *      The external callers of this routine typically have already destroyed 
614  *      or renamed vm_page_t's associated with this range in the object so 
615  *      we should be ok.
616  *
617  * No requirements.
618  */
619 void
620 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_pindex_t size)
621 {
622         if (object->swblock_count == 0)
623                 return;
624         vm_object_hold(object);
625         swp_pager_meta_free(object, start, size);
626         vm_object_drop(object);
627 }
628
629 /*
630  * No requirements.
631  */
632 void
633 swap_pager_freespace_all(vm_object_t object)
634 {
635         if (object->swblock_count == 0)
636                 return;
637         vm_object_hold(object);
638         swp_pager_meta_free_all(object);
639         vm_object_drop(object);
640 }
641
642 /*
643  * This function conditionally frees swap cache swap starting at
644  * (*basei) in the object.  (count) swap blocks will be nominally freed.
645  * The actual number of blocks freed can be more or less than the
646  * requested number.
647  *
648  * This function nominally returns the number of blocks freed.  However,
649  * the actual number of blocks freed may be less then the returned value.
650  * If the function is unable to exhaust the object or if it is able to
651  * free (approximately) the requested number of blocks it returns
652  * a value n > count.
653  *
654  * If we exhaust the object we will return a value n <= count.
655  *
656  * The caller must hold the object.
657  *
658  * WARNING!  If count == 0 then -1 can be returned as a degenerate case,
659  *           callers should always pass a count value > 0.
660  */
661 static int swap_pager_condfree_callback(struct swblock *swap, void *data);
662
663 int
664 swap_pager_condfree(vm_object_t object, vm_pindex_t *basei, int count)
665 {
666         struct swfreeinfo info;
667         int n;
668         int t;
669
670         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
671
672         info.object = object;
673         info.basei = *basei;    /* skip up to this page index */
674         info.begi = count;      /* max swap pages to destroy */
675         info.endi = count * 8;  /* max swblocks to scan */
676
677         swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_condcmp,
678                                 swap_pager_condfree_callback, &info);
679         *basei = info.basei;
680
681         /*
682          * Take the higher difference swblocks vs pages
683          */
684         n = count - (int)info.begi;
685         t = count * 8 - (int)info.endi;
686         if (n < t)
687                 n = t;
688         if (n < 1)
689                 n = 1;
690         return(n);
691 }
692
693 /*
694  * The idea is to free whole meta-block to avoid fragmenting
695  * the swap space or disk I/O.  We only do this if NO VM pages
696  * are present.
697  *
698  * We do not have to deal with clearing PG_SWAPPED in related VM
699  * pages because there are no related VM pages.
700  *
701  * The caller must hold the object.
702  */
703 static int
704 swap_pager_condfree_callback(struct swblock *swap, void *data)
705 {
706         struct swfreeinfo *info = data;
707         vm_object_t object = info->object;
708         int i;
709
710         for (i = 0; i < SWAP_META_PAGES; ++i) {
711                 if (vm_page_lookup(object, swap->swb_index + i))
712                         break;
713         }
714         info->basei = swap->swb_index + SWAP_META_PAGES;
715         if (i == SWAP_META_PAGES) {
716                 info->begi -= swap->swb_count;
717                 swap_pager_freespace(object, swap->swb_index, SWAP_META_PAGES);
718         }
719         --info->endi;
720         if ((int)info->begi < 0 || (int)info->endi < 0)
721                 return(-1);
722         lwkt_yield();
723         return(0);
724 }
725
726 /*
727  * Called by vm_page_alloc() when a new VM page is inserted
728  * into a VM object.  Checks whether swap has been assigned to
729  * the page and sets PG_SWAPPED as necessary.
730  *
731  * (m) must be busied by caller and remains busied on return.
732  */
733 void
734 swap_pager_page_inserted(vm_page_t m)
735 {
736         if (m->object->swblock_count) {
737                 vm_object_hold(m->object);
738                 if (swp_pager_meta_ctl(m->object, m->pindex, 0) != SWAPBLK_NONE)
739                         vm_page_flag_set(m, PG_SWAPPED);
740                 vm_object_drop(m->object);
741         }
742 }
743
744 /*
745  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
746  *
747  *      Assigns swap blocks to the specified range within the object.  The 
748  *      swap blocks are not zerod.  Any previous swap assignment is destroyed.
749  *
750  *      Returns 0 on success, -1 on failure.
751  *
752  * The caller is responsible for avoiding races in the specified range.
753  * No other requirements.
754  */
755 int
756 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
757 {
758         int n = 0;
759         swblk_t blk = SWAPBLK_NONE;
760         vm_pindex_t beg = start;        /* save start index */
761
762         vm_object_hold(object);
763
764         while (size) {
765                 if (n == 0) {
766                         n = BLIST_MAX_ALLOC;
767                         while ((blk = swp_pager_getswapspace(object, n)) ==
768                                SWAPBLK_NONE)
769                         {
770                                 n >>= 1;
771                                 if (n == 0) {
772                                         swp_pager_meta_free(object, beg,
773                                                             start - beg);
774                                         vm_object_drop(object);
775                                         return(-1);
776                                 }
777                         }
778                 }
779                 swp_pager_meta_build(object, start, blk);
780                 --size;
781                 ++start;
782                 ++blk;
783                 --n;
784         }
785         swp_pager_meta_free(object, start, n);
786         vm_object_drop(object);
787         return(0);
788 }
789
790 /*
791  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
792  *                      and destroy the source.
793  *
794  *      Copy any valid swapblks from the source to the destination.  In
795  *      cases where both the source and destination have a valid swapblk,
796  *      we keep the destination's.
797  *
798  *      This routine is allowed to block.  It may block allocating metadata
799  *      indirectly through swp_pager_meta_build() or if paging is still in
800  *      progress on the source. 
801  *
802  *      XXX vm_page_collapse() kinda expects us not to block because we 
803  *      supposedly do not need to allocate memory, but for the moment we
804  *      *may* have to get a little memory from the zone allocator, but
805  *      it is taken from the interrupt memory.  We should be ok. 
806  *
807  *      The source object contains no vm_page_t's (which is just as well)
808  *      The source object is of type OBJT_SWAP.
809  *
810  *      The source and destination objects must be held by the caller.
811  */
812 void
813 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
814                 vm_pindex_t base_index, int destroysource)
815 {
816         vm_pindex_t i;
817
818         ASSERT_LWKT_TOKEN_HELD(vm_object_token(srcobject));
819         ASSERT_LWKT_TOKEN_HELD(vm_object_token(dstobject));
820
821         /*
822          * transfer source to destination.
823          */
824         for (i = 0; i < dstobject->size; ++i) {
825                 swblk_t dstaddr;
826
827                 /*
828                  * Locate (without changing) the swapblk on the destination,
829                  * unless it is invalid in which case free it silently, or
830                  * if the destination is a resident page, in which case the
831                  * source is thrown away.
832                  */
833                 dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
834
835                 if (dstaddr == SWAPBLK_NONE) {
836                         /*
837                          * Destination has no swapblk and is not resident,
838                          * copy source.
839                          */
840                         swblk_t srcaddr;
841
842                         srcaddr = swp_pager_meta_ctl(srcobject,
843                                                      base_index + i, SWM_POP);
844
845                         if (srcaddr != SWAPBLK_NONE)
846                                 swp_pager_meta_build(dstobject, i, srcaddr);
847                 } else {
848                         /*
849                          * Destination has valid swapblk or it is represented
850                          * by a resident page.  We destroy the sourceblock.
851                          */
852                         swp_pager_meta_ctl(srcobject, base_index + i, SWM_FREE);
853                 }
854         }
855
856         /*
857          * Free left over swap blocks in source.
858          *
859          * We have to revert the type to OBJT_DEFAULT so we do not accidently
860          * double-remove the object from the swap queues.
861          */
862         if (destroysource) {
863                 /*
864                  * Reverting the type is not necessary, the caller is going
865                  * to destroy srcobject directly, but I'm doing it here
866                  * for consistency since we've removed the object from its
867                  * queues.
868                  */
869                 swp_pager_meta_free_all(srcobject);
870                 if (srcobject->type == OBJT_SWAP)
871                         srcobject->type = OBJT_DEFAULT;
872         }
873 }
874
875 /*
876  * SWAP_PAGER_HASPAGE() -       determine if we have good backing store for
877  *                              the requested page.
878  *
879  *      We determine whether good backing store exists for the requested
880  *      page and return TRUE if it does, FALSE if it doesn't.
881  *
882  *      If TRUE, we also try to determine how much valid, contiguous backing
883  *      store exists before and after the requested page within a reasonable
884  *      distance.  We do not try to restrict it to the swap device stripe
885  *      (that is handled in getpages/putpages).  It probably isn't worth
886  *      doing here.
887  *
888  * No requirements.
889  */
890 boolean_t
891 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex)
892 {
893         swblk_t blk0;
894
895         /*
896          * do we have good backing store at the requested index ?
897          */
898         vm_object_hold(object);
899         blk0 = swp_pager_meta_ctl(object, pindex, 0);
900
901         if (blk0 == SWAPBLK_NONE) {
902                 vm_object_drop(object);
903                 return (FALSE);
904         }
905         vm_object_drop(object);
906         return (TRUE);
907 }
908
909 /*
910  * Object must be held exclusive or shared by the caller.
911  */
912 boolean_t
913 swap_pager_haspage_locked(vm_object_t object, vm_pindex_t pindex)
914 {
915         if (swp_pager_meta_ctl(object, pindex, 0) == SWAPBLK_NONE)
916                 return FALSE;
917         return TRUE;
918 }
919
920 /*
921  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
922  *
923  * This removes any associated swap backing store, whether valid or
924  * not, from the page.  This operates on any VM object, not just OBJT_SWAP
925  * objects.
926  *
927  * This routine is typically called when a page is made dirty, at
928  * which point any associated swap can be freed.  MADV_FREE also
929  * calls us in a special-case situation
930  *
931  * NOTE!!!  If the page is clean and the swap was valid, the caller
932  *          should make the page dirty before calling this routine.
933  *          This routine does NOT change the m->dirty status of the page.
934  *          Also: MADV_FREE depends on it.
935  *
936  * The page must be busied.
937  * The caller can hold the object to avoid blocking, else we might block.
938  * No other requirements.
939  */
940 void
941 swap_pager_unswapped(vm_page_t m)
942 {
943         if (m->flags & PG_SWAPPED) {
944                 vm_object_hold(m->object);
945                 KKASSERT(m->flags & PG_SWAPPED);
946                 swp_pager_meta_ctl(m->object, m->pindex, SWM_FREE);
947                 vm_page_flag_clear(m, PG_SWAPPED);
948                 vm_object_drop(m->object);
949         }
950 }
951
952 /*
953  * SWAP_PAGER_STRATEGY() - read, write, free blocks
954  *
955  * This implements a VM OBJECT strategy function using swap backing store.
956  * This can operate on any VM OBJECT type, not necessarily just OBJT_SWAP
957  * types.  Only BUF_CMD_{READ,WRITE,FREEBLKS} is supported, any other
958  * requests will return EINVAL.
959  *
960  * This is intended to be a cacheless interface (i.e. caching occurs at
961  * higher levels), and is also used as a swap-based SSD cache for vnode
962  * and device objects.
963  *
964  * All I/O goes directly to and from the swap device.
965  *      
966  * We currently attempt to run I/O synchronously or asynchronously as
967  * the caller requests.  This isn't perfect because we loose error
968  * sequencing when we run multiple ops in parallel to satisfy a request.
969  * But this is swap, so we let it all hang out.
970  *
971  * NOTE: This function supports the KVABIO API wherein bp->b_data might
972  *       not be synchronized to the current cpu.
973  *
974  * No requirements.
975  */
976 void
977 swap_pager_strategy(vm_object_t object, struct bio *bio)
978 {
979         struct buf *bp = bio->bio_buf;
980         struct bio *nbio;
981         vm_pindex_t start;
982         vm_pindex_t biox_blkno = 0;
983         int count;
984         char *data;
985         struct bio *biox;
986         struct buf *bufx;
987 #if 0
988         struct bio_track *track;
989 #endif
990
991 #if 0
992         /*
993          * tracking for swapdev vnode I/Os
994          */
995         if (bp->b_cmd == BUF_CMD_READ)
996                 track = &swapdev_vp->v_track_read;
997         else
998                 track = &swapdev_vp->v_track_write;
999 #endif
1000
1001         /*
1002          * Only supported commands
1003          */
1004         if (bp->b_cmd != BUF_CMD_FREEBLKS &&
1005             bp->b_cmd != BUF_CMD_READ &&
1006             bp->b_cmd != BUF_CMD_WRITE) {
1007                 bp->b_error = EINVAL;
1008                 bp->b_flags |= B_ERROR | B_INVAL;
1009                 biodone(bio);
1010                 return;
1011         }
1012
1013         /*
1014          * bcount must be an integral number of pages.
1015          */
1016         if (bp->b_bcount & PAGE_MASK) {
1017                 bp->b_error = EINVAL;
1018                 bp->b_flags |= B_ERROR | B_INVAL;
1019                 biodone(bio);
1020                 kprintf("swap_pager_strategy: bp %p offset %lld size %d, "
1021                         "not page bounded\n",
1022                         bp, (long long)bio->bio_offset, (int)bp->b_bcount);
1023                 return;
1024         }
1025
1026         /*
1027          * Clear error indication, initialize page index, count, data pointer.
1028          */
1029         bp->b_error = 0;
1030         bp->b_flags &= ~B_ERROR;
1031         bp->b_resid = bp->b_bcount;
1032
1033         start = (vm_pindex_t)(bio->bio_offset >> PAGE_SHIFT);
1034         count = howmany(bp->b_bcount, PAGE_SIZE);
1035
1036         /*
1037          * WARNING!  Do not dereference *data without issuing a bkvasync()
1038          */
1039         data = bp->b_data;
1040
1041         /*
1042          * Deal with BUF_CMD_FREEBLKS
1043          */
1044         if (bp->b_cmd == BUF_CMD_FREEBLKS) {
1045                 /*
1046                  * FREE PAGE(s) - destroy underlying swap that is no longer
1047                  *                needed.
1048                  */
1049                 vm_object_hold(object);
1050                 swp_pager_meta_free(object, start, count);
1051                 vm_object_drop(object);
1052                 bp->b_resid = 0;
1053                 biodone(bio);
1054                 return;
1055         }
1056
1057         /*
1058          * We need to be able to create a new cluster of I/O's.  We cannot
1059          * use the caller fields of the passed bio so push a new one.
1060          *
1061          * Because nbio is just a placeholder for the cluster links,
1062          * we can biodone() the original bio instead of nbio to make
1063          * things a bit more efficient.
1064          */
1065         nbio = push_bio(bio);
1066         nbio->bio_offset = bio->bio_offset;
1067         nbio->bio_caller_info1.cluster_head = NULL;
1068         nbio->bio_caller_info2.cluster_tail = NULL;
1069
1070         biox = NULL;
1071         bufx = NULL;
1072
1073         /*
1074          * Execute read or write
1075          */
1076         vm_object_hold(object);
1077
1078         while (count > 0) {
1079                 swblk_t blk;
1080
1081                 /*
1082                  * Obtain block.  If block not found and writing, allocate a
1083                  * new block and build it into the object.
1084                  */
1085                 blk = swp_pager_meta_ctl(object, start, 0);
1086                 if ((blk == SWAPBLK_NONE) && bp->b_cmd == BUF_CMD_WRITE) {
1087                         blk = swp_pager_getswapspace(object, 1);
1088                         if (blk == SWAPBLK_NONE) {
1089                                 bp->b_error = ENOMEM;
1090                                 bp->b_flags |= B_ERROR;
1091                                 break;
1092                         }
1093                         swp_pager_meta_build(object, start, blk);
1094                 }
1095                         
1096                 /*
1097                  * Do we have to flush our current collection?  Yes if:
1098                  *
1099                  *      - no swap block at this index
1100                  *      - swap block is not contiguous
1101                  *      - we cross a physical disk boundry in the
1102                  *        stripe.
1103                  */
1104                 if (biox &&
1105                     (biox_blkno + btoc(bufx->b_bcount) != blk ||
1106                      ((biox_blkno ^ blk) & ~SWB_DMMASK))) {
1107                         switch(bp->b_cmd) {
1108                         case BUF_CMD_READ:
1109                                 ++mycpu->gd_cnt.v_swapin;
1110                                 mycpu->gd_cnt.v_swappgsin +=
1111                                         btoc(bufx->b_bcount);
1112                                 break;
1113                         case BUF_CMD_WRITE:
1114                                 ++mycpu->gd_cnt.v_swapout;
1115                                 mycpu->gd_cnt.v_swappgsout +=
1116                                         btoc(bufx->b_bcount);
1117                                 bufx->b_dirtyend = bufx->b_bcount;
1118                                 break;
1119                         default:
1120                                 /* NOT REACHED */
1121                                 break;
1122                         }
1123
1124                         /*
1125                          * Finished with this buf.
1126                          */
1127                         KKASSERT(bufx->b_bcount != 0);
1128                         if (bufx->b_cmd != BUF_CMD_READ)
1129                                 bufx->b_dirtyend = bufx->b_bcount;
1130                         biox = NULL;
1131                         bufx = NULL;
1132                 }
1133
1134                 /*
1135                  * Add new swapblk to biox, instantiating biox if necessary.
1136                  * Zero-fill reads are able to take a shortcut.
1137                  */
1138                 if (blk == SWAPBLK_NONE) {
1139                         /*
1140                          * We can only get here if we are reading.
1141                          */
1142                         bkvasync(bp);
1143                         bzero(data, PAGE_SIZE);
1144                         bp->b_resid -= PAGE_SIZE;
1145                 } else {
1146                         if (biox == NULL) {
1147                                 /* XXX chain count > 4, wait to <= 4 */
1148
1149                                 bufx = getpbuf(NULL);
1150                                 bufx->b_flags |= B_KVABIO;
1151                                 biox = &bufx->b_bio1;
1152                                 cluster_append(nbio, bufx);
1153                                 bufx->b_cmd = bp->b_cmd;
1154                                 biox->bio_done = swap_chain_iodone;
1155                                 biox->bio_offset = (off_t)blk << PAGE_SHIFT;
1156                                 biox->bio_caller_info1.cluster_parent = nbio;
1157                                 biox_blkno = blk;
1158                                 bufx->b_bcount = 0;
1159                                 bufx->b_data = data;
1160                         }
1161                         bufx->b_bcount += PAGE_SIZE;
1162                 }
1163                 --count;
1164                 ++start;
1165                 data += PAGE_SIZE;
1166         }
1167
1168         vm_object_drop(object);
1169
1170         /*
1171          *  Flush out last buffer
1172          */
1173         if (biox) {
1174                 if (bufx->b_cmd == BUF_CMD_READ) {
1175                         ++mycpu->gd_cnt.v_swapin;
1176                         mycpu->gd_cnt.v_swappgsin += btoc(bufx->b_bcount);
1177                 } else {
1178                         ++mycpu->gd_cnt.v_swapout;
1179                         mycpu->gd_cnt.v_swappgsout += btoc(bufx->b_bcount);
1180                         bufx->b_dirtyend = bufx->b_bcount;
1181                 }
1182                 KKASSERT(bufx->b_bcount);
1183                 if (bufx->b_cmd != BUF_CMD_READ)
1184                         bufx->b_dirtyend = bufx->b_bcount;
1185                 /* biox, bufx = NULL */
1186         }
1187
1188         /*
1189          * Now initiate all the I/O.  Be careful looping on our chain as
1190          * I/O's may complete while we are still initiating them.
1191          *
1192          * If the request is a 100% sparse read no bios will be present
1193          * and we just biodone() the buffer.
1194          */
1195         nbio->bio_caller_info2.cluster_tail = NULL;
1196         bufx = nbio->bio_caller_info1.cluster_head;
1197
1198         if (bufx) {
1199                 while (bufx) {
1200                         biox = &bufx->b_bio1;
1201                         BUF_KERNPROC(bufx);
1202                         bufx = bufx->b_cluster_next;
1203                         vn_strategy(swapdev_vp, biox);
1204                 }
1205         } else {
1206                 biodone(bio);
1207         }
1208
1209         /*
1210          * Completion of the cluster will also call biodone_chain(nbio).
1211          * We never call biodone(nbio) so we don't have to worry about
1212          * setting up a bio_done callback.  It's handled in the sub-IO.
1213          */
1214         /**/
1215 }
1216
1217 /*
1218  * biodone callback
1219  *
1220  * No requirements.
1221  */
1222 static void
1223 swap_chain_iodone(struct bio *biox)
1224 {
1225         struct buf **nextp;
1226         struct buf *bufx;       /* chained sub-buffer */
1227         struct bio *nbio;       /* parent nbio with chain glue */
1228         struct buf *bp;         /* original bp associated with nbio */
1229         int chain_empty;
1230
1231         bufx = biox->bio_buf;
1232         nbio = biox->bio_caller_info1.cluster_parent;
1233         bp = nbio->bio_buf;
1234
1235         /*
1236          * Update the original buffer
1237          */
1238         KKASSERT(bp != NULL);
1239         if (bufx->b_flags & B_ERROR) {
1240                 atomic_set_int(&bufx->b_flags, B_ERROR);
1241                 bp->b_error = bufx->b_error;    /* race ok */
1242         } else if (bufx->b_resid != 0) {
1243                 atomic_set_int(&bufx->b_flags, B_ERROR);
1244                 bp->b_error = EINVAL;           /* race ok */
1245         } else {
1246                 atomic_subtract_int(&bp->b_resid, bufx->b_bcount);
1247         }
1248
1249         /*
1250          * Remove us from the chain.
1251          */
1252         spin_lock(&swapbp_spin);
1253         nextp = &nbio->bio_caller_info1.cluster_head;
1254         while (*nextp != bufx) {
1255                 KKASSERT(*nextp != NULL);
1256                 nextp = &(*nextp)->b_cluster_next;
1257         }
1258         *nextp = bufx->b_cluster_next;
1259         chain_empty = (nbio->bio_caller_info1.cluster_head == NULL);
1260         spin_unlock(&swapbp_spin);
1261
1262         /*
1263          * Clean up bufx.  If the chain is now empty we finish out
1264          * the parent.  Note that we may be racing other completions
1265          * so we must use the chain_empty status from above.
1266          */
1267         if (chain_empty) {
1268                 if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
1269                         atomic_set_int(&bp->b_flags, B_ERROR);
1270                         bp->b_error = EINVAL;
1271                 }
1272                 biodone_chain(nbio);
1273         }
1274         relpbuf(bufx, NULL);
1275 }
1276
1277 /*
1278  * SWAP_PAGER_GETPAGES() - bring page in from swap
1279  *
1280  * The requested page may have to be brought in from swap.  Calculate the
1281  * swap block and bring in additional pages if possible.  All pages must
1282  * have contiguous swap block assignments and reside in the same object.
1283  *
1284  * The caller has a single vm_object_pip_add() reference prior to
1285  * calling us and we should return with the same.
1286  *
1287  * The caller has BUSY'd the page.  We should return with (*mpp) left busy,
1288  * and any additinal pages unbusied.
1289  *
1290  * If the caller encounters a PG_RAM page it will pass it to us even though
1291  * it may be valid and dirty.  We cannot overwrite the page in this case!
1292  * The case is used to allow us to issue pure read-aheads.
1293  *
1294  * NOTE! XXX This code does not entirely pipeline yet due to the fact that
1295  *       the PG_RAM page is validated at the same time as mreq.  What we
1296  *       really need to do is issue a separate read-ahead pbuf.
1297  *
1298  * No requirements.
1299  */
1300 static int
1301 swap_pager_getpage(vm_object_t object, vm_page_t *mpp, int seqaccess)
1302 {
1303         struct buf *bp;
1304         struct bio *bio;
1305         vm_page_t mreq;
1306         vm_page_t m;
1307         vm_offset_t kva;
1308         swblk_t blk;
1309         int i;
1310         int j;
1311         int raonly;
1312         int error;
1313         u_int32_t busy_count;
1314         vm_page_t marray[XIO_INTERNAL_PAGES];
1315
1316         mreq = *mpp;
1317
1318         vm_object_hold(object);
1319         if (mreq->object != object) {
1320                 panic("swap_pager_getpages: object mismatch %p/%p", 
1321                     object, 
1322                     mreq->object
1323                 );
1324         }
1325
1326         /*
1327          * We don't want to overwrite a fully valid page as it might be
1328          * dirty.  This case can occur when e.g. vm_fault hits a perfectly
1329          * valid page with PG_RAM set.
1330          *
1331          * In this case we see if the next page is a suitable page-in
1332          * candidate and if it is we issue read-ahead.  PG_RAM will be
1333          * set on the last page of the read-ahead to continue the pipeline.
1334          */
1335         if (mreq->valid == VM_PAGE_BITS_ALL) {
1336                 if (swap_burst_read == 0 || mreq->pindex + 1 >= object->size) {
1337                         vm_object_drop(object);
1338                         return(VM_PAGER_OK);
1339                 }
1340                 blk = swp_pager_meta_ctl(object, mreq->pindex + 1, 0);
1341                 if (blk == SWAPBLK_NONE) {
1342                         vm_object_drop(object);
1343                         return(VM_PAGER_OK);
1344                 }
1345                 m = vm_page_lookup_busy_try(object, mreq->pindex + 1,
1346                                             TRUE, &error);
1347                 if (error) {
1348                         vm_object_drop(object);
1349                         return(VM_PAGER_OK);
1350                 } else if (m == NULL) {
1351                         /*
1352                          * Use VM_ALLOC_QUICK to avoid blocking on cache
1353                          * page reuse.
1354                          */
1355                         m = vm_page_alloc(object, mreq->pindex + 1,
1356                                           VM_ALLOC_QUICK);
1357                         if (m == NULL) {
1358                                 vm_object_drop(object);
1359                                 return(VM_PAGER_OK);
1360                         }
1361                 } else {
1362                         if (m->valid) {
1363                                 vm_page_wakeup(m);
1364                                 vm_object_drop(object);
1365                                 return(VM_PAGER_OK);
1366                         }
1367                         vm_page_unqueue_nowakeup(m);
1368                 }
1369                 /* page is busy */
1370                 mreq = m;
1371                 raonly = 1;
1372         } else {
1373                 raonly = 0;
1374         }
1375
1376         /*
1377          * Try to block-read contiguous pages from swap if sequential,
1378          * otherwise just read one page.  Contiguous pages from swap must
1379          * reside within a single device stripe because the I/O cannot be
1380          * broken up across multiple stripes.
1381          *
1382          * Note that blk and iblk can be SWAPBLK_NONE but the loop is
1383          * set up such that the case(s) are handled implicitly.
1384          */
1385         blk = swp_pager_meta_ctl(mreq->object, mreq->pindex, 0);
1386         marray[0] = mreq;
1387
1388         for (i = 1; i <= swap_burst_read &&
1389                     i < XIO_INTERNAL_PAGES &&
1390                     mreq->pindex + i < object->size; ++i) {
1391                 swblk_t iblk;
1392
1393                 iblk = swp_pager_meta_ctl(object, mreq->pindex + i, 0);
1394                 if (iblk != blk + i)
1395                         break;
1396                 if ((blk ^ iblk) & ~SWB_DMMASK)
1397                         break;
1398                 m = vm_page_lookup_busy_try(object, mreq->pindex + i,
1399                                             TRUE, &error);
1400                 if (error) {
1401                         break;
1402                 } else if (m == NULL) {
1403                         /*
1404                          * Use VM_ALLOC_QUICK to avoid blocking on cache
1405                          * page reuse.
1406                          */
1407                         m = vm_page_alloc(object, mreq->pindex + i,
1408                                           VM_ALLOC_QUICK);
1409                         if (m == NULL)
1410                                 break;
1411                 } else {
1412                         if (m->valid) {
1413                                 vm_page_wakeup(m);
1414                                 break;
1415                         }
1416                         vm_page_unqueue_nowakeup(m);
1417                 }
1418                 /* page is busy */
1419                 marray[i] = m;
1420         }
1421         if (i > 1)
1422                 vm_page_flag_set(marray[i - 1], PG_RAM);
1423
1424         /*
1425          * If mreq is the requested page and we have nothing to do return
1426          * VM_PAGER_FAIL.  If raonly is set mreq is just another read-ahead
1427          * page and must be cleaned up.
1428          */
1429         if (blk == SWAPBLK_NONE) {
1430                 KKASSERT(i == 1);
1431                 if (raonly) {
1432                         vnode_pager_freepage(mreq);
1433                         vm_object_drop(object);
1434                         return(VM_PAGER_OK);
1435                 } else {
1436                         vm_object_drop(object);
1437                         return(VM_PAGER_FAIL);
1438                 }
1439         }
1440
1441         /*
1442          * Map our page(s) into kva for input
1443          *
1444          * Use the KVABIO API to avoid synchronizing the pmap.
1445          */
1446         bp = getpbuf_kva(&nsw_rcount);
1447         bio = &bp->b_bio1;
1448         kva = (vm_offset_t) bp->b_kvabase;
1449         bcopy(marray, bp->b_xio.xio_pages, i * sizeof(vm_page_t));
1450         pmap_qenter_noinval(kva, bp->b_xio.xio_pages, i);
1451
1452         bp->b_data = (caddr_t)kva;
1453         bp->b_bcount = PAGE_SIZE * i;
1454         bp->b_xio.xio_npages = i;
1455         bp->b_flags |= B_KVABIO;
1456         bio->bio_done = swp_pager_async_iodone;
1457         bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1458         bio->bio_caller_info1.index = SWBIO_READ;
1459
1460         /*
1461          * Set index.  If raonly set the index beyond the array so all
1462          * the pages are treated the same, otherwise the original mreq is
1463          * at index 0.
1464          */
1465         if (raonly)
1466                 bio->bio_driver_info = (void *)(intptr_t)i;
1467         else
1468                 bio->bio_driver_info = (void *)(intptr_t)0;
1469
1470         for (j = 0; j < i; ++j) {
1471                 atomic_set_int(&bp->b_xio.xio_pages[j]->busy_count,
1472                                PBUSY_SWAPINPROG);
1473         }
1474
1475         mycpu->gd_cnt.v_swapin++;
1476         mycpu->gd_cnt.v_swappgsin += bp->b_xio.xio_npages;
1477
1478         /*
1479          * We still hold the lock on mreq, and our automatic completion routine
1480          * does not remove it.
1481          */
1482         vm_object_pip_add(object, bp->b_xio.xio_npages);
1483
1484         /*
1485          * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1486          * this point because we automatically release it on completion.
1487          * Instead, we look at the one page we are interested in which we
1488          * still hold a lock on even through the I/O completion.
1489          *
1490          * The other pages in our m[] array are also released on completion,
1491          * so we cannot assume they are valid anymore either.
1492          */
1493         bp->b_cmd = BUF_CMD_READ;
1494         BUF_KERNPROC(bp);
1495         vn_strategy(swapdev_vp, bio);
1496
1497         /*
1498          * Wait for the page we want to complete.  PBUSY_SWAPINPROG is always
1499          * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1500          * is set in the meta-data.
1501          *
1502          * If this is a read-ahead only we return immediately without
1503          * waiting for I/O.
1504          */
1505         if (raonly) {
1506                 vm_object_drop(object);
1507                 return(VM_PAGER_OK);
1508         }
1509
1510         /*
1511          * Read-ahead includes originally requested page case.
1512          */
1513         for (;;) {
1514                 busy_count = mreq->busy_count;
1515                 cpu_ccfence();
1516                 if ((busy_count & PBUSY_SWAPINPROG) == 0)
1517                         break;
1518                 tsleep_interlock(mreq, 0);
1519                 if (!atomic_cmpset_int(&mreq->busy_count, busy_count,
1520                                        busy_count |
1521                                         PBUSY_SWAPINPROG | PBUSY_WANTED)) {
1522                         continue;
1523                 }
1524                 atomic_set_int(&mreq->flags, PG_REFERENCED);
1525                 mycpu->gd_cnt.v_intrans++;
1526                 if (tsleep(mreq, PINTERLOCKED, "swread", hz*20)) {
1527                         kprintf(
1528                             "swap_pager: indefinite wait buffer: "
1529                             " bp %p offset: %lld, size: %ld "
1530                             " m=%p busy=%08x flags=%08x\n",
1531                             bp,
1532                             (long long)bio->bio_offset,
1533                             (long)bp->b_bcount,
1534                             mreq, mreq->busy_count, mreq->flags);
1535                 }
1536         }
1537
1538         /*
1539          * Disallow speculative reads prior to the SWAPINPROG test.
1540          */
1541         cpu_lfence();
1542
1543         /*
1544          * mreq is left busied after completion, but all the other pages
1545          * are freed.  If we had an unrecoverable read error the page will
1546          * not be valid.
1547          */
1548         vm_object_drop(object);
1549         if (mreq->valid != VM_PAGE_BITS_ALL)
1550                 return(VM_PAGER_ERROR);
1551         else
1552                 return(VM_PAGER_OK);
1553
1554         /*
1555          * A final note: in a low swap situation, we cannot deallocate swap
1556          * and mark a page dirty here because the caller is likely to mark
1557          * the page clean when we return, causing the page to possibly revert 
1558          * to all-zero's later.
1559          */
1560 }
1561
1562 /*
1563  *      swap_pager_putpages: 
1564  *
1565  *      Assign swap (if necessary) and initiate I/O on the specified pages.
1566  *
1567  *      We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1568  *      are automatically converted to SWAP objects.
1569  *
1570  *      In a low memory situation we may block in vn_strategy(), but the new 
1571  *      vm_page reservation system coupled with properly written VFS devices 
1572  *      should ensure that no low-memory deadlock occurs.  This is an area
1573  *      which needs work.
1574  *
1575  *      The parent has N vm_object_pip_add() references prior to
1576  *      calling us and will remove references for rtvals[] that are
1577  *      not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1578  *      completion.
1579  *
1580  *      The parent has soft-busy'd the pages it passes us and will unbusy
1581  *      those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1582  *      We need to unbusy the rest on I/O completion.
1583  *
1584  * No requirements.
1585  */
1586 void
1587 swap_pager_putpages(vm_object_t object, vm_page_t *m, int count,
1588                     int flags, int *rtvals)
1589 {
1590         int i;
1591         int n = 0;
1592
1593         vm_object_hold(object);
1594
1595         if (count && m[0]->object != object) {
1596                 panic("swap_pager_getpages: object mismatch %p/%p", 
1597                     object, 
1598                     m[0]->object
1599                 );
1600         }
1601
1602         /*
1603          * Step 1
1604          *
1605          * Turn object into OBJT_SWAP
1606          * Check for bogus sysops
1607          *
1608          * Force sync if not pageout process, we don't want any single
1609          * non-pageout process to be able to hog the I/O subsystem!  This
1610          * can be overridden by setting.
1611          */
1612         if (object->type == OBJT_DEFAULT) {
1613                 if (object->type == OBJT_DEFAULT)
1614                         swp_pager_meta_convert(object);
1615         }
1616
1617         /*
1618          * Normally we force synchronous swap I/O if this is not the
1619          * pageout daemon to prevent any single user process limited
1620          * via RLIMIT_RSS from hogging swap write bandwidth.
1621          */
1622         if (curthread != pagethread &&
1623             curthread != emergpager &&
1624             swap_user_async == 0) {
1625                 flags |= VM_PAGER_PUT_SYNC;
1626         }
1627
1628         /*
1629          * Step 2
1630          *
1631          * Update nsw parameters from swap_async_max sysctl values.  
1632          * Do not let the sysop crash the machine with bogus numbers.
1633          */
1634         if (swap_async_max != nsw_wcount_async_max) {
1635                 int n;
1636
1637                 /*
1638                  * limit range
1639                  */
1640                 if ((n = swap_async_max) > nswbuf_kva / 2)
1641                         n = nswbuf_kva / 2;
1642                 if (n < 1)
1643                         n = 1;
1644                 swap_async_max = n;
1645
1646                 /*
1647                  * Adjust difference ( if possible ).  If the current async
1648                  * count is too low, we may not be able to make the adjustment
1649                  * at this time.
1650                  *
1651                  * vm_token needed for nsw_wcount sleep interlock
1652                  */
1653                 lwkt_gettoken(&vm_token);
1654                 n -= nsw_wcount_async_max;
1655                 if (nsw_wcount_async + n >= 0) {
1656                         nsw_wcount_async_max += n;
1657                         pbuf_adjcount(&nsw_wcount_async, n);
1658                 }
1659                 lwkt_reltoken(&vm_token);
1660         }
1661
1662         /*
1663          * Step 3
1664          *
1665          * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1666          * The page is left dirty until the pageout operation completes
1667          * successfully.
1668          */
1669
1670         for (i = 0; i < count; i += n) {
1671                 struct buf *bp;
1672                 struct bio *bio;
1673                 swblk_t blk;
1674                 int j;
1675
1676                 /*
1677                  * Maximum I/O size is limited by a number of factors.
1678                  */
1679
1680                 n = min(BLIST_MAX_ALLOC, count - i);
1681                 n = min(n, nsw_cluster_max);
1682
1683                 lwkt_gettoken(&vm_token);
1684
1685                 /*
1686                  * Get biggest block of swap we can.  If we fail, fall
1687                  * back and try to allocate a smaller block.  Don't go
1688                  * overboard trying to allocate space if it would overly
1689                  * fragment swap.
1690                  */
1691                 while (
1692                     (blk = swp_pager_getswapspace(object, n)) == SWAPBLK_NONE &&
1693                     n > 4
1694                 ) {
1695                         n >>= 1;
1696                 }
1697                 if (blk == SWAPBLK_NONE) {
1698                         for (j = 0; j < n; ++j)
1699                                 rtvals[i+j] = VM_PAGER_FAIL;
1700                         lwkt_reltoken(&vm_token);
1701                         continue;
1702                 }
1703                 if (vm_report_swap_allocs > 0) {
1704                         kprintf("swap_alloc %08jx,%d\n", (intmax_t)blk, n);
1705                         --vm_report_swap_allocs;
1706                 }
1707
1708                 /*
1709                  * The I/O we are constructing cannot cross a physical
1710                  * disk boundry in the swap stripe.
1711                  */
1712                 if ((blk ^ (blk + n)) & ~SWB_DMMASK) {
1713                         j = ((blk + SWB_DMMAX) & ~SWB_DMMASK) - blk;
1714                         swp_pager_freeswapspace(object, blk + j, n - j);
1715                         n = j;
1716                 }
1717
1718                 /*
1719                  * All I/O parameters have been satisfied, build the I/O
1720                  * request and assign the swap space.
1721                  *
1722                  * Use the KVABIO API to avoid synchronizing the pmap.
1723                  */
1724                 if ((flags & VM_PAGER_PUT_SYNC))
1725                         bp = getpbuf_kva(&nsw_wcount_sync);
1726                 else
1727                         bp = getpbuf_kva(&nsw_wcount_async);
1728                 bio = &bp->b_bio1;
1729
1730                 lwkt_reltoken(&vm_token);
1731
1732                 pmap_qenter_noinval((vm_offset_t)bp->b_data, &m[i], n);
1733
1734                 bp->b_flags |= B_KVABIO;
1735                 bp->b_bcount = PAGE_SIZE * n;
1736                 bio->bio_offset = (off_t)blk << PAGE_SHIFT;
1737
1738                 for (j = 0; j < n; ++j) {
1739                         vm_page_t mreq = m[i+j];
1740
1741                         swp_pager_meta_build(mreq->object, mreq->pindex,
1742                                              blk + j);
1743                         if (object->type == OBJT_SWAP)
1744                                 vm_page_dirty(mreq);
1745                         rtvals[i+j] = VM_PAGER_OK;
1746
1747                         atomic_set_int(&mreq->busy_count, PBUSY_SWAPINPROG);
1748                         bp->b_xio.xio_pages[j] = mreq;
1749                 }
1750                 bp->b_xio.xio_npages = n;
1751
1752                 mycpu->gd_cnt.v_swapout++;
1753                 mycpu->gd_cnt.v_swappgsout += bp->b_xio.xio_npages;
1754
1755                 bp->b_dirtyoff = 0;             /* req'd for NFS */
1756                 bp->b_dirtyend = bp->b_bcount;  /* req'd for NFS */
1757                 bp->b_cmd = BUF_CMD_WRITE;
1758                 bio->bio_caller_info1.index = SWBIO_WRITE;
1759
1760                 /*
1761                  * asynchronous
1762                  */
1763                 if ((flags & VM_PAGER_PUT_SYNC) == 0) {
1764                         bio->bio_done = swp_pager_async_iodone;
1765                         BUF_KERNPROC(bp);
1766                         vn_strategy(swapdev_vp, bio);
1767
1768                         for (j = 0; j < n; ++j)
1769                                 rtvals[i+j] = VM_PAGER_PEND;
1770                         continue;
1771                 }
1772
1773                 /*
1774                  * Issue synchrnously.
1775                  *
1776                  * Wait for the sync I/O to complete, then update rtvals.
1777                  * We just set the rtvals[] to VM_PAGER_PEND so we can call
1778                  * our async completion routine at the end, thus avoiding a
1779                  * double-free.
1780                  */
1781                 bio->bio_caller_info1.index |= SWBIO_SYNC;
1782                 if (flags & VM_PAGER_TRY_TO_CACHE)
1783                         bio->bio_caller_info1.index |= SWBIO_TTC;
1784                 bio->bio_done = biodone_sync;
1785                 bio->bio_flags |= BIO_SYNC;
1786                 vn_strategy(swapdev_vp, bio);
1787                 biowait(bio, "swwrt");
1788
1789                 for (j = 0; j < n; ++j)
1790                         rtvals[i+j] = VM_PAGER_PEND;
1791
1792                 /*
1793                  * Now that we are through with the bp, we can call the
1794                  * normal async completion, which frees everything up.
1795                  */
1796                 swp_pager_async_iodone(bio);
1797         }
1798         vm_object_drop(object);
1799 }
1800
1801 /*
1802  * No requirements.
1803  *
1804  * Recalculate the low and high-water marks.
1805  */
1806 void
1807 swap_pager_newswap(void)
1808 {
1809         /*
1810          * NOTE: vm_swap_max cannot exceed 1 billion blocks, which is the
1811          *       limitation imposed by the blist code.  Remember that this
1812          *       will be divided by NSWAP_MAX (4), so each swap device is
1813          *       limited to around a terrabyte.
1814          */
1815         if (vm_swap_max) {
1816                 nswap_lowat = (int64_t)vm_swap_max * 4 / 100;   /* 4% left */
1817                 nswap_hiwat = (int64_t)vm_swap_max * 6 / 100;   /* 6% left */
1818                 kprintf("swap low/high-water marks set to %d/%d\n",
1819                         nswap_lowat, nswap_hiwat);
1820         } else {
1821                 nswap_lowat = 128;
1822                 nswap_hiwat = 512;
1823         }
1824         swp_sizecheck();
1825 }
1826
1827 /*
1828  *      swp_pager_async_iodone:
1829  *
1830  *      Completion routine for asynchronous reads and writes from/to swap.
1831  *      Also called manually by synchronous code to finish up a bp.
1832  *
1833  *      For READ operations, the pages are BUSY'd.  For WRITE operations,
1834  *      the pages are vm_page_t->busy'd.  For READ operations, we BUSY
1835  *      unbusy all pages except the 'main' request page.  For WRITE 
1836  *      operations, we vm_page_t->busy'd unbusy all pages ( we can do this 
1837  *      because we marked them all VM_PAGER_PEND on return from putpages ).
1838  *
1839  *      This routine may not block.
1840  *
1841  * No requirements.
1842  */
1843 static void
1844 swp_pager_async_iodone(struct bio *bio)
1845 {
1846         struct buf *bp = bio->bio_buf;
1847         vm_object_t object = NULL;
1848         int i;
1849         int *nswptr;
1850
1851         /*
1852          * report error
1853          */
1854         if (bp->b_flags & B_ERROR) {
1855                 kprintf(
1856                     "swap_pager: I/O error - %s failed; offset %lld,"
1857                         "size %ld, error %d\n",
1858                     ((bio->bio_caller_info1.index & SWBIO_READ) ?
1859                         "pagein" : "pageout"),
1860                     (long long)bio->bio_offset,
1861                     (long)bp->b_bcount,
1862                     bp->b_error
1863                 );
1864         }
1865
1866         /*
1867          * set object.
1868          */
1869         if (bp->b_xio.xio_npages)
1870                 object = bp->b_xio.xio_pages[0]->object;
1871
1872 #if 0
1873         /* PMAP TESTING CODE (useful, keep it in but #if 0'd) */
1874         if (bio->bio_caller_info1.index & SWBIO_WRITE) {
1875                 if (bio->bio_crc != iscsi_crc32(bp->b_data, bp->b_bcount)) {
1876                         kprintf("SWAPOUT: BADCRC %08x %08x\n",
1877                                 bio->bio_crc,
1878                                 iscsi_crc32(bp->b_data, bp->b_bcount));
1879                         for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1880                                 vm_page_t m = bp->b_xio.xio_pages[i];
1881                                 if ((m->flags & PG_WRITEABLE) &&
1882                                     (pmap_mapped_sync(m) & PG_WRITEABLE)) {
1883                                         kprintf("SWAPOUT: "
1884                                                 "%d/%d %p writable\n",
1885                                                 i, bp->b_xio.xio_npages, m);
1886                                 }
1887                         }
1888                 }
1889         }
1890 #endif
1891
1892         /*
1893          * remove the mapping for kernel virtual
1894          */
1895         pmap_qremove((vm_offset_t)bp->b_data, bp->b_xio.xio_npages);
1896
1897         /*
1898          * cleanup pages.  If an error occurs writing to swap, we are in
1899          * very serious trouble.  If it happens to be a disk error, though,
1900          * we may be able to recover by reassigning the swap later on.  So
1901          * in this case we remove the m->swapblk assignment for the page 
1902          * but do not free it in the rlist.  The errornous block(s) are thus
1903          * never reallocated as swap.  Redirty the page and continue.
1904          */
1905         for (i = 0; i < bp->b_xio.xio_npages; ++i) {
1906                 vm_page_t m = bp->b_xio.xio_pages[i];
1907
1908                 if (bp->b_flags & B_ERROR) {
1909                         /*
1910                          * If an error occurs I'd love to throw the swapblk
1911                          * away without freeing it back to swapspace, so it
1912                          * can never be used again.  But I can't from an 
1913                          * interrupt.
1914                          */
1915
1916                         if (bio->bio_caller_info1.index & SWBIO_READ) {
1917                                 /*
1918                                  * When reading, reqpage needs to stay
1919                                  * locked for the parent, but all other
1920                                  * pages can be freed.  We still want to
1921                                  * wakeup the parent waiting on the page,
1922                                  * though.  ( also: pg_reqpage can be -1 and 
1923                                  * not match anything ).
1924                                  *
1925                                  * We have to wake specifically requested pages
1926                                  * up too because we cleared SWAPINPROG and
1927                                  * someone may be waiting for that.
1928                                  *
1929                                  * NOTE: For reads, m->dirty will probably
1930                                  *       be overridden by the original caller
1931                                  *       of getpages so don't play cute tricks
1932                                  *       here.
1933                                  *
1934                                  * NOTE: We can't actually free the page from
1935                                  *       here, because this is an interrupt.
1936                                  *       It is not legal to mess with
1937                                  *       object->memq from an interrupt.
1938                                  *       Deactivate the page instead.
1939                                  *
1940                                  * WARNING! The instant SWAPINPROG is
1941                                  *          cleared another cpu may start
1942                                  *          using the mreq page (it will
1943                                  *          check m->valid immediately).
1944                                  */
1945
1946                                 m->valid = 0;
1947                                 atomic_clear_int(&m->busy_count,
1948                                                  PBUSY_SWAPINPROG);
1949
1950                                 /*
1951                                  * bio_driver_info holds the requested page
1952                                  * index.
1953                                  */
1954                                 if (i != (int)(intptr_t)bio->bio_driver_info) {
1955                                         vm_page_deactivate(m);
1956                                         vm_page_wakeup(m);
1957                                 } else {
1958                                         vm_page_flash(m);
1959                                 }
1960                                 /*
1961                                  * If i == bp->b_pager.pg_reqpage, do not wake 
1962                                  * the page up.  The caller needs to.
1963                                  */
1964                         } else {
1965                                 /*
1966                                  * If a write error occurs remove the swap
1967                                  * assignment (note that PG_SWAPPED may or
1968                                  * may not be set depending on prior activity).
1969                                  *
1970                                  * Re-dirty OBJT_SWAP pages as there is no
1971                                  * other backing store, we can't throw the
1972                                  * page away.
1973                                  *
1974                                  * Non-OBJT_SWAP pages (aka swapcache) must
1975                                  * not be dirtied since they may not have
1976                                  * been dirty in the first place, and they
1977                                  * do have backing store (the vnode).
1978                                  */
1979                                 vm_page_busy_wait(m, FALSE, "swadpg");
1980                                 vm_object_hold(m->object);
1981                                 swp_pager_meta_ctl(m->object, m->pindex,
1982                                                    SWM_FREE);
1983                                 vm_page_flag_clear(m, PG_SWAPPED);
1984                                 vm_object_drop(m->object);
1985                                 if (m->object->type == OBJT_SWAP) {
1986                                         vm_page_dirty(m);
1987                                         vm_page_activate(m);
1988                                 }
1989                                 vm_page_io_finish(m);
1990                                 atomic_clear_int(&m->busy_count,
1991                                                  PBUSY_SWAPINPROG);
1992                                 vm_page_wakeup(m);
1993                         }
1994                 } else if (bio->bio_caller_info1.index & SWBIO_READ) {
1995                         /*
1996                          * NOTE: for reads, m->dirty will probably be 
1997                          * overridden by the original caller of getpages so
1998                          * we cannot set them in order to free the underlying
1999                          * swap in a low-swap situation.  I don't think we'd
2000                          * want to do that anyway, but it was an optimization
2001                          * that existed in the old swapper for a time before
2002                          * it got ripped out due to precisely this problem.
2003                          *
2004                          * If not the requested page then deactivate it.
2005                          *
2006                          * Note that the requested page, reqpage, is left
2007                          * busied, but we still have to wake it up.  The
2008                          * other pages are released (unbusied) by 
2009                          * vm_page_wakeup().  We do not set reqpage's
2010                          * valid bits here, it is up to the caller.
2011                          */
2012
2013                         /* 
2014                          * NOTE: Can't call pmap_clear_modify(m) from an
2015                          *       interrupt thread, the pmap code may have to
2016                          *       map non-kernel pmaps and currently asserts
2017                          *       the case.
2018                          *
2019                          * WARNING! The instant SWAPINPROG is
2020                          *          cleared another cpu may start
2021                          *          using the mreq page (it will
2022                          *          check m->valid immediately).
2023                          */
2024                         /*pmap_clear_modify(m);*/
2025                         m->valid = VM_PAGE_BITS_ALL;
2026                         vm_page_undirty(m);
2027                         vm_page_flag_set(m, PG_SWAPPED);
2028                         atomic_clear_int(&m->busy_count, PBUSY_SWAPINPROG);
2029
2030                         /*
2031                          * We have to wake specifically requested pages
2032                          * up too because we cleared SWAPINPROG and
2033                          * could be waiting for it in getpages.  However,
2034                          * be sure to not unbusy getpages specifically
2035                          * requested page - getpages expects it to be 
2036                          * left busy.
2037                          *
2038                          * bio_driver_info holds the requested page
2039                          */
2040                         if (i != (int)(intptr_t)bio->bio_driver_info) {
2041                                 vm_page_deactivate(m);
2042                                 vm_page_wakeup(m);
2043                         } else {
2044                                 vm_page_flash(m);
2045                         }
2046                 } else {
2047                         /*
2048                          * Mark the page clean but do not mess with the
2049                          * pmap-layer's modified state.  That state should
2050                          * also be clear since the caller protected the
2051                          * page VM_PROT_READ, but allow the case.
2052                          *
2053                          * We are in an interrupt, avoid pmap operations.
2054                          *
2055                          * If we have a severe page deficit, deactivate the
2056                          * page.  Do not try to cache it (which would also
2057                          * involve a pmap op), because the page might still
2058                          * be read-heavy.
2059                          *
2060                          * When using the swap to cache clean vnode pages
2061                          * we do not mess with the page dirty bits.
2062                          *
2063                          * NOTE! Nobody is waiting for the key mreq page
2064                          *       on write completion.
2065                          */
2066                         vm_page_busy_wait(m, FALSE, "swadpg");
2067                         if (m->object->type == OBJT_SWAP)
2068                                 vm_page_undirty(m);
2069                         vm_page_flag_set(m, PG_SWAPPED);
2070                         atomic_clear_int(&m->busy_count, PBUSY_SWAPINPROG);
2071                         if (vm_page_count_severe())
2072                                 vm_page_deactivate(m);
2073                         vm_page_io_finish(m);
2074                         if (bio->bio_caller_info1.index & SWBIO_TTC)
2075                                 vm_page_try_to_cache(m);
2076                         else
2077                                 vm_page_wakeup(m);
2078                 }
2079         }
2080
2081         /*
2082          * adjust pip.  NOTE: the original parent may still have its own
2083          * pip refs on the object.
2084          */
2085
2086         if (object)
2087                 vm_object_pip_wakeup_n(object, bp->b_xio.xio_npages);
2088
2089         /*
2090          * Release the physical I/O buffer.
2091          *
2092          * NOTE: Due to synchronous operations in the write case b_cmd may
2093          *       already be set to BUF_CMD_DONE and BIO_SYNC may have already
2094          *       been cleared.
2095          *
2096          * Use vm_token to interlock nsw_rcount/wcount wakeup?
2097          */
2098         lwkt_gettoken(&vm_token);
2099         if (bio->bio_caller_info1.index & SWBIO_READ)
2100                 nswptr = &nsw_rcount;
2101         else if (bio->bio_caller_info1.index & SWBIO_SYNC)
2102                 nswptr = &nsw_wcount_sync;
2103         else
2104                 nswptr = &nsw_wcount_async;
2105         bp->b_cmd = BUF_CMD_DONE;
2106         relpbuf(bp, nswptr);
2107         lwkt_reltoken(&vm_token);
2108 }
2109
2110 /*
2111  * Fault-in a potentially swapped page and remove the swap reference.
2112  * (used by swapoff code)
2113  *
2114  * object must be held.
2115  */
2116 static __inline void
2117 swp_pager_fault_page(vm_object_t object, int *sharedp, vm_pindex_t pindex)
2118 {
2119         struct vnode *vp;
2120         vm_page_t m;
2121         int error;
2122
2123         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2124
2125         if (object->type == OBJT_VNODE) {
2126                 /*
2127                  * Any swap related to a vnode is due to swapcache.  We must
2128                  * vget() the vnode in case it is not active (otherwise
2129                  * vref() will panic).  Calling vm_object_page_remove() will
2130                  * ensure that any swap ref is removed interlocked with the
2131                  * page.  clean_only is set to TRUE so we don't throw away
2132                  * dirty pages.
2133                  */
2134                 vp = object->handle;
2135                 error = vget(vp, LK_SHARED | LK_RETRY | LK_CANRECURSE);
2136                 if (error == 0) {
2137                         vm_object_page_remove(object, pindex, pindex + 1, TRUE);
2138                         vput(vp);
2139                 }
2140         } else {
2141                 /*
2142                  * Otherwise it is a normal OBJT_SWAP object and we can
2143                  * fault the page in and remove the swap.
2144                  */
2145                 m = vm_fault_object_page(object, IDX_TO_OFF(pindex),
2146                                          VM_PROT_NONE,
2147                                          VM_FAULT_DIRTY | VM_FAULT_UNSWAP,
2148                                          sharedp, &error);
2149                 if (m)
2150                         vm_page_unhold(m);
2151         }
2152 }
2153
2154 /*
2155  * This removes all swap blocks related to a particular device.  We have
2156  * to be careful of ripups during the scan.
2157  */
2158 static int swp_pager_swapoff_callback(struct swblock *swap, void *data);
2159
2160 int
2161 swap_pager_swapoff(int devidx)
2162 {
2163         struct vm_object_hash *hash;
2164         struct swswapoffinfo info;
2165         struct vm_object marker;
2166         vm_object_t object;
2167         int n;
2168
2169         bzero(&marker, sizeof(marker));
2170         marker.type = OBJT_MARKER;
2171
2172         for (n = 0; n < VMOBJ_HSIZE; ++n) {
2173                 hash = &vm_object_hash[n];
2174
2175                 lwkt_gettoken(&hash->token);
2176                 TAILQ_INSERT_HEAD(&hash->list, &marker, object_entry);
2177
2178                 while ((object = TAILQ_NEXT(&marker, object_entry)) != NULL) {
2179                         if (object->type == OBJT_MARKER)
2180                                 goto skip;
2181                         if (object->type != OBJT_SWAP &&
2182                             object->type != OBJT_VNODE)
2183                                 goto skip;
2184                         vm_object_hold(object);
2185                         if (object->type != OBJT_SWAP &&
2186                             object->type != OBJT_VNODE) {
2187                                 vm_object_drop(object);
2188                                 goto skip;
2189                         }
2190
2191                         /*
2192                          * Object is special in that we can't just pagein
2193                          * into vm_page's in it (tmpfs, vn).
2194                          */
2195                         if ((object->flags & OBJ_NOPAGEIN) &&
2196                             RB_ROOT(&object->swblock_root)) {
2197                                 vm_object_drop(object);
2198                                 goto skip;
2199                         }
2200
2201                         info.object = object;
2202                         info.shared = 0;
2203                         info.devidx = devidx;
2204                         swblock_rb_tree_RB_SCAN(&object->swblock_root,
2205                                             NULL, swp_pager_swapoff_callback,
2206                                             &info);
2207                         vm_object_drop(object);
2208 skip:
2209                         if (object == TAILQ_NEXT(&marker, object_entry)) {
2210                                 TAILQ_REMOVE(&hash->list, &marker,
2211                                              object_entry);
2212                                 TAILQ_INSERT_AFTER(&hash->list, object,
2213                                                    &marker, object_entry);
2214                         }
2215                 }
2216                 TAILQ_REMOVE(&hash->list, &marker, object_entry);
2217                 lwkt_reltoken(&hash->token);
2218         }
2219
2220         /*
2221          * If we fail to locate all swblocks we just fail gracefully and
2222          * do not bother to restore paging on the swap device.  If the
2223          * user wants to retry the user can retry.
2224          */
2225         if (swdevt[devidx].sw_nused)
2226                 return (1);
2227         else
2228                 return (0);
2229 }
2230
2231 static
2232 int
2233 swp_pager_swapoff_callback(struct swblock *swap, void *data)
2234 {
2235         struct swswapoffinfo *info = data;
2236         vm_object_t object = info->object;
2237         vm_pindex_t index;
2238         swblk_t v;
2239         int i;
2240
2241         index = swap->swb_index;
2242         for (i = 0; i < SWAP_META_PAGES; ++i) {
2243                 /*
2244                  * Make sure we don't race a dying object.  This will
2245                  * kill the scan of the object's swap blocks entirely.
2246                  */
2247                 if (object->flags & OBJ_DEAD)
2248                         return(-1);
2249
2250                 /*
2251                  * Fault the page, which can obviously block.  If the swap
2252                  * structure disappears break out.
2253                  */
2254                 v = swap->swb_pages[i];
2255                 if (v != SWAPBLK_NONE && BLK2DEVIDX(v) == info->devidx) {
2256                         swp_pager_fault_page(object, &info->shared,
2257                                              swap->swb_index + i);
2258                         /* swap ptr might go away */
2259                         if (RB_LOOKUP(swblock_rb_tree,
2260                                       &object->swblock_root, index) != swap) {
2261                                 break;
2262                         }
2263                 }
2264         }
2265         return(0);
2266 }
2267
2268 /************************************************************************
2269  *                              SWAP META DATA                          *
2270  ************************************************************************
2271  *
2272  *      These routines manipulate the swap metadata stored in the 
2273  *      OBJT_SWAP object.
2274  *
2275  *      Swap metadata is implemented with a global hash and not directly
2276  *      linked into the object.  Instead the object simply contains
2277  *      appropriate tracking counters.
2278  */
2279
2280 /*
2281  * Lookup the swblock containing the specified swap block index.
2282  *
2283  * The caller must hold the object.
2284  */
2285 static __inline
2286 struct swblock *
2287 swp_pager_lookup(vm_object_t object, vm_pindex_t index)
2288 {
2289         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2290         index &= ~(vm_pindex_t)SWAP_META_MASK;
2291         return (RB_LOOKUP(swblock_rb_tree, &object->swblock_root, index));
2292 }
2293
2294 /*
2295  * Remove a swblock from the RB tree.
2296  *
2297  * The caller must hold the object.
2298  */
2299 static __inline
2300 void
2301 swp_pager_remove(vm_object_t object, struct swblock *swap)
2302 {
2303         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2304         RB_REMOVE(swblock_rb_tree, &object->swblock_root, swap);
2305 }
2306
2307 /*
2308  * Convert default object to swap object if necessary
2309  *
2310  * The caller must hold the object.
2311  */
2312 static void
2313 swp_pager_meta_convert(vm_object_t object)
2314 {
2315         if (object->type == OBJT_DEFAULT) {
2316                 object->type = OBJT_SWAP;
2317                 KKASSERT(object->swblock_count == 0);
2318         }
2319 }
2320
2321 /*
2322  * SWP_PAGER_META_BUILD() -     add swap block to swap meta data for object
2323  *
2324  *      We first convert the object to a swap object if it is a default
2325  *      object.  Vnode objects do not need to be converted.
2326  *
2327  *      The specified swapblk is added to the object's swap metadata.  If
2328  *      the swapblk is not valid, it is freed instead.  Any previously
2329  *      assigned swapblk is freed.
2330  *
2331  * The caller must hold the object.
2332  */
2333 static void
2334 swp_pager_meta_build(vm_object_t object, vm_pindex_t index, swblk_t swapblk)
2335 {
2336         struct swblock *swap;
2337         struct swblock *oswap;
2338         vm_pindex_t v;
2339
2340         KKASSERT(swapblk != SWAPBLK_NONE);
2341         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2342
2343         /*
2344          * Convert object if necessary
2345          */
2346         if (object->type == OBJT_DEFAULT)
2347                 swp_pager_meta_convert(object);
2348         
2349         /*
2350          * Locate swblock.  If not found create, but if we aren't adding
2351          * anything just return.  If we run out of space in the map we wait
2352          * and, since the hash table may have changed, retry.
2353          */
2354 retry:
2355         swap = swp_pager_lookup(object, index);
2356
2357         if (swap == NULL) {
2358                 int i;
2359
2360                 swap = zalloc(swap_zone);
2361                 if (swap == NULL) {
2362                         vm_wait(0);
2363                         goto retry;
2364                 }
2365                 swap->swb_index = index & ~(vm_pindex_t)SWAP_META_MASK;
2366                 swap->swb_count = 0;
2367
2368                 ++object->swblock_count;
2369
2370                 for (i = 0; i < SWAP_META_PAGES; ++i)
2371                         swap->swb_pages[i] = SWAPBLK_NONE;
2372                 oswap = RB_INSERT(swblock_rb_tree, &object->swblock_root, swap);
2373                 KKASSERT(oswap == NULL);
2374         }
2375
2376         /*
2377          * Delete prior contents of metadata.
2378          *
2379          * NOTE: Decrement swb_count after the freeing operation (which
2380          *       might block) to prevent racing destruction of the swblock.
2381          */
2382         index &= SWAP_META_MASK;
2383
2384         while ((v = swap->swb_pages[index]) != SWAPBLK_NONE) {
2385                 swap->swb_pages[index] = SWAPBLK_NONE;
2386                 /* can block */
2387                 swp_pager_freeswapspace(object, v, 1);
2388                 --swap->swb_count;
2389                 --mycpu->gd_vmtotal.t_vm;
2390         }
2391
2392         /*
2393          * Enter block into metadata
2394          */
2395         swap->swb_pages[index] = swapblk;
2396         if (swapblk != SWAPBLK_NONE) {
2397                 ++swap->swb_count;
2398                 ++mycpu->gd_vmtotal.t_vm;
2399         }
2400 }
2401
2402 /*
2403  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2404  *
2405  *      The requested range of blocks is freed, with any associated swap 
2406  *      returned to the swap bitmap.
2407  *
2408  *      This routine will free swap metadata structures as they are cleaned 
2409  *      out.  This routine does *NOT* operate on swap metadata associated
2410  *      with resident pages.
2411  *
2412  * The caller must hold the object.
2413  */
2414 static int swp_pager_meta_free_callback(struct swblock *swb, void *data);
2415
2416 static void
2417 swp_pager_meta_free(vm_object_t object, vm_pindex_t index, vm_pindex_t count)
2418 {
2419         struct swfreeinfo info;
2420
2421         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2422
2423         /*
2424          * Nothing to do
2425          */
2426         if (object->swblock_count == 0) {
2427                 KKASSERT(RB_EMPTY(&object->swblock_root));
2428                 return;
2429         }
2430         if (count == 0)
2431                 return;
2432
2433         /*
2434          * Setup for RB tree scan.  Note that the pindex range can be huge
2435          * due to the 64 bit page index space so we cannot safely iterate.
2436          */
2437         info.object = object;
2438         info.basei = index & ~(vm_pindex_t)SWAP_META_MASK;
2439         info.begi = index;
2440         info.endi = index + count - 1;
2441         swblock_rb_tree_RB_SCAN(&object->swblock_root, rb_swblock_scancmp,
2442                                 swp_pager_meta_free_callback, &info);
2443 }
2444
2445 /*
2446  * The caller must hold the object.
2447  */
2448 static
2449 int
2450 swp_pager_meta_free_callback(struct swblock *swap, void *data)
2451 {
2452         struct swfreeinfo *info = data;
2453         vm_object_t object = info->object;
2454         int index;
2455         int eindex;
2456
2457         /*
2458          * Figure out the range within the swblock.  The wider scan may
2459          * return edge-case swap blocks when the start and/or end points
2460          * are in the middle of a block.
2461          */
2462         if (swap->swb_index < info->begi)
2463                 index = (int)info->begi & SWAP_META_MASK;
2464         else
2465                 index = 0;
2466
2467         if (swap->swb_index + SWAP_META_PAGES > info->endi)
2468                 eindex = (int)info->endi & SWAP_META_MASK;
2469         else
2470                 eindex = SWAP_META_MASK;
2471
2472         /*
2473          * Scan and free the blocks.  The loop terminates early
2474          * if (swap) runs out of blocks and could be freed.
2475          *
2476          * NOTE: Decrement swb_count after swp_pager_freeswapspace()
2477          *       to deal with a zfree race.
2478          */
2479         while (index <= eindex) {
2480                 swblk_t v = swap->swb_pages[index];
2481
2482                 if (v != SWAPBLK_NONE) {
2483                         swap->swb_pages[index] = SWAPBLK_NONE;
2484                         /* can block */
2485                         swp_pager_freeswapspace(object, v, 1);
2486                         --mycpu->gd_vmtotal.t_vm;
2487                         if (--swap->swb_count == 0) {
2488                                 swp_pager_remove(object, swap);
2489                                 zfree(swap_zone, swap);
2490                                 --object->swblock_count;
2491                                 break;
2492                         }
2493                 }
2494                 ++index;
2495         }
2496
2497         /* swap may be invalid here due to zfree above */
2498         lwkt_yield();
2499
2500         return(0);
2501 }
2502
2503 /*
2504  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2505  *
2506  *      This routine locates and destroys all swap metadata associated with
2507  *      an object.
2508  *
2509  * NOTE: Decrement swb_count after the freeing operation (which
2510  *       might block) to prevent racing destruction of the swblock.
2511  *
2512  * The caller must hold the object.
2513  */
2514 static void
2515 swp_pager_meta_free_all(vm_object_t object)
2516 {
2517         struct swblock *swap;
2518         int i;
2519
2520         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2521
2522         while ((swap = RB_ROOT(&object->swblock_root)) != NULL) {
2523                 swp_pager_remove(object, swap);
2524                 for (i = 0; i < SWAP_META_PAGES; ++i) {
2525                         swblk_t v = swap->swb_pages[i];
2526                         if (v != SWAPBLK_NONE) {
2527                                 /* can block */
2528                                 swp_pager_freeswapspace(object, v, 1);
2529                                 --swap->swb_count;
2530                                 --mycpu->gd_vmtotal.t_vm;
2531                         }
2532                 }
2533                 if (swap->swb_count != 0)
2534                         panic("swap_pager_meta_free_all: swb_count != 0");
2535                 zfree(swap_zone, swap);
2536                 --object->swblock_count;
2537                 lwkt_yield();
2538         }
2539         KKASSERT(object->swblock_count == 0);
2540 }
2541
2542 /*
2543  * SWP_PAGER_METACTL() -  misc control of swap and vm_page_t meta data.
2544  *
2545  *      This routine is capable of looking up, popping, or freeing
2546  *      swapblk assignments in the swap meta data or in the vm_page_t.
2547  *      The routine typically returns the swapblk being looked-up, or popped,
2548  *      or SWAPBLK_NONE if the block was freed, or SWAPBLK_NONE if the block
2549  *      was invalid.  This routine will automatically free any invalid 
2550  *      meta-data swapblks.
2551  *
2552  *      It is not possible to store invalid swapblks in the swap meta data
2553  *      (other then a literal 'SWAPBLK_NONE'), so we don't bother checking.
2554  *
2555  *      When acting on a busy resident page and paging is in progress, we 
2556  *      have to wait until paging is complete but otherwise can act on the 
2557  *      busy page.
2558  *
2559  *      SWM_FREE        remove and free swap block from metadata
2560  *      SWM_POP         remove from meta data but do not free.. pop it out
2561  *
2562  * The caller must hold the object.
2563  */
2564 static swblk_t
2565 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t index, int flags)
2566 {
2567         struct swblock *swap;
2568         swblk_t r1;
2569
2570         if (object->swblock_count == 0)
2571                 return(SWAPBLK_NONE);
2572
2573         r1 = SWAPBLK_NONE;
2574         swap = swp_pager_lookup(object, index);
2575
2576         if (swap != NULL) {
2577                 index &= SWAP_META_MASK;
2578                 r1 = swap->swb_pages[index];
2579
2580                 if (r1 != SWAPBLK_NONE) {
2581                         if (flags & (SWM_FREE|SWM_POP)) {
2582                                 swap->swb_pages[index] = SWAPBLK_NONE;
2583                                 --mycpu->gd_vmtotal.t_vm;
2584                                 if (--swap->swb_count == 0) {
2585                                         swp_pager_remove(object, swap);
2586                                         zfree(swap_zone, swap);
2587                                         --object->swblock_count;
2588                                 }
2589                         } 
2590                         /* swap ptr may be invalid */
2591                         if (flags & SWM_FREE) {
2592                                 swp_pager_freeswapspace(object, r1, 1);
2593                                 r1 = SWAPBLK_NONE;
2594                         }
2595                 }
2596                 /* swap ptr may be invalid */
2597         }
2598         return(r1);
2599 }