46645ade8f86e3f29e0ad784aa89faaf6b4d5781
[dragonfly.git] / sys / dev / netif / sk / if_sk.c
1 /*      $OpenBSD: if_sk.c,v 1.33 2003/08/12 05:23:06 nate Exp $ */
2
3 /*
4  * Copyright (c) 1997, 1998, 1999, 2000
5  *      Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *      This product includes software developed by Bill Paul.
18  * 4. Neither the name of the author nor the names of any co-contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32  * THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  * $FreeBSD: src/sys/pci/if_sk.c,v 1.19.2.9 2003/03/05 18:42:34 njl Exp $
35  * $DragonFly: src/sys/dev/netif/sk/if_sk.c,v 1.23 2005/01/23 20:21:31 joerg Exp $
36  *
37  * $FreeBSD: src/sys/pci/if_sk.c,v 1.19.2.9 2003/03/05 18:42:34 njl Exp $
38  */
39
40 /*
41  * Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
42  *
43  * Permission to use, copy, modify, and distribute this software for any
44  * purpose with or without fee is hereby granted, provided that the above
45  * copyright notice and this permission notice appear in all copies.
46  *
47  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
48  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
49  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
50  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
51  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
52  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
53  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
54  */
55
56 /*
57  * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
58  * the SK-984x series adapters, both single port and dual port.
59  * References:
60  *      The XaQti XMAC II datasheet,
61  *  http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
62  *      The SysKonnect GEnesis manual, http://www.syskonnect.com
63  *
64  * Note: XaQti has been aquired by Vitesse, and Vitesse does not have the
65  * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
66  * convenience to others until Vitesse corrects this problem:
67  *
68  * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
69  *
70  * Written by Bill Paul <wpaul@ee.columbia.edu>
71  * Department of Electrical Engineering
72  * Columbia University, New York City
73  */
74
75 /*
76  * The SysKonnect gigabit ethernet adapters consist of two main
77  * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
78  * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
79  * components and a PHY while the GEnesis controller provides a PCI
80  * interface with DMA support. Each card may have between 512K and
81  * 2MB of SRAM on board depending on the configuration.
82  *
83  * The SysKonnect GEnesis controller can have either one or two XMAC
84  * chips connected to it, allowing single or dual port NIC configurations.
85  * SysKonnect has the distinction of being the only vendor on the market
86  * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
87  * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
88  * XMAC registers. This driver takes advantage of these features to allow
89  * both XMACs to operate as independent interfaces.
90  */
91  
92 #include <sys/param.h>
93 #include <sys/systm.h>
94 #include <sys/sockio.h>
95 #include <sys/mbuf.h>
96 #include <sys/malloc.h>
97 #include <sys/kernel.h>
98 #include <sys/socket.h>
99 #include <sys/queue.h>
100
101 #include <net/if.h>
102 #include <net/if_arp.h>
103 #include <net/ethernet.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106
107 #include <net/bpf.h>
108
109 #include <vm/vm.h>              /* for vtophys */
110 #include <vm/pmap.h>            /* for vtophys */
111 #include <machine/clock.h>      /* for DELAY */
112 #include <machine/bus_pio.h>
113 #include <machine/bus_memio.h>
114 #include <machine/bus.h>
115 #include <machine/resource.h>
116 #include <sys/bus.h>
117 #include <sys/rman.h>
118
119 #include "../mii_layer/mii.h"
120 #include "../mii_layer/miivar.h"
121 #include "../mii_layer/brgphyreg.h"
122
123 #include <bus/pci/pcireg.h>
124 #include <bus/pci/pcivar.h>
125
126 #if 0
127 #define SK_USEIOSPACE
128 #endif
129
130 #include "if_skreg.h"
131 #include "xmaciireg.h"
132 #include "yukonreg.h"
133
134 /* "controller miibus0" required.  See GENERIC if you get errors here. */
135 #include "miibus_if.h"
136
137 static struct sk_type sk_devs[] = {
138         {
139                 VENDORID_SK,
140                 DEVICEID_SK_V1,
141                 "SysKonnect Gigabit Ethernet (V1.0)"
142         },
143         {
144                 VENDORID_SK,
145                 DEVICEID_SK_V2,
146                 "SysKonnect Gigabit Ethernet (V2.0)"
147         },
148         {
149                 VENDORID_MARVELL,
150                 DEVICEID_SK_V2,
151                 "Marvell Gigabit Ethernet"
152         },
153         {
154                 VENDORID_3COM,
155                 DEVICEID_3COM_3C940,
156                 "3Com 3C940 Gigabit Ethernet"
157         },
158         {
159                 VENDORID_LINKSYS,
160                 DEVICEID_LINKSYS_EG1032,
161                 "Linksys EG1032 Gigabit Ethernet"
162         },
163         {
164                 VENDORID_DLINK,
165                 DEVICEID_DLINK_DGE530T,
166                 "D-Link DGE-530T Gigabit Ethernet"
167         },
168         { 0, 0, NULL }
169 };
170
171 static int skc_probe            (device_t);
172 static int skc_attach           (device_t);
173 static int skc_detach           (device_t);
174 static void skc_shutdown        (device_t);
175 static int sk_probe             (device_t);
176 static int sk_attach            (device_t);
177 static int sk_detach            (device_t);
178 static void sk_tick             (void *);
179 static void sk_intr             (void *);
180 static void sk_intr_bcom        (struct sk_if_softc *);
181 static void sk_intr_xmac        (struct sk_if_softc *);
182 static void sk_intr_yukon       (struct sk_if_softc *);
183 static void sk_rxeof            (struct sk_if_softc *);
184 static void sk_txeof            (struct sk_if_softc *);
185 static int sk_encap             (struct sk_if_softc *, struct mbuf *,
186                                         u_int32_t *);
187 static void sk_start            (struct ifnet *);
188 static int sk_ioctl             (struct ifnet *, u_long, caddr_t,
189                                         struct ucred *);
190 static void sk_init             (void *);
191 static void sk_init_xmac        (struct sk_if_softc *);
192 static void sk_init_yukon       (struct sk_if_softc *);
193 static void sk_stop             (struct sk_if_softc *);
194 static void sk_watchdog         (struct ifnet *);
195 static int sk_ifmedia_upd       (struct ifnet *);
196 static void sk_ifmedia_sts      (struct ifnet *, struct ifmediareq *);
197 static void sk_reset            (struct sk_softc *);
198 static int sk_newbuf            (struct sk_if_softc *,
199                                         struct sk_chain *, struct mbuf *);
200 static int sk_alloc_jumbo_mem   (struct sk_if_softc *);
201 static void *sk_jalloc          (struct sk_if_softc *);
202 static void sk_jfree            (caddr_t, u_int);
203 static void sk_jref             (caddr_t, u_int);
204 static int sk_init_rx_ring      (struct sk_if_softc *);
205 static void sk_init_tx_ring     (struct sk_if_softc *);
206 static u_int32_t sk_win_read_4  (struct sk_softc *, int);
207 static u_int16_t sk_win_read_2  (struct sk_softc *, int);
208 static u_int8_t sk_win_read_1   (struct sk_softc *, int);
209 static void sk_win_write_4      (struct sk_softc *, int, u_int32_t);
210 static void sk_win_write_2      (struct sk_softc *, int, u_int32_t);
211 static void sk_win_write_1      (struct sk_softc *, int, u_int32_t);
212 static u_int8_t sk_vpd_readbyte (struct sk_softc *, int);
213 static void sk_vpd_read_res     (struct sk_softc *,
214                                         struct vpd_res *, int);
215 static void sk_vpd_read         (struct sk_softc *);
216
217 static int sk_miibus_readreg    (device_t, int, int);
218 static int sk_miibus_writereg   (device_t, int, int, int);
219 static void sk_miibus_statchg   (device_t);
220
221 static int sk_xmac_miibus_readreg     (struct sk_if_softc *, int, int);
222 static int sk_xmac_miibus_writereg    (struct sk_if_softc *, int, int, int);
223 static void sk_xmac_miibus_statchg    (struct sk_if_softc *);
224
225 static int sk_marv_miibus_readreg     (struct sk_if_softc *, int, int);
226 static int sk_marv_miibus_writereg    (struct sk_if_softc *, int, int, int);
227 static void sk_marv_miibus_statchg    (struct sk_if_softc *);
228
229 static u_int32_t xmac_calchash  (caddr_t);
230 static u_int32_t gmac_calchash  (caddr_t);
231 static void sk_setfilt          (struct sk_if_softc *, caddr_t, int);
232 static void sk_setmulti         (struct sk_if_softc *);
233 static void sk_setpromisc       (struct sk_if_softc *);
234
235 #ifdef SK_USEIOSPACE
236 #define SK_RES          SYS_RES_IOPORT
237 #define SK_RID          SK_PCI_LOIO
238 #else
239 #define SK_RES          SYS_RES_MEMORY
240 #define SK_RID          SK_PCI_LOMEM
241 #endif
242
243 /*
244  * Note that we have newbus methods for both the GEnesis controller
245  * itself and the XMAC(s). The XMACs are children of the GEnesis, and
246  * the miibus code is a child of the XMACs. We need to do it this way
247  * so that the miibus drivers can access the PHY registers on the
248  * right PHY. It's not quite what I had in mind, but it's the only
249  * design that achieves the desired effect.
250  */
251 static device_method_t skc_methods[] = {
252         /* Device interface */
253         DEVMETHOD(device_probe,         skc_probe),
254         DEVMETHOD(device_attach,        skc_attach),
255         DEVMETHOD(device_detach,        skc_detach),
256         DEVMETHOD(device_shutdown,      skc_shutdown),
257
258         /* bus interface */
259         DEVMETHOD(bus_print_child,      bus_generic_print_child),
260         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
261
262         { 0, 0 }
263 };
264
265 static driver_t skc_driver = {
266         "skc",
267         skc_methods,
268         sizeof(struct sk_softc)
269 };
270
271 static devclass_t skc_devclass;
272
273 static device_method_t sk_methods[] = {
274         /* Device interface */
275         DEVMETHOD(device_probe,         sk_probe),
276         DEVMETHOD(device_attach,        sk_attach),
277         DEVMETHOD(device_detach,        sk_detach),
278         DEVMETHOD(device_shutdown,      bus_generic_shutdown),
279
280         /* bus interface */
281         DEVMETHOD(bus_print_child,      bus_generic_print_child),
282         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
283
284         /* MII interface */
285         DEVMETHOD(miibus_readreg,       sk_miibus_readreg),
286         DEVMETHOD(miibus_writereg,      sk_miibus_writereg),
287         DEVMETHOD(miibus_statchg,       sk_miibus_statchg),
288
289         { 0, 0 }
290 };
291
292 static driver_t sk_driver = {
293         "sk",
294         sk_methods,
295         sizeof(struct sk_if_softc)
296 };
297
298 static devclass_t sk_devclass;
299
300 DECLARE_DUMMY_MODULE(if_sk);
301 DRIVER_MODULE(if_sk, pci, skc_driver, skc_devclass, 0, 0);
302 DRIVER_MODULE(if_sk, skc, sk_driver, sk_devclass, 0, 0);
303 DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, 0, 0);
304
305 #define SK_SETBIT(sc, reg, x)           \
306         CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
307
308 #define SK_CLRBIT(sc, reg, x)           \
309         CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
310
311 #define SK_WIN_SETBIT_4(sc, reg, x)     \
312         sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
313
314 #define SK_WIN_CLRBIT_4(sc, reg, x)     \
315         sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
316
317 #define SK_WIN_SETBIT_2(sc, reg, x)     \
318         sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
319
320 #define SK_WIN_CLRBIT_2(sc, reg, x)     \
321         sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
322
323 static u_int32_t sk_win_read_4(sc, reg)
324         struct sk_softc         *sc;
325         int                     reg;
326 {
327 #ifdef SK_USEIOSPACE
328         CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
329         return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
330 #else
331         return(CSR_READ_4(sc, reg));
332 #endif
333 }
334
335 static u_int16_t sk_win_read_2(sc, reg)
336         struct sk_softc         *sc;
337         int                     reg;
338 {
339 #ifdef SK_USEIOSPACE
340         CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
341         return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
342 #else
343         return(CSR_READ_2(sc, reg));
344 #endif
345 }
346
347 static u_int8_t sk_win_read_1(sc, reg)
348         struct sk_softc         *sc;
349         int                     reg;
350 {
351 #ifdef SK_USEIOSPACE
352         CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
353         return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
354 #else
355         return(CSR_READ_1(sc, reg));
356 #endif
357 }
358
359 static void sk_win_write_4(sc, reg, val)
360         struct sk_softc         *sc;
361         int                     reg;
362         u_int32_t               val;
363 {
364 #ifdef SK_USEIOSPACE
365         CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
366         CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
367 #else
368         CSR_WRITE_4(sc, reg, val);
369 #endif
370         return;
371 }
372
373 static void sk_win_write_2(sc, reg, val)
374         struct sk_softc         *sc;
375         int                     reg;
376         u_int32_t               val;
377 {
378 #ifdef SK_USEIOSPACE
379         CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
380         CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
381 #else
382         CSR_WRITE_2(sc, reg, val);
383 #endif
384         return;
385 }
386
387 static void sk_win_write_1(sc, reg, val)
388         struct sk_softc         *sc;
389         int                     reg;
390         u_int32_t               val;
391 {
392 #ifdef SK_USEIOSPACE
393         CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
394         CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
395 #else
396         CSR_WRITE_1(sc, reg, val);
397 #endif
398         return;
399 }
400
401 /*
402  * The VPD EEPROM contains Vital Product Data, as suggested in
403  * the PCI 2.1 specification. The VPD data is separared into areas
404  * denoted by resource IDs. The SysKonnect VPD contains an ID string
405  * resource (the name of the adapter), a read-only area resource
406  * containing various key/data fields and a read/write area which
407  * can be used to store asset management information or log messages.
408  * We read the ID string and read-only into buffers attached to
409  * the controller softc structure for later use. At the moment,
410  * we only use the ID string during sk_attach().
411  */
412 static u_int8_t sk_vpd_readbyte(sc, addr)
413         struct sk_softc         *sc;
414         int                     addr;
415 {
416         int                     i;
417
418         sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
419         for (i = 0; i < SK_TIMEOUT; i++) {
420                 DELAY(1);
421                 if (sk_win_read_2(sc,
422                     SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
423                         break;
424         }
425
426         if (i == SK_TIMEOUT)
427                 return(0);
428
429         return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
430 }
431
432 static void sk_vpd_read_res(sc, res, addr)
433         struct sk_softc         *sc;
434         struct vpd_res          *res;
435         int                     addr;
436 {
437         int                     i;
438         u_int8_t                *ptr;
439
440         ptr = (u_int8_t *)res;
441         for (i = 0; i < sizeof(struct vpd_res); i++)
442                 ptr[i] = sk_vpd_readbyte(sc, i + addr);
443
444         return;
445 }
446
447 static void sk_vpd_read(sc)
448         struct sk_softc         *sc;
449 {
450         int                     pos = 0, i;
451         struct vpd_res          res;
452
453         if (sc->sk_vpd_prodname != NULL)
454                 free(sc->sk_vpd_prodname, M_DEVBUF);
455         if (sc->sk_vpd_readonly != NULL)
456                 free(sc->sk_vpd_readonly, M_DEVBUF);
457         sc->sk_vpd_prodname = NULL;
458         sc->sk_vpd_readonly = NULL;
459
460         sk_vpd_read_res(sc, &res, pos);
461
462         if (res.vr_id != VPD_RES_ID) {
463                 printf("skc%d: bad VPD resource id: expected %x got %x\n",
464                     sc->sk_unit, VPD_RES_ID, res.vr_id);
465                 return;
466         }
467
468         pos += sizeof(res);
469         sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_INTWAIT);
470         for (i = 0; i < res.vr_len; i++)
471                 sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
472         sc->sk_vpd_prodname[i] = '\0';
473         pos += i;
474
475         sk_vpd_read_res(sc, &res, pos);
476
477         if (res.vr_id != VPD_RES_READ) {
478                 printf("skc%d: bad VPD resource id: expected %x got %x\n",
479                     sc->sk_unit, VPD_RES_READ, res.vr_id);
480                 return;
481         }
482
483         pos += sizeof(res);
484         sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_INTWAIT);
485         for (i = 0; i < res.vr_len + 1; i++)
486                 sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
487
488         return;
489 }
490
491 static int sk_miibus_readreg(dev, phy, reg)
492         device_t                dev;
493         int                     phy, reg;
494 {
495         struct sk_if_softc      *sc_if;
496
497         sc_if = device_get_softc(dev);
498
499         switch(sc_if->sk_softc->sk_type) {
500         case SK_GENESIS:
501                 return(sk_xmac_miibus_readreg(sc_if, phy, reg));
502         case SK_YUKON:
503                 return(sk_marv_miibus_readreg(sc_if, phy, reg));
504         }
505
506         return(0);
507 }
508
509 static int sk_miibus_writereg(dev, phy, reg, val)
510         device_t                dev;
511         int                     phy, reg, val;
512 {
513         struct sk_if_softc      *sc_if;
514
515         sc_if = device_get_softc(dev);
516
517         switch(sc_if->sk_softc->sk_type) {
518         case SK_GENESIS:
519                 return(sk_xmac_miibus_writereg(sc_if, phy, reg, val));
520         case SK_YUKON:
521                 return(sk_marv_miibus_writereg(sc_if, phy, reg, val));
522         }
523
524         return(0);
525 }
526
527 static void sk_miibus_statchg(dev)
528         device_t                dev;
529 {
530         struct sk_if_softc      *sc_if;
531
532         sc_if = device_get_softc(dev);
533
534         switch(sc_if->sk_softc->sk_type) {
535         case SK_GENESIS:
536                 sk_xmac_miibus_statchg(sc_if);
537                 break;
538         case SK_YUKON:
539                 sk_marv_miibus_statchg(sc_if);
540                 break;
541         }
542
543         return;
544 }
545
546 static int sk_xmac_miibus_readreg(sc_if, phy, reg)
547         struct sk_if_softc      *sc_if;
548         int                     phy, reg;
549 {
550         int                     i;
551
552         if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
553                 return(0);
554
555         SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
556         SK_XM_READ_2(sc_if, XM_PHY_DATA);
557         if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
558                 for (i = 0; i < SK_TIMEOUT; i++) {
559                         DELAY(1);
560                         if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
561                             XM_MMUCMD_PHYDATARDY)
562                                 break;
563                 }
564
565                 if (i == SK_TIMEOUT) {
566                         printf("sk%d: phy failed to come ready\n",
567                             sc_if->sk_unit);
568                         return(0);
569                 }
570         }
571         DELAY(1);
572         return(SK_XM_READ_2(sc_if, XM_PHY_DATA));
573 }
574
575 static int sk_xmac_miibus_writereg(sc_if, phy, reg, val)
576         struct sk_if_softc      *sc_if;
577         int                     phy, reg, val;
578 {
579         int                     i;
580
581         SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
582         for (i = 0; i < SK_TIMEOUT; i++) {
583                 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
584                         break;
585         }
586
587         if (i == SK_TIMEOUT) {
588                 printf("sk%d: phy failed to come ready\n", sc_if->sk_unit);
589                 return(ETIMEDOUT);
590         }
591
592         SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
593         for (i = 0; i < SK_TIMEOUT; i++) {
594                 DELAY(1);
595                 if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
596                         break;
597         }
598
599         if (i == SK_TIMEOUT)
600                 printf("sk%d: phy write timed out\n", sc_if->sk_unit);
601
602         return(0);
603 }
604
605 static void sk_xmac_miibus_statchg(sc_if)
606         struct sk_if_softc      *sc_if;
607 {
608         struct mii_data         *mii;
609
610         mii = device_get_softc(sc_if->sk_miibus);
611
612         /*
613          * If this is a GMII PHY, manually set the XMAC's
614          * duplex mode accordingly.
615          */
616         if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
617                 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
618                         SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
619                 } else {
620                         SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
621                 }
622         }
623
624         return;
625 }
626
627 static int sk_marv_miibus_readreg(sc_if, phy, reg)
628         struct sk_if_softc      *sc_if;
629         int                     phy, reg;
630 {
631         u_int16_t               val;
632         int                     i;
633
634         if (phy != 0 ||
635             (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
636              sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
637                 return(0);
638         }
639
640         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
641                       YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
642         
643         for (i = 0; i < SK_TIMEOUT; i++) {
644                 DELAY(1);
645                 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
646                 if (val & YU_SMICR_READ_VALID)
647                         break;
648         }
649
650         if (i == SK_TIMEOUT) {
651                 printf("sk%d: phy failed to come ready\n",
652                     sc_if->sk_unit);
653                 return(0);
654         }
655         
656         val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
657
658         return(val);
659 }
660
661 static int sk_marv_miibus_writereg(sc_if, phy, reg, val)
662         struct sk_if_softc      *sc_if;
663         int                     phy, reg, val;
664 {
665         int                     i;
666
667         SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
668         SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
669                       YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
670
671         for (i = 0; i < SK_TIMEOUT; i++) {
672                 DELAY(1);
673                 if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
674                         break;
675         }
676
677         return(0);
678 }
679
680 static void sk_marv_miibus_statchg(sc_if)
681         struct sk_if_softc      *sc_if;
682 {
683         return;
684 }
685
686 #define XMAC_POLY               0xEDB88320
687 #define GMAC_POLY               0x04C11DB7L
688 #define HASH_BITS               6
689
690 static u_int32_t xmac_calchash(addr)
691         caddr_t                 addr;
692 {
693         u_int32_t               idx, bit, data, crc;
694
695         /* Compute CRC for the address value. */
696         crc = 0xFFFFFFFF; /* initial value */
697
698         for (idx = 0; idx < 6; idx++) {
699                 for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
700                         crc = (crc >> 1) ^ (((crc ^ data) & 1) ? XMAC_POLY : 0);
701         }
702
703         return (~crc & ((1 << HASH_BITS) - 1));
704 }
705
706 static u_int32_t gmac_calchash(addr)
707     caddr_t                     addr;
708 {
709     u_int32_t               idx, bit, crc, tmpData, data;
710
711     /* Compute CRC for the address value. */
712     crc = 0xFFFFFFFF; /* initial value */
713
714     for (idx = 0; idx < 6; idx++) {
715         data = *addr++;
716
717         /* Change bit order in byte. */
718         tmpData = data;
719         for (bit = 0; bit < 8; bit++) {
720             if (tmpData & 1) {
721                 data |=  1 << (7 - bit);
722             }
723             else {
724                 data &= ~(1 << (7 - bit));
725             }
726
727             tmpData >>= 1;
728         }
729
730         crc ^= (data << 24);
731         for (bit = 0; bit < 8; bit++) {
732             if (crc & 0x80000000) {
733                 crc = (crc << 1) ^ GMAC_POLY;
734             } else {
735                 crc <<= 1;
736             }
737         }
738     }
739
740     return (crc & ((1 << HASH_BITS) - 1));
741 }
742
743 static void sk_setfilt(sc_if, addr, slot)
744         struct sk_if_softc      *sc_if;
745         caddr_t                 addr;
746         int                     slot;
747 {
748         int                     base;
749
750         base = XM_RXFILT_ENTRY(slot);
751
752         SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
753         SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
754         SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
755
756         return;
757 }
758
759 static void sk_setmulti(sc_if)
760         struct sk_if_softc      *sc_if;
761 {
762         struct sk_softc         *sc = sc_if->sk_softc;
763         struct ifnet            *ifp = &sc_if->arpcom.ac_if;
764         u_int32_t               hashes[2] = { 0, 0 };
765         int                     h, i;
766         struct ifmultiaddr      *ifma;
767         u_int8_t                dummy[] = { 0, 0, 0, 0, 0 ,0 };
768
769
770         /* First, zot all the existing filters. */
771         switch(sc->sk_type) {
772         case SK_GENESIS:
773                 for (i = 1; i < XM_RXFILT_MAX; i++)
774                         sk_setfilt(sc_if, (caddr_t)&dummy, i);
775
776                 SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
777                 SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
778                 break;
779         case SK_YUKON:
780                 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
781                 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
782                 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
783                 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
784                 break;
785         }
786
787         /* Now program new ones. */
788         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
789                 hashes[0] = 0xFFFFFFFF;
790                 hashes[1] = 0xFFFFFFFF;
791         } else {
792                 i = 1;
793                 /* First find the tail of the list. */
794                 for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
795                                         ifma = ifma->ifma_link.le_next) {
796                         if (ifma->ifma_link.le_next == NULL)
797                                 break;
798                 }
799                 /* Now traverse the list backwards. */
800                 for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs;
801                         ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) {
802                         if (ifma->ifma_addr->sa_family != AF_LINK)
803                                 continue;
804                         /*
805                          * Program the first XM_RXFILT_MAX multicast groups
806                          * into the perfect filter. For all others,
807                          * use the hash table.
808                          */
809                         if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
810                                 sk_setfilt(sc_if,
811                         LLADDR((struct sockaddr_dl *)ifma->ifma_addr), i);
812                                 i++;
813                                 continue;
814                         }
815
816                         switch(sc->sk_type) {
817                         case SK_GENESIS:
818                             h = xmac_calchash(
819                                 LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
820                             if (h < 32)
821                                 hashes[0] |= (1 << h);
822                             else
823                                 hashes[1] |= (1 << (h - 32));
824                             break;
825
826                         case SK_YUKON:
827                             h = gmac_calchash(
828                                 LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
829                             if (h < 32)
830                                 hashes[0] |= (1 << h);
831                             else
832                                 hashes[1] |= (1 << (h - 32));
833                             break;
834                         }
835                 }
836         }
837
838         switch(sc->sk_type) {
839         case SK_GENESIS:
840                 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
841                                XM_MODE_RX_USE_PERFECT);
842                 SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
843                 SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
844                 break;
845         case SK_YUKON:
846                 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
847                 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
848                 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
849                 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
850                 break;
851         }
852
853         return;
854 }
855
856 static void sk_setpromisc(sc_if)
857         struct sk_if_softc      *sc_if;
858 {
859         struct sk_softc         *sc = sc_if->sk_softc;
860         struct ifnet            *ifp = &sc_if->arpcom.ac_if;
861
862         switch(sc->sk_type) {
863         case SK_GENESIS:
864                 if (ifp->if_flags & IFF_PROMISC) {
865                         SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
866                 } else {
867                         SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
868                 }
869                 break;
870         case SK_YUKON:
871                 if (ifp->if_flags & IFF_PROMISC) {
872                         SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
873                             YU_RCR_UFLEN | YU_RCR_MUFLEN);
874                 } else {
875                         SK_YU_SETBIT_2(sc_if, YUKON_RCR,
876                             YU_RCR_UFLEN | YU_RCR_MUFLEN);
877                 }
878                 break;
879         }
880
881         return;
882 }
883
884 static int sk_init_rx_ring(sc_if)
885         struct sk_if_softc      *sc_if;
886 {
887         struct sk_chain_data    *cd = &sc_if->sk_cdata;
888         struct sk_ring_data     *rd = sc_if->sk_rdata;
889         int                     i;
890
891         bzero((char *)rd->sk_rx_ring,
892             sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
893
894         for (i = 0; i < SK_RX_RING_CNT; i++) {
895                 cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
896                 if (sk_newbuf(sc_if, &cd->sk_rx_chain[i], NULL) == ENOBUFS)
897                         return(ENOBUFS);
898                 if (i == (SK_RX_RING_CNT - 1)) {
899                         cd->sk_rx_chain[i].sk_next =
900                             &cd->sk_rx_chain[0];
901                         rd->sk_rx_ring[i].sk_next = 
902                             vtophys(&rd->sk_rx_ring[0]);
903                 } else {
904                         cd->sk_rx_chain[i].sk_next =
905                             &cd->sk_rx_chain[i + 1];
906                         rd->sk_rx_ring[i].sk_next = 
907                             vtophys(&rd->sk_rx_ring[i + 1]);
908                 }
909         }
910
911         sc_if->sk_cdata.sk_rx_prod = 0;
912         sc_if->sk_cdata.sk_rx_cons = 0;
913
914         return(0);
915 }
916
917 static void sk_init_tx_ring(sc_if)
918         struct sk_if_softc      *sc_if;
919 {
920         struct sk_chain_data    *cd = &sc_if->sk_cdata;
921         struct sk_ring_data     *rd = sc_if->sk_rdata;
922         int                     i;
923
924         bzero((char *)sc_if->sk_rdata->sk_tx_ring,
925             sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
926
927         for (i = 0; i < SK_TX_RING_CNT; i++) {
928                 cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
929                 if (i == (SK_TX_RING_CNT - 1)) {
930                         cd->sk_tx_chain[i].sk_next =
931                             &cd->sk_tx_chain[0];
932                         rd->sk_tx_ring[i].sk_next = 
933                             vtophys(&rd->sk_tx_ring[0]);
934                 } else {
935                         cd->sk_tx_chain[i].sk_next =
936                             &cd->sk_tx_chain[i + 1];
937                         rd->sk_tx_ring[i].sk_next = 
938                             vtophys(&rd->sk_tx_ring[i + 1]);
939                 }
940         }
941
942         sc_if->sk_cdata.sk_tx_prod = 0;
943         sc_if->sk_cdata.sk_tx_cons = 0;
944         sc_if->sk_cdata.sk_tx_cnt = 0;
945
946         return;
947 }
948
949 static int sk_newbuf(sc_if, c, m)
950         struct sk_if_softc      *sc_if;
951         struct sk_chain         *c;
952         struct mbuf             *m;
953 {
954         struct mbuf             *m_new = NULL;
955         struct sk_rx_desc       *r;
956
957         if (m == NULL) {
958                 caddr_t                 *buf = NULL;
959
960                 MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
961                 if (m_new == NULL)
962                         return(ENOBUFS);
963
964                 /* Allocate the jumbo buffer */
965                 buf = sk_jalloc(sc_if);
966                 if (buf == NULL) {
967                         m_freem(m_new);
968 #ifdef SK_VERBOSE
969                         printf("sk%d: jumbo allocation failed "
970                             "-- packet dropped!\n", sc_if->sk_unit);
971 #endif
972                         return(ENOBUFS);
973                 }
974
975                 /* Attach the buffer to the mbuf */
976                 m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
977                 m_new->m_flags |= M_EXT | M_EXT_OLD;
978                 m_new->m_ext.ext_size = m_new->m_pkthdr.len =
979                     m_new->m_len = SK_MCLBYTES;
980                 m_new->m_ext.ext_nfree.old = sk_jfree;
981                 m_new->m_ext.ext_nref.old = sk_jref;
982         } else {
983                 /*
984                  * We're re-using a previously allocated mbuf;
985                  * be sure to re-init pointers and lengths to
986                  * default values.
987                  */
988                 m_new = m;
989                 m_new->m_len = m_new->m_pkthdr.len = SK_MCLBYTES;
990                 m_new->m_data = m_new->m_ext.ext_buf;
991         }
992
993         /*
994          * Adjust alignment so packet payload begins on a
995          * longword boundary. Mandatory for Alpha, useful on
996          * x86 too.
997          */
998         m_adj(m_new, ETHER_ALIGN);
999
1000         r = c->sk_desc;
1001         c->sk_mbuf = m_new;
1002         r->sk_data_lo = vtophys(mtod(m_new, caddr_t));
1003         r->sk_ctl = m_new->m_len | SK_RXSTAT;
1004
1005         return(0);
1006 }
1007
1008 /*
1009  * Allocate jumbo buffer storage. The SysKonnect adapters support
1010  * "jumbograms" (9K frames), although SysKonnect doesn't currently
1011  * use them in their drivers. In order for us to use them, we need
1012  * large 9K receive buffers, however standard mbuf clusters are only
1013  * 2048 bytes in size. Consequently, we need to allocate and manage
1014  * our own jumbo buffer pool. Fortunately, this does not require an
1015  * excessive amount of additional code.
1016  */
1017 static int sk_alloc_jumbo_mem(sc_if)
1018         struct sk_if_softc      *sc_if;
1019 {
1020         caddr_t                 ptr;
1021         int             i;
1022         struct sk_jpool_entry   *entry;
1023
1024         /* Grab a big chunk o' storage. */
1025         sc_if->sk_cdata.sk_jumbo_buf = contigmalloc(SK_JMEM, M_DEVBUF,
1026             M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1027
1028         if (sc_if->sk_cdata.sk_jumbo_buf == NULL) {
1029                 printf("sk%d: no memory for jumbo buffers!\n", sc_if->sk_unit);
1030                 return(ENOBUFS);
1031         }
1032
1033         SLIST_INIT(&sc_if->sk_jfree_listhead);
1034         SLIST_INIT(&sc_if->sk_jinuse_listhead);
1035
1036         /*
1037          * Now divide it up into 9K pieces and save the addresses
1038          * in an array. Note that we play an evil trick here by using
1039          * the first few bytes in the buffer to hold the the address
1040          * of the softc structure for this interface. This is because
1041          * sk_jfree() needs it, but it is called by the mbuf management
1042          * code which will not pass it to us explicitly.
1043          */
1044         ptr = sc_if->sk_cdata.sk_jumbo_buf;
1045         for (i = 0; i < SK_JSLOTS; i++) {
1046                 u_int64_t               **aptr;
1047                 aptr = (u_int64_t **)ptr;
1048                 aptr[0] = (u_int64_t *)sc_if;
1049                 ptr += sizeof(u_int64_t);
1050                 sc_if->sk_cdata.sk_jslots[i].sk_buf = ptr;
1051                 sc_if->sk_cdata.sk_jslots[i].sk_inuse = 0;
1052                 ptr += SK_MCLBYTES;
1053                 entry = malloc(sizeof(struct sk_jpool_entry), 
1054                     M_DEVBUF, M_WAITOK);
1055                 if (entry == NULL) {
1056                         free(sc_if->sk_cdata.sk_jumbo_buf, M_DEVBUF);
1057                         sc_if->sk_cdata.sk_jumbo_buf = NULL;
1058                         printf("sk%d: no memory for jumbo "
1059                             "buffer queue!\n", sc_if->sk_unit);
1060                         return(ENOBUFS);
1061                 }
1062                 entry->slot = i;
1063                 SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
1064                     entry, jpool_entries);
1065         }
1066
1067         return(0);
1068 }
1069
1070 /*
1071  * Allocate a jumbo buffer.
1072  */
1073 static void *sk_jalloc(sc_if)
1074         struct sk_if_softc      *sc_if;
1075 {
1076         struct sk_jpool_entry   *entry;
1077         
1078         entry = SLIST_FIRST(&sc_if->sk_jfree_listhead);
1079         
1080         if (entry == NULL) {
1081 #ifdef SK_VERBOSE
1082                 printf("sk%d: no free jumbo buffers\n", sc_if->sk_unit);
1083 #endif
1084                 return(NULL);
1085         }
1086
1087         SLIST_REMOVE_HEAD(&sc_if->sk_jfree_listhead, jpool_entries);
1088         SLIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
1089         sc_if->sk_cdata.sk_jslots[entry->slot].sk_inuse = 1;
1090         return(sc_if->sk_cdata.sk_jslots[entry->slot].sk_buf);
1091 }
1092
1093 /*
1094  * Adjust usage count on a jumbo buffer. In general this doesn't
1095  * get used much because our jumbo buffers don't get passed around
1096  * a lot, but it's implemented for correctness.
1097  */
1098 static void sk_jref(buf, size)
1099         caddr_t                 buf;
1100         u_int                   size;
1101 {
1102         struct sk_if_softc      *sc_if;
1103         u_int64_t               **aptr;
1104         int             i;
1105
1106         /* Extract the softc struct pointer. */
1107         aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
1108         sc_if = (struct sk_if_softc *)(aptr[0]);
1109
1110         if (sc_if == NULL)
1111                 panic("sk_jref: can't find softc pointer!");
1112
1113         if (size != SK_MCLBYTES)
1114                 panic("sk_jref: adjusting refcount of buf of wrong size!");
1115
1116         /* calculate the slot this buffer belongs to */
1117
1118         i = ((vm_offset_t)aptr 
1119              - (vm_offset_t)sc_if->sk_cdata.sk_jumbo_buf) / SK_JLEN;
1120
1121         if ((i < 0) || (i >= SK_JSLOTS))
1122                 panic("sk_jref: asked to reference buffer "
1123                     "that we don't manage!");
1124         else if (sc_if->sk_cdata.sk_jslots[i].sk_inuse == 0)
1125                 panic("sk_jref: buffer already free!");
1126         else
1127                 sc_if->sk_cdata.sk_jslots[i].sk_inuse++;
1128
1129         return;
1130 }
1131
1132 /*
1133  * Release a jumbo buffer.
1134  */
1135 static void sk_jfree(buf, size)
1136         caddr_t                 buf;
1137         u_int                   size;
1138 {
1139         struct sk_if_softc      *sc_if;
1140         u_int64_t               **aptr;
1141         int                     i;
1142         struct sk_jpool_entry   *entry;
1143
1144         /* Extract the softc struct pointer. */
1145         aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
1146         sc_if = (struct sk_if_softc *)(aptr[0]);
1147
1148         if (sc_if == NULL)
1149                 panic("sk_jfree: can't find softc pointer!");
1150
1151         if (size != SK_MCLBYTES)
1152                 panic("sk_jfree: freeing buffer of wrong size!");
1153
1154         /* calculate the slot this buffer belongs to */
1155
1156         i = ((vm_offset_t)aptr 
1157              - (vm_offset_t)sc_if->sk_cdata.sk_jumbo_buf) / SK_JLEN;
1158
1159         if ((i < 0) || (i >= SK_JSLOTS))
1160                 panic("sk_jfree: asked to free buffer that we don't manage!");
1161         else if (sc_if->sk_cdata.sk_jslots[i].sk_inuse == 0)
1162                 panic("sk_jfree: buffer already free!");
1163         else {
1164                 sc_if->sk_cdata.sk_jslots[i].sk_inuse--;
1165                 if(sc_if->sk_cdata.sk_jslots[i].sk_inuse == 0) {
1166                         entry = SLIST_FIRST(&sc_if->sk_jinuse_listhead);
1167                         if (entry == NULL)
1168                                 panic("sk_jfree: buffer not in use!");
1169                         entry->slot = i;
1170                         SLIST_REMOVE_HEAD(&sc_if->sk_jinuse_listhead, 
1171                                           jpool_entries);
1172                         SLIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, 
1173                                           entry, jpool_entries);
1174                 }
1175         }
1176
1177         return;
1178 }
1179
1180 /*
1181  * Set media options.
1182  */
1183 static int sk_ifmedia_upd(ifp)
1184         struct ifnet            *ifp;
1185 {
1186         struct sk_if_softc      *sc_if = ifp->if_softc;
1187         struct mii_data         *mii;
1188
1189         mii = device_get_softc(sc_if->sk_miibus);
1190         sk_init(sc_if);
1191         mii_mediachg(mii);
1192
1193         return(0);
1194 }
1195
1196 /*
1197  * Report current media status.
1198  */
1199 static void sk_ifmedia_sts(ifp, ifmr)
1200         struct ifnet            *ifp;
1201         struct ifmediareq       *ifmr;
1202 {
1203         struct sk_if_softc      *sc_if;
1204         struct mii_data         *mii;
1205
1206         sc_if = ifp->if_softc;
1207         mii = device_get_softc(sc_if->sk_miibus);
1208
1209         mii_pollstat(mii);
1210         ifmr->ifm_active = mii->mii_media_active;
1211         ifmr->ifm_status = mii->mii_media_status;
1212
1213         return;
1214 }
1215
1216 static int sk_ioctl(ifp, command, data, cr)
1217         struct ifnet            *ifp;
1218         u_long                  command;
1219         caddr_t                 data;
1220         struct ucred            *cr;
1221 {
1222         struct sk_if_softc      *sc_if = ifp->if_softc;
1223         struct ifreq            *ifr = (struct ifreq *) data;
1224         int                     s, error = 0;
1225         struct mii_data         *mii;
1226
1227         s = splimp();
1228
1229         switch(command) {
1230         case SIOCSIFADDR:
1231         case SIOCGIFADDR:
1232                 error = ether_ioctl(ifp, command, data);
1233                 break;
1234         case SIOCSIFMTU:
1235                 if (ifr->ifr_mtu > SK_JUMBO_MTU)
1236                         error = EINVAL;
1237                 else {
1238                         ifp->if_mtu = ifr->ifr_mtu;
1239                         sk_init(sc_if);
1240                 }
1241                 break;
1242         case SIOCSIFFLAGS:
1243                 if (ifp->if_flags & IFF_UP) {
1244                         if (ifp->if_flags & IFF_RUNNING) {
1245                                 if ((ifp->if_flags ^ sc_if->sk_if_flags)
1246                                     & IFF_PROMISC) {
1247                                         sk_setpromisc(sc_if);
1248                                         sk_setmulti(sc_if);
1249                                 }
1250                         } else
1251                                 sk_init(sc_if);
1252                 } else {
1253                         if (ifp->if_flags & IFF_RUNNING)
1254                                 sk_stop(sc_if);
1255                 }
1256                 sc_if->sk_if_flags = ifp->if_flags;
1257                 error = 0;
1258                 break;
1259         case SIOCADDMULTI:
1260         case SIOCDELMULTI:
1261                 sk_setmulti(sc_if);
1262                 error = 0;
1263                 break;
1264         case SIOCGIFMEDIA:
1265         case SIOCSIFMEDIA:
1266                 mii = device_get_softc(sc_if->sk_miibus);
1267                 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1268                 break;
1269         default:
1270                 error = EINVAL;
1271                 break;
1272         }
1273
1274         (void)splx(s);
1275
1276         return(error);
1277 }
1278
1279 /*
1280  * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
1281  * IDs against our list and return a device name if we find a match.
1282  */
1283 static int skc_probe(dev)
1284         device_t                dev;
1285 {
1286         struct sk_softc         *sc;
1287         struct sk_type          *t = sk_devs;
1288
1289         sc = device_get_softc(dev);
1290
1291         while(t->sk_name != NULL) {
1292                 if ((pci_get_vendor(dev) == t->sk_vid) &&
1293                     (pci_get_device(dev) == t->sk_did)) {
1294                         device_set_desc(dev, t->sk_name);
1295                         return(0);
1296                 }
1297                 t++;
1298         }
1299
1300         return(ENXIO);
1301 }
1302
1303 /*
1304  * Force the GEnesis into reset, then bring it out of reset.
1305  */
1306 static void sk_reset(sc)
1307         struct sk_softc         *sc;
1308 {
1309         CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
1310         CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
1311         if (sc->sk_type == SK_YUKON)
1312                 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
1313
1314         DELAY(1000);
1315         CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
1316         DELAY(2);
1317         CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
1318         if (sc->sk_type == SK_YUKON)
1319                 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
1320
1321         if (sc->sk_type == SK_GENESIS) {
1322                 /* Configure packet arbiter */
1323                 sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
1324                 sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
1325                 sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
1326                 sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
1327                 sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
1328         }
1329
1330         /* Enable RAM interface */
1331         sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
1332
1333         /*
1334          * Configure interrupt moderation. The moderation timer
1335          * defers interrupts specified in the interrupt moderation
1336          * timer mask based on the timeout specified in the interrupt
1337          * moderation timer init register. Each bit in the timer
1338          * register represents 18.825ns, so to specify a timeout in
1339          * microseconds, we have to multiply by 54.
1340          */
1341         sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(200));
1342         sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
1343             SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
1344         sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
1345
1346         return;
1347 }
1348
1349 static int sk_probe(dev)
1350         device_t                dev;
1351 {
1352         struct sk_softc         *sc;
1353
1354         sc = device_get_softc(device_get_parent(dev));
1355
1356         /*
1357          * Not much to do here. We always know there will be
1358          * at least one XMAC present, and if there are two,
1359          * skc_attach() will create a second device instance
1360          * for us.
1361          */
1362         switch (sc->sk_type) {
1363         case SK_GENESIS:
1364                 device_set_desc(dev, "XaQti Corp. XMAC II");
1365                 break;
1366         case SK_YUKON:
1367                 device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
1368                 break;
1369         }
1370
1371         return(0);
1372 }
1373
1374 /*
1375  * Each XMAC chip is attached as a separate logical IP interface.
1376  * Single port cards will have only one logical interface of course.
1377  */
1378 static int sk_attach(dev)
1379         device_t                dev;
1380 {
1381         struct sk_softc         *sc;
1382         struct sk_if_softc      *sc_if;
1383         struct ifnet            *ifp;
1384         int                     i, port;
1385
1386         if (dev == NULL)
1387                 return(EINVAL);
1388
1389         sc_if = device_get_softc(dev);
1390         sc = device_get_softc(device_get_parent(dev));
1391         port = *(int *)device_get_ivars(dev);
1392         free(device_get_ivars(dev), M_DEVBUF);
1393         device_set_ivars(dev, NULL);
1394         sc_if->sk_dev = dev;
1395         callout_init(&sc_if->sk_tick_timer);
1396
1397         bzero((char *)sc_if, sizeof(struct sk_if_softc));
1398
1399         sc_if->sk_dev = dev;
1400         sc_if->sk_unit = device_get_unit(dev);
1401         sc_if->sk_port = port;
1402         sc_if->sk_softc = sc;
1403         sc->sk_if[port] = sc_if;
1404         if (port == SK_PORT_A)
1405                 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
1406         if (port == SK_PORT_B)
1407                 sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
1408
1409         /*
1410          * Get station address for this interface. Note that
1411          * dual port cards actually come with three station
1412          * addresses: one for each port, plus an extra. The
1413          * extra one is used by the SysKonnect driver software
1414          * as a 'virtual' station address for when both ports
1415          * are operating in failover mode. Currently we don't
1416          * use this extra address.
1417          */
1418         for (i = 0; i < ETHER_ADDR_LEN; i++)
1419                 sc_if->arpcom.ac_enaddr[i] =
1420                     sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
1421
1422         /*
1423          * Set up RAM buffer addresses. The NIC will have a certain
1424          * amount of SRAM on it, somewhere between 512K and 2MB. We
1425          * need to divide this up a) between the transmitter and
1426          * receiver and b) between the two XMACs, if this is a
1427          * dual port NIC. Our algotithm is to divide up the memory
1428          * evenly so that everyone gets a fair share.
1429          */
1430         if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
1431                 u_int32_t               chunk, val;
1432
1433                 chunk = sc->sk_ramsize / 2;
1434                 val = sc->sk_rboff / sizeof(u_int64_t);
1435                 sc_if->sk_rx_ramstart = val;
1436                 val += (chunk / sizeof(u_int64_t));
1437                 sc_if->sk_rx_ramend = val - 1;
1438                 sc_if->sk_tx_ramstart = val;
1439                 val += (chunk / sizeof(u_int64_t));
1440                 sc_if->sk_tx_ramend = val - 1;
1441         } else {
1442                 u_int32_t               chunk, val;
1443
1444                 chunk = sc->sk_ramsize / 4;
1445                 val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
1446                     sizeof(u_int64_t);
1447                 sc_if->sk_rx_ramstart = val;
1448                 val += (chunk / sizeof(u_int64_t));
1449                 sc_if->sk_rx_ramend = val - 1;
1450                 sc_if->sk_tx_ramstart = val;
1451                 val += (chunk / sizeof(u_int64_t));
1452                 sc_if->sk_tx_ramend = val - 1;
1453         }
1454
1455         /* Read and save PHY type and set PHY address */
1456         sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
1457         switch(sc_if->sk_phytype) {
1458         case SK_PHYTYPE_XMAC:
1459                 sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
1460                 break;
1461         case SK_PHYTYPE_BCOM:
1462                 sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
1463                 break;
1464         case SK_PHYTYPE_MARV_COPPER:
1465                 sc_if->sk_phyaddr = SK_PHYADDR_MARV;
1466                 break;
1467         default:
1468                 printf("skc%d: unsupported PHY type: %d\n",
1469                     sc->sk_unit, sc_if->sk_phytype);
1470                 return(ENODEV);
1471         }
1472
1473         /* Allocate the descriptor queues. */
1474         sc_if->sk_rdata = contigmalloc(sizeof(struct sk_ring_data), M_DEVBUF,
1475             M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1476
1477         if (sc_if->sk_rdata == NULL) {
1478                 printf("sk%d: no memory for list buffers!\n", sc_if->sk_unit);
1479                 sc->sk_if[port] = NULL;
1480                 return(ENOMEM);
1481         }
1482
1483         bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
1484
1485         /* Try to allocate memory for jumbo buffers. */
1486         if (sk_alloc_jumbo_mem(sc_if)) {
1487                 printf("sk%d: jumbo buffer allocation failed\n",
1488                     sc_if->sk_unit);
1489                 contigfree(sc_if->sk_rdata,
1490                     sizeof(struct sk_ring_data), M_DEVBUF);
1491                 sc->sk_if[port] = NULL;
1492                 return(ENOMEM);
1493         }
1494
1495         ifp = &sc_if->arpcom.ac_if;
1496         ifp->if_softc = sc_if;
1497         if_initname(ifp, "sk", sc_if->sk_unit);
1498         ifp->if_mtu = ETHERMTU;
1499         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1500         ifp->if_ioctl = sk_ioctl;
1501         ifp->if_start = sk_start;
1502         ifp->if_watchdog = sk_watchdog;
1503         ifp->if_init = sk_init;
1504         ifp->if_baudrate = 1000000000;
1505         ifp->if_snd.ifq_maxlen = SK_TX_RING_CNT - 1;
1506
1507         /*
1508          * Do miibus setup.
1509          */
1510         switch (sc->sk_type) {
1511         case SK_GENESIS:
1512                 sk_init_xmac(sc_if);
1513                 break;
1514         case SK_YUKON:
1515                 sk_init_yukon(sc_if);
1516                 break;
1517         }
1518
1519         if (mii_phy_probe(dev, &sc_if->sk_miibus,
1520             sk_ifmedia_upd, sk_ifmedia_sts)) {
1521                 printf("skc%d: no PHY found!\n", sc_if->sk_unit);
1522                 contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM,
1523                     M_DEVBUF);
1524                 contigfree(sc_if->sk_rdata,
1525                     sizeof(struct sk_ring_data), M_DEVBUF);
1526                 return(ENXIO);
1527         }
1528
1529         /*
1530          * Call MI attach routine.
1531          */
1532         ether_ifattach(ifp, sc_if->arpcom.ac_enaddr);
1533         callout_init(&sc_if->sk_tick_timer);
1534
1535         return(0);
1536 }
1537
1538 /*
1539  * Attach the interface. Allocate softc structures, do ifmedia
1540  * setup and ethernet/BPF attach.
1541  */
1542 static int skc_attach(dev)
1543         device_t                dev;
1544 {
1545         int                     s;
1546         u_int32_t               command;
1547         struct sk_softc         *sc;
1548         int                     unit, error = 0, rid, *port;
1549         uint8_t                 skrs;
1550
1551         s = splimp();
1552
1553         sc = device_get_softc(dev);
1554         unit = device_get_unit(dev);
1555         bzero(sc, sizeof(struct sk_softc));
1556         switch (pci_get_device(dev)) {
1557         case DEVICEID_SK_V1:
1558                 sc->sk_type = SK_GENESIS;
1559                 break;
1560         case DEVICEID_SK_V2:
1561         case DEVICEID_3COM_3C940:
1562         case DEVICEID_LINKSYS_EG1032:
1563         case DEVICEID_DLINK_DGE530T:
1564                 sc->sk_type = SK_YUKON;
1565                 break;
1566         }
1567
1568         /*
1569          * Handle power management nonsense.
1570          */
1571         command = pci_read_config(dev, SK_PCI_CAPID, 4) & 0x000000FF;
1572         if (command == 0x01) {
1573                 command = pci_read_config(dev, SK_PCI_PWRMGMTCTRL, 4);
1574                 if (command & SK_PSTATE_MASK) {
1575                         u_int32_t               iobase, membase, irq;
1576
1577                         /* Save important PCI config data. */
1578                         iobase = pci_read_config(dev, SK_PCI_LOIO, 4);
1579                         membase = pci_read_config(dev, SK_PCI_LOMEM, 4);
1580                         irq = pci_read_config(dev, SK_PCI_INTLINE, 4);
1581
1582                         /* Reset the power state. */
1583                         printf("skc%d: chip is in D%d power mode "
1584                         "-- setting to D0\n", unit, command & SK_PSTATE_MASK);
1585                         command &= 0xFFFFFFFC;
1586                         pci_write_config(dev, SK_PCI_PWRMGMTCTRL, command, 4);
1587
1588                         /* Restore PCI config data. */
1589                         pci_write_config(dev, SK_PCI_LOIO, iobase, 4);
1590                         pci_write_config(dev, SK_PCI_LOMEM, membase, 4);
1591                         pci_write_config(dev, SK_PCI_INTLINE, irq, 4);
1592                 }
1593         }
1594
1595         /*
1596          * Map control/status registers.
1597          */
1598         command = pci_read_config(dev, PCIR_COMMAND, 4);
1599         command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1600         pci_write_config(dev, PCIR_COMMAND, command, 4);
1601         command = pci_read_config(dev, PCIR_COMMAND, 4);
1602
1603 #ifdef SK_USEIOSPACE
1604         if (!(command & PCIM_CMD_PORTEN)) {
1605                 printf("skc%d: failed to enable I/O ports!\n", unit);
1606                 error = ENXIO;
1607                 goto fail;
1608         }
1609 #else
1610         if (!(command & PCIM_CMD_MEMEN)) {
1611                 printf("skc%d: failed to enable memory mapping!\n", unit);
1612                 error = ENXIO;
1613                 goto fail;
1614         }
1615 #endif
1616
1617         rid = SK_RID;
1618         sc->sk_res = bus_alloc_resource(dev, SK_RES, &rid,
1619             0, ~0, 1, RF_ACTIVE);
1620
1621         if (sc->sk_res == NULL) {
1622                 printf("sk%d: couldn't map ports/memory\n", unit);
1623                 error = ENXIO;
1624                 goto fail;
1625         }
1626
1627         sc->sk_btag = rman_get_bustag(sc->sk_res);
1628         sc->sk_bhandle = rman_get_bushandle(sc->sk_res);
1629
1630         /* Allocate interrupt */
1631         rid = 0;
1632         sc->sk_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1633             RF_SHAREABLE | RF_ACTIVE);
1634
1635         if (sc->sk_irq == NULL) {
1636                 printf("skc%d: couldn't map interrupt\n", unit);
1637                 bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1638                 error = ENXIO;
1639                 goto fail;
1640         }
1641
1642         error = bus_setup_intr(dev, sc->sk_irq, INTR_TYPE_NET,
1643             sk_intr, sc, &sc->sk_intrhand);
1644
1645         if (error) {
1646                 printf("skc%d: couldn't set up irq\n", unit);
1647                 bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1648                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1649                 goto fail;
1650         }
1651
1652         /* Reset the adapter. */
1653         sk_reset(sc);
1654
1655         sc->sk_unit = unit;
1656
1657         /* Read and save vital product data from EEPROM. */
1658         sk_vpd_read(sc);
1659
1660         skrs = sk_win_read_1(sc, SK_EPROM0);
1661         if (sc->sk_type == SK_GENESIS) {
1662                 /* Read and save RAM size and RAMbuffer offset */
1663                 switch(skrs) {
1664                 case SK_RAMSIZE_512K_64:
1665                         sc->sk_ramsize = 0x80000;
1666                         sc->sk_rboff = SK_RBOFF_0;
1667                         break;
1668                 case SK_RAMSIZE_1024K_64:
1669                         sc->sk_ramsize = 0x100000;
1670                         sc->sk_rboff = SK_RBOFF_80000;
1671                         break;
1672                 case SK_RAMSIZE_1024K_128:
1673                         sc->sk_ramsize = 0x100000;
1674                         sc->sk_rboff = SK_RBOFF_0;
1675                         break;
1676                 case SK_RAMSIZE_2048K_128:
1677                         sc->sk_ramsize = 0x200000;
1678                         sc->sk_rboff = SK_RBOFF_0;
1679                         break;
1680                 default:
1681                         printf("skc%d: unknown ram size: %d\n",
1682                             sc->sk_unit, sk_win_read_1(sc, SK_EPROM0));
1683                         bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1684                         bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1685                         bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1686                         error = ENXIO;
1687                         goto fail;
1688                         break;
1689                 }
1690         } else { /* SK_YUKON */
1691                 if (skrs == 0x00) {
1692                         sc->sk_ramsize = 0x20000;
1693                 } else {
1694                         sc->sk_ramsize = skrs * (1<<12);
1695                 }
1696                 sc->sk_rboff = SK_RBOFF_0;
1697         }
1698
1699         /* Read and save physical media type */
1700         switch(sk_win_read_1(sc, SK_PMDTYPE)) {
1701         case SK_PMD_1000BASESX:
1702                 sc->sk_pmd = IFM_1000_SX;
1703                 break;
1704         case SK_PMD_1000BASELX:
1705                 sc->sk_pmd = IFM_1000_LX;
1706                 break;
1707         case SK_PMD_1000BASECX:
1708                 sc->sk_pmd = IFM_1000_CX;
1709                 break;
1710         case SK_PMD_1000BASETX:
1711                 sc->sk_pmd = IFM_1000_TX;
1712                 break;
1713         default:
1714                 printf("skc%d: unknown media type: 0x%x\n",
1715                     sc->sk_unit, sk_win_read_1(sc, SK_PMDTYPE));
1716                 bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1717                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1718                 bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1719                 error = ENXIO;
1720                 goto fail;
1721         }
1722
1723         /* Announce the product name. */
1724         printf("skc%d: %s\n", sc->sk_unit, sc->sk_vpd_prodname);
1725         sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
1726         port = malloc(sizeof(int), M_DEVBUF, M_WAITOK);
1727         *port = SK_PORT_A;
1728         device_set_ivars(sc->sk_devs[SK_PORT_A], port);
1729
1730         if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1731                 sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
1732                 port = malloc(sizeof(int), M_DEVBUF, M_WAITOK);
1733                 *port = SK_PORT_B;
1734                 device_set_ivars(sc->sk_devs[SK_PORT_B], port);
1735         }
1736
1737         /* Turn on the 'driver is loaded' LED. */
1738         CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1739
1740         bus_generic_attach(dev);
1741
1742 fail:
1743         splx(s);
1744         return(error);
1745 }
1746
1747 static int sk_detach(dev)
1748         device_t                dev;
1749 {
1750         struct sk_softc         *sc;
1751         struct sk_if_softc      *sc_if;
1752         struct ifnet            *ifp;
1753         int                     s;
1754
1755         s = splimp();
1756
1757         sc = device_get_softc(device_get_parent(dev));
1758         sc_if = device_get_softc(dev);
1759         ifp = &sc_if->arpcom.ac_if;
1760         sk_stop(sc_if);
1761         ether_ifdetach(ifp);
1762         bus_generic_detach(dev);
1763         if (sc_if->sk_miibus != NULL)
1764                 device_delete_child(dev, sc_if->sk_miibus);
1765         contigfree(sc_if->sk_cdata.sk_jumbo_buf, SK_JMEM, M_DEVBUF);
1766         contigfree(sc_if->sk_rdata, sizeof(struct sk_ring_data), M_DEVBUF);
1767
1768         return(0);
1769 }
1770
1771 static int skc_detach(dev)
1772         device_t                dev;
1773 {
1774         struct sk_softc         *sc;
1775         int                     s;
1776
1777         s = splimp();
1778
1779         sc = device_get_softc(dev);
1780
1781         bus_generic_detach(dev);
1782         if (sc->sk_devs[SK_PORT_A] != NULL)
1783                 device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
1784         if (sc->sk_devs[SK_PORT_B] != NULL)
1785                 device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
1786
1787         bus_teardown_intr(dev, sc->sk_irq, sc->sk_intrhand);
1788         bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sk_irq);
1789         bus_release_resource(dev, SK_RES, SK_RID, sc->sk_res);
1790
1791         splx(s);
1792
1793         return(0);
1794 }
1795
1796 static int sk_encap(sc_if, m_head, txidx)
1797         struct sk_if_softc      *sc_if;
1798         struct mbuf             *m_head;
1799         u_int32_t               *txidx;
1800 {
1801         struct sk_tx_desc       *f = NULL;
1802         struct mbuf             *m;
1803         u_int32_t               frag, cur, cnt = 0;
1804
1805         m = m_head;
1806         cur = frag = *txidx;
1807
1808         /*
1809          * Start packing the mbufs in this chain into
1810          * the fragment pointers. Stop when we run out
1811          * of fragments or hit the end of the mbuf chain.
1812          */
1813         for (m = m_head; m != NULL; m = m->m_next) {
1814                 if (m->m_len != 0) {
1815                         if ((SK_TX_RING_CNT -
1816                             (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2)
1817                                 return(ENOBUFS);
1818                         f = &sc_if->sk_rdata->sk_tx_ring[frag];
1819                         f->sk_data_lo = vtophys(mtod(m, vm_offset_t));
1820                         f->sk_ctl = m->m_len | SK_OPCODE_DEFAULT;
1821                         if (cnt == 0)
1822                                 f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
1823                         else
1824                                 f->sk_ctl |= SK_TXCTL_OWN;
1825                         cur = frag;
1826                         SK_INC(frag, SK_TX_RING_CNT);
1827                         cnt++;
1828                 }
1829         }
1830
1831         if (m != NULL)
1832                 return(ENOBUFS);
1833
1834         sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1835                 SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
1836         sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1837         sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
1838         sc_if->sk_cdata.sk_tx_cnt += cnt;
1839
1840         *txidx = frag;
1841
1842         return(0);
1843 }
1844
1845 static void sk_start(ifp)
1846         struct ifnet            *ifp;
1847 {
1848         struct sk_softc         *sc;
1849         struct sk_if_softc      *sc_if;
1850         struct mbuf             *m_head = NULL;
1851         u_int32_t               idx;
1852
1853         sc_if = ifp->if_softc;
1854         sc = sc_if->sk_softc;
1855
1856         idx = sc_if->sk_cdata.sk_tx_prod;
1857
1858         while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1859                 IF_DEQUEUE(&ifp->if_snd, m_head);
1860                 if (m_head == NULL)
1861                         break;
1862
1863                 /*
1864                  * Pack the data into the transmit ring. If we
1865                  * don't have room, set the OACTIVE flag and wait
1866                  * for the NIC to drain the ring.
1867                  */
1868                 if (sk_encap(sc_if, m_head, &idx)) {
1869                         IF_PREPEND(&ifp->if_snd, m_head);
1870                         ifp->if_flags |= IFF_OACTIVE;
1871                         break;
1872                 }
1873
1874                 BPF_MTAP(ifp, m_head);
1875         }
1876
1877         /* Transmit */
1878         sc_if->sk_cdata.sk_tx_prod = idx;
1879         CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1880
1881         /* Set a timeout in case the chip goes out to lunch. */
1882         ifp->if_timer = 5;
1883
1884         return;
1885 }
1886
1887
1888 static void sk_watchdog(ifp)
1889         struct ifnet            *ifp;
1890 {
1891         struct sk_if_softc      *sc_if;
1892
1893         sc_if = ifp->if_softc;
1894
1895         printf("sk%d: watchdog timeout\n", sc_if->sk_unit);
1896         sk_init(sc_if);
1897
1898         return;
1899 }
1900
1901 static void skc_shutdown(dev)
1902         device_t                dev;
1903 {
1904         struct sk_softc         *sc;
1905
1906         sc = device_get_softc(dev);
1907
1908         /* Turn off the 'driver is loaded' LED. */
1909         CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1910
1911         /*
1912          * Reset the GEnesis controller. Doing this should also
1913          * assert the resets on the attached XMAC(s).
1914          */
1915         sk_reset(sc);
1916
1917         return;
1918 }
1919
1920 static void sk_rxeof(sc_if)
1921         struct sk_if_softc      *sc_if;
1922 {
1923         struct mbuf             *m;
1924         struct ifnet            *ifp;
1925         struct sk_chain         *cur_rx;
1926         int                     total_len = 0;
1927         int                     i;
1928         u_int32_t               rxstat;
1929
1930         ifp = &sc_if->arpcom.ac_if;
1931         i = sc_if->sk_cdata.sk_rx_prod;
1932         cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1933
1934         while(!(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl & SK_RXCTL_OWN)) {
1935
1936                 cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1937                 rxstat = sc_if->sk_rdata->sk_rx_ring[i].sk_xmac_rxstat;
1938                 m = cur_rx->sk_mbuf;
1939                 cur_rx->sk_mbuf = NULL;
1940                 total_len = SK_RXBYTES(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl);
1941                 SK_INC(i, SK_RX_RING_CNT);
1942
1943                 if (rxstat & XM_RXSTAT_ERRFRAME) {
1944                         ifp->if_ierrors++;
1945                         sk_newbuf(sc_if, cur_rx, m);
1946                         continue;
1947                 }
1948
1949                 /*
1950                  * Try to allocate a new jumbo buffer. If that
1951                  * fails, copy the packet to mbufs and put the
1952                  * jumbo buffer back in the ring so it can be
1953                  * re-used. If allocating mbufs fails, then we
1954                  * have to drop the packet.
1955                  */
1956                 if (sk_newbuf(sc_if, cur_rx, NULL) == ENOBUFS) {
1957                         struct mbuf             *m0;
1958                         m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1959                             total_len + ETHER_ALIGN, 0, ifp, NULL);
1960                         sk_newbuf(sc_if, cur_rx, m);
1961                         if (m0 == NULL) {
1962                                 printf("sk%d: no receive buffers "
1963                                     "available -- packet dropped!\n",
1964                                     sc_if->sk_unit);
1965                                 ifp->if_ierrors++;
1966                                 continue;
1967                         }
1968                         m_adj(m0, ETHER_ALIGN);
1969                         m = m0;
1970                 } else {
1971                         m->m_pkthdr.rcvif = ifp;
1972                         m->m_pkthdr.len = m->m_len = total_len;
1973                 }
1974
1975                 ifp->if_ipackets++;
1976                 (*ifp->if_input)(ifp, m);
1977         }
1978
1979         sc_if->sk_cdata.sk_rx_prod = i;
1980
1981         return;
1982 }
1983
1984 static void sk_txeof(sc_if)
1985         struct sk_if_softc      *sc_if;
1986 {
1987         struct sk_tx_desc       *cur_tx = NULL;
1988         struct ifnet            *ifp;
1989         u_int32_t               idx;
1990
1991         ifp = &sc_if->arpcom.ac_if;
1992
1993         /*
1994          * Go through our tx ring and free mbufs for those
1995          * frames that have been sent.
1996          */
1997         idx = sc_if->sk_cdata.sk_tx_cons;
1998         while(idx != sc_if->sk_cdata.sk_tx_prod) {
1999                 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2000                 if (cur_tx->sk_ctl & SK_TXCTL_OWN)
2001                         break;
2002                 if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
2003                         ifp->if_opackets++;
2004                 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2005                         m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2006                         sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2007                 }
2008                 sc_if->sk_cdata.sk_tx_cnt--;
2009                 SK_INC(idx, SK_TX_RING_CNT);
2010                 ifp->if_timer = 0;
2011         }
2012
2013         sc_if->sk_cdata.sk_tx_cons = idx;
2014
2015         if (cur_tx != NULL)
2016                 ifp->if_flags &= ~IFF_OACTIVE;
2017
2018         return;
2019 }
2020
2021 static void sk_tick(xsc_if)
2022         void                    *xsc_if;
2023 {
2024         struct sk_if_softc      *sc_if;
2025         struct mii_data         *mii;
2026         struct ifnet            *ifp;
2027         int                     i;
2028
2029         sc_if = xsc_if;
2030         ifp = &sc_if->arpcom.ac_if;
2031         mii = device_get_softc(sc_if->sk_miibus);
2032
2033         if (!(ifp->if_flags & IFF_UP))
2034                 return;
2035
2036         if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2037                 sk_intr_bcom(sc_if);
2038                 return;
2039         }
2040
2041         /*
2042          * According to SysKonnect, the correct way to verify that
2043          * the link has come back up is to poll bit 0 of the GPIO
2044          * register three times. This pin has the signal from the
2045          * link_sync pin connected to it; if we read the same link
2046          * state 3 times in a row, we know the link is up.
2047          */
2048         for (i = 0; i < 3; i++) {
2049                 if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
2050                         break;
2051         }
2052
2053         if (i != 3) {
2054                 callout_reset(&sc_if->sk_tick_timer, hz, sk_tick, sc_if);
2055                 return;
2056         }
2057
2058         /* Turn the GP0 interrupt back on. */
2059         SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2060         SK_XM_READ_2(sc_if, XM_ISR);
2061         mii_tick(mii);
2062         mii_pollstat(mii);
2063         callout_stop(&sc_if->sk_tick_timer);
2064
2065         return;
2066 }
2067
2068 static void sk_intr_bcom(sc_if)
2069         struct sk_if_softc      *sc_if;
2070 {
2071         struct sk_softc         *sc;
2072         struct mii_data         *mii;
2073         struct ifnet            *ifp;
2074         int                     status;
2075
2076         sc = sc_if->sk_softc;
2077         mii = device_get_softc(sc_if->sk_miibus);
2078         ifp = &sc_if->arpcom.ac_if;
2079
2080         SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2081
2082         /*
2083          * Read the PHY interrupt register to make sure
2084          * we clear any pending interrupts.
2085          */
2086         status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
2087
2088         if (!(ifp->if_flags & IFF_RUNNING)) {
2089                 sk_init_xmac(sc_if);
2090                 return;
2091         }
2092
2093         if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
2094                 int                     lstat;
2095                 lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
2096                     BRGPHY_MII_AUXSTS);
2097
2098                 if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
2099                         mii_mediachg(mii);
2100                         /* Turn off the link LED. */
2101                         SK_IF_WRITE_1(sc_if, 0,
2102                             SK_LINKLED1_CTL, SK_LINKLED_OFF);
2103                         sc_if->sk_link = 0;
2104                 } else if (status & BRGPHY_ISR_LNK_CHG) {
2105                         sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2106                             BRGPHY_MII_IMR, 0xFF00);
2107                         mii_tick(mii);
2108                         sc_if->sk_link = 1;
2109                         /* Turn on the link LED. */
2110                         SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2111                             SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
2112                             SK_LINKLED_BLINK_OFF);
2113                         mii_pollstat(mii);
2114                 } else {
2115                         mii_tick(mii);
2116                         callout_reset(&sc_if->sk_tick_timer, hz,
2117                                       sk_tick, sc_if);
2118                 }
2119         }
2120
2121         SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2122
2123         return;
2124 }
2125
2126 static void sk_intr_xmac(sc_if)
2127         struct sk_if_softc      *sc_if;
2128 {
2129         struct sk_softc         *sc;
2130         u_int16_t               status;
2131         struct mii_data         *mii;
2132
2133         sc = sc_if->sk_softc;
2134         mii = device_get_softc(sc_if->sk_miibus);
2135         status = SK_XM_READ_2(sc_if, XM_ISR);
2136
2137         /*
2138          * Link has gone down. Start MII tick timeout to
2139          * watch for link resync.
2140          */
2141         if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
2142                 if (status & XM_ISR_GP0_SET) {
2143                         SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
2144                         callout_reset(&sc_if->sk_tick_timer, hz,
2145                                       sk_tick, sc_if);
2146                 }
2147
2148                 if (status & XM_ISR_AUTONEG_DONE) {
2149                         callout_reset(&sc_if->sk_tick_timer, hz,
2150                                       sk_tick, sc_if);
2151                 }
2152         }
2153
2154         if (status & XM_IMR_TX_UNDERRUN)
2155                 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
2156
2157         if (status & XM_IMR_RX_OVERRUN)
2158                 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
2159
2160         status = SK_XM_READ_2(sc_if, XM_ISR);
2161
2162         return;
2163 }
2164
2165 static void sk_intr_yukon(sc_if)
2166         struct sk_if_softc      *sc_if;
2167 {
2168         int status;
2169
2170         status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2171
2172         return;
2173 }
2174
2175 static void sk_intr(xsc)
2176         void                    *xsc;
2177 {
2178         struct sk_softc         *sc = xsc;
2179         struct sk_if_softc      *sc_if0 = NULL, *sc_if1 = NULL;
2180         struct ifnet            *ifp0 = NULL, *ifp1 = NULL;
2181         u_int32_t               status;
2182
2183         sc_if0 = sc->sk_if[SK_PORT_A];
2184         sc_if1 = sc->sk_if[SK_PORT_B];
2185
2186         if (sc_if0 != NULL)
2187                 ifp0 = &sc_if0->arpcom.ac_if;
2188         if (sc_if1 != NULL)
2189                 ifp1 = &sc_if1->arpcom.ac_if;
2190
2191         for (;;) {
2192                 status = CSR_READ_4(sc, SK_ISSR);
2193                 if (!(status & sc->sk_intrmask))
2194                         break;
2195
2196                 /* Handle receive interrupts first. */
2197                 if (status & SK_ISR_RX1_EOF) {
2198                         sk_rxeof(sc_if0);
2199                         CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
2200                             SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2201                 }
2202                 if (status & SK_ISR_RX2_EOF) {
2203                         sk_rxeof(sc_if1);
2204                         CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
2205                             SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
2206                 }
2207
2208                 /* Then transmit interrupts. */
2209                 if (status & SK_ISR_TX1_S_EOF) {
2210                         sk_txeof(sc_if0);
2211                         CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
2212                             SK_TXBMU_CLR_IRQ_EOF);
2213                 }
2214                 if (status & SK_ISR_TX2_S_EOF) {
2215                         sk_txeof(sc_if1);
2216                         CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
2217                             SK_TXBMU_CLR_IRQ_EOF);
2218                 }
2219
2220                 /* Then MAC interrupts. */
2221                 if (status & SK_ISR_MAC1 && ifp0->if_flags & IFF_RUNNING) {
2222                         if (sc->sk_type == SK_GENESIS)
2223                                 sk_intr_xmac(sc_if0);
2224                         else
2225                                 sk_intr_yukon(sc_if0);
2226                 }
2227
2228                 if (status & SK_ISR_MAC2 && ifp1->if_flags & IFF_RUNNING) {
2229                         if (sc->sk_type == SK_GENESIS)
2230                                 sk_intr_xmac(sc_if1);
2231                         else
2232                                 sk_intr_yukon(sc_if0);
2233                 }
2234
2235                 if (status & SK_ISR_EXTERNAL_REG) {
2236                         if (ifp0 != NULL &&
2237                             sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
2238                                 sk_intr_bcom(sc_if0);
2239                         if (ifp1 != NULL &&
2240                             sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
2241                                 sk_intr_bcom(sc_if1);
2242                 }
2243         }
2244
2245         CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2246
2247         if (ifp0 != NULL && ifp0->if_snd.ifq_head != NULL)
2248                 sk_start(ifp0);
2249         if (ifp1 != NULL && ifp1->if_snd.ifq_head != NULL)
2250                 sk_start(ifp1);
2251
2252         return;
2253 }
2254
2255 static void sk_init_xmac(sc_if)
2256         struct sk_if_softc      *sc_if;
2257 {
2258         struct sk_softc         *sc;
2259         struct ifnet            *ifp;
2260         struct sk_bcom_hack     bhack[] = {
2261         { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
2262         { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
2263         { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
2264         { 0, 0 } };
2265
2266         sc = sc_if->sk_softc;
2267         ifp = &sc_if->arpcom.ac_if;
2268
2269         /* Unreset the XMAC. */
2270         SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
2271         DELAY(1000);
2272
2273         /* Reset the XMAC's internal state. */
2274         SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2275
2276         /* Save the XMAC II revision */
2277         sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
2278
2279         /*
2280          * Perform additional initialization for external PHYs,
2281          * namely for the 1000baseTX cards that use the XMAC's
2282          * GMII mode.
2283          */
2284         if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2285                 int                     i = 0;
2286                 u_int32_t               val;
2287
2288                 /* Take PHY out of reset. */
2289                 val = sk_win_read_4(sc, SK_GPIO);
2290                 if (sc_if->sk_port == SK_PORT_A)
2291                         val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
2292                 else
2293                         val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
2294                 sk_win_write_4(sc, SK_GPIO, val);
2295
2296                 /* Enable GMII mode on the XMAC. */
2297                 SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
2298
2299                 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2300                     BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
2301                 DELAY(10000);
2302                 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2303                     BRGPHY_MII_IMR, 0xFFF0);
2304
2305                 /*
2306                  * Early versions of the BCM5400 apparently have
2307                  * a bug that requires them to have their reserved
2308                  * registers initialized to some magic values. I don't
2309                  * know what the numbers do, I'm just the messenger.
2310                  */
2311                 if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
2312                     == 0x6041) {
2313                         while(bhack[i].reg) {
2314                                 sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
2315                                     bhack[i].reg, bhack[i].val);
2316                                 i++;
2317                         }
2318                 }
2319         }
2320
2321         /* Set station address */
2322         SK_XM_WRITE_2(sc_if, XM_PAR0,
2323             *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[0]));
2324         SK_XM_WRITE_2(sc_if, XM_PAR1,
2325             *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[2]));
2326         SK_XM_WRITE_2(sc_if, XM_PAR2,
2327             *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[4]));
2328         SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
2329
2330         if (ifp->if_flags & IFF_BROADCAST) {
2331                 SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2332         } else {
2333                 SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
2334         }
2335
2336         /* We don't need the FCS appended to the packet. */
2337         SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
2338
2339         /* We want short frames padded to 60 bytes. */
2340         SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
2341
2342         /*
2343          * Enable the reception of all error frames. This is is
2344          * a necessary evil due to the design of the XMAC. The
2345          * XMAC's receive FIFO is only 8K in size, however jumbo
2346          * frames can be up to 9000 bytes in length. When bad
2347          * frame filtering is enabled, the XMAC's RX FIFO operates
2348          * in 'store and forward' mode. For this to work, the
2349          * entire frame has to fit into the FIFO, but that means
2350          * that jumbo frames larger than 8192 bytes will be
2351          * truncated. Disabling all bad frame filtering causes
2352          * the RX FIFO to operate in streaming mode, in which
2353          * case the XMAC will start transfering frames out of the
2354          * RX FIFO as soon as the FIFO threshold is reached.
2355          */
2356         SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
2357             XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
2358             XM_MODE_RX_INRANGELEN);
2359
2360         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2361                 SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2362         else
2363                 SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
2364
2365         /*
2366          * Bump up the transmit threshold. This helps hold off transmit
2367          * underruns when we're blasting traffic from both ports at once.
2368          */
2369         SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
2370
2371         /* Set promiscuous mode */
2372         sk_setpromisc(sc_if);
2373
2374         /* Set multicast filter */
2375         sk_setmulti(sc_if);
2376
2377         /* Clear and enable interrupts */
2378         SK_XM_READ_2(sc_if, XM_ISR);
2379         if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
2380                 SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
2381         else
2382                 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2383
2384         /* Configure MAC arbiter */
2385         switch(sc_if->sk_xmac_rev) {
2386         case XM_XMAC_REV_B2:
2387                 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
2388                 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
2389                 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
2390                 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
2391                 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
2392                 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
2393                 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
2394                 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
2395                 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2396                 break;
2397         case XM_XMAC_REV_C1:
2398                 sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
2399                 sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
2400                 sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
2401                 sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
2402                 sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
2403                 sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
2404                 sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
2405                 sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
2406                 sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
2407                 break;
2408         default:
2409                 break;
2410         }
2411         sk_win_write_2(sc, SK_MACARB_CTL,
2412             SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
2413
2414         sc_if->sk_link = 1;
2415
2416         return;
2417 }
2418
2419 static void sk_init_yukon(sc_if)
2420         struct sk_if_softc      *sc_if;
2421 {
2422         u_int32_t               phy;
2423         u_int16_t               reg;
2424         struct sk_softc         *sc;
2425         struct ifnet            *ifp;
2426         int                     i;
2427
2428         sc = sc_if->sk_softc;
2429         ifp = &sc_if->arpcom.ac_if;
2430
2431         /* GMAC and GPHY Reset */
2432         SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2433         SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2434         DELAY(1000);
2435         SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
2436         SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2437         DELAY(1000);
2438
2439         phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
2440                 SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
2441
2442         switch(sc_if->sk_softc->sk_pmd) {
2443         case IFM_1000_SX:
2444         case IFM_1000_LX:
2445                 phy |= SK_GPHY_FIBER;
2446                 break;
2447
2448         case IFM_1000_CX:
2449         case IFM_1000_TX:
2450                 phy |= SK_GPHY_COPPER;
2451                 break;
2452         }
2453
2454         SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
2455         DELAY(1000);
2456         SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
2457         SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2458                       SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2459
2460         /* unused read of the interrupt source register */
2461         SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2462
2463         reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2464
2465         /* MIB Counter Clear Mode set */
2466         reg |= YU_PAR_MIB_CLR;
2467         SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2468
2469         /* MIB Counter Clear Mode clear */
2470         reg &= ~YU_PAR_MIB_CLR;
2471         SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2472
2473         /* receive control reg */
2474         SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2475
2476         /* transmit parameter register */
2477         SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2478                       YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
2479
2480         /* serial mode register */
2481         reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
2482         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2483                 reg |= YU_SMR_MFL_JUMBO;
2484         SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2485
2486         /* Setup Yukon's address */
2487         for (i = 0; i < 3; i++) {
2488                 /* Write Source Address 1 (unicast filter) */
2489                 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4, 
2490                               sc_if->arpcom.ac_enaddr[i * 2] |
2491                               sc_if->arpcom.ac_enaddr[i * 2 + 1] << 8);
2492         }
2493
2494         for (i = 0; i < 3; i++) {
2495                 reg = sk_win_read_2(sc_if->sk_softc,
2496                                     SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2497                 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2498         }
2499
2500         /* Set promiscuous mode */
2501         sk_setpromisc(sc_if);
2502
2503         /* Set multicast filter */
2504         sk_setmulti(sc_if);
2505
2506         /* enable interrupt mask for counter overflows */
2507         SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2508         SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2509         SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2510
2511         /* Configure RX MAC FIFO */
2512         SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2513         SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2514
2515         /* Configure TX MAC FIFO */
2516         SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2517         SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2518 }
2519
2520 /*
2521  * Note that to properly initialize any part of the GEnesis chip,
2522  * you first have to take it out of reset mode.
2523  */
2524 static void sk_init(xsc)
2525         void                    *xsc;
2526 {
2527         struct sk_if_softc      *sc_if = xsc;
2528         struct sk_softc         *sc;
2529         struct ifnet            *ifp;
2530         struct mii_data         *mii;
2531         int                     s;
2532         u_int16_t               reg;
2533
2534         s = splimp();
2535
2536         ifp = &sc_if->arpcom.ac_if;
2537         sc = sc_if->sk_softc;
2538         mii = device_get_softc(sc_if->sk_miibus);
2539
2540         /* Cancel pending I/O and free all RX/TX buffers. */
2541         sk_stop(sc_if);
2542
2543         if (sc->sk_type == SK_GENESIS) {
2544                 /* Configure LINK_SYNC LED */
2545                 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
2546                 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
2547                         SK_LINKLED_LINKSYNC_ON);
2548
2549                 /* Configure RX LED */
2550                 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,  
2551                         SK_RXLEDCTL_COUNTER_START);
2552
2553                 /* Configure TX LED */
2554                 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
2555                         SK_TXLEDCTL_COUNTER_START);
2556         }
2557
2558         /* Configure I2C registers */
2559
2560         /* Configure XMAC(s) */
2561         switch (sc->sk_type) {
2562         case SK_GENESIS:
2563                 sk_init_xmac(sc_if);
2564                 break;
2565         case SK_YUKON:
2566                 sk_init_yukon(sc_if);
2567                 break;
2568         }
2569         mii_mediachg(mii);
2570
2571         if (sc->sk_type == SK_GENESIS) {
2572                 /* Configure MAC FIFOs */
2573                 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
2574                 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
2575                 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2576
2577                 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
2578                 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
2579                 SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
2580         }
2581
2582         /* Configure transmit arbiter(s) */
2583         SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
2584             SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2585
2586         /* Configure RAMbuffers */
2587         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2588         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2589         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2590         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2591         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2592         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2593
2594         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
2595         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
2596         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
2597         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
2598         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
2599         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
2600         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
2601
2602         /* Configure BMUs */
2603         SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
2604         SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
2605             vtophys(&sc_if->sk_rdata->sk_rx_ring[0]));
2606         SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
2607
2608         SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
2609         SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
2610             vtophys(&sc_if->sk_rdata->sk_tx_ring[0]));
2611         SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
2612
2613         /* Init descriptors */
2614         if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2615                 printf("sk%d: initialization failed: no "
2616                     "memory for rx buffers\n", sc_if->sk_unit);
2617                 sk_stop(sc_if);
2618                 (void)splx(s);
2619                 return;
2620         }
2621         sk_init_tx_ring(sc_if);
2622
2623         /* Configure interrupt handling */
2624         CSR_READ_4(sc, SK_ISSR);
2625         if (sc_if->sk_port == SK_PORT_A)
2626                 sc->sk_intrmask |= SK_INTRS1;
2627         else
2628                 sc->sk_intrmask |= SK_INTRS2;
2629
2630         sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
2631
2632         CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2633
2634         /* Start BMUs. */
2635         SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
2636
2637         switch(sc->sk_type) {
2638         case SK_GENESIS:
2639                 /* Enable XMACs TX and RX state machines */
2640                 SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
2641                 SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
2642                 break;
2643         case SK_YUKON:
2644                 reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
2645                 reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
2646                 reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
2647                 SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
2648         }
2649
2650         ifp->if_flags |= IFF_RUNNING;
2651         ifp->if_flags &= ~IFF_OACTIVE;
2652
2653         splx(s);
2654
2655         return;
2656 }
2657
2658 static void sk_stop(sc_if)
2659         struct sk_if_softc      *sc_if;
2660 {
2661         int                     i;
2662         struct sk_softc         *sc;
2663         struct ifnet            *ifp;
2664
2665         sc = sc_if->sk_softc;
2666         ifp = &sc_if->arpcom.ac_if;
2667
2668         callout_stop(&sc_if->sk_tick_timer);
2669
2670         if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
2671                 u_int32_t               val;
2672
2673                 /* Put PHY back into reset. */
2674                 val = sk_win_read_4(sc, SK_GPIO);
2675                 if (sc_if->sk_port == SK_PORT_A) {
2676                         val |= SK_GPIO_DIR0;
2677                         val &= ~SK_GPIO_DAT0;
2678                 } else {
2679                         val |= SK_GPIO_DIR2;
2680                         val &= ~SK_GPIO_DAT2;
2681                 }
2682                 sk_win_write_4(sc, SK_GPIO, val);
2683         }
2684
2685         /* Turn off various components of this interface. */
2686         SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2687         switch (sc->sk_type) {
2688         case SK_GENESIS:
2689                 SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
2690                 SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
2691                 break;
2692         case SK_YUKON:
2693                 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2694                 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2695                 break;
2696         }
2697         SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2698         SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2699         SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
2700         SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2701         SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2702         SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2703         SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2704         SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2705         SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2706
2707         /* Disable interrupts */
2708         if (sc_if->sk_port == SK_PORT_A)
2709                 sc->sk_intrmask &= ~SK_INTRS1;
2710         else
2711                 sc->sk_intrmask &= ~SK_INTRS2;
2712         CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2713
2714         SK_XM_READ_2(sc_if, XM_ISR);
2715         SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2716
2717         /* Free RX and TX mbufs still in the queues. */
2718         for (i = 0; i < SK_RX_RING_CNT; i++) {
2719                 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2720                         m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2721                         sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2722                 }
2723         }
2724
2725         for (i = 0; i < SK_TX_RING_CNT; i++) {
2726                 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2727                         m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2728                         sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2729                 }
2730         }
2731
2732         ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2733
2734         return;
2735 }