Upgrade xz from 5.2.2 to 5.2.4 on the vendor branch.
[dragonfly.git] / contrib / xz / src / liblzma / simple / simple_coder.c
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 /// \file       simple_coder.c
4 /// \brief      Wrapper for simple filters
5 ///
6 /// Simple filters don't change the size of the data i.e. number of bytes
7 /// in equals the number of bytes out.
8 //
9 //  Author:     Lasse Collin
10 //
11 //  This file has been put into the public domain.
12 //  You can do whatever you want with this file.
13 //
14 ///////////////////////////////////////////////////////////////////////////////
15
16 #include "simple_private.h"
17
18
19 /// Copied or encodes/decodes more data to out[].
20 static lzma_ret
21 copy_or_code(lzma_simple_coder *coder, const lzma_allocator *allocator,
22                 const uint8_t *restrict in, size_t *restrict in_pos,
23                 size_t in_size, uint8_t *restrict out,
24                 size_t *restrict out_pos, size_t out_size, lzma_action action)
25 {
26         assert(!coder->end_was_reached);
27
28         if (coder->next.code == NULL) {
29                 lzma_bufcpy(in, in_pos, in_size, out, out_pos, out_size);
30
31                 // Check if end of stream was reached.
32                 if (coder->is_encoder && action == LZMA_FINISH
33                                 && *in_pos == in_size)
34                         coder->end_was_reached = true;
35
36         } else {
37                 // Call the next coder in the chain to provide us some data.
38                 const lzma_ret ret = coder->next.code(
39                                 coder->next.coder, allocator,
40                                 in, in_pos, in_size,
41                                 out, out_pos, out_size, action);
42
43                 if (ret == LZMA_STREAM_END) {
44                         assert(!coder->is_encoder
45                                         || action == LZMA_FINISH);
46                         coder->end_was_reached = true;
47
48                 } else if (ret != LZMA_OK) {
49                         return ret;
50                 }
51         }
52
53         return LZMA_OK;
54 }
55
56
57 static size_t
58 call_filter(lzma_simple_coder *coder, uint8_t *buffer, size_t size)
59 {
60         const size_t filtered = coder->filter(coder->simple,
61                         coder->now_pos, coder->is_encoder,
62                         buffer, size);
63         coder->now_pos += filtered;
64         return filtered;
65 }
66
67
68 static lzma_ret
69 simple_code(void *coder_ptr, const lzma_allocator *allocator,
70                 const uint8_t *restrict in, size_t *restrict in_pos,
71                 size_t in_size, uint8_t *restrict out,
72                 size_t *restrict out_pos, size_t out_size, lzma_action action)
73 {
74         lzma_simple_coder *coder = coder_ptr;
75
76         // TODO: Add partial support for LZMA_SYNC_FLUSH. We can support it
77         // in cases when the filter is able to filter everything. With most
78         // simple filters it can be done at offset that is a multiple of 2,
79         // 4, or 16. With x86 filter, it needs good luck, and thus cannot
80         // be made to work predictably.
81         if (action == LZMA_SYNC_FLUSH)
82                 return LZMA_OPTIONS_ERROR;
83
84         // Flush already filtered data from coder->buffer[] to out[].
85         if (coder->pos < coder->filtered) {
86                 lzma_bufcpy(coder->buffer, &coder->pos, coder->filtered,
87                                 out, out_pos, out_size);
88
89                 // If we couldn't flush all the filtered data, return to
90                 // application immediately.
91                 if (coder->pos < coder->filtered)
92                         return LZMA_OK;
93
94                 if (coder->end_was_reached) {
95                         assert(coder->filtered == coder->size);
96                         return LZMA_STREAM_END;
97                 }
98         }
99
100         // If we get here, there is no filtered data left in the buffer.
101         coder->filtered = 0;
102
103         assert(!coder->end_was_reached);
104
105         // If there is more output space left than there is unfiltered data
106         // in coder->buffer[], flush coder->buffer[] to out[], and copy/code
107         // more data to out[] hopefully filling it completely. Then filter
108         // the data in out[]. This step is where most of the data gets
109         // filtered if the buffer sizes used by the application are reasonable.
110         const size_t out_avail = out_size - *out_pos;
111         const size_t buf_avail = coder->size - coder->pos;
112         if (out_avail > buf_avail || buf_avail == 0) {
113                 // Store the old position so that we know from which byte
114                 // to start filtering.
115                 const size_t out_start = *out_pos;
116
117                 // Flush data from coder->buffer[] to out[], but don't reset
118                 // coder->pos and coder->size yet. This way the coder can be
119                 // restarted if the next filter in the chain returns e.g.
120                 // LZMA_MEM_ERROR.
121                 memcpy(out + *out_pos, coder->buffer + coder->pos, buf_avail);
122                 *out_pos += buf_avail;
123
124                 // Copy/Encode/Decode more data to out[].
125                 {
126                         const lzma_ret ret = copy_or_code(coder, allocator,
127                                         in, in_pos, in_size,
128                                         out, out_pos, out_size, action);
129                         assert(ret != LZMA_STREAM_END);
130                         if (ret != LZMA_OK)
131                                 return ret;
132                 }
133
134                 // Filter out[].
135                 const size_t size = *out_pos - out_start;
136                 const size_t filtered = call_filter(
137                                 coder, out + out_start, size);
138
139                 const size_t unfiltered = size - filtered;
140                 assert(unfiltered <= coder->allocated / 2);
141
142                 // Now we can update coder->pos and coder->size, because
143                 // the next coder in the chain (if any) was successful.
144                 coder->pos = 0;
145                 coder->size = unfiltered;
146
147                 if (coder->end_was_reached) {
148                         // The last byte has been copied to out[] already.
149                         // They are left as is.
150                         coder->size = 0;
151
152                 } else if (unfiltered > 0) {
153                         // There is unfiltered data left in out[]. Copy it to
154                         // coder->buffer[] and rewind *out_pos appropriately.
155                         *out_pos -= unfiltered;
156                         memcpy(coder->buffer, out + *out_pos, unfiltered);
157                 }
158         } else if (coder->pos > 0) {
159                 memmove(coder->buffer, coder->buffer + coder->pos, buf_avail);
160                 coder->size -= coder->pos;
161                 coder->pos = 0;
162         }
163
164         assert(coder->pos == 0);
165
166         // If coder->buffer[] isn't empty, try to fill it by copying/decoding
167         // more data. Then filter coder->buffer[] and copy the successfully
168         // filtered data to out[]. It is probable, that some filtered and
169         // unfiltered data will be left to coder->buffer[].
170         if (coder->size > 0) {
171                 {
172                         const lzma_ret ret = copy_or_code(coder, allocator,
173                                         in, in_pos, in_size,
174                                         coder->buffer, &coder->size,
175                                         coder->allocated, action);
176                         assert(ret != LZMA_STREAM_END);
177                         if (ret != LZMA_OK)
178                                 return ret;
179                 }
180
181                 coder->filtered = call_filter(
182                                 coder, coder->buffer, coder->size);
183
184                 // Everything is considered to be filtered if coder->buffer[]
185                 // contains the last bytes of the data.
186                 if (coder->end_was_reached)
187                         coder->filtered = coder->size;
188
189                 // Flush as much as possible.
190                 lzma_bufcpy(coder->buffer, &coder->pos, coder->filtered,
191                                 out, out_pos, out_size);
192         }
193
194         // Check if we got everything done.
195         if (coder->end_was_reached && coder->pos == coder->size)
196                 return LZMA_STREAM_END;
197
198         return LZMA_OK;
199 }
200
201
202 static void
203 simple_coder_end(void *coder_ptr, const lzma_allocator *allocator)
204 {
205         lzma_simple_coder *coder = coder_ptr;
206         lzma_next_end(&coder->next, allocator);
207         lzma_free(coder->simple, allocator);
208         lzma_free(coder, allocator);
209         return;
210 }
211
212
213 static lzma_ret
214 simple_coder_update(void *coder_ptr, const lzma_allocator *allocator,
215                 const lzma_filter *filters_null lzma_attribute((__unused__)),
216                 const lzma_filter *reversed_filters)
217 {
218         lzma_simple_coder *coder = coder_ptr;
219
220         // No update support, just call the next filter in the chain.
221         return lzma_next_filter_update(
222                         &coder->next, allocator, reversed_filters + 1);
223 }
224
225
226 extern lzma_ret
227 lzma_simple_coder_init(lzma_next_coder *next, const lzma_allocator *allocator,
228                 const lzma_filter_info *filters,
229                 size_t (*filter)(void *simple, uint32_t now_pos,
230                         bool is_encoder, uint8_t *buffer, size_t size),
231                 size_t simple_size, size_t unfiltered_max,
232                 uint32_t alignment, bool is_encoder)
233 {
234         // Allocate memory for the lzma_simple_coder structure if needed.
235         lzma_simple_coder *coder = next->coder;
236         if (coder == NULL) {
237                 // Here we allocate space also for the temporary buffer. We
238                 // need twice the size of unfiltered_max, because then it
239                 // is always possible to filter at least unfiltered_max bytes
240                 // more data in coder->buffer[] if it can be filled completely.
241                 coder = lzma_alloc(sizeof(lzma_simple_coder)
242                                 + 2 * unfiltered_max, allocator);
243                 if (coder == NULL)
244                         return LZMA_MEM_ERROR;
245
246                 next->coder = coder;
247                 next->code = &simple_code;
248                 next->end = &simple_coder_end;
249                 next->update = &simple_coder_update;
250
251                 coder->next = LZMA_NEXT_CODER_INIT;
252                 coder->filter = filter;
253                 coder->allocated = 2 * unfiltered_max;
254
255                 // Allocate memory for filter-specific data structure.
256                 if (simple_size > 0) {
257                         coder->simple = lzma_alloc(simple_size, allocator);
258                         if (coder->simple == NULL)
259                                 return LZMA_MEM_ERROR;
260                 } else {
261                         coder->simple = NULL;
262                 }
263         }
264
265         if (filters[0].options != NULL) {
266                 const lzma_options_bcj *simple = filters[0].options;
267                 coder->now_pos = simple->start_offset;
268                 if (coder->now_pos & (alignment - 1))
269                         return LZMA_OPTIONS_ERROR;
270         } else {
271                 coder->now_pos = 0;
272         }
273
274         // Reset variables.
275         coder->is_encoder = is_encoder;
276         coder->end_was_reached = false;
277         coder->pos = 0;
278         coder->filtered = 0;
279         coder->size = 0;
280
281         return lzma_next_filter_init(&coder->next, allocator, filters + 1);
282 }