Merge branch 'vendor/OPENSSH'
[dragonfly.git] / sys / platform / pc64 / isa / clock.c
1 /*-
2  * Copyright (c) 1990 The Regents of the University of California.
3  * Copyright (c) 2008 The DragonFly Project.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * William Jolitz and Don Ahn.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *      from: @(#)clock.c       7.2 (Berkeley) 5/12/91
34  * $FreeBSD: src/sys/i386/isa/clock.c,v 1.149.2.6 2002/11/02 04:41:50 iwasaki Exp $
35  */
36
37 /*
38  * Routines to handle clock hardware.
39  */
40
41 /*
42  * inittodr, settodr and support routines written
43  * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
44  *
45  * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
46  */
47
48 #if 0
49 #include "opt_clock.h"
50 #endif
51
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/eventhandler.h>
55 #include <sys/time.h>
56 #include <sys/kernel.h>
57 #include <sys/bus.h>
58 #include <sys/sysctl.h>
59 #include <sys/cons.h>
60 #include <sys/kbio.h>
61 #include <sys/systimer.h>
62 #include <sys/globaldata.h>
63 #include <sys/machintr.h>
64 #include <sys/interrupt.h>
65
66 #include <sys/thread2.h>
67
68 #include <machine/clock.h>
69 #include <machine/cputypes.h>
70 #include <machine/frame.h>
71 #include <machine/ipl.h>
72 #include <machine/limits.h>
73 #include <machine/md_var.h>
74 #include <machine/psl.h>
75 #include <machine/segments.h>
76 #include <machine/smp.h>
77 #include <machine/specialreg.h>
78 #include <machine/intr_machdep.h>
79
80 #include <machine_base/apic/ioapic.h>
81 #include <machine_base/apic/ioapic_abi.h>
82 #include <machine_base/icu/icu.h>
83 #include <bus/isa/isa.h>
84 #include <bus/isa/rtc.h>
85 #include <machine_base/isa/timerreg.h>
86
87 static void i8254_restore(void);
88 static void resettodr_on_shutdown(void *arg __unused);
89
90 /*
91  * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
92  * can use a simple formula for leap years.
93  */
94 #define LEAPYEAR(y) ((u_int)(y) % 4 == 0)
95 #define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
96
97 #ifndef TIMER_FREQ
98 #define TIMER_FREQ   1193182
99 #endif
100
101 static uint8_t i8254_walltimer_sel;
102 static uint16_t i8254_walltimer_cntr;
103
104 int     adjkerntz;              /* local offset from GMT in seconds */
105 int     disable_rtc_set;        /* disable resettodr() if != 0 */
106 int     tsc_present;
107 int     tsc_invariant;
108 int     tsc_mpsync;
109 int64_t tsc_frequency;
110 int     tsc_is_broken;
111 int     wall_cmos_clock;        /* wall CMOS clock assumed if != 0 */
112 int     timer0_running;
113 enum tstate { RELEASED, ACQUIRED };
114 enum tstate timer0_state;
115 enum tstate timer1_state;
116 enum tstate timer2_state;
117
118 static  int     beeping = 0;
119 static  const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
120 static  u_char  rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
121 static  u_char  rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
122 static  int     rtc_loaded;
123
124 static int i8254_cputimer_div;
125
126 static int i8254_nointr;
127 static int i8254_intr_disable = 1;
128 TUNABLE_INT("hw.i8254.intr_disable", &i8254_intr_disable);
129
130 static struct callout sysbeepstop_ch;
131
132 static sysclock_t i8254_cputimer_count(void);
133 static void i8254_cputimer_construct(struct cputimer *cputimer, sysclock_t last);
134 static void i8254_cputimer_destruct(struct cputimer *cputimer);
135
136 static struct cputimer  i8254_cputimer = {
137     SLIST_ENTRY_INITIALIZER,
138     "i8254",
139     CPUTIMER_PRI_8254,
140     0,
141     i8254_cputimer_count,
142     cputimer_default_fromhz,
143     cputimer_default_fromus,
144     i8254_cputimer_construct,
145     i8254_cputimer_destruct,
146     TIMER_FREQ,
147     0, 0, 0
148 };
149
150 static sysclock_t tsc_cputimer_count_mfence(void);
151 static sysclock_t tsc_cputimer_count_lfence(void);
152 static void tsc_cputimer_construct(struct cputimer *, sysclock_t);
153
154 static struct cputimer  tsc_cputimer = {
155     SLIST_ENTRY_INITIALIZER,
156     "TSC",
157     CPUTIMER_PRI_TSC,
158     CPUTIMER_TSC,
159     tsc_cputimer_count_mfence, /* safe bet */
160     cputimer_default_fromhz,
161     cputimer_default_fromus,
162     tsc_cputimer_construct,
163     cputimer_default_destruct,
164     0,
165     0, 0, 0
166 };
167
168 static void i8254_intr_reload(struct cputimer_intr *, sysclock_t);
169 static void i8254_intr_config(struct cputimer_intr *, const struct cputimer *);
170 static void i8254_intr_initclock(struct cputimer_intr *, boolean_t);
171
172 static struct cputimer_intr i8254_cputimer_intr = {
173     .freq = TIMER_FREQ,
174     .reload = i8254_intr_reload,
175     .enable = cputimer_intr_default_enable,
176     .config = i8254_intr_config,
177     .restart = cputimer_intr_default_restart,
178     .pmfixup = cputimer_intr_default_pmfixup,
179     .initclock = i8254_intr_initclock,
180     .pcpuhand = NULL,
181     .next = SLIST_ENTRY_INITIALIZER,
182     .name = "i8254",
183     .type = CPUTIMER_INTR_8254,
184     .prio = CPUTIMER_INTR_PRIO_8254,
185     .caps = CPUTIMER_INTR_CAP_PS,
186     .priv = NULL
187 };
188
189 /*
190  * timer0 clock interrupt.  Timer0 is in one-shot mode and has stopped
191  * counting as of this interrupt.  We use timer1 in free-running mode (not
192  * generating any interrupts) as our main counter.  Each cpu has timeouts
193  * pending.
194  *
195  * This code is INTR_MPSAFE and may be called without the BGL held.
196  */
197 static void
198 clkintr(void *dummy, void *frame_arg)
199 {
200         static sysclock_t sysclock_count;       /* NOTE! Must be static */
201         struct globaldata *gd = mycpu;
202         struct globaldata *gscan;
203         int n;
204
205         /*
206          * SWSTROBE mode is a one-shot, the timer is no longer running
207          */
208         timer0_running = 0;
209
210         /*
211          * XXX the dispatcher needs work.  right now we call systimer_intr()
212          * directly or via IPI for any cpu with systimers queued, which is
213          * usually *ALL* of them.  We need to use the LAPIC timer for this.
214          */
215         sysclock_count = sys_cputimer->count();
216         for (n = 0; n < ncpus; ++n) {
217             gscan = globaldata_find(n);
218             if (TAILQ_FIRST(&gscan->gd_systimerq) == NULL)
219                 continue;
220             if (gscan != gd) {
221                 lwkt_send_ipiq3(gscan, (ipifunc3_t)systimer_intr, 
222                                 &sysclock_count, 1);
223             } else {
224                 systimer_intr(&sysclock_count, 0, frame_arg);
225             }
226         }
227 }
228
229
230 /*
231  * NOTE! not MP safe.
232  */
233 int
234 acquire_timer2(int mode)
235 {
236         if (timer2_state != RELEASED)
237                 return (-1);
238         timer2_state = ACQUIRED;
239
240         /*
241          * This access to the timer registers is as atomic as possible
242          * because it is a single instruction.  We could do better if we
243          * knew the rate.
244          */
245         outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
246         return (0);
247 }
248
249 int
250 release_timer2(void)
251 {
252         if (timer2_state != ACQUIRED)
253                 return (-1);
254         outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
255         timer2_state = RELEASED;
256         return (0);
257 }
258
259 #include "opt_ddb.h"
260 #ifdef DDB
261 #include <ddb/ddb.h>
262
263 DB_SHOW_COMMAND(rtc, rtc)
264 {
265         kprintf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
266                rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
267                rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
268                rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
269 }
270 #endif /* DDB */
271
272 /*
273  * Return the current cpu timer count as a 32 bit integer.
274  */
275 static
276 sysclock_t
277 i8254_cputimer_count(void)
278 {
279         static uint16_t cputimer_last;
280         uint16_t count;
281         sysclock_t ret;
282
283         clock_lock();
284         outb(TIMER_MODE, i8254_walltimer_sel | TIMER_LATCH);
285         count = (uint8_t)inb(i8254_walltimer_cntr);             /* get countdown */
286         count |= ((uint8_t)inb(i8254_walltimer_cntr) << 8);
287         count = -count;                                 /* -> countup */
288         if (count < cputimer_last)                      /* rollover */
289                 i8254_cputimer.base += 0x00010000;
290         ret = i8254_cputimer.base | count;
291         cputimer_last = count;
292         clock_unlock();
293         return(ret);
294 }
295
296 /*
297  * This function is called whenever the system timebase changes, allowing
298  * us to calculate what is needed to convert a system timebase tick 
299  * into an 8254 tick for the interrupt timer.  If we can convert to a
300  * simple shift, multiplication, or division, we do so.  Otherwise 64
301  * bit arithmatic is required every time the interrupt timer is reloaded.
302  */
303 static void
304 i8254_intr_config(struct cputimer_intr *cti, const struct cputimer *timer)
305 {
306     int freq;
307     int div;
308
309     /*
310      * Will a simple divide do the trick?
311      */
312     div = (timer->freq + (cti->freq / 2)) / cti->freq;
313     freq = cti->freq * div;
314
315     if (freq >= timer->freq - 1 && freq <= timer->freq + 1)
316         i8254_cputimer_div = div;
317     else
318         i8254_cputimer_div = 0;
319 }
320
321 /*
322  * Reload for the next timeout.  It is possible for the reload value
323  * to be 0 or negative, indicating that an immediate timer interrupt
324  * is desired.  For now make the minimum 2 ticks.
325  *
326  * We may have to convert from the system timebase to the 8254 timebase.
327  */
328 static void
329 i8254_intr_reload(struct cputimer_intr *cti, sysclock_t reload)
330 {
331     uint16_t count;
332
333     if (i8254_cputimer_div)
334         reload /= i8254_cputimer_div;
335     else
336         reload = (int64_t)reload * cti->freq / sys_cputimer->freq;
337
338     if ((int)reload < 2)
339         reload = 2;
340
341     clock_lock();
342     if (timer0_running) {
343         outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);     /* count-down timer */
344         count = (uint8_t)inb(TIMER_CNTR0);              /* lsb */
345         count |= ((uint8_t)inb(TIMER_CNTR0) << 8);      /* msb */
346         if (reload < count) {
347             outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
348             outb(TIMER_CNTR0, (uint8_t)reload);         /* lsb */
349             outb(TIMER_CNTR0, (uint8_t)(reload >> 8));  /* msb */
350         }
351     } else {
352         timer0_running = 1;
353         if (reload > 0xFFFF)
354             reload = 0;         /* full count */
355         outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
356         outb(TIMER_CNTR0, (uint8_t)reload);             /* lsb */
357         outb(TIMER_CNTR0, (uint8_t)(reload >> 8));      /* msb */
358     }
359     clock_unlock();
360 }
361
362 /*
363  * DELAY(usec)       - Spin for the specified number of microseconds.
364  * DRIVERSLEEP(usec) - Spin for the specified number of microseconds,
365  *                     but do a thread switch in the loop
366  *
367  * Relies on timer 1 counting down from (cputimer_freq / hz)
368  * Note: timer had better have been programmed before this is first used!
369  */
370 static void
371 DODELAY(int n, int doswitch)
372 {
373         ssysclock_t delta, ticks_left;
374         sysclock_t prev_tick, tick;
375
376 #ifdef DELAYDEBUG
377         int getit_calls = 1;
378         int n1;
379         static int state = 0;
380
381         if (state == 0) {
382                 state = 1;
383                 for (n1 = 1; n1 <= 10000000; n1 *= 10)
384                         DELAY(n1);
385                 state = 2;
386         }
387         if (state == 1)
388                 kprintf("DELAY(%d)...", n);
389 #endif
390         /*
391          * Guard against the timer being uninitialized if we are called
392          * early for console i/o.
393          */
394         if (timer0_state == RELEASED)
395                 i8254_restore();
396
397         /*
398          * Read the counter first, so that the rest of the setup overhead is
399          * counted.  Then calculate the number of hardware timer ticks
400          * required, rounding up to be sure we delay at least the requested
401          * number of microseconds.
402          */
403         prev_tick = sys_cputimer->count();
404         ticks_left = ((u_int)n * (int64_t)sys_cputimer->freq + 999999) /
405                      1000000;
406
407         /*
408          * Loop until done.
409          */
410         while (ticks_left > 0) {
411                 tick = sys_cputimer->count();
412 #ifdef DELAYDEBUG
413                 ++getit_calls;
414 #endif
415                 delta = tick - prev_tick;
416                 prev_tick = tick;
417                 if (delta < 0)
418                         delta = 0;
419                 ticks_left -= delta;
420                 if (doswitch && ticks_left > 0)
421                         lwkt_switch();
422                 cpu_pause();
423         }
424 #ifdef DELAYDEBUG
425         if (state == 1)
426                 kprintf(" %d calls to getit() at %d usec each\n",
427                        getit_calls, (n + 5) / getit_calls);
428 #endif
429 }
430
431 /*
432  * DELAY() never switches.
433  */
434 void
435 DELAY(int n)
436 {
437         DODELAY(n, 0);
438 }
439
440 /*
441  * Returns non-zero if the specified time period has elapsed.  Call
442  * first with last_clock set to 0.
443  */
444 int
445 CHECKTIMEOUT(TOTALDELAY *tdd)
446 {
447         sysclock_t delta;
448         int us;
449
450         if (tdd->started == 0) {
451                 if (timer0_state == RELEASED)
452                         i8254_restore();
453                 tdd->last_clock = sys_cputimer->count();
454                 tdd->started = 1;
455                 return(0);
456         }
457         delta = sys_cputimer->count() - tdd->last_clock;
458         us = (u_int64_t)delta * (u_int64_t)1000000 /
459              (u_int64_t)sys_cputimer->freq;
460         tdd->last_clock += (u_int64_t)us * (u_int64_t)sys_cputimer->freq /
461                            1000000;
462         tdd->us -= us;
463         return (tdd->us < 0);
464 }
465
466
467 /*
468  * DRIVERSLEEP() does not switch if called with a spinlock held or
469  * from a hard interrupt.
470  */
471 void
472 DRIVERSLEEP(int usec)
473 {
474         globaldata_t gd = mycpu;
475
476         if (gd->gd_intr_nesting_level || gd->gd_spinlocks) {
477                 DODELAY(usec, 0);
478         } else {
479                 DODELAY(usec, 1);
480         }
481 }
482
483 static void
484 sysbeepstop(void *chan)
485 {
486         outb(IO_PPI, inb(IO_PPI)&0xFC); /* disable counter2 output to speaker */
487         beeping = 0;
488         release_timer2();
489 }
490
491 int
492 sysbeep(int pitch, int period)
493 {
494         if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
495                 return(-1);
496         if (sysbeep_enable == 0)
497                 return(-1);
498         /*
499          * Nobody else is using timer2, we do not need the clock lock
500          */
501         outb(TIMER_CNTR2, pitch);
502         outb(TIMER_CNTR2, (pitch>>8));
503         if (!beeping) {
504                 /* enable counter2 output to speaker */
505                 outb(IO_PPI, inb(IO_PPI) | 3);
506                 beeping = period;
507                 callout_reset(&sysbeepstop_ch, period, sysbeepstop, NULL);
508         }
509         return (0);
510 }
511
512 /*
513  * RTC support routines
514  */
515
516 int
517 rtcin(int reg)
518 {
519         u_char val;
520
521         crit_enter();
522         outb(IO_RTC, reg);
523         inb(0x84);
524         val = inb(IO_RTC + 1);
525         inb(0x84);
526         crit_exit();
527         return (val);
528 }
529
530 static __inline void
531 writertc(u_char reg, u_char val)
532 {
533         crit_enter();
534         inb(0x84);
535         outb(IO_RTC, reg);
536         inb(0x84);
537         outb(IO_RTC + 1, val);
538         inb(0x84);              /* XXX work around wrong order in rtcin() */
539         crit_exit();
540 }
541
542 static __inline int
543 readrtc(int port)
544 {
545         return(bcd2bin(rtcin(port)));
546 }
547
548 static u_int
549 calibrate_clocks(void)
550 {
551         u_int64_t old_tsc;
552         u_int tot_count;
553         sysclock_t count, prev_count;
554         int sec, start_sec, timeout;
555
556         if (bootverbose)
557                 kprintf("Calibrating clock(s) ...\n");
558         if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
559                 goto fail;
560         timeout = 100000000;
561
562         /* Read the mc146818A seconds counter. */
563         for (;;) {
564                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
565                         sec = rtcin(RTC_SEC);
566                         break;
567                 }
568                 if (--timeout == 0)
569                         goto fail;
570         }
571
572         /* Wait for the mC146818A seconds counter to change. */
573         start_sec = sec;
574         for (;;) {
575                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
576                         sec = rtcin(RTC_SEC);
577                         if (sec != start_sec)
578                                 break;
579                 }
580                 if (--timeout == 0)
581                         goto fail;
582         }
583
584         /* Start keeping track of the i8254 counter. */
585         prev_count = sys_cputimer->count();
586         tot_count = 0;
587
588         if (tsc_present) 
589                 old_tsc = rdtsc();
590         else
591                 old_tsc = 0;            /* shut up gcc */
592
593         /*
594          * Wait for the mc146818A seconds counter to change.  Read the i8254
595          * counter for each iteration since this is convenient and only
596          * costs a few usec of inaccuracy. The timing of the final reads
597          * of the counters almost matches the timing of the initial reads,
598          * so the main cause of inaccuracy is the varying latency from 
599          * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
600          * rtcin(RTC_SEC) that returns a changed seconds count.  The
601          * maximum inaccuracy from this cause is < 10 usec on 486's.
602          */
603         start_sec = sec;
604         for (;;) {
605                 if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
606                         sec = rtcin(RTC_SEC);
607                 count = sys_cputimer->count();
608                 tot_count += (int)(count - prev_count);
609                 prev_count = count;
610                 if (sec != start_sec)
611                         break;
612                 if (--timeout == 0)
613                         goto fail;
614         }
615
616         /*
617          * Read the cpu cycle counter.  The timing considerations are
618          * similar to those for the i8254 clock.
619          */
620         if (tsc_present) {
621                 tsc_frequency = rdtsc() - old_tsc;
622                 if (bootverbose) {
623                         kprintf("TSC clock: %jd Hz (Method A)\n",
624                             (intmax_t)tsc_frequency);
625                 }
626         }
627
628         kprintf("i8254 clock: %u Hz\n", tot_count);
629         return (tot_count);
630
631 fail:
632         kprintf("failed, using default i8254 clock of %u Hz\n",
633                 i8254_cputimer.freq);
634         return (i8254_cputimer.freq);
635 }
636
637 static void
638 i8254_restore(void)
639 {
640         timer0_state = ACQUIRED;
641
642         clock_lock();
643
644         /*
645          * Timer0 is our fine-grained variable clock interrupt
646          */
647         outb(TIMER_MODE, TIMER_SEL0 | TIMER_SWSTROBE | TIMER_16BIT);
648         outb(TIMER_CNTR0, 2);   /* lsb */
649         outb(TIMER_CNTR0, 0);   /* msb */
650         clock_unlock();
651
652         if (!i8254_nointr) {
653                 cputimer_intr_register(&i8254_cputimer_intr);
654                 cputimer_intr_select(&i8254_cputimer_intr, 0);
655         }
656
657         /*
658          * Timer1 or timer2 is our free-running clock, but only if another
659          * has not been selected.
660          */
661         cputimer_register(&i8254_cputimer);
662         cputimer_select(&i8254_cputimer, 0);
663 }
664
665 static void
666 i8254_cputimer_construct(struct cputimer *timer, sysclock_t oldclock)
667 {
668         int which;
669
670         /*
671          * Should we use timer 1 or timer 2 ?
672          */
673         which = 0;
674         TUNABLE_INT_FETCH("hw.i8254.walltimer", &which);
675         if (which != 1 && which != 2)
676                 which = 2;
677
678         switch(which) {
679         case 1:
680                 timer->name = "i8254_timer1";
681                 timer->type = CPUTIMER_8254_SEL1;
682                 i8254_walltimer_sel = TIMER_SEL1;
683                 i8254_walltimer_cntr = TIMER_CNTR1;
684                 timer1_state = ACQUIRED;
685                 break;
686         case 2:
687                 timer->name = "i8254_timer2";
688                 timer->type = CPUTIMER_8254_SEL2;
689                 i8254_walltimer_sel = TIMER_SEL2;
690                 i8254_walltimer_cntr = TIMER_CNTR2;
691                 timer2_state = ACQUIRED;
692                 break;
693         }
694
695         timer->base = (oldclock + 0xFFFF) & ~0xFFFF;
696
697         clock_lock();
698         outb(TIMER_MODE, i8254_walltimer_sel | TIMER_RATEGEN | TIMER_16BIT);
699         outb(i8254_walltimer_cntr, 0);  /* lsb */
700         outb(i8254_walltimer_cntr, 0);  /* msb */
701         outb(IO_PPI, inb(IO_PPI) | 1);  /* bit 0: enable gate, bit 1: spkr */
702         clock_unlock();
703 }
704
705 static void
706 i8254_cputimer_destruct(struct cputimer *timer)
707 {
708         switch(timer->type) {
709         case CPUTIMER_8254_SEL1:
710             timer1_state = RELEASED;
711             break;
712         case CPUTIMER_8254_SEL2:
713             timer2_state = RELEASED;
714             break;
715         default:
716             break;
717         }
718         timer->type = 0;
719 }
720
721 static void
722 rtc_restore(void)
723 {
724         /* Restore all of the RTC's "status" (actually, control) registers. */
725         writertc(RTC_STATUSB, RTCSB_24HR);
726         writertc(RTC_STATUSA, rtc_statusa);
727         writertc(RTC_STATUSB, rtc_statusb);
728 }
729
730 /*
731  * Restore all the timers.
732  *
733  * This function is called to resynchronize our core timekeeping after a
734  * long halt, e.g. from apm_default_resume() and friends.  It is also 
735  * called if after a BIOS call we have detected munging of the 8254.
736  * It is necessary because cputimer_count() counter's delta may have grown
737  * too large for nanouptime() and friends to handle, or (in the case of 8254
738  * munging) might cause the SYSTIMER code to prematurely trigger.
739  */
740 void
741 timer_restore(void)
742 {
743         crit_enter();
744         i8254_restore();                /* restore timer_freq and hz */
745         rtc_restore();                  /* reenable RTC interrupts */
746         crit_exit();
747 }
748
749 /*
750  * Initialize 8254 timer 0 early so that it can be used in DELAY().
751  */
752 void
753 startrtclock(void)
754 {
755         u_int delta, freq;
756
757         /* 
758          * Can we use the TSC?
759          *
760          * NOTE: If running under qemu, probably a good idea to force the
761          *       TSC because we are not likely to detect it as being
762          *       invariant or mpsyncd if you don't.  This will greatly
763          *       reduce SMP contention.
764          */
765         if (cpu_feature & CPUID_TSC) {
766                 tsc_present = 1;
767                 TUNABLE_INT_FETCH("hw.tsc_cputimer_force", &tsc_invariant);
768
769                 if ((cpu_vendor_id == CPU_VENDOR_INTEL ||
770                      cpu_vendor_id == CPU_VENDOR_AMD) &&
771                     cpu_exthigh >= 0x80000007) {
772                         u_int regs[4];
773
774                         do_cpuid(0x80000007, regs);
775                         if (regs[3] & 0x100)
776                                 tsc_invariant = 1;
777                 }
778         } else {
779                 tsc_present = 0;
780         }
781
782         /*
783          * Initial RTC state, don't do anything unexpected
784          */
785         writertc(RTC_STATUSA, rtc_statusa);
786         writertc(RTC_STATUSB, RTCSB_24HR);
787
788         /*
789          * Set the 8254 timer0 in TIMER_SWSTROBE mode and cause it to 
790          * generate an interrupt, which we will ignore for now.
791          *
792          * Set the 8254 timer1 in TIMER_RATEGEN mode and load 0x0000
793          * (so it counts a full 2^16 and repeats).  We will use this timer
794          * for our counting.
795          */
796         i8254_restore();
797         freq = calibrate_clocks();
798 #ifdef CLK_CALIBRATION_LOOP
799         if (bootverbose) {
800                 int c;
801
802                 cnpoll(TRUE);
803                 kprintf("Press a key on the console to "
804                         "abort clock calibration\n");
805                 while ((c = cncheckc()) == -1 || c == NOKEY)
806                         calibrate_clocks();
807                 cnpoll(FALSE);
808         }
809 #endif
810
811         /*
812          * Use the calibrated i8254 frequency if it seems reasonable.
813          * Otherwise use the default, and don't use the calibrated i586
814          * frequency.
815          */
816         delta = freq > i8254_cputimer.freq ? 
817                         freq - i8254_cputimer.freq : i8254_cputimer.freq - freq;
818         if (delta < i8254_cputimer.freq / 100) {
819 #ifndef CLK_USE_I8254_CALIBRATION
820                 if (bootverbose)
821                         kprintf(
822 "CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
823                 freq = i8254_cputimer.freq;
824 #endif
825                 /*
826                  * NOTE:
827                  * Interrupt timer's freq must be adjusted
828                  * before we change the cuptimer's frequency.
829                  */
830                 i8254_cputimer_intr.freq = freq;
831                 cputimer_set_frequency(&i8254_cputimer, freq);
832         } else {
833                 if (bootverbose)
834                         kprintf(
835                     "%d Hz differs from default of %d Hz by more than 1%%\n",
836                                freq, i8254_cputimer.freq);
837                 tsc_frequency = 0;
838         }
839
840 #ifndef CLK_USE_TSC_CALIBRATION
841         if (tsc_frequency != 0) {
842                 if (bootverbose)
843                         kprintf(
844 "CLK_USE_TSC_CALIBRATION not specified - using old calibration method\n");
845                 tsc_frequency = 0;
846         }
847 #endif
848         if (tsc_present && tsc_frequency == 0) {
849                 /*
850                  * Calibration of the i586 clock relative to the mc146818A
851                  * clock failed.  Do a less accurate calibration relative
852                  * to the i8254 clock.
853                  */
854                 u_int64_t old_tsc = rdtsc();
855
856                 DELAY(1000000);
857                 tsc_frequency = rdtsc() - old_tsc;
858 #ifdef CLK_USE_TSC_CALIBRATION
859                 if (bootverbose) {
860                         kprintf("TSC clock: %jd Hz (Method B)\n",
861                             (intmax_t)tsc_frequency);
862                 }
863 #endif
864         }
865
866         if (tsc_present) {
867                 kprintf("TSC%s clock: %jd Hz\n",
868                     tsc_invariant ? " invariant" : "",
869                     (intmax_t)tsc_frequency);
870         }
871
872         EVENTHANDLER_REGISTER(shutdown_post_sync, resettodr_on_shutdown, NULL, SHUTDOWN_PRI_LAST);
873 }
874
875 /*
876  * Sync the time of day back to the RTC on shutdown, but only if
877  * we have already loaded it and have not crashed.
878  */
879 static void
880 resettodr_on_shutdown(void *arg __unused)
881 {
882         if (rtc_loaded && panicstr == NULL) {
883                 resettodr();
884         }
885 }
886
887 /*
888  * Initialize the time of day register, based on the time base which is, e.g.
889  * from a filesystem.
890  */
891 void
892 inittodr(time_t base)
893 {
894         unsigned long   sec, days;
895         int             year, month;
896         int             y, m;
897         struct timespec ts;
898
899         if (base) {
900                 ts.tv_sec = base;
901                 ts.tv_nsec = 0;
902                 set_timeofday(&ts);
903         }
904
905         /* Look if we have a RTC present and the time is valid */
906         if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
907                 goto wrong_time;
908
909         /* wait for time update to complete */
910         /* If RTCSA_TUP is zero, we have at least 244us before next update */
911         crit_enter();
912         while (rtcin(RTC_STATUSA) & RTCSA_TUP) {
913                 crit_exit();
914                 crit_enter();
915         }
916
917         days = 0;
918 #ifdef USE_RTC_CENTURY
919         year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
920 #else
921         year = readrtc(RTC_YEAR) + 1900;
922         if (year < 1970)
923                 year += 100;
924 #endif
925         if (year < 1970) {
926                 crit_exit();
927                 goto wrong_time;
928         }
929         month = readrtc(RTC_MONTH);
930         for (m = 1; m < month; m++)
931                 days += daysinmonth[m-1];
932         if ((month > 2) && LEAPYEAR(year))
933                 days ++;
934         days += readrtc(RTC_DAY) - 1;
935         for (y = 1970; y < year; y++)
936                 days += DAYSPERYEAR + LEAPYEAR(y);
937         sec = ((( days * 24 +
938                   readrtc(RTC_HRS)) * 60 +
939                   readrtc(RTC_MIN)) * 60 +
940                   readrtc(RTC_SEC));
941         /* sec now contains the number of seconds, since Jan 1 1970,
942            in the local time zone */
943
944         sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
945
946         y = (int)(time_second - sec);
947         if (y <= -2 || y >= 2) {
948                 /* badly off, adjust it */
949                 ts.tv_sec = sec;
950                 ts.tv_nsec = 0;
951                 set_timeofday(&ts);
952         }
953         rtc_loaded = 1;
954         crit_exit();
955         return;
956
957 wrong_time:
958         kprintf("Invalid time in real time clock.\n");
959         kprintf("Check and reset the date immediately!\n");
960 }
961
962 /*
963  * Write system time back to RTC
964  */
965 void
966 resettodr(void)
967 {
968         struct timeval tv;
969         unsigned long tm;
970         int m;
971         int y;
972
973         if (disable_rtc_set)
974                 return;
975
976         microtime(&tv);
977         tm = tv.tv_sec;
978
979         crit_enter();
980         /* Disable RTC updates and interrupts. */
981         writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
982
983         /* Calculate local time to put in RTC */
984
985         tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
986
987         writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;    /* Write back Seconds */
988         writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;    /* Write back Minutes */
989         writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;    /* Write back Hours   */
990
991         /* We have now the days since 01-01-1970 in tm */
992         writertc(RTC_WDAY, (tm+4)%7);                   /* Write back Weekday */
993         for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
994              tm >= m;
995              y++,      m = DAYSPERYEAR + LEAPYEAR(y))
996              tm -= m;
997
998         /* Now we have the years in y and the day-of-the-year in tm */
999         writertc(RTC_YEAR, bin2bcd(y%100));             /* Write back Year    */
1000 #ifdef USE_RTC_CENTURY
1001         writertc(RTC_CENTURY, bin2bcd(y/100));          /* ... and Century    */
1002 #endif
1003         for (m = 0; ; m++) {
1004                 int ml;
1005
1006                 ml = daysinmonth[m];
1007                 if (m == 1 && LEAPYEAR(y))
1008                         ml++;
1009                 if (tm < ml)
1010                         break;
1011                 tm -= ml;
1012         }
1013
1014         writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
1015         writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
1016
1017         /* Reenable RTC updates and interrupts. */
1018         writertc(RTC_STATUSB, rtc_statusb);
1019         crit_exit();
1020 }
1021
1022 static int
1023 i8254_ioapic_trial(int irq, struct cputimer_intr *cti)
1024 {
1025         sysclock_t base;
1026         long lastcnt;
1027
1028         /*
1029          * Following code assumes the 8254 is the cpu timer,
1030          * so make sure it is.
1031          */
1032         KKASSERT(sys_cputimer == &i8254_cputimer);
1033         KKASSERT(cti == &i8254_cputimer_intr);
1034
1035         lastcnt = get_interrupt_counter(irq, mycpuid);
1036
1037         /*
1038          * Force an 8254 Timer0 interrupt and wait 1/100s for
1039          * it to happen, then see if we got it.
1040          */
1041         kprintf("IOAPIC: testing 8254 interrupt delivery\n");
1042
1043         i8254_intr_reload(cti, 2);
1044         base = sys_cputimer->count();
1045         while (sys_cputimer->count() - base < sys_cputimer->freq / 100)
1046                 ; /* nothing */
1047
1048         if (get_interrupt_counter(irq, mycpuid) - lastcnt == 0)
1049                 return ENOENT;
1050         return 0;
1051 }
1052
1053 /*
1054  * Start both clocks running.  DragonFly note: the stat clock is no longer
1055  * used.  Instead, 8254 based systimers are used for all major clock
1056  * interrupts.
1057  */
1058 static void
1059 i8254_intr_initclock(struct cputimer_intr *cti, boolean_t selected)
1060 {
1061         void *clkdesc = NULL;
1062         int irq = 0, mixed_mode = 0, error;
1063
1064         KKASSERT(mycpuid == 0);
1065         callout_init_mp(&sysbeepstop_ch);
1066
1067         if (!selected && i8254_intr_disable)
1068                 goto nointr;
1069
1070         /*
1071          * The stat interrupt mask is different without the
1072          * statistics clock.  Also, don't set the interrupt
1073          * flag which would normally cause the RTC to generate
1074          * interrupts.
1075          */
1076         rtc_statusb = RTCSB_24HR;
1077
1078         /* Finish initializing 8254 timer 0. */
1079         if (ioapic_enable) {
1080                 irq = machintr_legacy_intr_find(0, INTR_TRIGGER_EDGE,
1081                         INTR_POLARITY_HIGH);
1082                 if (irq < 0) {
1083 mixed_mode_setup:
1084                         error = ioapic_conf_legacy_extint(0);
1085                         if (!error) {
1086                                 irq = machintr_legacy_intr_find(0,
1087                                     INTR_TRIGGER_EDGE, INTR_POLARITY_HIGH);
1088                                 if (irq < 0)
1089                                         error = ENOENT;
1090                         }
1091
1092                         if (error) {
1093                                 if (!selected) {
1094                                         kprintf("IOAPIC: setup mixed mode for "
1095                                                 "irq 0 failed: %d\n", error);
1096                                         goto nointr;
1097                                 } else {
1098                                         panic("IOAPIC: setup mixed mode for "
1099                                               "irq 0 failed: %d\n", error);
1100                                 }
1101                         }
1102                         mixed_mode = 1;
1103                 }
1104                 clkdesc = register_int(irq, clkintr, NULL, "clk",
1105                                        NULL,
1106                                        INTR_EXCL | INTR_CLOCK |
1107                                        INTR_NOPOLL | INTR_MPSAFE |
1108                                        INTR_NOENTROPY, 0);
1109         } else {
1110                 register_int(0, clkintr, NULL, "clk", NULL,
1111                              INTR_EXCL | INTR_CLOCK |
1112                              INTR_NOPOLL | INTR_MPSAFE |
1113                              INTR_NOENTROPY, 0);
1114         }
1115
1116         /* Initialize RTC. */
1117         writertc(RTC_STATUSA, rtc_statusa);
1118         writertc(RTC_STATUSB, RTCSB_24HR);
1119
1120         if (ioapic_enable) {
1121                 error = i8254_ioapic_trial(irq, cti);
1122                 if (error) {
1123                         if (mixed_mode) {
1124                                 if (!selected) {
1125                                         kprintf("IOAPIC: mixed mode for irq %d "
1126                                                 "trial failed: %d\n",
1127                                                 irq, error);
1128                                         goto nointr;
1129                                 } else {
1130                                         panic("IOAPIC: mixed mode for irq %d "
1131                                               "trial failed: %d\n", irq, error);
1132                                 }
1133                         } else {
1134                                 kprintf("IOAPIC: warning 8254 is not connected "
1135                                         "to the correct pin, try mixed mode\n");
1136                                 unregister_int(clkdesc, 0);
1137                                 goto mixed_mode_setup;
1138                         }
1139                 }
1140         }
1141         return;
1142
1143 nointr:
1144         i8254_nointr = 1; /* don't try to register again */
1145         cputimer_intr_deregister(cti);
1146 }
1147
1148 void
1149 setstatclockrate(int newhz)
1150 {
1151         if (newhz == RTC_PROFRATE)
1152                 rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1153         else
1154                 rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1155         writertc(RTC_STATUSA, rtc_statusa);
1156 }
1157
1158 #if 0
1159 static unsigned
1160 tsc_get_timecount(struct timecounter *tc)
1161 {
1162         return (rdtsc());
1163 }
1164 #endif
1165
1166 #ifdef KERN_TIMESTAMP
1167 #define KERN_TIMESTAMP_SIZE 16384
1168 static u_long tsc[KERN_TIMESTAMP_SIZE] ;
1169 SYSCTL_OPAQUE(_debug, OID_AUTO, timestamp, CTLFLAG_RD, tsc,
1170         sizeof(tsc), "LU", "Kernel timestamps");
1171 void  
1172 _TSTMP(u_int32_t x)
1173 {
1174         static int i;
1175
1176         tsc[i] = (u_int32_t)rdtsc();
1177         tsc[i+1] = x;
1178         i = i + 2;
1179         if (i >= KERN_TIMESTAMP_SIZE)
1180                 i = 0;
1181         tsc[i] = 0; /* mark last entry */
1182 }
1183 #endif /* KERN_TIMESTAMP */
1184
1185 /*
1186  *
1187  */
1188
1189 static int
1190 hw_i8254_timestamp(SYSCTL_HANDLER_ARGS)
1191 {
1192     sysclock_t count;
1193     uint64_t tscval;
1194     char buf[32];
1195
1196     crit_enter();
1197     if (sys_cputimer == &i8254_cputimer)
1198         count = sys_cputimer->count();
1199     else
1200         count = 0;
1201     if (tsc_present)
1202         tscval = rdtsc();
1203     else
1204         tscval = 0;
1205     crit_exit();
1206     ksnprintf(buf, sizeof(buf), "%08x %016llx", count, (long long)tscval);
1207     return(SYSCTL_OUT(req, buf, strlen(buf) + 1));
1208 }
1209
1210 struct tsc_mpsync_arg {
1211         volatile uint64_t       tsc_target;
1212         volatile int            tsc_mpsync;
1213 };
1214
1215 struct tsc_mpsync_thr {
1216         volatile int            tsc_done_cnt;
1217         volatile int            tsc_mpsync_cnt;
1218 };
1219
1220 static void
1221 tsc_mpsync_test_remote(void *xarg)
1222 {
1223         struct tsc_mpsync_arg *arg = xarg;
1224         uint64_t tsc;
1225
1226         tsc = rdtsc_ordered();
1227         if (tsc < arg->tsc_target)
1228                 arg->tsc_mpsync = 0;
1229 }
1230
1231 static void
1232 tsc_mpsync_test_loop(struct tsc_mpsync_arg *arg)
1233 {
1234         struct globaldata *gd = mycpu;
1235         uint64_t test_end, test_begin;
1236         u_int i;
1237
1238         if (bootverbose) {
1239                 kprintf("cpu%d: TSC testing MP synchronization ...\n",
1240                     gd->gd_cpuid);
1241         }
1242
1243         test_begin = rdtsc_ordered();
1244         /* Run test for 100ms */
1245         test_end = test_begin + (tsc_frequency / 10);
1246
1247         arg->tsc_mpsync = 1;
1248         arg->tsc_target = test_begin;
1249
1250 #define TSC_TEST_TRYMAX         1000000 /* Make sure we could stop */
1251 #define TSC_TEST_TRYMIN         50000
1252
1253         for (i = 0; i < TSC_TEST_TRYMAX; ++i) {
1254                 struct lwkt_cpusync cs;
1255
1256                 crit_enter();
1257                 lwkt_cpusync_init(&cs, gd->gd_other_cpus,
1258                     tsc_mpsync_test_remote, arg);
1259                 lwkt_cpusync_interlock(&cs);
1260                 arg->tsc_target = rdtsc_ordered();
1261                 cpu_mfence();
1262                 lwkt_cpusync_deinterlock(&cs);
1263                 crit_exit();
1264
1265                 if (!arg->tsc_mpsync) {
1266                         kprintf("cpu%d: TSC is not MP synchronized @%u\n",
1267                             gd->gd_cpuid, i);
1268                         break;
1269                 }
1270                 if (arg->tsc_target > test_end && i >= TSC_TEST_TRYMIN)
1271                         break;
1272         }
1273
1274 #undef TSC_TEST_TRYMIN
1275 #undef TSC_TEST_TRYMAX
1276
1277         if (arg->tsc_target == test_begin) {
1278                 kprintf("cpu%d: TSC does not tick?!\n", gd->gd_cpuid);
1279                 /* XXX disable TSC? */
1280                 tsc_invariant = 0;
1281                 arg->tsc_mpsync = 0;
1282                 return;
1283         }
1284
1285         if (arg->tsc_mpsync && bootverbose) {
1286                 kprintf("cpu%d: TSC is MP synchronized after %u tries\n",
1287                     gd->gd_cpuid, i);
1288         }
1289 }
1290
1291 static void
1292 tsc_mpsync_ap_thread(void *xthr)
1293 {
1294         struct tsc_mpsync_thr *thr = xthr;
1295         struct tsc_mpsync_arg arg;
1296
1297         tsc_mpsync_test_loop(&arg);
1298         if (arg.tsc_mpsync) {
1299                 atomic_add_int(&thr->tsc_mpsync_cnt, 1);
1300                 cpu_sfence();
1301         }
1302         atomic_add_int(&thr->tsc_done_cnt, 1);
1303
1304         lwkt_exit();
1305 }
1306
1307 static void
1308 tsc_mpsync_test(void)
1309 {
1310         struct tsc_mpsync_arg arg;
1311
1312         if (!tsc_invariant) {
1313                 /* Not even invariant TSC */
1314                 return;
1315         }
1316
1317         if (ncpus == 1) {
1318                 /* Only one CPU */
1319                 tsc_mpsync = 1;
1320                 return;
1321         }
1322
1323         /*
1324          * Forcing can be used w/qemu to reduce contention
1325          */
1326         TUNABLE_INT_FETCH("hw.tsc_cputimer_force", &tsc_mpsync);
1327         if (tsc_mpsync) {
1328                 kprintf("TSC as cputimer forced\n");
1329                 return;
1330         }
1331
1332         if (cpu_vendor_id != CPU_VENDOR_INTEL) {
1333                 /* XXX only Intel works */
1334                 return;
1335         }
1336
1337         kprintf("TSC testing MP synchronization ...\n");
1338
1339         tsc_mpsync_test_loop(&arg);
1340         if (arg.tsc_mpsync) {
1341                 struct tsc_mpsync_thr thr;
1342                 int cpu;
1343
1344                 /*
1345                  * Test TSC MP synchronization on APs.
1346                  */
1347
1348                 thr.tsc_done_cnt = 1;
1349                 thr.tsc_mpsync_cnt = 1;
1350
1351                 for (cpu = 0; cpu < ncpus; ++cpu) {
1352                         if (cpu == mycpuid)
1353                                 continue;
1354
1355                         lwkt_create(tsc_mpsync_ap_thread, &thr, NULL,
1356                             NULL, 0, cpu, "tsc mpsync %d", cpu);
1357                 }
1358
1359                 while (thr.tsc_done_cnt != ncpus) {
1360                         cpu_pause();
1361                         cpu_lfence();
1362                 }
1363                 if (thr.tsc_mpsync_cnt == ncpus)
1364                         tsc_mpsync = 1;
1365         }
1366
1367         if (tsc_mpsync)
1368                 kprintf("TSC is MP synchronized\n");
1369         else
1370                 kprintf("TSC is not MP synchronized\n");
1371 }
1372 SYSINIT(tsc_mpsync, SI_BOOT2_FINISH_SMP, SI_ORDER_ANY, tsc_mpsync_test, NULL);
1373
1374 #define TSC_CPUTIMER_FREQMAX    128000000       /* 128Mhz */
1375
1376 static int tsc_cputimer_shift;
1377
1378 static void
1379 tsc_cputimer_construct(struct cputimer *timer, sysclock_t oldclock)
1380 {
1381         timer->base = 0;
1382         timer->base = oldclock - timer->count();
1383 }
1384
1385 static __inline sysclock_t
1386 tsc_cputimer_count(void)
1387 {
1388         uint64_t tsc;
1389
1390         tsc = rdtsc();
1391         tsc >>= tsc_cputimer_shift;
1392
1393         return (tsc + tsc_cputimer.base);
1394 }
1395
1396 static sysclock_t
1397 tsc_cputimer_count_lfence(void)
1398 {
1399         cpu_lfence();
1400         return tsc_cputimer_count();
1401 }
1402
1403 static sysclock_t
1404 tsc_cputimer_count_mfence(void)
1405 {
1406         cpu_mfence();
1407         return tsc_cputimer_count();
1408 }
1409
1410 static void
1411 tsc_cputimer_register(void)
1412 {
1413         uint64_t freq;
1414         int enable = 1;
1415
1416         if (!tsc_mpsync)
1417                 return;
1418
1419         TUNABLE_INT_FETCH("hw.tsc_cputimer_enable", &enable);
1420         if (!enable)
1421                 return;
1422
1423         freq = tsc_frequency;
1424         while (freq > TSC_CPUTIMER_FREQMAX) {
1425                 freq >>= 1;
1426                 ++tsc_cputimer_shift;
1427         }
1428         kprintf("TSC: cputimer freq %ju, shift %d\n",
1429             (uintmax_t)freq, tsc_cputimer_shift);
1430
1431         tsc_cputimer.freq = freq;
1432
1433         if (cpu_vendor_id == CPU_VENDOR_INTEL)
1434                 tsc_cputimer.count = tsc_cputimer_count_lfence;
1435         else
1436                 tsc_cputimer.count = tsc_cputimer_count_mfence; /* safe bet */
1437
1438         cputimer_register(&tsc_cputimer);
1439         cputimer_select(&tsc_cputimer, 0);
1440 }
1441 SYSINIT(tsc_cputimer_reg, SI_BOOT2_POST_SMP, SI_ORDER_FIRST,
1442         tsc_cputimer_register, NULL);
1443
1444 SYSCTL_NODE(_hw, OID_AUTO, i8254, CTLFLAG_RW, 0, "I8254");
1445 SYSCTL_UINT(_hw_i8254, OID_AUTO, freq, CTLFLAG_RD, &i8254_cputimer.freq, 0,
1446             "frequency");
1447 SYSCTL_PROC(_hw_i8254, OID_AUTO, timestamp, CTLTYPE_STRING|CTLFLAG_RD,
1448             0, 0, hw_i8254_timestamp, "A", "");
1449
1450 SYSCTL_INT(_hw, OID_AUTO, tsc_present, CTLFLAG_RD,
1451             &tsc_present, 0, "TSC Available");
1452 SYSCTL_INT(_hw, OID_AUTO, tsc_invariant, CTLFLAG_RD,
1453             &tsc_invariant, 0, "Invariant TSC");
1454 SYSCTL_INT(_hw, OID_AUTO, tsc_mpsync, CTLFLAG_RD,
1455             &tsc_mpsync, 0, "TSC is synchronized across CPUs");
1456 SYSCTL_QUAD(_hw, OID_AUTO, tsc_frequency, CTLFLAG_RD,
1457             &tsc_frequency, 0, "TSC Frequency");