Merge from vendor branch NTPD:
[dragonfly.git] / contrib / gdb-6.2.1 / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3    Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4    1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5    Foundation, Inc.
6
7    This file is part of GDB.
8
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 2 of the License, or
12    (at your option) any later version.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; if not, write to the Free Software
21    Foundation, Inc., 59 Temple Place - Suite 330,
22    Boston, MA 02111-1307, USA.  */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "command.h"
27 #include "dummy-frame.h"
28 #include "dwarf2-frame.h"
29 #include "doublest.h"
30 #include "floatformat.h"
31 #include "frame.h"
32 #include "frame-base.h"
33 #include "frame-unwind.h"
34 #include "inferior.h"
35 #include "gdbcmd.h"
36 #include "gdbcore.h"
37 #include "objfiles.h"
38 #include "osabi.h"
39 #include "regcache.h"
40 #include "reggroups.h"
41 #include "regset.h"
42 #include "symfile.h"
43 #include "symtab.h"
44 #include "target.h"
45 #include "value.h"
46 #include "dis-asm.h"
47
48 #include "gdb_assert.h"
49 #include "gdb_string.h"
50
51 #include "i386-tdep.h"
52 #include "i387-tdep.h"
53
54 /* Register names.  */
55
56 static char *i386_register_names[] =
57 {
58   "eax",   "ecx",    "edx",   "ebx",
59   "esp",   "ebp",    "esi",   "edi",
60   "eip",   "eflags", "cs",    "ss",
61   "ds",    "es",     "fs",    "gs",
62   "st0",   "st1",    "st2",   "st3",
63   "st4",   "st5",    "st6",   "st7",
64   "fctrl", "fstat",  "ftag",  "fiseg",
65   "fioff", "foseg",  "fooff", "fop",
66   "xmm0",  "xmm1",   "xmm2",  "xmm3",
67   "xmm4",  "xmm5",   "xmm6",  "xmm7",
68   "mxcsr"
69 };
70
71 static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
72
73 /* Register names for MMX pseudo-registers.  */
74
75 static char *i386_mmx_names[] =
76 {
77   "mm0", "mm1", "mm2", "mm3",
78   "mm4", "mm5", "mm6", "mm7"
79 };
80
81 static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
82
83 static int
84 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
85 {
86   int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
87
88   if (mm0_regnum < 0)
89     return 0;
90
91   return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
92 }
93
94 /* SSE register?  */
95
96 static int
97 i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
98 {
99   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
100
101 #define I387_ST0_REGNUM tdep->st0_regnum
102 #define I387_NUM_XMM_REGS tdep->num_xmm_regs
103
104   if (I387_NUM_XMM_REGS == 0)
105     return 0;
106
107   return (I387_XMM0_REGNUM <= regnum && regnum < I387_MXCSR_REGNUM);
108
109 #undef I387_ST0_REGNUM
110 #undef I387_NUM_XMM_REGS
111 }
112
113 static int
114 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
115 {
116   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
117
118 #define I387_ST0_REGNUM tdep->st0_regnum
119 #define I387_NUM_XMM_REGS tdep->num_xmm_regs
120
121   if (I387_NUM_XMM_REGS == 0)
122     return 0;
123
124   return (regnum == I387_MXCSR_REGNUM);
125
126 #undef I387_ST0_REGNUM
127 #undef I387_NUM_XMM_REGS
128 }
129
130 #define I387_ST0_REGNUM (gdbarch_tdep (current_gdbarch)->st0_regnum)
131 #define I387_MM0_REGNUM (gdbarch_tdep (current_gdbarch)->mm0_regnum)
132 #define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
133
134 /* FP register?  */
135
136 int
137 i386_fp_regnum_p (int regnum)
138 {
139   if (I387_ST0_REGNUM < 0)
140     return 0;
141
142   return (I387_ST0_REGNUM <= regnum && regnum < I387_FCTRL_REGNUM);
143 }
144
145 int
146 i386_fpc_regnum_p (int regnum)
147 {
148   if (I387_ST0_REGNUM < 0)
149     return 0;
150
151   return (I387_FCTRL_REGNUM <= regnum && regnum < I387_XMM0_REGNUM);
152 }
153
154 /* Return the name of register REG.  */
155
156 const char *
157 i386_register_name (int reg)
158 {
159   if (i386_mmx_regnum_p (current_gdbarch, reg))
160     return i386_mmx_names[reg - I387_MM0_REGNUM];
161
162   if (reg >= 0 && reg < i386_num_register_names)
163     return i386_register_names[reg];
164
165   return NULL;
166 }
167
168 /* Convert a dbx register number REG to the appropriate register
169    number used by GDB.  */
170
171 static int
172 i386_dbx_reg_to_regnum (int reg)
173 {
174   /* This implements what GCC calls the "default" register map
175      (dbx_register_map[]).  */
176
177   if (reg >= 0 && reg <= 7)
178     {
179       /* General-purpose registers.  The debug info calls %ebp
180          register 4, and %esp register 5.  */
181       if (reg == 4)
182         return 5;
183       else if (reg == 5)
184         return 4;
185       else return reg;
186     }
187   else if (reg >= 12 && reg <= 19)
188     {
189       /* Floating-point registers.  */
190       return reg - 12 + I387_ST0_REGNUM;
191     }
192   else if (reg >= 21 && reg <= 28)
193     {
194       /* SSE registers.  */
195       return reg - 21 + I387_XMM0_REGNUM;
196     }
197   else if (reg >= 29 && reg <= 36)
198     {
199       /* MMX registers.  */
200       return reg - 29 + I387_MM0_REGNUM;
201     }
202
203   /* This will hopefully provoke a warning.  */
204   return NUM_REGS + NUM_PSEUDO_REGS;
205 }
206
207 /* Convert SVR4 register number REG to the appropriate register number
208    used by GDB.  */
209
210 static int
211 i386_svr4_reg_to_regnum (int reg)
212 {
213   /* This implements the GCC register map that tries to be compatible
214      with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]).  */
215
216   /* The SVR4 register numbering includes %eip and %eflags, and
217      numbers the floating point registers differently.  */
218   if (reg >= 0 && reg <= 9)
219     {
220       /* General-purpose registers.  */
221       return reg;
222     }
223   else if (reg >= 11 && reg <= 18)
224     {
225       /* Floating-point registers.  */
226       return reg - 11 + I387_ST0_REGNUM;
227     }
228   else if (reg >= 21)
229     {
230       /* The SSE and MMX registers have the same numbers as with dbx.  */
231       return i386_dbx_reg_to_regnum (reg);
232     }
233
234   /* This will hopefully provoke a warning.  */
235   return NUM_REGS + NUM_PSEUDO_REGS;
236 }
237
238 #undef I387_ST0_REGNUM
239 #undef I387_MM0_REGNUM
240 #undef I387_NUM_XMM_REGS
241 \f
242
243 /* This is the variable that is set with "set disassembly-flavor", and
244    its legitimate values.  */
245 static const char att_flavor[] = "att";
246 static const char intel_flavor[] = "intel";
247 static const char *valid_flavors[] =
248 {
249   att_flavor,
250   intel_flavor,
251   NULL
252 };
253 static const char *disassembly_flavor = att_flavor;
254 \f
255
256 /* Use the program counter to determine the contents and size of a
257    breakpoint instruction.  Return a pointer to a string of bytes that
258    encode a breakpoint instruction, store the length of the string in
259    *LEN and optionally adjust *PC to point to the correct memory
260    location for inserting the breakpoint.
261
262    On the i386 we have a single breakpoint that fits in a single byte
263    and can be inserted anywhere.
264
265    This function is 64-bit safe.  */
266    
267 static const unsigned char *
268 i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
269 {
270   static unsigned char break_insn[] = { 0xcc }; /* int 3 */
271   
272   *len = sizeof (break_insn);
273   return break_insn;
274 }
275 \f
276 #ifdef I386_REGNO_TO_SYMMETRY
277 #error "The Sequent Symmetry is no longer supported."
278 #endif
279
280 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
281    and %esp "belong" to the calling function.  Therefore these
282    registers should be saved if they're going to be modified.  */
283
284 /* The maximum number of saved registers.  This should include all
285    registers mentioned above, and %eip.  */
286 #define I386_NUM_SAVED_REGS     I386_NUM_GREGS
287
288 struct i386_frame_cache
289 {
290   /* Base address.  */
291   CORE_ADDR base;
292   CORE_ADDR sp_offset;
293   CORE_ADDR pc;
294
295   /* Saved registers.  */
296   CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
297   CORE_ADDR saved_sp;
298   int pc_in_eax;
299
300   /* Stack space reserved for local variables.  */
301   long locals;
302 };
303
304 /* Allocate and initialize a frame cache.  */
305
306 static struct i386_frame_cache *
307 i386_alloc_frame_cache (void)
308 {
309   struct i386_frame_cache *cache;
310   int i;
311
312   cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
313
314   /* Base address.  */
315   cache->base = 0;
316   cache->sp_offset = -4;
317   cache->pc = 0;
318
319   /* Saved registers.  We initialize these to -1 since zero is a valid
320      offset (that's where %ebp is supposed to be stored).  */
321   for (i = 0; i < I386_NUM_SAVED_REGS; i++)
322     cache->saved_regs[i] = -1;
323   cache->saved_sp = 0;
324   cache->pc_in_eax = 0;
325
326   /* Frameless until proven otherwise.  */
327   cache->locals = -1;
328
329   return cache;
330 }
331
332 /* If the instruction at PC is a jump, return the address of its
333    target.  Otherwise, return PC.  */
334
335 static CORE_ADDR
336 i386_follow_jump (CORE_ADDR pc)
337 {
338   unsigned char op;
339   long delta = 0;
340   int data16 = 0;
341
342   op = read_memory_unsigned_integer (pc, 1);
343   if (op == 0x66)
344     {
345       data16 = 1;
346       op = read_memory_unsigned_integer (pc + 1, 1);
347     }
348
349   switch (op)
350     {
351     case 0xe9:
352       /* Relative jump: if data16 == 0, disp32, else disp16.  */
353       if (data16)
354         {
355           delta = read_memory_integer (pc + 2, 2);
356
357           /* Include the size of the jmp instruction (including the
358              0x66 prefix).  */
359           delta += 4;
360         }
361       else
362         {
363           delta = read_memory_integer (pc + 1, 4);
364
365           /* Include the size of the jmp instruction.  */
366           delta += 5;
367         }
368       break;
369     case 0xeb:
370       /* Relative jump, disp8 (ignore data16).  */
371       delta = read_memory_integer (pc + data16 + 1, 1);
372
373       delta += data16 + 2;
374       break;
375     }
376
377   return pc + delta;
378 }
379
380 /* Check whether PC points at a prologue for a function returning a
381    structure or union.  If so, it updates CACHE and returns the
382    address of the first instruction after the code sequence that
383    removes the "hidden" argument from the stack or CURRENT_PC,
384    whichever is smaller.  Otherwise, return PC.  */
385
386 static CORE_ADDR
387 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
388                             struct i386_frame_cache *cache)
389 {
390   /* Functions that return a structure or union start with:
391
392         popl %eax             0x58
393         xchgl %eax, (%esp)    0x87 0x04 0x24
394      or xchgl %eax, 0(%esp)   0x87 0x44 0x24 0x00
395
396      (the System V compiler puts out the second `xchg' instruction,
397      and the assembler doesn't try to optimize it, so the 'sib' form
398      gets generated).  This sequence is used to get the address of the
399      return buffer for a function that returns a structure.  */
400   static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
401   static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
402   unsigned char buf[4];
403   unsigned char op;
404
405   if (current_pc <= pc)
406     return pc;
407
408   op = read_memory_unsigned_integer (pc, 1);
409
410   if (op != 0x58)               /* popl %eax */
411     return pc;
412
413   read_memory (pc + 1, buf, 4);
414   if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
415     return pc;
416
417   if (current_pc == pc)
418     {
419       cache->sp_offset += 4;
420       return current_pc;
421     }
422
423   if (current_pc == pc + 1)
424     {
425       cache->pc_in_eax = 1;
426       return current_pc;
427     }
428   
429   if (buf[1] == proto1[1])
430     return pc + 4;
431   else
432     return pc + 5;
433 }
434
435 static CORE_ADDR
436 i386_skip_probe (CORE_ADDR pc)
437 {
438   /* A function may start with
439
440         pushl constant
441         call _probe
442         addl $4, %esp
443            
444      followed by
445
446         pushl %ebp
447
448      etc.  */
449   unsigned char buf[8];
450   unsigned char op;
451
452   op = read_memory_unsigned_integer (pc, 1);
453
454   if (op == 0x68 || op == 0x6a)
455     {
456       int delta;
457
458       /* Skip past the `pushl' instruction; it has either a one-byte or a
459          four-byte operand, depending on the opcode.  */
460       if (op == 0x68)
461         delta = 5;
462       else
463         delta = 2;
464
465       /* Read the following 8 bytes, which should be `call _probe' (6
466          bytes) followed by `addl $4,%esp' (2 bytes).  */
467       read_memory (pc + delta, buf, sizeof (buf));
468       if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
469         pc += delta + sizeof (buf);
470     }
471
472   return pc;
473 }
474
475 /* Maximum instruction length we need to handle.  */
476 #define I386_MAX_INSN_LEN       6
477
478 /* Instruction description.  */
479 struct i386_insn
480 {
481   size_t len;
482   unsigned char insn[I386_MAX_INSN_LEN];
483   unsigned char mask[I386_MAX_INSN_LEN];
484 };
485
486 /* Search for the instruction at PC in the list SKIP_INSNS.  Return
487    the first instruction description that matches.  Otherwise, return
488    NULL.  */
489
490 static struct i386_insn *
491 i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
492 {
493   struct i386_insn *insn;
494   unsigned char op;
495
496   op = read_memory_unsigned_integer (pc, 1);
497
498   for (insn = skip_insns; insn->len > 0; insn++)
499     {
500       if ((op & insn->mask[0]) == insn->insn[0])
501         {
502           unsigned char buf[I386_MAX_INSN_LEN - 1];
503           size_t i;
504
505           gdb_assert (insn->len > 1);
506           gdb_assert (insn->len <= I386_MAX_INSN_LEN);
507
508           read_memory (pc + 1, buf, insn->len - 1);
509           for (i = 1; i < insn->len; i++)
510             {
511               if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
512                 break;
513
514               return insn;
515             }
516         }
517     }
518
519   return NULL;
520 }
521
522 /* Some special instructions that might be migrated by GCC into the
523    part of the prologue that sets up the new stack frame.  Because the
524    stack frame hasn't been setup yet, no registers have been saved
525    yet, and only the scratch registers %eax, %ecx and %edx can be
526    touched.  */
527
528 struct i386_insn i386_frame_setup_skip_insns[] =
529 {
530   /* Check for `movb imm8, r' and `movl imm32, r'. 
531     
532      ??? Should we handle 16-bit operand-sizes here?  */
533
534   /* `movb imm8, %al' and `movb imm8, %ah' */
535   /* `movb imm8, %cl' and `movb imm8, %ch' */
536   { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
537   /* `movb imm8, %dl' and `movb imm8, %dh' */
538   { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
539   /* `movl imm32, %eax' and `movl imm32, %ecx' */
540   { 5, { 0xb8 }, { 0xfe } },
541   /* `movl imm32, %edx' */
542   { 5, { 0xba }, { 0xff } },
543
544   /* Check for `mov imm32, r32'.  Note that there is an alternative
545      encoding for `mov m32, %eax'.
546
547      ??? Should we handle SIB adressing here?
548      ??? Should we handle 16-bit operand-sizes here?  */
549
550   /* `movl m32, %eax' */
551   { 5, { 0xa1 }, { 0xff } },
552   /* `movl m32, %eax' and `mov; m32, %ecx' */
553   { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
554   /* `movl m32, %edx' */
555   { 6, { 0x89, 0x15 }, {0xff, 0xff } },
556
557   /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
558      Because of the symmetry, there are actually two ways to encode
559      these instructions; opcode bytes 0x29 and 0x2b for `subl' and
560      opcode bytes 0x31 and 0x33 for `xorl'.  */
561
562   /* `subl %eax, %eax' */
563   { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
564   /* `subl %ecx, %ecx' */
565   { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
566   /* `subl %edx, %edx' */
567   { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
568   /* `xorl %eax, %eax' */
569   { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
570   /* `xorl %ecx, %ecx' */
571   { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
572   /* `xorl %edx, %edx' */
573   { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
574   { 0 }
575 };
576
577 /* Check whether PC points at a code that sets up a new stack frame.
578    If so, it updates CACHE and returns the address of the first
579    instruction after the sequence that sets up the frame or LIMIT,
580    whichever is smaller.  If we don't recognize the code, return PC.  */
581
582 static CORE_ADDR
583 i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR limit,
584                           struct i386_frame_cache *cache)
585 {
586   struct i386_insn *insn;
587   unsigned char op;
588   int skip = 0;
589
590   if (limit <= pc)
591     return limit;
592
593   op = read_memory_unsigned_integer (pc, 1);
594
595   if (op == 0x55)               /* pushl %ebp */
596     {
597       /* Take into account that we've executed the `pushl %ebp' that
598          starts this instruction sequence.  */
599       cache->saved_regs[I386_EBP_REGNUM] = 0;
600       cache->sp_offset += 4;
601       pc++;
602
603       /* If that's all, return now.  */
604       if (limit <= pc)
605         return limit;
606
607       /* Check for some special instructions that might be migrated by
608          GCC into the prologue and skip them.  At this point in the
609          prologue, code should only touch the scratch registers %eax,
610          %ecx and %edx, so while the number of posibilities is sheer,
611          it is limited.
612
613          Make sure we only skip these instructions if we later see the
614          `movl %esp, %ebp' that actually sets up the frame.  */
615       while (pc + skip < limit)
616         {
617           insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
618           if (insn == NULL)
619             break;
620
621           skip += insn->len;
622         }
623
624       /* If that's all, return now.  */
625       if (limit <= pc + skip)
626         return limit;
627
628       op = read_memory_unsigned_integer (pc + skip, 1);
629
630       /* Check for `movl %esp, %ebp' -- can be written in two ways.  */
631       switch (op)
632         {
633         case 0x8b:
634           if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xec)
635             return pc;
636           break;
637         case 0x89:
638           if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xe5)
639             return pc;
640           break;
641         default:
642           return pc;
643         }
644
645       /* OK, we actually have a frame.  We just don't know how large
646          it is yet.  Set its size to zero.  We'll adjust it if
647          necessary.  We also now commit to skipping the special
648          instructions mentioned before.  */
649       cache->locals = 0;
650       pc += (skip + 2);
651
652       /* If that's all, return now.  */
653       if (limit <= pc)
654         return limit;
655
656       /* Check for stack adjustment 
657
658             subl $XXX, %esp
659
660          NOTE: You can't subtract a 16-bit immediate from a 32-bit
661          reg, so we don't have to worry about a data16 prefix.  */
662       op = read_memory_unsigned_integer (pc, 1);
663       if (op == 0x83)
664         {
665           /* `subl' with 8-bit immediate.  */
666           if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
667             /* Some instruction starting with 0x83 other than `subl'.  */
668             return pc;
669
670           /* `subl' with signed 8-bit immediate (though it wouldn't
671              make sense to be negative).  */
672           cache->locals = read_memory_integer (pc + 2, 1);
673           return pc + 3;
674         }
675       else if (op == 0x81)
676         {
677           /* Maybe it is `subl' with a 32-bit immediate.  */
678           if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
679             /* Some instruction starting with 0x81 other than `subl'.  */
680             return pc;
681
682           /* It is `subl' with a 32-bit immediate.  */
683           cache->locals = read_memory_integer (pc + 2, 4);
684           return pc + 6;
685         }
686       else
687         {
688           /* Some instruction other than `subl'.  */
689           return pc;
690         }
691     }
692   else if (op == 0xc8)          /* enter */
693     {
694       cache->locals = read_memory_unsigned_integer (pc + 1, 2);
695       return pc + 4;
696     }
697
698   return pc;
699 }
700
701 /* Check whether PC points at code that saves registers on the stack.
702    If so, it updates CACHE and returns the address of the first
703    instruction after the register saves or CURRENT_PC, whichever is
704    smaller.  Otherwise, return PC.  */
705
706 static CORE_ADDR
707 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
708                              struct i386_frame_cache *cache)
709 {
710   CORE_ADDR offset = 0;
711   unsigned char op;
712   int i;
713
714   if (cache->locals > 0)
715     offset -= cache->locals;
716   for (i = 0; i < 8 && pc < current_pc; i++)
717     {
718       op = read_memory_unsigned_integer (pc, 1);
719       if (op < 0x50 || op > 0x57)
720         break;
721
722       offset -= 4;
723       cache->saved_regs[op - 0x50] = offset;
724       cache->sp_offset += 4;
725       pc++;
726     }
727
728   return pc;
729 }
730
731 /* Do a full analysis of the prologue at PC and update CACHE
732    accordingly.  Bail out early if CURRENT_PC is reached.  Return the
733    address where the analysis stopped.
734
735    We handle these cases:
736
737    The startup sequence can be at the start of the function, or the
738    function can start with a branch to startup code at the end.
739
740    %ebp can be set up with either the 'enter' instruction, or "pushl
741    %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
742    once used in the System V compiler).
743
744    Local space is allocated just below the saved %ebp by either the
745    'enter' instruction, or by "subl $<size>, %esp".  'enter' has a
746    16-bit unsigned argument for space to allocate, and the 'addl'
747    instruction could have either a signed byte, or 32-bit immediate.
748
749    Next, the registers used by this function are pushed.  With the
750    System V compiler they will always be in the order: %edi, %esi,
751    %ebx (and sometimes a harmless bug causes it to also save but not
752    restore %eax); however, the code below is willing to see the pushes
753    in any order, and will handle up to 8 of them.
754  
755    If the setup sequence is at the end of the function, then the next
756    instruction will be a branch back to the start.  */
757
758 static CORE_ADDR
759 i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
760                        struct i386_frame_cache *cache)
761 {
762   pc = i386_follow_jump (pc);
763   pc = i386_analyze_struct_return (pc, current_pc, cache);
764   pc = i386_skip_probe (pc);
765   pc = i386_analyze_frame_setup (pc, current_pc, cache);
766   return i386_analyze_register_saves (pc, current_pc, cache);
767 }
768
769 /* Return PC of first real instruction.  */
770
771 static CORE_ADDR
772 i386_skip_prologue (CORE_ADDR start_pc)
773 {
774   static unsigned char pic_pat[6] =
775   {
776     0xe8, 0, 0, 0, 0,           /* call 0x0 */
777     0x5b,                       /* popl %ebx */
778   };
779   struct i386_frame_cache cache;
780   CORE_ADDR pc;
781   unsigned char op;
782   int i;
783
784   cache.locals = -1;
785   pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
786   if (cache.locals < 0)
787     return start_pc;
788
789   /* Found valid frame setup.  */
790
791   /* The native cc on SVR4 in -K PIC mode inserts the following code
792      to get the address of the global offset table (GOT) into register
793      %ebx:
794
795         call    0x0
796         popl    %ebx
797         movl    %ebx,x(%ebp)    (optional)
798         addl    y,%ebx
799
800      This code is with the rest of the prologue (at the end of the
801      function), so we have to skip it to get to the first real
802      instruction at the start of the function.  */
803
804   for (i = 0; i < 6; i++)
805     {
806       op = read_memory_unsigned_integer (pc + i, 1);
807       if (pic_pat[i] != op)
808         break;
809     }
810   if (i == 6)
811     {
812       int delta = 6;
813
814       op = read_memory_unsigned_integer (pc + delta, 1);
815
816       if (op == 0x89)           /* movl %ebx, x(%ebp) */
817         {
818           op = read_memory_unsigned_integer (pc + delta + 1, 1);
819
820           if (op == 0x5d)       /* One byte offset from %ebp.  */
821             delta += 3;
822           else if (op == 0x9d)  /* Four byte offset from %ebp.  */
823             delta += 6;
824           else                  /* Unexpected instruction.  */
825             delta = 0;
826
827           op = read_memory_unsigned_integer (pc + delta, 1);
828         }
829
830       /* addl y,%ebx */
831       if (delta > 0 && op == 0x81
832           && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3);
833         {
834           pc += delta + 6;
835         }
836     }
837
838   /* If the function starts with a branch (to startup code at the end)
839      the last instruction should bring us back to the first
840      instruction of the real code.  */
841   if (i386_follow_jump (start_pc) != start_pc)
842     pc = i386_follow_jump (pc);
843
844   return pc;
845 }
846
847 /* This function is 64-bit safe.  */
848
849 static CORE_ADDR
850 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
851 {
852   char buf[8];
853
854   frame_unwind_register (next_frame, PC_REGNUM, buf);
855   return extract_typed_address (buf, builtin_type_void_func_ptr);
856 }
857 \f
858
859 /* Normal frames.  */
860
861 static struct i386_frame_cache *
862 i386_frame_cache (struct frame_info *next_frame, void **this_cache)
863 {
864   struct i386_frame_cache *cache;
865   char buf[4];
866   int i;
867
868   if (*this_cache)
869     return *this_cache;
870
871   cache = i386_alloc_frame_cache ();
872   *this_cache = cache;
873
874   /* In principle, for normal frames, %ebp holds the frame pointer,
875      which holds the base address for the current stack frame.
876      However, for functions that don't need it, the frame pointer is
877      optional.  For these "frameless" functions the frame pointer is
878      actually the frame pointer of the calling frame.  Signal
879      trampolines are just a special case of a "frameless" function.
880      They (usually) share their frame pointer with the frame that was
881      in progress when the signal occurred.  */
882
883   frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
884   cache->base = extract_unsigned_integer (buf, 4);
885   if (cache->base == 0)
886     return cache;
887
888   /* For normal frames, %eip is stored at 4(%ebp).  */
889   cache->saved_regs[I386_EIP_REGNUM] = 4;
890
891   cache->pc = frame_func_unwind (next_frame);
892   if (cache->pc != 0)
893     i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
894
895   if (cache->locals < 0)
896     {
897       /* We didn't find a valid frame, which means that CACHE->base
898          currently holds the frame pointer for our calling frame.  If
899          we're at the start of a function, or somewhere half-way its
900          prologue, the function's frame probably hasn't been fully
901          setup yet.  Try to reconstruct the base address for the stack
902          frame by looking at the stack pointer.  For truly "frameless"
903          functions this might work too.  */
904
905       frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
906       cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
907     }
908
909   /* Now that we have the base address for the stack frame we can
910      calculate the value of %esp in the calling frame.  */
911   cache->saved_sp = cache->base + 8;
912
913   /* Adjust all the saved registers such that they contain addresses
914      instead of offsets.  */
915   for (i = 0; i < I386_NUM_SAVED_REGS; i++)
916     if (cache->saved_regs[i] != -1)
917       cache->saved_regs[i] += cache->base;
918
919   return cache;
920 }
921
922 static void
923 i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
924                     struct frame_id *this_id)
925 {
926   struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
927
928   /* This marks the outermost frame.  */
929   if (cache->base == 0)
930     return;
931
932   /* See the end of i386_push_dummy_call.  */
933   (*this_id) = frame_id_build (cache->base + 8, cache->pc);
934 }
935
936 static void
937 i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
938                           int regnum, int *optimizedp,
939                           enum lval_type *lvalp, CORE_ADDR *addrp,
940                           int *realnump, void *valuep)
941 {
942   struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
943
944   gdb_assert (regnum >= 0);
945
946   /* The System V ABI says that:
947
948      "The flags register contains the system flags, such as the
949      direction flag and the carry flag.  The direction flag must be
950      set to the forward (that is, zero) direction before entry and
951      upon exit from a function.  Other user flags have no specified
952      role in the standard calling sequence and are not preserved."
953
954      To guarantee the "upon exit" part of that statement we fake a
955      saved flags register that has its direction flag cleared.
956
957      Note that GCC doesn't seem to rely on the fact that the direction
958      flag is cleared after a function return; it always explicitly
959      clears the flag before operations where it matters.
960
961      FIXME: kettenis/20030316: I'm not quite sure whether this is the
962      right thing to do.  The way we fake the flags register here makes
963      it impossible to change it.  */
964
965   if (regnum == I386_EFLAGS_REGNUM)
966     {
967       *optimizedp = 0;
968       *lvalp = not_lval;
969       *addrp = 0;
970       *realnump = -1;
971       if (valuep)
972         {
973           ULONGEST val;
974
975           /* Clear the direction flag.  */
976           val = frame_unwind_register_unsigned (next_frame,
977                                                 I386_EFLAGS_REGNUM);
978           val &= ~(1 << 10);
979           store_unsigned_integer (valuep, 4, val);
980         }
981
982       return;
983     }
984
985   if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
986     {
987       frame_register_unwind (next_frame, I386_EAX_REGNUM,
988                              optimizedp, lvalp, addrp, realnump, valuep);
989       return;
990     }
991
992   if (regnum == I386_ESP_REGNUM && cache->saved_sp)
993     {
994       *optimizedp = 0;
995       *lvalp = not_lval;
996       *addrp = 0;
997       *realnump = -1;
998       if (valuep)
999         {
1000           /* Store the value.  */
1001           store_unsigned_integer (valuep, 4, cache->saved_sp);
1002         }
1003       return;
1004     }
1005
1006   if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1007     {
1008       *optimizedp = 0;
1009       *lvalp = lval_memory;
1010       *addrp = cache->saved_regs[regnum];
1011       *realnump = -1;
1012       if (valuep)
1013         {
1014           /* Read the value in from memory.  */
1015           read_memory (*addrp, valuep,
1016                        register_size (current_gdbarch, regnum));
1017         }
1018       return;
1019     }
1020
1021   frame_register_unwind (next_frame, regnum,
1022                          optimizedp, lvalp, addrp, realnump, valuep);
1023 }
1024
1025 static const struct frame_unwind i386_frame_unwind =
1026 {
1027   NORMAL_FRAME,
1028   i386_frame_this_id,
1029   i386_frame_prev_register
1030 };
1031
1032 static const struct frame_unwind *
1033 i386_frame_sniffer (struct frame_info *next_frame)
1034 {
1035   return &i386_frame_unwind;
1036 }
1037 \f
1038
1039 /* Signal trampolines.  */
1040
1041 static struct i386_frame_cache *
1042 i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
1043 {
1044   struct i386_frame_cache *cache;
1045   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1046   CORE_ADDR addr;
1047   char buf[4];
1048
1049   if (*this_cache)
1050     return *this_cache;
1051
1052   cache = i386_alloc_frame_cache ();
1053
1054   frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1055   cache->base = extract_unsigned_integer (buf, 4) - 4;
1056
1057   addr = tdep->sigcontext_addr (next_frame);
1058   if (tdep->sc_reg_offset)
1059     {
1060       int i;
1061
1062       gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1063
1064       for (i = 0; i < tdep->sc_num_regs; i++)
1065         if (tdep->sc_reg_offset[i] != -1)
1066           cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
1067     }
1068   else
1069     {
1070       cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1071       cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
1072     }
1073
1074   *this_cache = cache;
1075   return cache;
1076 }
1077
1078 static void
1079 i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
1080                              struct frame_id *this_id)
1081 {
1082   struct i386_frame_cache *cache =
1083     i386_sigtramp_frame_cache (next_frame, this_cache);
1084
1085   /* See the end of i386_push_dummy_call.  */
1086   (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
1087 }
1088
1089 static void
1090 i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
1091                                    void **this_cache,
1092                                    int regnum, int *optimizedp,
1093                                    enum lval_type *lvalp, CORE_ADDR *addrp,
1094                                    int *realnump, void *valuep)
1095 {
1096   /* Make sure we've initialized the cache.  */
1097   i386_sigtramp_frame_cache (next_frame, this_cache);
1098
1099   i386_frame_prev_register (next_frame, this_cache, regnum,
1100                             optimizedp, lvalp, addrp, realnump, valuep);
1101 }
1102
1103 static const struct frame_unwind i386_sigtramp_frame_unwind =
1104 {
1105   SIGTRAMP_FRAME,
1106   i386_sigtramp_frame_this_id,
1107   i386_sigtramp_frame_prev_register
1108 };
1109
1110 static const struct frame_unwind *
1111 i386_sigtramp_frame_sniffer (struct frame_info *next_frame)
1112 {
1113   struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
1114
1115   /* We shouldn't even bother if we don't have a sigcontext_addr
1116      handler.  */
1117   if (tdep->sigcontext_addr == NULL)
1118     return NULL;
1119
1120   if (tdep->sigtramp_p != NULL)
1121     {
1122       if (tdep->sigtramp_p (next_frame))
1123         return &i386_sigtramp_frame_unwind;
1124     }
1125
1126   if (tdep->sigtramp_start != 0)
1127     {
1128       CORE_ADDR pc = frame_pc_unwind (next_frame);
1129
1130       gdb_assert (tdep->sigtramp_end != 0);
1131       if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1132         return &i386_sigtramp_frame_unwind;
1133     }
1134
1135   return NULL;
1136 }
1137 \f
1138
1139 static CORE_ADDR
1140 i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
1141 {
1142   struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1143
1144   return cache->base;
1145 }
1146
1147 static const struct frame_base i386_frame_base =
1148 {
1149   &i386_frame_unwind,
1150   i386_frame_base_address,
1151   i386_frame_base_address,
1152   i386_frame_base_address
1153 };
1154
1155 static struct frame_id
1156 i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1157 {
1158   char buf[4];
1159   CORE_ADDR fp;
1160
1161   frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
1162   fp = extract_unsigned_integer (buf, 4);
1163
1164   /* See the end of i386_push_dummy_call.  */
1165   return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
1166 }
1167 \f
1168
1169 /* Figure out where the longjmp will land.  Slurp the args out of the
1170    stack.  We expect the first arg to be a pointer to the jmp_buf
1171    structure from which we extract the address that we will land at.
1172    This address is copied into PC.  This routine returns non-zero on
1173    success.
1174
1175    This function is 64-bit safe.  */
1176
1177 static int
1178 i386_get_longjmp_target (CORE_ADDR *pc)
1179 {
1180   char buf[8];
1181   CORE_ADDR sp, jb_addr;
1182   int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
1183   int len = TYPE_LENGTH (builtin_type_void_func_ptr);
1184
1185   /* If JB_PC_OFFSET is -1, we have no way to find out where the
1186      longjmp will land.  */
1187   if (jb_pc_offset == -1)
1188     return 0;
1189
1190   /* Don't use I386_ESP_REGNUM here, since this function is also used
1191      for AMD64.  */
1192   regcache_cooked_read (current_regcache, SP_REGNUM, buf);
1193   sp = extract_typed_address (buf, builtin_type_void_data_ptr);
1194   if (target_read_memory (sp + len, buf, len))
1195     return 0;
1196
1197   jb_addr = extract_typed_address (buf, builtin_type_void_data_ptr);
1198   if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
1199     return 0;
1200
1201   *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
1202   return 1;
1203 }
1204 \f
1205
1206 static CORE_ADDR
1207 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1208                       struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1209                       struct value **args, CORE_ADDR sp, int struct_return,
1210                       CORE_ADDR struct_addr)
1211 {
1212   char buf[4];
1213   int i;
1214
1215   /* Push arguments in reverse order.  */
1216   for (i = nargs - 1; i >= 0; i--)
1217     {
1218       int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1219
1220       /* The System V ABI says that:
1221
1222          "An argument's size is increased, if necessary, to make it a
1223          multiple of [32-bit] words.  This may require tail padding,
1224          depending on the size of the argument."
1225
1226          This makes sure the stack says word-aligned.  */
1227       sp -= (len + 3) & ~3;
1228       write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
1229     }
1230
1231   /* Push value address.  */
1232   if (struct_return)
1233     {
1234       sp -= 4;
1235       store_unsigned_integer (buf, 4, struct_addr);
1236       write_memory (sp, buf, 4);
1237     }
1238
1239   /* Store return address.  */
1240   sp -= 4;
1241   store_unsigned_integer (buf, 4, bp_addr);
1242   write_memory (sp, buf, 4);
1243
1244   /* Finally, update the stack pointer...  */
1245   store_unsigned_integer (buf, 4, sp);
1246   regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1247
1248   /* ...and fake a frame pointer.  */
1249   regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1250
1251   /* MarkK wrote: This "+ 8" is all over the place:
1252      (i386_frame_this_id, i386_sigtramp_frame_this_id,
1253      i386_unwind_dummy_id).  It's there, since all frame unwinders for
1254      a given target have to agree (within a certain margin) on the
1255      definition of the stack address of a frame.  Otherwise
1256      frame_id_inner() won't work correctly.  Since DWARF2/GCC uses the
1257      stack address *before* the function call as a frame's CFA.  On
1258      the i386, when %ebp is used as a frame pointer, the offset
1259      between the contents %ebp and the CFA as defined by GCC.  */
1260   return sp + 8;
1261 }
1262
1263 /* These registers are used for returning integers (and on some
1264    targets also for returning `struct' and `union' values when their
1265    size and alignment match an integer type).  */
1266 #define LOW_RETURN_REGNUM       I386_EAX_REGNUM /* %eax */
1267 #define HIGH_RETURN_REGNUM      I386_EDX_REGNUM /* %edx */
1268
1269 /* Read, for architecture GDBARCH, a function return value of TYPE
1270    from REGCACHE, and copy that into VALBUF.  */
1271
1272 static void
1273 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
1274                            struct regcache *regcache, void *valbuf)
1275 {
1276   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1277   int len = TYPE_LENGTH (type);
1278   char buf[I386_MAX_REGISTER_SIZE];
1279
1280   if (TYPE_CODE (type) == TYPE_CODE_FLT)
1281     {
1282       if (tdep->st0_regnum < 0)
1283         {
1284           warning ("Cannot find floating-point return value.");
1285           memset (valbuf, 0, len);
1286           return;
1287         }
1288
1289       /* Floating-point return values can be found in %st(0).  Convert
1290          its contents to the desired type.  This is probably not
1291          exactly how it would happen on the target itself, but it is
1292          the best we can do.  */
1293       regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
1294       convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
1295     }
1296   else
1297     {
1298       int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1299       int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
1300
1301       if (len <= low_size)
1302         {
1303           regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1304           memcpy (valbuf, buf, len);
1305         }
1306       else if (len <= (low_size + high_size))
1307         {
1308           regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1309           memcpy (valbuf, buf, low_size);
1310           regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
1311           memcpy ((char *) valbuf + low_size, buf, len - low_size);
1312         }
1313       else
1314         internal_error (__FILE__, __LINE__,
1315                         "Cannot extract return value of %d bytes long.", len);
1316     }
1317 }
1318
1319 /* Write, for architecture GDBARCH, a function return value of TYPE
1320    from VALBUF into REGCACHE.  */
1321
1322 static void
1323 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
1324                          struct regcache *regcache, const void *valbuf)
1325 {
1326   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1327   int len = TYPE_LENGTH (type);
1328
1329   /* Define I387_ST0_REGNUM such that we use the proper definitions
1330      for the architecture.  */
1331 #define I387_ST0_REGNUM I386_ST0_REGNUM
1332
1333   if (TYPE_CODE (type) == TYPE_CODE_FLT)
1334     {
1335       ULONGEST fstat;
1336       char buf[I386_MAX_REGISTER_SIZE];
1337
1338       if (tdep->st0_regnum < 0)
1339         {
1340           warning ("Cannot set floating-point return value.");
1341           return;
1342         }
1343
1344       /* Returning floating-point values is a bit tricky.  Apart from
1345          storing the return value in %st(0), we have to simulate the
1346          state of the FPU at function return point.  */
1347
1348       /* Convert the value found in VALBUF to the extended
1349          floating-point format used by the FPU.  This is probably
1350          not exactly how it would happen on the target itself, but
1351          it is the best we can do.  */
1352       convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
1353       regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
1354
1355       /* Set the top of the floating-point register stack to 7.  The
1356          actual value doesn't really matter, but 7 is what a normal
1357          function return would end up with if the program started out
1358          with a freshly initialized FPU.  */
1359       regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
1360       fstat |= (7 << 11);
1361       regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM, fstat);
1362
1363       /* Mark %st(1) through %st(7) as empty.  Since we set the top of
1364          the floating-point register stack to 7, the appropriate value
1365          for the tag word is 0x3fff.  */
1366       regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM, 0x3fff);
1367     }
1368   else
1369     {
1370       int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1371       int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
1372
1373       if (len <= low_size)
1374         regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
1375       else if (len <= (low_size + high_size))
1376         {
1377           regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1378           regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1379                                    len - low_size, (char *) valbuf + low_size);
1380         }
1381       else
1382         internal_error (__FILE__, __LINE__,
1383                         "Cannot store return value of %d bytes long.", len);
1384     }
1385
1386 #undef I387_ST0_REGNUM
1387 }
1388 \f
1389
1390 /* This is the variable that is set with "set struct-convention", and
1391    its legitimate values.  */
1392 static const char default_struct_convention[] = "default";
1393 static const char pcc_struct_convention[] = "pcc";
1394 static const char reg_struct_convention[] = "reg";
1395 static const char *valid_conventions[] =
1396 {
1397   default_struct_convention,
1398   pcc_struct_convention,
1399   reg_struct_convention,
1400   NULL
1401 };
1402 static const char *struct_convention = default_struct_convention;
1403
1404 /* Return non-zero if TYPE, which is assumed to be a structure or
1405    union type, should be returned in registers for architecture
1406    GDBARCH.  */
1407
1408 static int
1409 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
1410 {
1411   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1412   enum type_code code = TYPE_CODE (type);
1413   int len = TYPE_LENGTH (type);
1414
1415   gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
1416
1417   if (struct_convention == pcc_struct_convention
1418       || (struct_convention == default_struct_convention
1419           && tdep->struct_return == pcc_struct_return))
1420     return 0;
1421
1422   return (len == 1 || len == 2 || len == 4 || len == 8);
1423 }
1424
1425 /* Determine, for architecture GDBARCH, how a return value of TYPE
1426    should be returned.  If it is supposed to be returned in registers,
1427    and READBUF is non-zero, read the appropriate value from REGCACHE,
1428    and copy it into READBUF.  If WRITEBUF is non-zero, write the value
1429    from WRITEBUF into REGCACHE.  */
1430
1431 static enum return_value_convention
1432 i386_return_value (struct gdbarch *gdbarch, struct type *type,
1433                    struct regcache *regcache, void *readbuf,
1434                    const void *writebuf)
1435 {
1436   enum type_code code = TYPE_CODE (type);
1437
1438   if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
1439       && !i386_reg_struct_return_p (gdbarch, type))
1440     {
1441       /* The System V ABI says that:
1442
1443          "A function that returns a structure or union also sets %eax
1444          to the value of the original address of the caller's area
1445          before it returns.  Thus when the caller receives control
1446          again, the address of the returned object resides in register
1447          %eax and can be used to access the object."
1448
1449          So the ABI guarantees that we can always find the return
1450          value just after the function has returned.  */
1451
1452       if (readbuf)
1453         {
1454           ULONGEST addr;
1455
1456           regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1457           read_memory (addr, readbuf, TYPE_LENGTH (type));
1458         }
1459
1460       return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1461     }
1462
1463   /* This special case is for structures consisting of a single
1464      `float' or `double' member.  These structures are returned in
1465      %st(0).  For these structures, we call ourselves recursively,
1466      changing TYPE into the type of the first member of the structure.
1467      Since that should work for all structures that have only one
1468      member, we don't bother to check the member's type here.  */
1469   if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1470     {
1471       type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1472       return i386_return_value (gdbarch, type, regcache, readbuf, writebuf);
1473     }
1474
1475   if (readbuf)
1476     i386_extract_return_value (gdbarch, type, regcache, readbuf);
1477   if (writebuf)
1478     i386_store_return_value (gdbarch, type, regcache, writebuf);
1479
1480   return RETURN_VALUE_REGISTER_CONVENTION;
1481 }
1482 \f
1483
1484 /* Return the GDB type object for the "standard" data type of data in
1485    register REGNUM.  Perhaps %esi and %edi should go here, but
1486    potentially they could be used for things other than address.  */
1487
1488 static struct type *
1489 i386_register_type (struct gdbarch *gdbarch, int regnum)
1490 {
1491   if (regnum == I386_EIP_REGNUM
1492       || regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
1493     return lookup_pointer_type (builtin_type_void);
1494
1495   if (i386_fp_regnum_p (regnum))
1496     return builtin_type_i387_ext;
1497
1498   if (i386_sse_regnum_p (gdbarch, regnum))
1499     return builtin_type_vec128i;
1500
1501   if (i386_mmx_regnum_p (gdbarch, regnum))
1502     return builtin_type_vec64i;
1503
1504   return builtin_type_int;
1505 }
1506
1507 /* Map a cooked register onto a raw register or memory.  For the i386,
1508    the MMX registers need to be mapped onto floating point registers.  */
1509
1510 static int
1511 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
1512 {
1513   struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1514   int mmxreg, fpreg;
1515   ULONGEST fstat;
1516   int tos;
1517
1518   /* Define I387_ST0_REGNUM such that we use the proper definitions
1519      for REGCACHE's architecture.  */
1520 #define I387_ST0_REGNUM tdep->st0_regnum
1521
1522   mmxreg = regnum - tdep->mm0_regnum;
1523   regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
1524   tos = (fstat >> 11) & 0x7;
1525   fpreg = (mmxreg + tos) % 8;
1526
1527   return (I387_ST0_REGNUM + fpreg);
1528
1529 #undef I387_ST0_REGNUM
1530 }
1531
1532 static void
1533 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1534                            int regnum, void *buf)
1535 {
1536   if (i386_mmx_regnum_p (gdbarch, regnum))
1537     {
1538       char mmx_buf[MAX_REGISTER_SIZE];
1539       int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1540
1541       /* Extract (always little endian).  */
1542       regcache_raw_read (regcache, fpnum, mmx_buf);
1543       memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
1544     }
1545   else
1546     regcache_raw_read (regcache, regnum, buf);
1547 }
1548
1549 static void
1550 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1551                             int regnum, const void *buf)
1552 {
1553   if (i386_mmx_regnum_p (gdbarch, regnum))
1554     {
1555       char mmx_buf[MAX_REGISTER_SIZE];
1556       int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1557
1558       /* Read ...  */
1559       regcache_raw_read (regcache, fpnum, mmx_buf);
1560       /* ... Modify ... (always little endian).  */
1561       memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
1562       /* ... Write.  */
1563       regcache_raw_write (regcache, fpnum, mmx_buf);
1564     }
1565   else
1566     regcache_raw_write (regcache, regnum, buf);
1567 }
1568 \f
1569
1570 /* Return the register number of the register allocated by GCC after
1571    REGNUM, or -1 if there is no such register.  */
1572
1573 static int
1574 i386_next_regnum (int regnum)
1575 {
1576   /* GCC allocates the registers in the order:
1577
1578      %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1579
1580      Since storing a variable in %esp doesn't make any sense we return
1581      -1 for %ebp and for %esp itself.  */
1582   static int next_regnum[] =
1583   {
1584     I386_EDX_REGNUM,            /* Slot for %eax.  */
1585     I386_EBX_REGNUM,            /* Slot for %ecx.  */
1586     I386_ECX_REGNUM,            /* Slot for %edx.  */
1587     I386_ESI_REGNUM,            /* Slot for %ebx.  */
1588     -1, -1,                     /* Slots for %esp and %ebp.  */
1589     I386_EDI_REGNUM,            /* Slot for %esi.  */
1590     I386_EBP_REGNUM             /* Slot for %edi.  */
1591   };
1592
1593   if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
1594     return next_regnum[regnum];
1595
1596   return -1;
1597 }
1598
1599 /* Return nonzero if a value of type TYPE stored in register REGNUM
1600    needs any special handling.  */
1601
1602 static int
1603 i386_convert_register_p (int regnum, struct type *type)
1604 {
1605   int len = TYPE_LENGTH (type);
1606
1607   /* Values may be spread across multiple registers.  Most debugging
1608      formats aren't expressive enough to specify the locations, so
1609      some heuristics is involved.  Right now we only handle types that
1610      have a length that is a multiple of the word size, since GCC
1611      doesn't seem to put any other types into registers.  */
1612   if (len > 4 && len % 4 == 0)
1613     {
1614       int last_regnum = regnum;
1615
1616       while (len > 4)
1617         {
1618           last_regnum = i386_next_regnum (last_regnum);
1619           len -= 4;
1620         }
1621
1622       if (last_regnum != -1)
1623         return 1;
1624     }
1625
1626   return i386_fp_regnum_p (regnum);
1627 }
1628
1629 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
1630    return its contents in TO.  */
1631
1632 static void
1633 i386_register_to_value (struct frame_info *frame, int regnum,
1634                         struct type *type, void *to)
1635 {
1636   int len = TYPE_LENGTH (type);
1637   char *buf = to;
1638
1639   /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1640      available in FRAME (i.e. if it wasn't saved)?  */
1641
1642   if (i386_fp_regnum_p (regnum))
1643     {
1644       i387_register_to_value (frame, regnum, type, to);
1645       return;
1646     }
1647
1648   /* Read a value spread across multiple registers.  */
1649
1650   gdb_assert (len > 4 && len % 4 == 0);
1651
1652   while (len > 0)
1653     {
1654       gdb_assert (regnum != -1);
1655       gdb_assert (register_size (current_gdbarch, regnum) == 4);
1656
1657       get_frame_register (frame, regnum, buf);
1658       regnum = i386_next_regnum (regnum);
1659       len -= 4;
1660       buf += 4;
1661     }
1662 }
1663
1664 /* Write the contents FROM of a value of type TYPE into register
1665    REGNUM in frame FRAME.  */
1666
1667 static void
1668 i386_value_to_register (struct frame_info *frame, int regnum,
1669                         struct type *type, const void *from)
1670 {
1671   int len = TYPE_LENGTH (type);
1672   const char *buf = from;
1673
1674   if (i386_fp_regnum_p (regnum))
1675     {
1676       i387_value_to_register (frame, regnum, type, from);
1677       return;
1678     }
1679
1680   /* Write a value spread across multiple registers.  */
1681
1682   gdb_assert (len > 4 && len % 4 == 0);
1683
1684   while (len > 0)
1685     {
1686       gdb_assert (regnum != -1);
1687       gdb_assert (register_size (current_gdbarch, regnum) == 4);
1688
1689       put_frame_register (frame, regnum, buf);
1690       regnum = i386_next_regnum (regnum);
1691       len -= 4;
1692       buf += 4;
1693     }
1694 }
1695 \f
1696 /* Supply register REGNUM from the buffer specified by GREGS and LEN
1697    in the general-purpose register set REGSET to register cache
1698    REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
1699
1700 void
1701 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
1702                      int regnum, const void *gregs, size_t len)
1703 {
1704   const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1705   const char *regs = gregs;
1706   int i;
1707
1708   gdb_assert (len == tdep->sizeof_gregset);
1709
1710   for (i = 0; i < tdep->gregset_num_regs; i++)
1711     {
1712       if ((regnum == i || regnum == -1)
1713           && tdep->gregset_reg_offset[i] != -1)
1714         regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
1715     }
1716 }
1717
1718 /* Collect register REGNUM from the register cache REGCACHE and store
1719    it in the buffer specified by GREGS and LEN as described by the
1720    general-purpose register set REGSET.  If REGNUM is -1, do this for
1721    all registers in REGSET.  */
1722
1723 void
1724 i386_collect_gregset (const struct regset *regset,
1725                       const struct regcache *regcache,
1726                       int regnum, void *gregs, size_t len)
1727 {
1728   const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1729   char *regs = gregs;
1730   int i;
1731
1732   gdb_assert (len == tdep->sizeof_gregset);
1733
1734   for (i = 0; i < tdep->gregset_num_regs; i++)
1735     {
1736       if ((regnum == i || regnum == -1)
1737           && tdep->gregset_reg_offset[i] != -1)
1738         regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
1739     }
1740 }
1741
1742 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
1743    in the floating-point register set REGSET to register cache
1744    REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
1745
1746 static void
1747 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
1748                       int regnum, const void *fpregs, size_t len)
1749 {
1750   const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1751
1752   if (len == I387_SIZEOF_FXSAVE)
1753     {
1754       i387_supply_fxsave (regcache, regnum, fpregs);
1755       return;
1756     }
1757
1758   gdb_assert (len == tdep->sizeof_fpregset);
1759   i387_supply_fsave (regcache, regnum, fpregs);
1760 }
1761
1762 /* Collect register REGNUM from the register cache REGCACHE and store
1763    it in the buffer specified by FPREGS and LEN as described by the
1764    floating-point register set REGSET.  If REGNUM is -1, do this for
1765    all registers in REGSET.  */
1766
1767 static void
1768 i386_collect_fpregset (const struct regset *regset,
1769                        const struct regcache *regcache,
1770                        int regnum, void *fpregs, size_t len)
1771 {
1772   const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1773
1774   if (len == I387_SIZEOF_FXSAVE)
1775     {
1776       i387_collect_fxsave (regcache, regnum, fpregs);
1777       return;
1778     }
1779
1780   gdb_assert (len == tdep->sizeof_fpregset);
1781   i387_collect_fsave (regcache, regnum, fpregs);
1782 }
1783
1784 /* Return the appropriate register set for the core section identified
1785    by SECT_NAME and SECT_SIZE.  */
1786
1787 const struct regset *
1788 i386_regset_from_core_section (struct gdbarch *gdbarch,
1789                                const char *sect_name, size_t sect_size)
1790 {
1791   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1792
1793   if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
1794     {
1795       if (tdep->gregset == NULL)
1796         tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
1797                                       i386_collect_gregset);
1798       return tdep->gregset;
1799     }
1800
1801   if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
1802       || (strcmp (sect_name, ".reg-xfp") == 0
1803           && sect_size == I387_SIZEOF_FXSAVE))
1804     {
1805       if (tdep->fpregset == NULL)
1806         tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
1807                                        i386_collect_fpregset);
1808       return tdep->fpregset;
1809     }
1810
1811   return NULL;
1812 }
1813 \f
1814
1815 #ifdef STATIC_TRANSFORM_NAME
1816 /* SunPRO encodes the static variables.  This is not related to C++
1817    mangling, it is done for C too.  */
1818
1819 char *
1820 sunpro_static_transform_name (char *name)
1821 {
1822   char *p;
1823   if (IS_STATIC_TRANSFORM_NAME (name))
1824     {
1825       /* For file-local statics there will be a period, a bunch of
1826          junk (the contents of which match a string given in the
1827          N_OPT), a period and the name.  For function-local statics
1828          there will be a bunch of junk (which seems to change the
1829          second character from 'A' to 'B'), a period, the name of the
1830          function, and the name.  So just skip everything before the
1831          last period.  */
1832       p = strrchr (name, '.');
1833       if (p != NULL)
1834         name = p + 1;
1835     }
1836   return name;
1837 }
1838 #endif /* STATIC_TRANSFORM_NAME */
1839 \f
1840
1841 /* Stuff for WIN32 PE style DLL's but is pretty generic really.  */
1842
1843 CORE_ADDR
1844 i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
1845 {
1846   if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
1847     {
1848       unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
1849       struct minimal_symbol *indsym =
1850         indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
1851       char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
1852
1853       if (symname)
1854         {
1855           if (strncmp (symname, "__imp_", 6) == 0
1856               || strncmp (symname, "_imp_", 5) == 0)
1857             return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1858         }
1859     }
1860   return 0;                     /* Not a trampoline.  */
1861 }
1862 \f
1863
1864 /* Return whether the frame preceding NEXT_FRAME corresponds to a
1865    sigtramp routine.  */
1866
1867 static int
1868 i386_sigtramp_p (struct frame_info *next_frame)
1869 {
1870   CORE_ADDR pc = frame_pc_unwind (next_frame);
1871   char *name;
1872
1873   find_pc_partial_function (pc, &name, NULL, NULL);
1874   return (name && strcmp ("_sigtramp", name) == 0);
1875 }
1876 \f
1877
1878 /* We have two flavours of disassembly.  The machinery on this page
1879    deals with switching between those.  */
1880
1881 static int
1882 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
1883 {
1884   gdb_assert (disassembly_flavor == att_flavor
1885               || disassembly_flavor == intel_flavor);
1886
1887   /* FIXME: kettenis/20020915: Until disassembler_options is properly
1888      constified, cast to prevent a compiler warning.  */
1889   info->disassembler_options = (char *) disassembly_flavor;
1890   info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
1891
1892   return print_insn_i386 (pc, info);
1893 }
1894 \f
1895
1896 /* There are a few i386 architecture variants that differ only
1897    slightly from the generic i386 target.  For now, we don't give them
1898    their own source file, but include them here.  As a consequence,
1899    they'll always be included.  */
1900
1901 /* System V Release 4 (SVR4).  */
1902
1903 /* Return whether the frame preceding NEXT_FRAME corresponds to a SVR4
1904    sigtramp routine.  */
1905
1906 static int
1907 i386_svr4_sigtramp_p (struct frame_info *next_frame)
1908 {
1909   CORE_ADDR pc = frame_pc_unwind (next_frame);
1910   char *name;
1911
1912   /* UnixWare uses _sigacthandler.  The origin of the other symbols is
1913      currently unknown.  */
1914   find_pc_partial_function (pc, &name, NULL, NULL);
1915   return (name && (strcmp ("_sigreturn", name) == 0
1916                    || strcmp ("_sigacthandler", name) == 0
1917                    || strcmp ("sigvechandler", name) == 0));
1918 }
1919
1920 /* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
1921    routine, return the address of the associated sigcontext (ucontext)
1922    structure.  */
1923
1924 static CORE_ADDR
1925 i386_svr4_sigcontext_addr (struct frame_info *next_frame)
1926 {
1927   char buf[4];
1928   CORE_ADDR sp;
1929
1930   frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1931   sp = extract_unsigned_integer (buf, 4);
1932
1933   return read_memory_unsigned_integer (sp + 8, 4);
1934 }
1935 \f
1936
1937 /* Generic ELF.  */
1938
1939 void
1940 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1941 {
1942   /* We typically use stabs-in-ELF with the SVR4 register numbering.  */
1943   set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
1944 }
1945
1946 /* System V Release 4 (SVR4).  */
1947
1948 void
1949 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1950 {
1951   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1952
1953   /* System V Release 4 uses ELF.  */
1954   i386_elf_init_abi (info, gdbarch);
1955
1956   /* System V Release 4 has shared libraries.  */
1957   set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1958   set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1959
1960   tdep->sigtramp_p = i386_svr4_sigtramp_p;
1961   tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
1962   tdep->sc_pc_offset = 36 + 14 * 4;
1963   tdep->sc_sp_offset = 36 + 17 * 4;
1964
1965   tdep->jb_pc_offset = 20;
1966 }
1967
1968 /* DJGPP.  */
1969
1970 static void
1971 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1972 {
1973   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1974
1975   /* DJGPP doesn't have any special frames for signal handlers.  */
1976   tdep->sigtramp_p = NULL;
1977
1978   tdep->jb_pc_offset = 36;
1979 }
1980
1981 /* NetWare.  */
1982
1983 static void
1984 i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1985 {
1986   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1987
1988   tdep->jb_pc_offset = 24;
1989 }
1990 \f
1991
1992 /* i386 register groups.  In addition to the normal groups, add "mmx"
1993    and "sse".  */
1994
1995 static struct reggroup *i386_sse_reggroup;
1996 static struct reggroup *i386_mmx_reggroup;
1997
1998 static void
1999 i386_init_reggroups (void)
2000 {
2001   i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2002   i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2003 }
2004
2005 static void
2006 i386_add_reggroups (struct gdbarch *gdbarch)
2007 {
2008   reggroup_add (gdbarch, i386_sse_reggroup);
2009   reggroup_add (gdbarch, i386_mmx_reggroup);
2010   reggroup_add (gdbarch, general_reggroup);
2011   reggroup_add (gdbarch, float_reggroup);
2012   reggroup_add (gdbarch, all_reggroup);
2013   reggroup_add (gdbarch, save_reggroup);
2014   reggroup_add (gdbarch, restore_reggroup);
2015   reggroup_add (gdbarch, vector_reggroup);
2016   reggroup_add (gdbarch, system_reggroup);
2017 }
2018
2019 int
2020 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2021                           struct reggroup *group)
2022 {
2023   int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2024                       || i386_mxcsr_regnum_p (gdbarch, regnum));
2025   int fp_regnum_p = (i386_fp_regnum_p (regnum)
2026                      || i386_fpc_regnum_p (regnum));
2027   int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
2028
2029   if (group == i386_mmx_reggroup)
2030     return mmx_regnum_p;
2031   if (group == i386_sse_reggroup)
2032     return sse_regnum_p;
2033   if (group == vector_reggroup)
2034     return (mmx_regnum_p || sse_regnum_p);
2035   if (group == float_reggroup)
2036     return fp_regnum_p;
2037   if (group == general_reggroup)
2038     return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
2039
2040   return default_register_reggroup_p (gdbarch, regnum, group);
2041 }
2042 \f
2043
2044 /* Get the ARGIth function argument for the current function.  */
2045
2046 static CORE_ADDR
2047 i386_fetch_pointer_argument (struct frame_info *frame, int argi, 
2048                              struct type *type)
2049 {
2050   CORE_ADDR sp = get_frame_register_unsigned  (frame, I386_ESP_REGNUM);
2051   return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
2052 }
2053
2054 \f
2055 static struct gdbarch *
2056 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2057 {
2058   struct gdbarch_tdep *tdep;
2059   struct gdbarch *gdbarch;
2060
2061   /* If there is already a candidate, use it.  */
2062   arches = gdbarch_list_lookup_by_info (arches, &info);
2063   if (arches != NULL)
2064     return arches->gdbarch;
2065
2066   /* Allocate space for the new architecture.  */
2067   tdep = XMALLOC (struct gdbarch_tdep);
2068   gdbarch = gdbarch_alloc (&info, tdep);
2069
2070   /* General-purpose registers.  */
2071   tdep->gregset = NULL;
2072   tdep->gregset_reg_offset = NULL;
2073   tdep->gregset_num_regs = I386_NUM_GREGS;
2074   tdep->sizeof_gregset = 0;
2075
2076   /* Floating-point registers.  */
2077   tdep->fpregset = NULL;
2078   tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
2079
2080   /* The default settings include the FPU registers, the MMX registers
2081      and the SSE registers.  This can be overridden for a specific ABI
2082      by adjusting the members `st0_regnum', `mm0_regnum' and
2083      `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
2084      will show up in the output of "info all-registers".  Ideally we
2085      should try to autodetect whether they are available, such that we
2086      can prevent "info all-registers" from displaying registers that
2087      aren't available.
2088
2089      NOTE: kevinb/2003-07-13: ... if it's a choice between printing
2090      [the SSE registers] always (even when they don't exist) or never
2091      showing them to the user (even when they do exist), I prefer the
2092      former over the latter.  */
2093
2094   tdep->st0_regnum = I386_ST0_REGNUM;
2095
2096   /* The MMX registers are implemented as pseudo-registers.  Put off
2097      calculating the register number for %mm0 until we know the number
2098      of raw registers.  */
2099   tdep->mm0_regnum = 0;
2100
2101   /* I386_NUM_XREGS includes %mxcsr, so substract one.  */
2102   tdep->num_xmm_regs = I386_NUM_XREGS - 1;
2103
2104   tdep->jb_pc_offset = -1;
2105   tdep->struct_return = pcc_struct_return;
2106   tdep->sigtramp_start = 0;
2107   tdep->sigtramp_end = 0;
2108   tdep->sigtramp_p = i386_sigtramp_p;
2109   tdep->sigcontext_addr = NULL;
2110   tdep->sc_reg_offset = NULL;
2111   tdep->sc_pc_offset = -1;
2112   tdep->sc_sp_offset = -1;
2113
2114   /* The format used for `long double' on almost all i386 targets is
2115      the i387 extended floating-point format.  In fact, of all targets
2116      in the GCC 2.95 tree, only OSF/1 does it different, and insists
2117      on having a `long double' that's not `long' at all.  */
2118   set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
2119
2120   /* Although the i387 extended floating-point has only 80 significant
2121      bits, a `long double' actually takes up 96, probably to enforce
2122      alignment.  */
2123   set_gdbarch_long_double_bit (gdbarch, 96);
2124
2125   /* The default ABI includes general-purpose registers, 
2126      floating-point registers, and the SSE registers.  */
2127   set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
2128   set_gdbarch_register_name (gdbarch, i386_register_name);
2129   set_gdbarch_register_type (gdbarch, i386_register_type);
2130
2131   /* Register numbers of various important registers.  */
2132   set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
2133   set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
2134   set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
2135   set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
2136
2137   /* NOTE: kettenis/20040418: GCC does have two possible register
2138      numbering schemes on the i386: dbx and SVR4.  These schemes
2139      differ in how they number %ebp, %esp, %eflags, and the
2140      floating-point registers, and are implemented by the arrays
2141      dbx_register_map[] and svr4_dbx_register_map in
2142      gcc/config/i386.c.  GCC also defines a third numbering scheme in
2143      gcc/config/i386.c, which it designates as the "default" register
2144      map used in 64bit mode.  This last register numbering scheme is
2145      implemented in dbx64_register_map, and is used for AMD64; see
2146      amd64-tdep.c.
2147
2148      Currently, each GCC i386 target always uses the same register
2149      numbering scheme across all its supported debugging formats
2150      i.e. SDB (COFF), stabs and DWARF 2.  This is because
2151      gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2152      DBX_REGISTER_NUMBER macro which is defined by each target's
2153      respective config header in a manner independent of the requested
2154      output debugging format.
2155
2156      This does not match the arrangement below, which presumes that
2157      the SDB and stabs numbering schemes differ from the DWARF and
2158      DWARF 2 ones.  The reason for this arrangement is that it is
2159      likely to get the numbering scheme for the target's
2160      default/native debug format right.  For targets where GCC is the
2161      native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2162      targets where the native toolchain uses a different numbering
2163      scheme for a particular debug format (stabs-in-ELF on Solaris)
2164      the defaults below will have to be overridden, like
2165      i386_elf_init_abi() does.  */
2166
2167   /* Use the dbx register numbering scheme for stabs and COFF.  */
2168   set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2169   set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2170
2171   /* Use the SVR4 register numbering scheme for DWARF and DWARF 2.  */
2172   set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2173   set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2174
2175   /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
2176      be in use on any of the supported i386 targets.  */
2177
2178   set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
2179
2180   set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
2181
2182   /* Call dummy code.  */
2183   set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
2184
2185   set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
2186   set_gdbarch_register_to_value (gdbarch,  i386_register_to_value);
2187   set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
2188
2189   set_gdbarch_return_value (gdbarch, i386_return_value);
2190
2191   set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
2192
2193   /* Stack grows downward.  */
2194   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2195
2196   set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2197   set_gdbarch_decr_pc_after_break (gdbarch, 1);
2198
2199   set_gdbarch_frame_args_skip (gdbarch, 8);
2200
2201   /* Wire in the MMX registers.  */
2202   set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
2203   set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2204   set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2205
2206   set_gdbarch_print_insn (gdbarch, i386_print_insn);
2207
2208   set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
2209
2210   set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2211
2212   /* Add the i386 register groups.  */
2213   i386_add_reggroups (gdbarch);
2214   set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2215
2216   /* Helper for function argument information.  */
2217   set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2218
2219   /* Hook in the DWARF CFI frame unwinder.  */
2220   frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2221
2222   frame_base_set_default (gdbarch, &i386_frame_base);
2223
2224   /* Hook in ABI-specific overrides, if they have been registered.  */
2225   gdbarch_init_osabi (info, gdbarch);
2226
2227   frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer);
2228   frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer);
2229
2230   /* If we have a register mapping, enable the generic core file
2231      support, unless it has already been enabled.  */
2232   if (tdep->gregset_reg_offset
2233       && !gdbarch_regset_from_core_section_p (gdbarch))
2234     set_gdbarch_regset_from_core_section (gdbarch,
2235                                           i386_regset_from_core_section);
2236
2237   /* Unless support for MMX has been disabled, make %mm0 the first
2238      pseudo-register.  */
2239   if (tdep->mm0_regnum == 0)
2240     tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2241
2242   return gdbarch;
2243 }
2244
2245 static enum gdb_osabi
2246 i386_coff_osabi_sniffer (bfd *abfd)
2247 {
2248   if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2249       || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
2250     return GDB_OSABI_GO32;
2251
2252   return GDB_OSABI_UNKNOWN;
2253 }
2254
2255 static enum gdb_osabi
2256 i386_nlm_osabi_sniffer (bfd *abfd)
2257 {
2258   return GDB_OSABI_NETWARE;
2259 }
2260 \f
2261
2262 /* Provide a prototype to silence -Wmissing-prototypes.  */
2263 void _initialize_i386_tdep (void);
2264
2265 void
2266 _initialize_i386_tdep (void)
2267 {
2268   register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2269
2270   /* Add the variable that controls the disassembly flavor.  */
2271   {
2272     struct cmd_list_element *new_cmd;
2273
2274     new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
2275                                 valid_flavors,
2276                                 &disassembly_flavor,
2277                                 "\
2278 Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
2279 and the default value is \"att\".",
2280                                 &setlist);
2281     add_show_from_set (new_cmd, &showlist);
2282   }
2283
2284   /* Add the variable that controls the convention for returning
2285      structs.  */
2286   {
2287     struct cmd_list_element *new_cmd;
2288
2289     new_cmd = add_set_enum_cmd ("struct-convention", no_class,
2290                                 valid_conventions,
2291                                 &struct_convention, "\
2292 Set the convention for returning small structs, valid values \
2293 are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
2294                                 &setlist);
2295     add_show_from_set (new_cmd, &showlist);
2296   }
2297
2298   gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2299                                   i386_coff_osabi_sniffer);
2300   gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
2301                                   i386_nlm_osabi_sniffer);
2302
2303   gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
2304                           i386_svr4_init_abi);
2305   gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
2306                           i386_go32_init_abi);
2307   gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
2308                           i386_nw_init_abi);
2309
2310   /* Initialize the i386 specific register groups.  */
2311   i386_init_reggroups ();
2312 }