Merge branch 'vendor/BINUTILS225'
[dragonfly.git] / sys / dev / netif / ig_hal / e1000_ich8lan.c
1 /******************************************************************************
2
3   Copyright (c) 2001-2014, Intel Corporation 
4   All rights reserved.
5   
6   Redistribution and use in source and binary forms, with or without 
7   modification, are permitted provided that the following conditions are met:
8   
9    1. Redistributions of source code must retain the above copyright notice, 
10       this list of conditions and the following disclaimer.
11   
12    2. Redistributions in binary form must reproduce the above copyright 
13       notice, this list of conditions and the following disclaimer in the 
14       documentation and/or other materials provided with the distribution.
15   
16    3. Neither the name of the Intel Corporation nor the names of its 
17       contributors may be used to endorse or promote products derived from 
18       this software without specific prior written permission.
19   
20   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21   AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
22   IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
23   ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
24   LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
25   CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
26   SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
27   INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
28   CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
29   ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30   POSSIBILITY OF SUCH DAMAGE.
31
32 ******************************************************************************/
33 /*$FreeBSD:$*/
34
35 /* 82562G 10/100 Network Connection
36  * 82562G-2 10/100 Network Connection
37  * 82562GT 10/100 Network Connection
38  * 82562GT-2 10/100 Network Connection
39  * 82562V 10/100 Network Connection
40  * 82562V-2 10/100 Network Connection
41  * 82566DC-2 Gigabit Network Connection
42  * 82566DC Gigabit Network Connection
43  * 82566DM-2 Gigabit Network Connection
44  * 82566DM Gigabit Network Connection
45  * 82566MC Gigabit Network Connection
46  * 82566MM Gigabit Network Connection
47  * 82567LM Gigabit Network Connection
48  * 82567LF Gigabit Network Connection
49  * 82567V Gigabit Network Connection
50  * 82567LM-2 Gigabit Network Connection
51  * 82567LF-2 Gigabit Network Connection
52  * 82567V-2 Gigabit Network Connection
53  * 82567LF-3 Gigabit Network Connection
54  * 82567LM-3 Gigabit Network Connection
55  * 82567LM-4 Gigabit Network Connection
56  * 82577LM Gigabit Network Connection
57  * 82577LC Gigabit Network Connection
58  * 82578DM Gigabit Network Connection
59  * 82578DC Gigabit Network Connection
60  * 82579LM Gigabit Network Connection
61  * 82579V Gigabit Network Connection
62  * Ethernet Connection I217-LM
63  * Ethernet Connection I217-V
64  * Ethernet Connection I218-V
65  * Ethernet Connection I218-LM
66  * Ethernet Connection (2) I218-LM
67  * Ethernet Connection (2) I218-V
68  * Ethernet Connection (3) I218-LM
69  * Ethernet Connection (3) I218-V
70  */
71
72 #include "e1000_api.h"
73
74 static s32  e1000_acquire_swflag_ich8lan(struct e1000_hw *hw);
75 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw);
76 static s32  e1000_acquire_nvm_ich8lan(struct e1000_hw *hw);
77 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw);
78 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
79 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
80 static int  e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
81 static int  e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
82 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw);
83 static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
84                                               u8 *mc_addr_list,
85                                               u32 mc_addr_count);
86 static s32  e1000_check_reset_block_ich8lan(struct e1000_hw *hw);
87 static s32  e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw);
88 static s32  e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
89 static s32  e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw,
90                                             bool active);
91 static s32  e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw,
92                                             bool active);
93 static s32  e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
94                                    u16 words, u16 *data);
95 static s32  e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
96                                     u16 words, u16 *data);
97 static s32  e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw);
98 static s32  e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw);
99 static s32  e1000_valid_led_default_ich8lan(struct e1000_hw *hw,
100                                             u16 *data);
101 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
102 static s32  e1000_get_bus_info_ich8lan(struct e1000_hw *hw);
103 static s32  e1000_reset_hw_ich8lan(struct e1000_hw *hw);
104 static s32  e1000_init_hw_ich8lan(struct e1000_hw *hw);
105 static s32  e1000_setup_link_ich8lan(struct e1000_hw *hw);
106 static s32  e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
107 static s32  e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
108 static s32  e1000_get_link_up_info_ich8lan(struct e1000_hw *hw,
109                                            u16 *speed, u16 *duplex);
110 static s32  e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
111 static s32  e1000_led_on_ich8lan(struct e1000_hw *hw);
112 static s32  e1000_led_off_ich8lan(struct e1000_hw *hw);
113 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
114 static s32  e1000_setup_led_pchlan(struct e1000_hw *hw);
115 static s32  e1000_cleanup_led_pchlan(struct e1000_hw *hw);
116 static s32  e1000_led_on_pchlan(struct e1000_hw *hw);
117 static s32  e1000_led_off_pchlan(struct e1000_hw *hw);
118 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
119 static s32  e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
120 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
121 static s32  e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
122 static s32  e1000_read_flash_byte_ich8lan(struct e1000_hw *hw,
123                                           u32 offset, u8 *data);
124 static s32  e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
125                                           u8 size, u16 *data);
126 static s32  e1000_read_flash_word_ich8lan(struct e1000_hw *hw,
127                                           u32 offset, u16 *data);
128 static s32  e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
129                                                  u32 offset, u8 byte);
130 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
131 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
132 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw);
133 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
134 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
135 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
136 static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr);
137
138 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
139 /* Offset 04h HSFSTS */
140 union ich8_hws_flash_status {
141         struct ich8_hsfsts {
142                 u16 flcdone:1; /* bit 0 Flash Cycle Done */
143                 u16 flcerr:1; /* bit 1 Flash Cycle Error */
144                 u16 dael:1; /* bit 2 Direct Access error Log */
145                 u16 berasesz:2; /* bit 4:3 Sector Erase Size */
146                 u16 flcinprog:1; /* bit 5 flash cycle in Progress */
147                 u16 reserved1:2; /* bit 13:6 Reserved */
148                 u16 reserved2:6; /* bit 13:6 Reserved */
149                 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
150                 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
151         } hsf_status;
152         u16 regval;
153 };
154
155 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
156 /* Offset 06h FLCTL */
157 union ich8_hws_flash_ctrl {
158         struct ich8_hsflctl {
159                 u16 flcgo:1;   /* 0 Flash Cycle Go */
160                 u16 flcycle:2;   /* 2:1 Flash Cycle */
161                 u16 reserved:5;   /* 7:3 Reserved  */
162                 u16 fldbcount:2;   /* 9:8 Flash Data Byte Count */
163                 u16 flockdn:6;   /* 15:10 Reserved */
164         } hsf_ctrl;
165         u16 regval;
166 };
167
168 /* ICH Flash Region Access Permissions */
169 union ich8_hws_flash_regacc {
170         struct ich8_flracc {
171                 u32 grra:8; /* 0:7 GbE region Read Access */
172                 u32 grwa:8; /* 8:15 GbE region Write Access */
173                 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
174                 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
175         } hsf_flregacc;
176         u16 regval;
177 };
178
179 /**
180  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
181  *  @hw: pointer to the HW structure
182  *
183  *  Test access to the PHY registers by reading the PHY ID registers.  If
184  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
185  *  otherwise assume the read PHY ID is correct if it is valid.
186  *
187  *  Assumes the sw/fw/hw semaphore is already acquired.
188  **/
189 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
190 {
191         u16 phy_reg = 0;
192         u32 phy_id = 0;
193         s32 ret_val = 0;
194         u16 retry_count;
195         u32 mac_reg = 0;
196
197         for (retry_count = 0; retry_count < 2; retry_count++) {
198                 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_reg);
199                 if (ret_val || (phy_reg == 0xFFFF))
200                         continue;
201                 phy_id = (u32)(phy_reg << 16);
202
203                 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_reg);
204                 if (ret_val || (phy_reg == 0xFFFF)) {
205                         phy_id = 0;
206                         continue;
207                 }
208                 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
209                 break;
210         }
211
212         if (hw->phy.id) {
213                 if  (hw->phy.id == phy_id)
214                         goto out;
215         } else if (phy_id) {
216                 hw->phy.id = phy_id;
217                 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
218                 goto out;
219         }
220
221         /* In case the PHY needs to be in mdio slow mode,
222          * set slow mode and try to get the PHY id again.
223          */
224         if (hw->mac.type < e1000_pch_lpt) {
225                 hw->phy.ops.release(hw);
226                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
227                 if (!ret_val)
228                         ret_val = e1000_get_phy_id(hw);
229                 hw->phy.ops.acquire(hw);
230         }
231
232         if (ret_val)
233                 return FALSE;
234 out:
235         if (hw->mac.type == e1000_pch_lpt) {
236                 /* Unforce SMBus mode in PHY */
237                 hw->phy.ops.read_reg_locked(hw, CV_SMB_CTRL, &phy_reg);
238                 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
239                 hw->phy.ops.write_reg_locked(hw, CV_SMB_CTRL, phy_reg);
240
241                 /* Unforce SMBus mode in MAC */
242                 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
243                 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
244                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
245         }
246
247         return TRUE;
248 }
249
250 /**
251  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
252  *  @hw: pointer to the HW structure
253  *
254  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
255  *  used to reset the PHY to a quiescent state when necessary.
256  **/
257 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
258 {
259         u32 mac_reg;
260
261         DEBUGFUNC("e1000_toggle_lanphypc_pch_lpt");
262
263         /* Set Phy Config Counter to 50msec */
264         mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
265         mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
266         mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
267         E1000_WRITE_REG(hw, E1000_FEXTNVM3, mac_reg);
268
269         /* Toggle LANPHYPC Value bit */
270         mac_reg = E1000_READ_REG(hw, E1000_CTRL);
271         mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
272         mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
273         E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
274         E1000_WRITE_FLUSH(hw);
275         usec_delay(10);
276         mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
277         E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
278         E1000_WRITE_FLUSH(hw);
279
280         if (hw->mac.type < e1000_pch_lpt) {
281                 msec_delay(50);
282         } else {
283                 u16 count = 20;
284
285                 do {
286                         msec_delay(5);
287                 } while (!(E1000_READ_REG(hw, E1000_CTRL_EXT) &
288                            E1000_CTRL_EXT_LPCD) && count--);
289
290                 msec_delay(30);
291         }
292 }
293
294 /**
295  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
296  *  @hw: pointer to the HW structure
297  *
298  *  Workarounds/flow necessary for PHY initialization during driver load
299  *  and resume paths.
300  **/
301 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
302 {
303         u32 mac_reg, fwsm = E1000_READ_REG(hw, E1000_FWSM);
304         s32 ret_val;
305
306         DEBUGFUNC("e1000_init_phy_workarounds_pchlan");
307
308         /* Gate automatic PHY configuration by hardware on managed and
309          * non-managed 82579 and newer adapters.
310          */
311         e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
312
313         /* It is not possible to be certain of the current state of ULP
314          * so forcibly disable it.
315          */
316         hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
317         e1000_disable_ulp_lpt_lp(hw, TRUE);
318
319         ret_val = hw->phy.ops.acquire(hw);
320         if (ret_val) {
321                 DEBUGOUT("Failed to initialize PHY flow\n");
322                 goto out;
323         }
324
325         /* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
326          * inaccessible and resetting the PHY is not blocked, toggle the
327          * LANPHYPC Value bit to force the interconnect to PCIe mode.
328          */
329         switch (hw->mac.type) {
330         case e1000_pch_lpt:
331                 if (e1000_phy_is_accessible_pchlan(hw))
332                         break;
333
334                 /* Before toggling LANPHYPC, see if PHY is accessible by
335                  * forcing MAC to SMBus mode first.
336                  */
337                 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
338                 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
339                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
340
341                 /* Wait 50 milliseconds for MAC to finish any retries
342                  * that it might be trying to perform from previous
343                  * attempts to acknowledge any phy read requests.
344                  */
345                  msec_delay(50);
346
347                 /* fall-through */
348         case e1000_pch2lan:
349                 if (e1000_phy_is_accessible_pchlan(hw))
350                         break;
351
352                 /* fall-through */
353         case e1000_pchlan:
354                 if ((hw->mac.type == e1000_pchlan) &&
355                     (fwsm & E1000_ICH_FWSM_FW_VALID))
356                         break;
357
358                 if (hw->phy.ops.check_reset_block(hw)) {
359                         DEBUGOUT("Required LANPHYPC toggle blocked by ME\n");
360                         ret_val = -E1000_ERR_PHY;
361                         break;
362                 }
363
364                 /* Toggle LANPHYPC Value bit */
365                 e1000_toggle_lanphypc_pch_lpt(hw);
366                 if (hw->mac.type >= e1000_pch_lpt) {
367                         if (e1000_phy_is_accessible_pchlan(hw))
368                                 break;
369
370                         /* Toggling LANPHYPC brings the PHY out of SMBus mode
371                          * so ensure that the MAC is also out of SMBus mode
372                          */
373                         mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
374                         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
375                         E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
376
377                         if (e1000_phy_is_accessible_pchlan(hw))
378                                 break;
379
380                         ret_val = -E1000_ERR_PHY;
381                 }
382                 break;
383         default:
384                 break;
385         }
386
387         hw->phy.ops.release(hw);
388         if (!ret_val) {
389
390                 /* Check to see if able to reset PHY.  Print error if not */
391                 if (hw->phy.ops.check_reset_block(hw)) {
392                         ERROR_REPORT("Reset blocked by ME\n");
393                         goto out;
394                 }
395
396                 /* Reset the PHY before any access to it.  Doing so, ensures
397                  * that the PHY is in a known good state before we read/write
398                  * PHY registers.  The generic reset is sufficient here,
399                  * because we haven't determined the PHY type yet.
400                  */
401                 ret_val = e1000_phy_hw_reset_generic(hw);
402                 if (ret_val)
403                         goto out;
404
405                 /* On a successful reset, possibly need to wait for the PHY
406                  * to quiesce to an accessible state before returning control
407                  * to the calling function.  If the PHY does not quiesce, then
408                  * return E1000E_BLK_PHY_RESET, as this is the condition that
409                  *  the PHY is in.
410                  */
411                 ret_val = hw->phy.ops.check_reset_block(hw);
412                 if (ret_val)
413                         ERROR_REPORT("ME blocked access to PHY after reset\n");
414         }
415
416 out:
417         /* Ungate automatic PHY configuration on non-managed 82579 */
418         if ((hw->mac.type == e1000_pch2lan) &&
419             !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
420                 msec_delay(10);
421                 e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
422         }
423
424         return ret_val;
425 }
426
427 /**
428  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
429  *  @hw: pointer to the HW structure
430  *
431  *  Initialize family-specific PHY parameters and function pointers.
432  **/
433 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
434 {
435         struct e1000_phy_info *phy = &hw->phy;
436         s32 ret_val;
437
438         DEBUGFUNC("e1000_init_phy_params_pchlan");
439
440         phy->addr               = 1;
441         phy->reset_delay_us     = 100;
442
443         phy->ops.acquire        = e1000_acquire_swflag_ich8lan;
444         phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
445         phy->ops.get_cfg_done   = e1000_get_cfg_done_ich8lan;
446         phy->ops.set_page       = e1000_set_page_igp;
447         phy->ops.read_reg       = e1000_read_phy_reg_hv;
448         phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
449         phy->ops.read_reg_page  = e1000_read_phy_reg_page_hv;
450         phy->ops.release        = e1000_release_swflag_ich8lan;
451         phy->ops.reset          = e1000_phy_hw_reset_ich8lan;
452         phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
453         phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
454         phy->ops.write_reg      = e1000_write_phy_reg_hv;
455         phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
456         phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
457         phy->ops.power_up       = e1000_power_up_phy_copper;
458         phy->ops.power_down     = e1000_power_down_phy_copper_ich8lan;
459         phy->autoneg_mask       = AUTONEG_ADVERTISE_SPEED_DEFAULT;
460
461         phy->id = e1000_phy_unknown;
462
463         ret_val = e1000_init_phy_workarounds_pchlan(hw);
464         if (ret_val)
465                 return ret_val;
466
467         if (phy->id == e1000_phy_unknown)
468                 switch (hw->mac.type) {
469                 default:
470                         ret_val = e1000_get_phy_id(hw);
471                         if (ret_val)
472                                 return ret_val;
473                         if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
474                                 break;
475                         /* fall-through */
476                 case e1000_pch2lan:
477                 case e1000_pch_lpt:
478                         /* In case the PHY needs to be in mdio slow mode,
479                          * set slow mode and try to get the PHY id again.
480                          */
481                         ret_val = e1000_set_mdio_slow_mode_hv(hw);
482                         if (ret_val)
483                                 return ret_val;
484                         ret_val = e1000_get_phy_id(hw);
485                         if (ret_val)
486                                 return ret_val;
487                         break;
488                 }
489         phy->type = e1000_get_phy_type_from_id(phy->id);
490
491         switch (phy->type) {
492         case e1000_phy_82577:
493         case e1000_phy_82579:
494         case e1000_phy_i217:
495                 phy->ops.check_polarity = e1000_check_polarity_82577;
496                 phy->ops.force_speed_duplex =
497                         e1000_phy_force_speed_duplex_82577;
498                 phy->ops.get_cable_length = e1000_get_cable_length_82577;
499                 phy->ops.get_info = e1000_get_phy_info_82577;
500                 phy->ops.commit = e1000_phy_sw_reset_generic;
501                 break;
502         case e1000_phy_82578:
503                 phy->ops.check_polarity = e1000_check_polarity_m88;
504                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
505                 phy->ops.get_cable_length = e1000_get_cable_length_m88;
506                 phy->ops.get_info = e1000_get_phy_info_m88;
507                 break;
508         default:
509                 ret_val = -E1000_ERR_PHY;
510                 break;
511         }
512
513         return ret_val;
514 }
515
516 /**
517  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
518  *  @hw: pointer to the HW structure
519  *
520  *  Initialize family-specific PHY parameters and function pointers.
521  **/
522 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
523 {
524         struct e1000_phy_info *phy = &hw->phy;
525         s32 ret_val;
526         u16 i = 0;
527
528         DEBUGFUNC("e1000_init_phy_params_ich8lan");
529
530         phy->addr               = 1;
531         phy->reset_delay_us     = 100;
532
533         phy->ops.acquire        = e1000_acquire_swflag_ich8lan;
534         phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
535         phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
536         phy->ops.get_cfg_done   = e1000_get_cfg_done_ich8lan;
537         phy->ops.read_reg       = e1000_read_phy_reg_igp;
538         phy->ops.release        = e1000_release_swflag_ich8lan;
539         phy->ops.reset          = e1000_phy_hw_reset_ich8lan;
540         phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan;
541         phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan;
542         phy->ops.write_reg      = e1000_write_phy_reg_igp;
543         phy->ops.power_up       = e1000_power_up_phy_copper;
544         phy->ops.power_down     = e1000_power_down_phy_copper_ich8lan;
545
546         /* We may need to do this twice - once for IGP and if that fails,
547          * we'll set BM func pointers and try again
548          */
549         ret_val = e1000_determine_phy_address(hw);
550         if (ret_val) {
551                 phy->ops.write_reg = e1000_write_phy_reg_bm;
552                 phy->ops.read_reg  = e1000_read_phy_reg_bm;
553                 ret_val = e1000_determine_phy_address(hw);
554                 if (ret_val) {
555                         DEBUGOUT("Cannot determine PHY addr. Erroring out\n");
556                         return ret_val;
557                 }
558         }
559
560         phy->id = 0;
561         while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) &&
562                (i++ < 100)) {
563                 msec_delay(1);
564                 ret_val = e1000_get_phy_id(hw);
565                 if (ret_val)
566                         return ret_val;
567         }
568
569         /* Verify phy id */
570         switch (phy->id) {
571         case IGP03E1000_E_PHY_ID:
572                 phy->type = e1000_phy_igp_3;
573                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
574                 phy->ops.read_reg_locked = e1000_read_phy_reg_igp_locked;
575                 phy->ops.write_reg_locked = e1000_write_phy_reg_igp_locked;
576                 phy->ops.get_info = e1000_get_phy_info_igp;
577                 phy->ops.check_polarity = e1000_check_polarity_igp;
578                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
579                 break;
580         case IFE_E_PHY_ID:
581         case IFE_PLUS_E_PHY_ID:
582         case IFE_C_E_PHY_ID:
583                 phy->type = e1000_phy_ife;
584                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
585                 phy->ops.get_info = e1000_get_phy_info_ife;
586                 phy->ops.check_polarity = e1000_check_polarity_ife;
587                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
588                 break;
589         case BME1000_E_PHY_ID:
590                 phy->type = e1000_phy_bm;
591                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
592                 phy->ops.read_reg = e1000_read_phy_reg_bm;
593                 phy->ops.write_reg = e1000_write_phy_reg_bm;
594                 phy->ops.commit = e1000_phy_sw_reset_generic;
595                 phy->ops.get_info = e1000_get_phy_info_m88;
596                 phy->ops.check_polarity = e1000_check_polarity_m88;
597                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
598                 break;
599         default:
600                 return -E1000_ERR_PHY;
601                 break;
602         }
603
604         return E1000_SUCCESS;
605 }
606
607 /**
608  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
609  *  @hw: pointer to the HW structure
610  *
611  *  Initialize family-specific NVM parameters and function
612  *  pointers.
613  **/
614 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
615 {
616         struct e1000_nvm_info *nvm = &hw->nvm;
617         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
618         u32 gfpreg, sector_base_addr, sector_end_addr;
619         u16 i;
620
621         DEBUGFUNC("e1000_init_nvm_params_ich8lan");
622
623         /* Can't read flash registers if the register set isn't mapped. */
624         nvm->type = e1000_nvm_flash_sw;
625         if (!hw->flash_address) {
626                 DEBUGOUT("ERROR: Flash registers not mapped\n");
627                 return -E1000_ERR_CONFIG;
628         }
629
630         gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG);
631
632         /* sector_X_addr is a "sector"-aligned address (4096 bytes)
633          * Add 1 to sector_end_addr since this sector is included in
634          * the overall size.
635          */
636         sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
637         sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
638
639         /* flash_base_addr is byte-aligned */
640         nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
641
642         /* find total size of the NVM, then cut in half since the total
643          * size represents two separate NVM banks.
644          */
645         nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
646                                 << FLASH_SECTOR_ADDR_SHIFT);
647         nvm->flash_bank_size /= 2;
648         /* Adjust to word count */
649         nvm->flash_bank_size /= sizeof(u16);
650
651         nvm->word_size = E1000_SHADOW_RAM_WORDS;
652
653         /* Clear shadow ram */
654         for (i = 0; i < nvm->word_size; i++) {
655                 dev_spec->shadow_ram[i].modified = FALSE;
656                 dev_spec->shadow_ram[i].value    = 0xFFFF;
657         }
658
659         /* Function Pointers */
660         nvm->ops.acquire        = e1000_acquire_nvm_ich8lan;
661         nvm->ops.release        = e1000_release_nvm_ich8lan;
662         nvm->ops.read           = e1000_read_nvm_ich8lan;
663         nvm->ops.update         = e1000_update_nvm_checksum_ich8lan;
664         nvm->ops.valid_led_default = e1000_valid_led_default_ich8lan;
665         nvm->ops.validate       = e1000_validate_nvm_checksum_ich8lan;
666         nvm->ops.write          = e1000_write_nvm_ich8lan;
667
668         return E1000_SUCCESS;
669 }
670
671 /**
672  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
673  *  @hw: pointer to the HW structure
674  *
675  *  Initialize family-specific MAC parameters and function
676  *  pointers.
677  **/
678 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
679 {
680         struct e1000_mac_info *mac = &hw->mac;
681         u16 pci_cfg;
682
683         DEBUGFUNC("e1000_init_mac_params_ich8lan");
684
685         /* Set media type function pointer */
686         hw->phy.media_type = e1000_media_type_copper;
687
688         /* Set mta register count */
689         mac->mta_reg_count = 32;
690         /* Set rar entry count */
691         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
692         if (mac->type == e1000_ich8lan)
693                 mac->rar_entry_count--;
694         /* Set if part includes ASF firmware */
695         mac->asf_firmware_present = TRUE;
696         /* FWSM register */
697         mac->has_fwsm = TRUE;
698         /* ARC subsystem not supported */
699         mac->arc_subsystem_valid = FALSE;
700         /* Adaptive IFS supported */
701         mac->adaptive_ifs = TRUE;
702
703         /* Function pointers */
704
705         /* bus type/speed/width */
706         mac->ops.get_bus_info = e1000_get_bus_info_ich8lan;
707         /* function id */
708         mac->ops.set_lan_id = e1000_set_lan_id_single_port;
709         /* reset */
710         mac->ops.reset_hw = e1000_reset_hw_ich8lan;
711         /* hw initialization */
712         mac->ops.init_hw = e1000_init_hw_ich8lan;
713         /* link setup */
714         mac->ops.setup_link = e1000_setup_link_ich8lan;
715         /* physical interface setup */
716         mac->ops.setup_physical_interface = e1000_setup_copper_link_ich8lan;
717         /* check for link */
718         mac->ops.check_for_link = e1000_check_for_copper_link_ich8lan;
719         /* link info */
720         mac->ops.get_link_up_info = e1000_get_link_up_info_ich8lan;
721         /* multicast address update */
722         mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
723         /* clear hardware counters */
724         mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan;
725
726         /* LED and other operations */
727         switch (mac->type) {
728         case e1000_ich8lan:
729         case e1000_ich9lan:
730         case e1000_ich10lan:
731                 /* check management mode */
732                 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
733                 /* ID LED init */
734                 mac->ops.id_led_init = e1000_id_led_init_generic;
735                 /* blink LED */
736                 mac->ops.blink_led = e1000_blink_led_generic;
737                 /* setup LED */
738                 mac->ops.setup_led = e1000_setup_led_generic;
739                 /* cleanup LED */
740                 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
741                 /* turn on/off LED */
742                 mac->ops.led_on = e1000_led_on_ich8lan;
743                 mac->ops.led_off = e1000_led_off_ich8lan;
744                 break;
745         case e1000_pch2lan:
746                 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
747                 mac->ops.rar_set = e1000_rar_set_pch2lan;
748                 /* fall-through */
749         case e1000_pch_lpt:
750                 /* multicast address update for pch2 */
751                 mac->ops.update_mc_addr_list =
752                         e1000_update_mc_addr_list_pch2lan;
753         case e1000_pchlan:
754                 /* save PCH revision_id */
755                 e1000_read_pci_cfg(hw, E1000_PCI_REVISION_ID_REG, &pci_cfg);
756                 hw->revision_id = (u8)(pci_cfg &= 0x000F);
757                 /* check management mode */
758                 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
759                 /* ID LED init */
760                 mac->ops.id_led_init = e1000_id_led_init_pchlan;
761                 /* setup LED */
762                 mac->ops.setup_led = e1000_setup_led_pchlan;
763                 /* cleanup LED */
764                 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
765                 /* turn on/off LED */
766                 mac->ops.led_on = e1000_led_on_pchlan;
767                 mac->ops.led_off = e1000_led_off_pchlan;
768                 break;
769         default:
770                 break;
771         }
772
773         if (mac->type == e1000_pch_lpt) {
774                 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
775                 mac->ops.rar_set = e1000_rar_set_pch_lpt;
776                 mac->ops.setup_physical_interface = e1000_setup_copper_link_pch_lpt;
777                 mac->ops.set_obff_timer = e1000_set_obff_timer_pch_lpt;
778         }
779
780         /* Enable PCS Lock-loss workaround for ICH8 */
781         if (mac->type == e1000_ich8lan)
782                 e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, TRUE);
783
784         return E1000_SUCCESS;
785 }
786
787 /**
788  *  __e1000_access_emi_reg_locked - Read/write EMI register
789  *  @hw: pointer to the HW structure
790  *  @addr: EMI address to program
791  *  @data: pointer to value to read/write from/to the EMI address
792  *  @read: boolean flag to indicate read or write
793  *
794  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
795  **/
796 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
797                                          u16 *data, bool read)
798 {
799         s32 ret_val;
800
801         DEBUGFUNC("__e1000_access_emi_reg_locked");
802
803         ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, address);
804         if (ret_val)
805                 return ret_val;
806
807         if (read)
808                 ret_val = hw->phy.ops.read_reg_locked(hw, I82579_EMI_DATA,
809                                                       data);
810         else
811                 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
812                                                        *data);
813
814         return ret_val;
815 }
816
817 /**
818  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
819  *  @hw: pointer to the HW structure
820  *  @addr: EMI address to program
821  *  @data: value to be read from the EMI address
822  *
823  *  Assumes the SW/FW/HW Semaphore is already acquired.
824  **/
825 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
826 {
827         DEBUGFUNC("e1000_read_emi_reg_locked");
828
829         return __e1000_access_emi_reg_locked(hw, addr, data, TRUE);
830 }
831
832 /**
833  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
834  *  @hw: pointer to the HW structure
835  *  @addr: EMI address to program
836  *  @data: value to be written to the EMI address
837  *
838  *  Assumes the SW/FW/HW Semaphore is already acquired.
839  **/
840 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
841 {
842         DEBUGFUNC("e1000_read_emi_reg_locked");
843
844         return __e1000_access_emi_reg_locked(hw, addr, &data, FALSE);
845 }
846
847 /**
848  *  e1000_set_eee_pchlan - Enable/disable EEE support
849  *  @hw: pointer to the HW structure
850  *
851  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
852  *  the link and the EEE capabilities of the link partner.  The LPI Control
853  *  register bits will remain set only if/when link is up.
854  *
855  *  EEE LPI must not be asserted earlier than one second after link is up.
856  *  On 82579, EEE LPI should not be enabled until such time otherwise there
857  *  can be link issues with some switches.  Other devices can have EEE LPI
858  *  enabled immediately upon link up since they have a timer in hardware which
859  *  prevents LPI from being asserted too early.
860  **/
861 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
862 {
863         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
864         s32 ret_val;
865         u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
866
867         DEBUGFUNC("e1000_set_eee_pchlan");
868
869         switch (hw->phy.type) {
870         case e1000_phy_82579:
871                 lpa = I82579_EEE_LP_ABILITY;
872                 pcs_status = I82579_EEE_PCS_STATUS;
873                 adv_addr = I82579_EEE_ADVERTISEMENT;
874                 break;
875         case e1000_phy_i217:
876                 lpa = I217_EEE_LP_ABILITY;
877                 pcs_status = I217_EEE_PCS_STATUS;
878                 adv_addr = I217_EEE_ADVERTISEMENT;
879                 break;
880         default:
881                 return E1000_SUCCESS;
882         }
883
884         ret_val = hw->phy.ops.acquire(hw);
885         if (ret_val)
886                 return ret_val;
887
888         ret_val = hw->phy.ops.read_reg_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
889         if (ret_val)
890                 goto release;
891
892         /* Clear bits that enable EEE in various speeds */
893         lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
894
895         /* Enable EEE if not disabled by user */
896         if (!dev_spec->eee_disable) {
897                 /* Save off link partner's EEE ability */
898                 ret_val = e1000_read_emi_reg_locked(hw, lpa,
899                                                     &dev_spec->eee_lp_ability);
900                 if (ret_val)
901                         goto release;
902
903                 /* Read EEE advertisement */
904                 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
905                 if (ret_val)
906                         goto release;
907
908                 /* Enable EEE only for speeds in which the link partner is
909                  * EEE capable and for which we advertise EEE.
910                  */
911                 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
912                         lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
913
914                 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
915                         hw->phy.ops.read_reg_locked(hw, PHY_LP_ABILITY, &data);
916                         if (data & NWAY_LPAR_100TX_FD_CAPS)
917                                 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
918                         else
919                                 /* EEE is not supported in 100Half, so ignore
920                                  * partner's EEE in 100 ability if full-duplex
921                                  * is not advertised.
922                                  */
923                                 dev_spec->eee_lp_ability &=
924                                     ~I82579_EEE_100_SUPPORTED;
925                 }
926         }
927
928         if (hw->phy.type == e1000_phy_82579) {
929                 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
930                                                     &data);
931                 if (ret_val)
932                         goto release;
933
934                 data &= ~I82579_LPI_100_PLL_SHUT;
935                 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
936                                                      data);
937         }
938
939         /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
940         ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
941         if (ret_val)
942                 goto release;
943
944         ret_val = hw->phy.ops.write_reg_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
945 release:
946         hw->phy.ops.release(hw);
947
948         return ret_val;
949 }
950
951 /**
952  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
953  *  @hw:   pointer to the HW structure
954  *  @link: link up bool flag
955  *
956  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
957  *  preventing further DMA write requests.  Workaround the issue by disabling
958  *  the de-assertion of the clock request when in 1Gpbs mode.
959  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
960  *  speeds in order to avoid Tx hangs.
961  **/
962 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
963 {
964         u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
965         u32 status = E1000_READ_REG(hw, E1000_STATUS);
966         s32 ret_val = E1000_SUCCESS;
967         u16 reg;
968
969         if (link && (status & E1000_STATUS_SPEED_1000)) {
970                 ret_val = hw->phy.ops.acquire(hw);
971                 if (ret_val)
972                         return ret_val;
973
974                 ret_val =
975                     e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
976                                                &reg);
977                 if (ret_val)
978                         goto release;
979
980                 ret_val =
981                     e1000_write_kmrn_reg_locked(hw,
982                                                 E1000_KMRNCTRLSTA_K1_CONFIG,
983                                                 reg &
984                                                 ~E1000_KMRNCTRLSTA_K1_ENABLE);
985                 if (ret_val)
986                         goto release;
987
988                 usec_delay(10);
989
990                 E1000_WRITE_REG(hw, E1000_FEXTNVM6,
991                                 fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
992
993                 ret_val =
994                     e1000_write_kmrn_reg_locked(hw,
995                                                 E1000_KMRNCTRLSTA_K1_CONFIG,
996                                                 reg);
997 release:
998                 hw->phy.ops.release(hw);
999         } else {
1000                 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
1001                 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
1002
1003                 if (!link || ((status & E1000_STATUS_SPEED_100) &&
1004                               (status & E1000_STATUS_FD)))
1005                         goto update_fextnvm6;
1006
1007                 ret_val = hw->phy.ops.read_reg(hw, I217_INBAND_CTRL, &reg);
1008                 if (ret_val)
1009                         return ret_val;
1010
1011                 /* Clear link status transmit timeout */
1012                 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
1013
1014                 if (status & E1000_STATUS_SPEED_100) {
1015                         /* Set inband Tx timeout to 5x10us for 100Half */
1016                         reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1017
1018                         /* Do not extend the K1 entry latency for 100Half */
1019                         fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1020                 } else {
1021                         /* Set inband Tx timeout to 50x10us for 10Full/Half */
1022                         reg |= 50 <<
1023                                I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1024
1025                         /* Extend the K1 entry latency for 10 Mbps */
1026                         fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1027                 }
1028
1029                 ret_val = hw->phy.ops.write_reg(hw, I217_INBAND_CTRL, reg);
1030                 if (ret_val)
1031                         return ret_val;
1032
1033 update_fextnvm6:
1034                 E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1035         }
1036
1037         return ret_val;
1038 }
1039
1040 static u64 e1000_ltr2ns(u16 ltr)
1041 {
1042         u32 value, scale;
1043
1044         /* Determine the latency in nsec based on the LTR value & scale */
1045         value = ltr & E1000_LTRV_VALUE_MASK;
1046         scale = (ltr & E1000_LTRV_SCALE_MASK) >> E1000_LTRV_SCALE_SHIFT;
1047
1048         return value * (1 << (scale * E1000_LTRV_SCALE_FACTOR));
1049 }
1050
1051 /**
1052  *  e1000_platform_pm_pch_lpt - Set platform power management values
1053  *  @hw: pointer to the HW structure
1054  *  @link: bool indicating link status
1055  *
1056  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1057  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1058  *  when link is up (which must not exceed the maximum latency supported
1059  *  by the platform), otherwise specify there is no LTR requirement.
1060  *  Unlike TRUE-PCIe devices which set the LTR maximum snoop/no-snoop
1061  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1062  *  Capability register set, on this device LTR is set by writing the
1063  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1064  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1065  *  message to the PMC.
1066  *
1067  *  Use the LTR value to calculate the Optimized Buffer Flush/Fill (OBFF)
1068  *  high-water mark.
1069  **/
1070 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1071 {
1072         u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1073                   link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1074         u16 lat_enc = 0;        /* latency encoded */
1075         s32 obff_hwm = 0;
1076
1077         DEBUGFUNC("e1000_platform_pm_pch_lpt");
1078
1079         if (link) {
1080                 u16 speed, duplex, scale = 0;
1081                 u16 max_snoop, max_nosnoop;
1082                 u16 max_ltr_enc;        /* max LTR latency encoded */
1083                 s64 lat_ns;             /* latency (ns) */
1084                 s64 value;
1085                 u32 rxa;
1086
1087                 if (!hw->mac.max_frame_size) {
1088                         DEBUGOUT("max_frame_size not set.\n");
1089                         return -E1000_ERR_CONFIG;
1090                 }
1091
1092                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1093                 if (!speed) {
1094                         DEBUGOUT("Speed not set.\n");
1095                         return -E1000_ERR_CONFIG;
1096                 }
1097
1098                 /* Rx Packet Buffer Allocation size (KB) */
1099                 rxa = E1000_READ_REG(hw, E1000_PBA) & E1000_PBA_RXA_MASK;
1100
1101                 /* Determine the maximum latency tolerated by the device.
1102                  *
1103                  * Per the PCIe spec, the tolerated latencies are encoded as
1104                  * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1105                  * a 10-bit value (0-1023) to provide a range from 1 ns to
1106                  * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1107                  * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1108                  */
1109                 lat_ns = ((s64)rxa * 1024 -
1110                           (2 * (s64)hw->mac.max_frame_size)) * 8 * 1000;
1111                 if (lat_ns < 0)
1112                         lat_ns = 0;
1113                 else
1114                         lat_ns /= speed;
1115
1116                 value = lat_ns;
1117                 while (value > E1000_LTRV_VALUE_MASK) {
1118                         scale++;
1119                         value = E1000_DIVIDE_ROUND_UP(value, (1 << 5));
1120                 }
1121                 if (scale > E1000_LTRV_SCALE_MAX) {
1122                         DEBUGOUT1("Invalid LTR latency scale %d\n", scale);
1123                         return -E1000_ERR_CONFIG;
1124                 }
1125                 lat_enc = (u16)((scale << E1000_LTRV_SCALE_SHIFT) | value);
1126
1127                 /* Determine the maximum latency tolerated by the platform */
1128                 e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT, &max_snoop);
1129                 e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1130                 max_ltr_enc = E1000_MAX(max_snoop, max_nosnoop);
1131
1132                 if (lat_enc > max_ltr_enc) {
1133                         lat_enc = max_ltr_enc;
1134                         lat_ns = e1000_ltr2ns(max_ltr_enc);
1135                 }
1136
1137                 if (lat_ns) {
1138                         lat_ns *= speed * 1000;
1139                         lat_ns /= 8;
1140                         lat_ns /= 1000000000;
1141                         obff_hwm = (s32)(rxa - lat_ns);
1142                 }
1143                 if ((obff_hwm < 0) || (obff_hwm > E1000_SVT_OFF_HWM_MASK)) {
1144                         DEBUGOUT1("Invalid high water mark %d\n", obff_hwm);
1145                         return -E1000_ERR_CONFIG;
1146                 }
1147         }
1148
1149         /* Set Snoop and No-Snoop latencies the same */
1150         reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1151         E1000_WRITE_REG(hw, E1000_LTRV, reg);
1152
1153         /* Set OBFF high water mark */
1154         reg = E1000_READ_REG(hw, E1000_SVT) & ~E1000_SVT_OFF_HWM_MASK;
1155         reg |= obff_hwm;
1156         E1000_WRITE_REG(hw, E1000_SVT, reg);
1157
1158         /* Enable OBFF */
1159         reg = E1000_READ_REG(hw, E1000_SVCR);
1160         reg |= E1000_SVCR_OFF_EN;
1161         /* Always unblock interrupts to the CPU even when the system is
1162          * in OBFF mode. This ensures that small round-robin traffic
1163          * (like ping) does not get dropped or experience long latency.
1164          */
1165         reg |= E1000_SVCR_OFF_MASKINT;
1166         E1000_WRITE_REG(hw, E1000_SVCR, reg);
1167
1168         return E1000_SUCCESS;
1169 }
1170
1171 /**
1172  *  e1000_set_obff_timer_pch_lpt - Update Optimized Buffer Flush/Fill timer
1173  *  @hw: pointer to the HW structure
1174  *  @itr: interrupt throttling rate
1175  *
1176  *  Configure OBFF with the updated interrupt rate.
1177  **/
1178 static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr)
1179 {
1180         u32 svcr;
1181         s32 timer;
1182
1183         DEBUGFUNC("e1000_set_obff_timer_pch_lpt");
1184
1185         /* Convert ITR value into microseconds for OBFF timer */
1186         timer = itr & E1000_ITR_MASK;
1187         timer = (timer * E1000_ITR_MULT) / 1000;
1188
1189         if ((timer < 0) || (timer > E1000_ITR_MASK)) {
1190                 DEBUGOUT1("Invalid OBFF timer %d\n", timer);
1191                 return -E1000_ERR_CONFIG;
1192         }
1193
1194         svcr = E1000_READ_REG(hw, E1000_SVCR);
1195         svcr &= ~E1000_SVCR_OFF_TIMER_MASK;
1196         svcr |= timer << E1000_SVCR_OFF_TIMER_SHIFT;
1197         E1000_WRITE_REG(hw, E1000_SVCR, svcr);
1198
1199         return E1000_SUCCESS;
1200 }
1201
1202 /**
1203  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1204  *  @hw: pointer to the HW structure
1205  *  @to_sx: boolean indicating a system power state transition to Sx
1206  *
1207  *  When link is down, configure ULP mode to significantly reduce the power
1208  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1209  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1210  *  system, configure the ULP mode by software.
1211  */
1212 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1213 {
1214         u32 mac_reg;
1215         s32 ret_val = E1000_SUCCESS;
1216         u16 phy_reg;
1217
1218         if ((hw->mac.type < e1000_pch_lpt) ||
1219             (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1220             (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1221             (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1222             (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1223             (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1224                 return 0;
1225
1226         if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1227                 /* Request ME configure ULP mode in the PHY */
1228                 mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1229                 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1230                 E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1231
1232                 goto out;
1233         }
1234
1235         if (!to_sx) {
1236                 int i = 0;
1237
1238                 /* Poll up to 5 seconds for Cable Disconnected indication */
1239                 while (!(E1000_READ_REG(hw, E1000_FEXT) &
1240                          E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1241                         /* Bail if link is re-acquired */
1242                         if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)
1243                                 return -E1000_ERR_PHY;
1244
1245                         if (i++ == 100)
1246                                 break;
1247
1248                         msec_delay(50);
1249                 }
1250                 DEBUGOUT2("CABLE_DISCONNECTED %s set after %dmsec\n",
1251                          (E1000_READ_REG(hw, E1000_FEXT) &
1252                           E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not",
1253                          i * 50);
1254         }
1255
1256         ret_val = hw->phy.ops.acquire(hw);
1257         if (ret_val)
1258                 goto out;
1259
1260         /* Force SMBus mode in PHY */
1261         ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1262         if (ret_val)
1263                 goto release;
1264         phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1265         e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1266
1267         /* Force SMBus mode in MAC */
1268         mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1269         mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1270         E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1271
1272         /* Set Inband ULP Exit, Reset to SMBus mode and
1273          * Disable SMBus Release on PERST# in PHY
1274          */
1275         ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1276         if (ret_val)
1277                 goto release;
1278         phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1279                     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1280         if (to_sx) {
1281                 if (E1000_READ_REG(hw, E1000_WUFC) & E1000_WUFC_LNKC)
1282                         phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1283
1284                 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1285         } else {
1286                 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1287         }
1288         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1289
1290         /* Set Disable SMBus Release on PERST# in MAC */
1291         mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1292         mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1293         E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1294
1295         /* Commit ULP changes in PHY by starting auto ULP configuration */
1296         phy_reg |= I218_ULP_CONFIG1_START;
1297         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1298 release:
1299         hw->phy.ops.release(hw);
1300 out:
1301         if (ret_val)
1302                 DEBUGOUT1("Error in ULP enable flow: %d\n", ret_val);
1303         else
1304                 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1305
1306         return ret_val;
1307 }
1308
1309 /**
1310  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1311  *  @hw: pointer to the HW structure
1312  *  @force: boolean indicating whether or not to force disabling ULP
1313  *
1314  *  Un-configure ULP mode when link is up, the system is transitioned from
1315  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1316  *  system, poll for an indication from ME that ULP has been un-configured.
1317  *  If not on an ME enabled system, un-configure the ULP mode by software.
1318  *
1319  *  During nominal operation, this function is called when link is acquired
1320  *  to disable ULP mode (force=FALSE); otherwise, for example when unloading
1321  *  the driver or during Sx->S0 transitions, this is called with force=TRUE
1322  *  to forcibly disable ULP.
1323  */
1324 s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1325 {
1326         s32 ret_val = E1000_SUCCESS;
1327         u32 mac_reg;
1328         u16 phy_reg;
1329         int i = 0;
1330
1331         if ((hw->mac.type < e1000_pch_lpt) ||
1332             (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1333             (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1334             (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1335             (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1336             (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1337                 return 0;
1338
1339         if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1340                 if (force) {
1341                         /* Request ME un-configure ULP mode in the PHY */
1342                         mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1343                         mac_reg &= ~E1000_H2ME_ULP;
1344                         mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1345                         E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1346                 }
1347
1348                 /* Poll up to 100msec for ME to clear ULP_CFG_DONE */
1349                 while (E1000_READ_REG(hw, E1000_FWSM) &
1350                        E1000_FWSM_ULP_CFG_DONE) {
1351                         if (i++ == 10) {
1352                                 ret_val = -E1000_ERR_PHY;
1353                                 goto out;
1354                         }
1355
1356                         msec_delay(10);
1357                 }
1358                 DEBUGOUT1("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1359
1360                 if (force) {
1361                         mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1362                         mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1363                         E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1364                 } else {
1365                         /* Clear H2ME.ULP after ME ULP configuration */
1366                         mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1367                         mac_reg &= ~E1000_H2ME_ULP;
1368                         E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1369                 }
1370
1371                 goto out;
1372         }
1373
1374         ret_val = hw->phy.ops.acquire(hw);
1375         if (ret_val)
1376                 goto out;
1377
1378         if (force)
1379                 /* Toggle LANPHYPC Value bit */
1380                 e1000_toggle_lanphypc_pch_lpt(hw);
1381
1382         /* Unforce SMBus mode in PHY */
1383         ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1384         if (ret_val) {
1385                 /* The MAC might be in PCIe mode, so temporarily force to
1386                  * SMBus mode in order to access the PHY.
1387                  */
1388                 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1389                 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1390                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1391
1392                 msec_delay(50);
1393
1394                 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1395                                                        &phy_reg);
1396                 if (ret_val)
1397                         goto release;
1398         }
1399         phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1400         e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1401
1402         /* Unforce SMBus mode in MAC */
1403         mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1404         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1405         E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1406
1407         /* When ULP mode was previously entered, K1 was disabled by the
1408          * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1409          */
1410         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1411         if (ret_val)
1412                 goto release;
1413         phy_reg |= HV_PM_CTRL_K1_ENABLE;
1414         e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1415
1416         /* Clear ULP enabled configuration */
1417         ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1418         if (ret_val)
1419                 goto release;
1420                 phy_reg &= ~(I218_ULP_CONFIG1_IND |
1421                              I218_ULP_CONFIG1_STICKY_ULP |
1422                              I218_ULP_CONFIG1_RESET_TO_SMBUS |
1423                              I218_ULP_CONFIG1_WOL_HOST |
1424                              I218_ULP_CONFIG1_INBAND_EXIT |
1425                              I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1426                 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1427
1428                 /* Commit ULP changes by starting auto ULP configuration */
1429                 phy_reg |= I218_ULP_CONFIG1_START;
1430                 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1431
1432                 /* Clear Disable SMBus Release on PERST# in MAC */
1433                 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1434                 mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1435                 E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1436
1437 release:
1438         hw->phy.ops.release(hw);
1439         if (force) {
1440                 hw->phy.ops.reset(hw);
1441                 msec_delay(50);
1442         }
1443 out:
1444         if (ret_val)
1445                 DEBUGOUT1("Error in ULP disable flow: %d\n", ret_val);
1446         else
1447                 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1448
1449         return ret_val;
1450 }
1451
1452 /**
1453  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1454  *  @hw: pointer to the HW structure
1455  *
1456  *  Checks to see of the link status of the hardware has changed.  If a
1457  *  change in link status has been detected, then we read the PHY registers
1458  *  to get the current speed/duplex if link exists.
1459  **/
1460 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1461 {
1462         struct e1000_mac_info *mac = &hw->mac;
1463         s32 ret_val;
1464         bool link;
1465         u16 phy_reg;
1466
1467         DEBUGFUNC("e1000_check_for_copper_link_ich8lan");
1468
1469         /* We only want to go out to the PHY registers to see if Auto-Neg
1470          * has completed and/or if our link status has changed.  The
1471          * get_link_status flag is set upon receiving a Link Status
1472          * Change or Rx Sequence Error interrupt.
1473          */
1474         if (!mac->get_link_status)
1475                 return E1000_SUCCESS;
1476
1477                 /* First we want to see if the MII Status Register reports
1478                  * link.  If so, then we want to get the current speed/duplex
1479                  * of the PHY.
1480                  */
1481                 ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
1482                 if (ret_val)
1483                         return ret_val;
1484
1485         if (hw->mac.type == e1000_pchlan) {
1486                 ret_val = e1000_k1_gig_workaround_hv(hw, link);
1487                 if (ret_val)
1488                         return ret_val;
1489         }
1490
1491         /* When connected at 10Mbps half-duplex, some parts are excessively
1492          * aggressive resulting in many collisions. To avoid this, increase
1493          * the IPG and reduce Rx latency in the PHY.
1494          */
1495         if (((hw->mac.type == e1000_pch2lan) ||
1496              (hw->mac.type == e1000_pch_lpt)) && link) {
1497                 u32 reg;
1498                 reg = E1000_READ_REG(hw, E1000_STATUS);
1499                 if (!(reg & (E1000_STATUS_FD | E1000_STATUS_SPEED_MASK))) {
1500                         u16 emi_addr;
1501
1502                         reg = E1000_READ_REG(hw, E1000_TIPG);
1503                         reg &= ~E1000_TIPG_IPGT_MASK;
1504                         reg |= 0xFF;
1505                         E1000_WRITE_REG(hw, E1000_TIPG, reg);
1506
1507                         /* Reduce Rx latency in analog PHY */
1508                         ret_val = hw->phy.ops.acquire(hw);
1509                         if (ret_val)
1510                                 return ret_val;
1511
1512                         if (hw->mac.type == e1000_pch2lan)
1513                                 emi_addr = I82579_RX_CONFIG;
1514                         else
1515                                 emi_addr = I217_RX_CONFIG;
1516                         ret_val = e1000_write_emi_reg_locked(hw, emi_addr, 0);
1517
1518                         hw->phy.ops.release(hw);
1519
1520                         if (ret_val)
1521                                 return ret_val;
1522                 }
1523         }
1524
1525         /* Work-around I218 hang issue */
1526         if ((hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1527             (hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1528             (hw->device_id == E1000_DEV_ID_PCH_I218_LM3) ||
1529             (hw->device_id == E1000_DEV_ID_PCH_I218_V3)) {
1530                 ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1531                 if (ret_val)
1532                         return ret_val;
1533         }
1534         if (hw->mac.type == e1000_pch_lpt) {
1535                 /* Set platform power management values for
1536                  * Latency Tolerance Reporting (LTR)
1537                  * Optimized Buffer Flush/Fill (OBFF)
1538                  */
1539                 ret_val = e1000_platform_pm_pch_lpt(hw, link);
1540                 if (ret_val)
1541                         return ret_val;
1542         }
1543
1544         /* Clear link partner's EEE ability */
1545         hw->dev_spec.ich8lan.eee_lp_ability = 0;
1546
1547         if (!link)
1548                 return E1000_SUCCESS; /* No link detected */
1549
1550         mac->get_link_status = FALSE;
1551
1552         switch (hw->mac.type) {
1553         case e1000_pch2lan:
1554                 ret_val = e1000_k1_workaround_lv(hw);
1555                 if (ret_val)
1556                         return ret_val;
1557                 /* fall-thru */
1558         case e1000_pchlan:
1559                 if (hw->phy.type == e1000_phy_82578) {
1560                         ret_val = e1000_link_stall_workaround_hv(hw);
1561                         if (ret_val)
1562                                 return ret_val;
1563                 }
1564
1565                 /* Workaround for PCHx parts in half-duplex:
1566                  * Set the number of preambles removed from the packet
1567                  * when it is passed from the PHY to the MAC to prevent
1568                  * the MAC from misinterpreting the packet type.
1569                  */
1570                 hw->phy.ops.read_reg(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1571                 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1572
1573                 if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FD) !=
1574                     E1000_STATUS_FD)
1575                         phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1576
1577                 hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1578                 break;
1579         default:
1580                 break;
1581         }
1582
1583         /* Check if there was DownShift, must be checked
1584          * immediately after link-up
1585          */
1586         e1000_check_downshift_generic(hw);
1587
1588         /* Enable/Disable EEE after link up */
1589         if (hw->phy.type > e1000_phy_82579) {
1590                 ret_val = e1000_set_eee_pchlan(hw);
1591                 if (ret_val)
1592                         return ret_val;
1593         }
1594
1595         /* If we are forcing speed/duplex, then we simply return since
1596          * we have already determined whether we have link or not.
1597          */
1598         if (!mac->autoneg)
1599                 return -E1000_ERR_CONFIG;
1600
1601         /* Auto-Neg is enabled.  Auto Speed Detection takes care
1602          * of MAC speed/duplex configuration.  So we only need to
1603          * configure Collision Distance in the MAC.
1604          */
1605         mac->ops.config_collision_dist(hw);
1606
1607         /* Configure Flow Control now that Auto-Neg has completed.
1608          * First, we need to restore the desired flow control
1609          * settings because we may have had to re-autoneg with a
1610          * different link partner.
1611          */
1612         ret_val = e1000_config_fc_after_link_up_generic(hw);
1613         if (ret_val)
1614                 DEBUGOUT("Error configuring flow control\n");
1615
1616         return ret_val;
1617 }
1618
1619 /**
1620  *  e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers
1621  *  @hw: pointer to the HW structure
1622  *
1623  *  Initialize family-specific function pointers for PHY, MAC, and NVM.
1624  **/
1625 void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw)
1626 {
1627         DEBUGFUNC("e1000_init_function_pointers_ich8lan");
1628
1629         hw->mac.ops.init_params = e1000_init_mac_params_ich8lan;
1630         hw->nvm.ops.init_params = e1000_init_nvm_params_ich8lan;
1631         switch (hw->mac.type) {
1632         case e1000_ich8lan:
1633         case e1000_ich9lan:
1634         case e1000_ich10lan:
1635                 hw->phy.ops.init_params = e1000_init_phy_params_ich8lan;
1636                 break;
1637         case e1000_pchlan:
1638         case e1000_pch2lan:
1639         case e1000_pch_lpt:
1640                 hw->phy.ops.init_params = e1000_init_phy_params_pchlan;
1641                 break;
1642         default:
1643                 break;
1644         }
1645 }
1646
1647 /**
1648  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1649  *  @hw: pointer to the HW structure
1650  *
1651  *  Acquires the mutex for performing NVM operations.
1652  **/
1653 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
1654 {
1655         DEBUGFUNC("e1000_acquire_nvm_ich8lan");
1656         return E1000_SUCCESS;
1657 }
1658
1659 /**
1660  *  e1000_release_nvm_ich8lan - Release NVM mutex
1661  *  @hw: pointer to the HW structure
1662  *
1663  *  Releases the mutex used while performing NVM operations.
1664  **/
1665 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
1666 {
1667         DEBUGFUNC("e1000_release_nvm_ich8lan");
1668         return;
1669 }
1670
1671 /**
1672  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1673  *  @hw: pointer to the HW structure
1674  *
1675  *  Acquires the software control flag for performing PHY and select
1676  *  MAC CSR accesses.
1677  **/
1678 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1679 {
1680         u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1681         s32 ret_val = E1000_SUCCESS;
1682
1683         DEBUGFUNC("e1000_acquire_swflag_ich8lan");
1684
1685         while (timeout) {
1686                 extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1687                 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1688                         break;
1689
1690                 msec_delay_irq(1);
1691                 timeout--;
1692         }
1693
1694         if (!timeout) {
1695                 DEBUGOUT("SW has already locked the resource.\n");
1696                 ret_val = -E1000_ERR_CONFIG;
1697                 goto out;
1698         }
1699
1700         timeout = SW_FLAG_TIMEOUT;
1701
1702         extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1703         E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1704
1705         while (timeout) {
1706                 extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1707                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1708                         break;
1709
1710                 msec_delay_irq(1);
1711                 timeout--;
1712         }
1713
1714         if (!timeout) {
1715                 DEBUGOUT2("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1716                           E1000_READ_REG(hw, E1000_FWSM), extcnf_ctrl);
1717                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1718                 E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1719                 ret_val = -E1000_ERR_CONFIG;
1720                 goto out;
1721         }
1722
1723 out:
1724         return ret_val;
1725 }
1726
1727 /**
1728  *  e1000_release_swflag_ich8lan - Release software control flag
1729  *  @hw: pointer to the HW structure
1730  *
1731  *  Releases the software control flag for performing PHY and select
1732  *  MAC CSR accesses.
1733  **/
1734 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1735 {
1736         u32 extcnf_ctrl;
1737
1738         DEBUGFUNC("e1000_release_swflag_ich8lan");
1739
1740         extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1741
1742         if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1743                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1744                 E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1745         } else {
1746                 DEBUGOUT("Semaphore unexpectedly released by sw/fw/hw\n");
1747         }
1748         return;
1749 }
1750
1751 /**
1752  *  e1000_check_mng_mode_ich8lan - Checks management mode
1753  *  @hw: pointer to the HW structure
1754  *
1755  *  This checks if the adapter has any manageability enabled.
1756  *  This is a function pointer entry point only called by read/write
1757  *  routines for the PHY and NVM parts.
1758  **/
1759 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1760 {
1761         u32 fwsm;
1762
1763         DEBUGFUNC("e1000_check_mng_mode_ich8lan");
1764
1765         fwsm = E1000_READ_REG(hw, E1000_FWSM);
1766
1767         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1768                ((fwsm & E1000_FWSM_MODE_MASK) ==
1769                 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1770 }
1771
1772 /**
1773  *  e1000_check_mng_mode_pchlan - Checks management mode
1774  *  @hw: pointer to the HW structure
1775  *
1776  *  This checks if the adapter has iAMT enabled.
1777  *  This is a function pointer entry point only called by read/write
1778  *  routines for the PHY and NVM parts.
1779  **/
1780 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1781 {
1782         u32 fwsm;
1783
1784         DEBUGFUNC("e1000_check_mng_mode_pchlan");
1785
1786         fwsm = E1000_READ_REG(hw, E1000_FWSM);
1787
1788         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1789                (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1790 }
1791
1792 /**
1793  *  e1000_rar_set_pch2lan - Set receive address register
1794  *  @hw: pointer to the HW structure
1795  *  @addr: pointer to the receive address
1796  *  @index: receive address array register
1797  *
1798  *  Sets the receive address array register at index to the address passed
1799  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1800  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1801  *  Use SHRA[0-3] in place of those reserved for ME.
1802  **/
1803 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1804 {
1805         u32 rar_low, rar_high;
1806
1807         DEBUGFUNC("e1000_rar_set_pch2lan");
1808
1809         /* HW expects these in little endian so we reverse the byte order
1810          * from network order (big endian) to little endian
1811          */
1812         rar_low = ((u32) addr[0] |
1813                    ((u32) addr[1] << 8) |
1814                    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
1815
1816         rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
1817
1818         /* If MAC address zero, no need to set the AV bit */
1819         if (rar_low || rar_high)
1820                 rar_high |= E1000_RAH_AV;
1821
1822         if (index == 0) {
1823                 E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
1824                 E1000_WRITE_FLUSH(hw);
1825                 E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
1826                 E1000_WRITE_FLUSH(hw);
1827                 return E1000_SUCCESS;
1828         }
1829
1830         /* RAR[1-6] are owned by manageability.  Skip those and program the
1831          * next address into the SHRA register array.
1832          */
1833         if (index < (u32) (hw->mac.rar_entry_count)) {
1834                 s32 ret_val;
1835
1836                 ret_val = e1000_acquire_swflag_ich8lan(hw);
1837                 if (ret_val)
1838                         goto out;
1839
1840                 E1000_WRITE_REG(hw, E1000_SHRAL(index - 1), rar_low);
1841                 E1000_WRITE_FLUSH(hw);
1842                 E1000_WRITE_REG(hw, E1000_SHRAH(index - 1), rar_high);
1843                 E1000_WRITE_FLUSH(hw);
1844
1845                 e1000_release_swflag_ich8lan(hw);
1846
1847                 /* verify the register updates */
1848                 if ((E1000_READ_REG(hw, E1000_SHRAL(index - 1)) == rar_low) &&
1849                     (E1000_READ_REG(hw, E1000_SHRAH(index - 1)) == rar_high))
1850                         return E1000_SUCCESS;
1851
1852                 DEBUGOUT2("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1853                          (index - 1), E1000_READ_REG(hw, E1000_FWSM));
1854         }
1855
1856 out:
1857         DEBUGOUT1("Failed to write receive address at index %d\n", index);
1858         return -E1000_ERR_CONFIG;
1859 }
1860
1861 /**
1862  *  e1000_rar_set_pch_lpt - Set receive address registers
1863  *  @hw: pointer to the HW structure
1864  *  @addr: pointer to the receive address
1865  *  @index: receive address array register
1866  *
1867  *  Sets the receive address register array at index to the address passed
1868  *  in by addr. For LPT, RAR[0] is the base address register that is to
1869  *  contain the MAC address. SHRA[0-10] are the shared receive address
1870  *  registers that are shared between the Host and manageability engine (ME).
1871  **/
1872 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1873 {
1874         u32 rar_low, rar_high;
1875         u32 wlock_mac;
1876
1877         DEBUGFUNC("e1000_rar_set_pch_lpt");
1878
1879         /* HW expects these in little endian so we reverse the byte order
1880          * from network order (big endian) to little endian
1881          */
1882         rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
1883                    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
1884
1885         rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
1886
1887         /* If MAC address zero, no need to set the AV bit */
1888         if (rar_low || rar_high)
1889                 rar_high |= E1000_RAH_AV;
1890
1891         if (index == 0) {
1892                 E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
1893                 E1000_WRITE_FLUSH(hw);
1894                 E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
1895                 E1000_WRITE_FLUSH(hw);
1896                 return E1000_SUCCESS;
1897         }
1898
1899         /* The manageability engine (ME) can lock certain SHRAR registers that
1900          * it is using - those registers are unavailable for use.
1901          */
1902         if (index < hw->mac.rar_entry_count) {
1903                 wlock_mac = E1000_READ_REG(hw, E1000_FWSM) &
1904                             E1000_FWSM_WLOCK_MAC_MASK;
1905                 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1906
1907                 /* Check if all SHRAR registers are locked */
1908                 if (wlock_mac == 1)
1909                         goto out;
1910
1911                 if ((wlock_mac == 0) || (index <= wlock_mac)) {
1912                         s32 ret_val;
1913
1914                         ret_val = e1000_acquire_swflag_ich8lan(hw);
1915
1916                         if (ret_val)
1917                                 goto out;
1918
1919                         E1000_WRITE_REG(hw, E1000_SHRAL_PCH_LPT(index - 1),
1920                                         rar_low);
1921                         E1000_WRITE_FLUSH(hw);
1922                         E1000_WRITE_REG(hw, E1000_SHRAH_PCH_LPT(index - 1),
1923                                         rar_high);
1924                         E1000_WRITE_FLUSH(hw);
1925
1926                         e1000_release_swflag_ich8lan(hw);
1927
1928                         /* verify the register updates */
1929                         if ((E1000_READ_REG(hw, E1000_SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1930                             (E1000_READ_REG(hw, E1000_SHRAH_PCH_LPT(index - 1)) == rar_high))
1931                                 return E1000_SUCCESS;
1932                 }
1933         }
1934
1935 out:
1936         DEBUGOUT1("Failed to write receive address at index %d\n", index);
1937         return -E1000_ERR_CONFIG;
1938 }
1939
1940 /**
1941  *  e1000_update_mc_addr_list_pch2lan - Update Multicast addresses
1942  *  @hw: pointer to the HW structure
1943  *  @mc_addr_list: array of multicast addresses to program
1944  *  @mc_addr_count: number of multicast addresses to program
1945  *
1946  *  Updates entire Multicast Table Array of the PCH2 MAC and PHY.
1947  *  The caller must have a packed mc_addr_list of multicast addresses.
1948  **/
1949 static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
1950                                               u8 *mc_addr_list,
1951                                               u32 mc_addr_count)
1952 {
1953         u16 phy_reg = 0;
1954         int i;
1955         s32 ret_val;
1956
1957         DEBUGFUNC("e1000_update_mc_addr_list_pch2lan");
1958
1959         e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count);
1960
1961         ret_val = hw->phy.ops.acquire(hw);
1962         if (ret_val)
1963                 return;
1964
1965         ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1966         if (ret_val)
1967                 goto release;
1968
1969         for (i = 0; i < hw->mac.mta_reg_count; i++) {
1970                 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
1971                                            (u16)(hw->mac.mta_shadow[i] &
1972                                                  0xFFFF));
1973                 hw->phy.ops.write_reg_page(hw, (BM_MTA(i) + 1),
1974                                            (u16)((hw->mac.mta_shadow[i] >> 16) &
1975                                                  0xFFFF));
1976         }
1977
1978         e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1979
1980 release:
1981         hw->phy.ops.release(hw);
1982 }
1983
1984 /**
1985  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1986  *  @hw: pointer to the HW structure
1987  *
1988  *  Checks if firmware is blocking the reset of the PHY.
1989  *  This is a function pointer entry point only called by
1990  *  reset routines.
1991  **/
1992 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1993 {
1994         u32 fwsm;
1995         bool blocked = FALSE;
1996         int i = 0;
1997
1998         DEBUGFUNC("e1000_check_reset_block_ich8lan");
1999
2000         do {
2001                 fwsm = E1000_READ_REG(hw, E1000_FWSM);
2002                 if (!(fwsm & E1000_ICH_FWSM_RSPCIPHY)) {
2003                         blocked = TRUE;
2004                         msec_delay(10);
2005                         continue;
2006                 }
2007                 blocked = FALSE;
2008         } while (blocked && (i++ < 10));
2009         return blocked ? E1000_BLK_PHY_RESET : E1000_SUCCESS;
2010 }
2011
2012 /**
2013  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2014  *  @hw: pointer to the HW structure
2015  *
2016  *  Assumes semaphore already acquired.
2017  *
2018  **/
2019 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2020 {
2021         u16 phy_data;
2022         u32 strap = E1000_READ_REG(hw, E1000_STRAP);
2023         u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2024                 E1000_STRAP_SMT_FREQ_SHIFT;
2025         s32 ret_val;
2026
2027         strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2028
2029         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2030         if (ret_val)
2031                 return ret_val;
2032
2033         phy_data &= ~HV_SMB_ADDR_MASK;
2034         phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2035         phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2036
2037         if (hw->phy.type == e1000_phy_i217) {
2038                 /* Restore SMBus frequency */
2039                 if (freq--) {
2040                         phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2041                         phy_data |= (freq & (1 << 0)) <<
2042                                 HV_SMB_ADDR_FREQ_LOW_SHIFT;
2043                         phy_data |= (freq & (1 << 1)) <<
2044                                 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2045                 } else {
2046                         DEBUGOUT("Unsupported SMB frequency in PHY\n");
2047                 }
2048         }
2049
2050         return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2051 }
2052
2053 /**
2054  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2055  *  @hw:   pointer to the HW structure
2056  *
2057  *  SW should configure the LCD from the NVM extended configuration region
2058  *  as a workaround for certain parts.
2059  **/
2060 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2061 {
2062         struct e1000_phy_info *phy = &hw->phy;
2063         u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2064         s32 ret_val = E1000_SUCCESS;
2065         u16 word_addr, reg_data, reg_addr, phy_page = 0;
2066
2067         DEBUGFUNC("e1000_sw_lcd_config_ich8lan");
2068
2069         /* Initialize the PHY from the NVM on ICH platforms.  This
2070          * is needed due to an issue where the NVM configuration is
2071          * not properly autoloaded after power transitions.
2072          * Therefore, after each PHY reset, we will load the
2073          * configuration data out of the NVM manually.
2074          */
2075         switch (hw->mac.type) {
2076         case e1000_ich8lan:
2077                 if (phy->type != e1000_phy_igp_3)
2078                         return ret_val;
2079
2080                 if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_AMT) ||
2081                     (hw->device_id == E1000_DEV_ID_ICH8_IGP_C)) {
2082                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2083                         break;
2084                 }
2085                 /* Fall-thru */
2086         case e1000_pchlan:
2087         case e1000_pch2lan:
2088         case e1000_pch_lpt:
2089                 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2090                 break;
2091         default:
2092                 return ret_val;
2093         }
2094
2095         ret_val = hw->phy.ops.acquire(hw);
2096         if (ret_val)
2097                 return ret_val;
2098
2099         data = E1000_READ_REG(hw, E1000_FEXTNVM);
2100         if (!(data & sw_cfg_mask))
2101                 goto release;
2102
2103         /* Make sure HW does not configure LCD from PHY
2104          * extended configuration before SW configuration
2105          */
2106         data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2107         if ((hw->mac.type < e1000_pch2lan) &&
2108             (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2109                         goto release;
2110
2111         cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE);
2112         cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2113         cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2114         if (!cnf_size)
2115                 goto release;
2116
2117         cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2118         cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2119
2120         if (((hw->mac.type == e1000_pchlan) &&
2121              !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2122             (hw->mac.type > e1000_pchlan)) {
2123                 /* HW configures the SMBus address and LEDs when the
2124                  * OEM and LCD Write Enable bits are set in the NVM.
2125                  * When both NVM bits are cleared, SW will configure
2126                  * them instead.
2127                  */
2128                 ret_val = e1000_write_smbus_addr(hw);
2129                 if (ret_val)
2130                         goto release;
2131
2132                 data = E1000_READ_REG(hw, E1000_LEDCTL);
2133                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2134                                                         (u16)data);
2135                 if (ret_val)
2136                         goto release;
2137         }
2138
2139         /* Configure LCD from extended configuration region. */
2140
2141         /* cnf_base_addr is in DWORD */
2142         word_addr = (u16)(cnf_base_addr << 1);
2143
2144         for (i = 0; i < cnf_size; i++) {
2145                 ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2), 1,
2146                                            &reg_data);
2147                 if (ret_val)
2148                         goto release;
2149
2150                 ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2 + 1),
2151                                            1, &reg_addr);
2152                 if (ret_val)
2153                         goto release;
2154
2155                 /* Save off the PHY page for future writes. */
2156                 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2157                         phy_page = reg_data;
2158                         continue;
2159                 }
2160
2161                 reg_addr &= PHY_REG_MASK;
2162                 reg_addr |= phy_page;
2163
2164                 ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
2165                                                     reg_data);
2166                 if (ret_val)
2167                         goto release;
2168         }
2169
2170 release:
2171         hw->phy.ops.release(hw);
2172         return ret_val;
2173 }
2174
2175 /**
2176  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2177  *  @hw:   pointer to the HW structure
2178  *  @link: link up bool flag
2179  *
2180  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2181  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2182  *  If link is down, the function will restore the default K1 setting located
2183  *  in the NVM.
2184  **/
2185 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2186 {
2187         s32 ret_val = E1000_SUCCESS;
2188         u16 status_reg = 0;
2189         bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2190
2191         DEBUGFUNC("e1000_k1_gig_workaround_hv");
2192
2193         if (hw->mac.type != e1000_pchlan)
2194                 return E1000_SUCCESS;
2195
2196         /* Wrap the whole flow with the sw flag */
2197         ret_val = hw->phy.ops.acquire(hw);
2198         if (ret_val)
2199                 return ret_val;
2200
2201         /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2202         if (link) {
2203                 if (hw->phy.type == e1000_phy_82578) {
2204                         ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
2205                                                               &status_reg);
2206                         if (ret_val)
2207                                 goto release;
2208
2209                         status_reg &= (BM_CS_STATUS_LINK_UP |
2210                                        BM_CS_STATUS_RESOLVED |
2211                                        BM_CS_STATUS_SPEED_MASK);
2212
2213                         if (status_reg == (BM_CS_STATUS_LINK_UP |
2214                                            BM_CS_STATUS_RESOLVED |
2215                                            BM_CS_STATUS_SPEED_1000))
2216                                 k1_enable = FALSE;
2217                 }
2218
2219                 if (hw->phy.type == e1000_phy_82577) {
2220                         ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
2221                                                               &status_reg);
2222                         if (ret_val)
2223                                 goto release;
2224
2225                         status_reg &= (HV_M_STATUS_LINK_UP |
2226                                        HV_M_STATUS_AUTONEG_COMPLETE |
2227                                        HV_M_STATUS_SPEED_MASK);
2228
2229                         if (status_reg == (HV_M_STATUS_LINK_UP |
2230                                            HV_M_STATUS_AUTONEG_COMPLETE |
2231                                            HV_M_STATUS_SPEED_1000))
2232                                 k1_enable = FALSE;
2233                 }
2234
2235                 /* Link stall fix for link up */
2236                 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2237                                                        0x0100);
2238                 if (ret_val)
2239                         goto release;
2240
2241         } else {
2242                 /* Link stall fix for link down */
2243                 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2244                                                        0x4100);
2245                 if (ret_val)
2246                         goto release;
2247         }
2248
2249         ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2250
2251 release:
2252         hw->phy.ops.release(hw);
2253
2254         return ret_val;
2255 }
2256
2257 /**
2258  *  e1000_configure_k1_ich8lan - Configure K1 power state
2259  *  @hw: pointer to the HW structure
2260  *  @enable: K1 state to configure
2261  *
2262  *  Configure the K1 power state based on the provided parameter.
2263  *  Assumes semaphore already acquired.
2264  *
2265  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2266  **/
2267 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2268 {
2269         s32 ret_val;
2270         u32 ctrl_reg = 0;
2271         u32 ctrl_ext = 0;
2272         u32 reg = 0;
2273         u16 kmrn_reg = 0;
2274
2275         DEBUGFUNC("e1000_configure_k1_ich8lan");
2276
2277         ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2278                                              &kmrn_reg);
2279         if (ret_val)
2280                 return ret_val;
2281
2282         if (k1_enable)
2283                 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2284         else
2285                 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2286
2287         ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2288                                               kmrn_reg);
2289         if (ret_val)
2290                 return ret_val;
2291
2292         usec_delay(20);
2293         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2294         ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
2295
2296         reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2297         reg |= E1000_CTRL_FRCSPD;
2298         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2299
2300         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2301         E1000_WRITE_FLUSH(hw);
2302         usec_delay(20);
2303         E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
2304         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
2305         E1000_WRITE_FLUSH(hw);
2306         usec_delay(20);
2307
2308         return E1000_SUCCESS;
2309 }
2310
2311 /**
2312  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2313  *  @hw:       pointer to the HW structure
2314  *  @d0_state: boolean if entering d0 or d3 device state
2315  *
2316  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2317  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2318  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2319  **/
2320 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2321 {
2322         s32 ret_val = 0;
2323         u32 mac_reg;
2324         u16 oem_reg;
2325
2326         DEBUGFUNC("e1000_oem_bits_config_ich8lan");
2327
2328         if (hw->mac.type < e1000_pchlan)
2329                 return ret_val;
2330
2331         ret_val = hw->phy.ops.acquire(hw);
2332         if (ret_val)
2333                 return ret_val;
2334
2335         if (hw->mac.type == e1000_pchlan) {
2336                 mac_reg = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2337                 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2338                         goto release;
2339         }
2340
2341         mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM);
2342         if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2343                 goto release;
2344
2345         mac_reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
2346
2347         ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
2348         if (ret_val)
2349                 goto release;
2350
2351         oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2352
2353         if (d0_state) {
2354                 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2355                         oem_reg |= HV_OEM_BITS_GBE_DIS;
2356
2357                 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2358                         oem_reg |= HV_OEM_BITS_LPLU;
2359         } else {
2360                 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2361                     E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2362                         oem_reg |= HV_OEM_BITS_GBE_DIS;
2363
2364                 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2365                     E1000_PHY_CTRL_NOND0A_LPLU))
2366                         oem_reg |= HV_OEM_BITS_LPLU;
2367         }
2368
2369         /* Set Restart auto-neg to activate the bits */
2370         if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2371             !hw->phy.ops.check_reset_block(hw))
2372                 oem_reg |= HV_OEM_BITS_RESTART_AN;
2373
2374         ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
2375
2376 release:
2377         hw->phy.ops.release(hw);
2378
2379         return ret_val;
2380 }
2381
2382
2383 /**
2384  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2385  *  @hw:   pointer to the HW structure
2386  **/
2387 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2388 {
2389         s32 ret_val;
2390         u16 data;
2391
2392         DEBUGFUNC("e1000_set_mdio_slow_mode_hv");
2393
2394         ret_val = hw->phy.ops.read_reg(hw, HV_KMRN_MODE_CTRL, &data);
2395         if (ret_val)
2396                 return ret_val;
2397
2398         data |= HV_KMRN_MDIO_SLOW;
2399
2400         ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_MODE_CTRL, data);
2401
2402         return ret_val;
2403 }
2404
2405 /**
2406  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2407  *  done after every PHY reset.
2408  **/
2409 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2410 {
2411         s32 ret_val = E1000_SUCCESS;
2412         u16 phy_data;
2413
2414         DEBUGFUNC("e1000_hv_phy_workarounds_ich8lan");
2415
2416         if (hw->mac.type != e1000_pchlan)
2417                 return E1000_SUCCESS;
2418
2419         /* Set MDIO slow mode before any other MDIO access */
2420         if (hw->phy.type == e1000_phy_82577) {
2421                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2422                 if (ret_val)
2423                         return ret_val;
2424         }
2425
2426         if (((hw->phy.type == e1000_phy_82577) &&
2427              ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2428             ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2429                 /* Disable generation of early preamble */
2430                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431);
2431                 if (ret_val)
2432                         return ret_val;
2433
2434                 /* Preamble tuning for SSC */
2435                 ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA,
2436                                                 0xA204);
2437                 if (ret_val)
2438                         return ret_val;
2439         }
2440
2441         if (hw->phy.type == e1000_phy_82578) {
2442                 /* Return registers to default by doing a soft reset then
2443                  * writing 0x3140 to the control register.
2444                  */
2445                 if (hw->phy.revision < 2) {
2446                         e1000_phy_sw_reset_generic(hw);
2447                         ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL,
2448                                                         0x3140);
2449                 }
2450         }
2451
2452         /* Select page 0 */
2453         ret_val = hw->phy.ops.acquire(hw);
2454         if (ret_val)
2455                 return ret_val;
2456
2457         hw->phy.addr = 1;
2458         ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2459         hw->phy.ops.release(hw);
2460         if (ret_val)
2461                 return ret_val;
2462
2463         /* Configure the K1 Si workaround during phy reset assuming there is
2464          * link so that it disables K1 if link is in 1Gbps.
2465          */
2466         ret_val = e1000_k1_gig_workaround_hv(hw, TRUE);
2467         if (ret_val)
2468                 return ret_val;
2469
2470         /* Workaround for link disconnects on a busy hub in half duplex */
2471         ret_val = hw->phy.ops.acquire(hw);
2472         if (ret_val)
2473                 return ret_val;
2474         ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2475         if (ret_val)
2476                 goto release;
2477         ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
2478                                                phy_data & 0x00FF);
2479         if (ret_val)
2480                 goto release;
2481
2482         /* set MSE higher to enable link to stay up when noise is high */
2483         ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2484 release:
2485         hw->phy.ops.release(hw);
2486
2487         return ret_val;
2488 }
2489
2490 /**
2491  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2492  *  @hw:   pointer to the HW structure
2493  **/
2494 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2495 {
2496         u32 mac_reg;
2497         u16 i, phy_reg = 0;
2498         s32 ret_val;
2499
2500         DEBUGFUNC("e1000_copy_rx_addrs_to_phy_ich8lan");
2501
2502         ret_val = hw->phy.ops.acquire(hw);
2503         if (ret_val)
2504                 return;
2505         ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2506         if (ret_val)
2507                 goto release;
2508
2509         /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2510         for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2511                 mac_reg = E1000_READ_REG(hw, E1000_RAL(i));
2512                 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2513                                            (u16)(mac_reg & 0xFFFF));
2514                 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2515                                            (u16)((mac_reg >> 16) & 0xFFFF));
2516
2517                 mac_reg = E1000_READ_REG(hw, E1000_RAH(i));
2518                 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2519                                            (u16)(mac_reg & 0xFFFF));
2520                 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2521                                            (u16)((mac_reg & E1000_RAH_AV)
2522                                                  >> 16));
2523         }
2524
2525         e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2526
2527 release:
2528         hw->phy.ops.release(hw);
2529 }
2530
2531 static u32 e1000_calc_rx_da_crc(u8 mac[])
2532 {
2533         u32 poly = 0xEDB88320;  /* Polynomial for 802.3 CRC calculation */
2534         u32 i, j, mask, crc;
2535
2536         DEBUGFUNC("e1000_calc_rx_da_crc");
2537
2538         crc = 0xffffffff;
2539         for (i = 0; i < 6; i++) {
2540                 crc = crc ^ mac[i];
2541                 for (j = 8; j > 0; j--) {
2542                         mask = (crc & 1) * (-1);
2543                         crc = (crc >> 1) ^ (poly & mask);
2544                 }
2545         }
2546         return ~crc;
2547 }
2548
2549 /**
2550  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2551  *  with 82579 PHY
2552  *  @hw: pointer to the HW structure
2553  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2554  **/
2555 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2556 {
2557         s32 ret_val = E1000_SUCCESS;
2558         u16 phy_reg, data;
2559         u32 mac_reg;
2560         u16 i;
2561
2562         DEBUGFUNC("e1000_lv_jumbo_workaround_ich8lan");
2563
2564         if (hw->mac.type < e1000_pch2lan)
2565                 return E1000_SUCCESS;
2566
2567         /* disable Rx path while enabling/disabling workaround */
2568         hw->phy.ops.read_reg(hw, PHY_REG(769, 20), &phy_reg);
2569         ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20),
2570                                         phy_reg | (1 << 14));
2571         if (ret_val)
2572                 return ret_val;
2573
2574         if (enable) {
2575                 /* Write Rx addresses (rar_entry_count for RAL/H, and
2576                  * SHRAL/H) and initial CRC values to the MAC
2577                  */
2578                 for (i = 0; i < hw->mac.rar_entry_count; i++) {
2579                         u8 mac_addr[ETH_ADDR_LEN] = {0};
2580                         u32 addr_high, addr_low;
2581
2582                         addr_high = E1000_READ_REG(hw, E1000_RAH(i));
2583                         if (!(addr_high & E1000_RAH_AV))
2584                                 continue;
2585                         addr_low = E1000_READ_REG(hw, E1000_RAL(i));
2586                         mac_addr[0] = (addr_low & 0xFF);
2587                         mac_addr[1] = ((addr_low >> 8) & 0xFF);
2588                         mac_addr[2] = ((addr_low >> 16) & 0xFF);
2589                         mac_addr[3] = ((addr_low >> 24) & 0xFF);
2590                         mac_addr[4] = (addr_high & 0xFF);
2591                         mac_addr[5] = ((addr_high >> 8) & 0xFF);
2592
2593                         E1000_WRITE_REG(hw, E1000_PCH_RAICC(i),
2594                                         e1000_calc_rx_da_crc(mac_addr));
2595                 }
2596
2597                 /* Write Rx addresses to the PHY */
2598                 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2599
2600                 /* Enable jumbo frame workaround in the MAC */
2601                 mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2602                 mac_reg &= ~(1 << 14);
2603                 mac_reg |= (7 << 15);
2604                 E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2605
2606                 mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2607                 mac_reg |= E1000_RCTL_SECRC;
2608                 E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2609
2610                 ret_val = e1000_read_kmrn_reg_generic(hw,
2611                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2612                                                 &data);
2613                 if (ret_val)
2614                         return ret_val;
2615                 ret_val = e1000_write_kmrn_reg_generic(hw,
2616                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2617                                                 data | (1 << 0));
2618                 if (ret_val)
2619                         return ret_val;
2620                 ret_val = e1000_read_kmrn_reg_generic(hw,
2621                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2622                                                 &data);
2623                 if (ret_val)
2624                         return ret_val;
2625                 data &= ~(0xF << 8);
2626                 data |= (0xB << 8);
2627                 ret_val = e1000_write_kmrn_reg_generic(hw,
2628                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2629                                                 data);
2630                 if (ret_val)
2631                         return ret_val;
2632
2633                 /* Enable jumbo frame workaround in the PHY */
2634                 hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2635                 data &= ~(0x7F << 5);
2636                 data |= (0x37 << 5);
2637                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2638                 if (ret_val)
2639                         return ret_val;
2640                 hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2641                 data &= ~(1 << 13);
2642                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2643                 if (ret_val)
2644                         return ret_val;
2645                 hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2646                 data &= ~(0x3FF << 2);
2647                 data |= (E1000_TX_PTR_GAP << 2);
2648                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2649                 if (ret_val)
2650                         return ret_val;
2651                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0xF100);
2652                 if (ret_val)
2653                         return ret_val;
2654                 hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2655                 ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data |
2656                                                 (1 << 10));
2657                 if (ret_val)
2658                         return ret_val;
2659         } else {
2660                 /* Write MAC register values back to h/w defaults */
2661                 mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2662                 mac_reg &= ~(0xF << 14);
2663                 E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2664
2665                 mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2666                 mac_reg &= ~E1000_RCTL_SECRC;
2667                 E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2668
2669                 ret_val = e1000_read_kmrn_reg_generic(hw,
2670                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2671                                                 &data);
2672                 if (ret_val)
2673                         return ret_val;
2674                 ret_val = e1000_write_kmrn_reg_generic(hw,
2675                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2676                                                 data & ~(1 << 0));
2677                 if (ret_val)
2678                         return ret_val;
2679                 ret_val = e1000_read_kmrn_reg_generic(hw,
2680                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2681                                                 &data);
2682                 if (ret_val)
2683                         return ret_val;
2684                 data &= ~(0xF << 8);
2685                 data |= (0xB << 8);
2686                 ret_val = e1000_write_kmrn_reg_generic(hw,
2687                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2688                                                 data);
2689                 if (ret_val)
2690                         return ret_val;
2691
2692                 /* Write PHY register values back to h/w defaults */
2693                 hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2694                 data &= ~(0x7F << 5);
2695                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2696                 if (ret_val)
2697                         return ret_val;
2698                 hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2699                 data |= (1 << 13);
2700                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2701                 if (ret_val)
2702                         return ret_val;
2703                 hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2704                 data &= ~(0x3FF << 2);
2705                 data |= (0x8 << 2);
2706                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2707                 if (ret_val)
2708                         return ret_val;
2709                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0x7E00);
2710                 if (ret_val)
2711                         return ret_val;
2712                 hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2713                 ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data &
2714                                                 ~(1 << 10));
2715                 if (ret_val)
2716                         return ret_val;
2717         }
2718
2719         /* re-enable Rx path after enabling/disabling workaround */
2720         return hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg &
2721                                      ~(1 << 14));
2722 }
2723
2724 /**
2725  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2726  *  done after every PHY reset.
2727  **/
2728 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2729 {
2730         s32 ret_val = E1000_SUCCESS;
2731
2732         DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan");
2733
2734         if (hw->mac.type != e1000_pch2lan)
2735                 return E1000_SUCCESS;
2736
2737         /* Set MDIO slow mode before any other MDIO access */
2738         ret_val = e1000_set_mdio_slow_mode_hv(hw);
2739         if (ret_val)
2740                 return ret_val;
2741
2742         ret_val = hw->phy.ops.acquire(hw);
2743         if (ret_val)
2744                 return ret_val;
2745         /* set MSE higher to enable link to stay up when noise is high */
2746         ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2747         if (ret_val)
2748                 goto release;
2749         /* drop link after 5 times MSE threshold was reached */
2750         ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2751 release:
2752         hw->phy.ops.release(hw);
2753
2754         return ret_val;
2755 }
2756
2757 /**
2758  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2759  *  @hw:   pointer to the HW structure
2760  *
2761  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2762  *  Disable K1 for 1000 and 100 speeds
2763  **/
2764 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2765 {
2766         s32 ret_val = E1000_SUCCESS;
2767         u16 status_reg = 0;
2768
2769         DEBUGFUNC("e1000_k1_workaround_lv");
2770
2771         if (hw->mac.type != e1000_pch2lan)
2772                 return E1000_SUCCESS;
2773
2774         /* Set K1 beacon duration based on 10Mbs speed */
2775         ret_val = hw->phy.ops.read_reg(hw, HV_M_STATUS, &status_reg);
2776         if (ret_val)
2777                 return ret_val;
2778
2779         if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2780             == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2781                 if (status_reg &
2782                     (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2783                         u16 pm_phy_reg;
2784
2785                         /* LV 1G/100 Packet drop issue wa  */
2786                         ret_val = hw->phy.ops.read_reg(hw, HV_PM_CTRL,
2787                                                        &pm_phy_reg);
2788                         if (ret_val)
2789                                 return ret_val;
2790                         pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2791                         ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL,
2792                                                         pm_phy_reg);
2793                         if (ret_val)
2794                                 return ret_val;
2795                 } else {
2796                         u32 mac_reg;
2797                         mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
2798                         mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2799                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2800                         E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
2801                 }
2802         }
2803
2804         return ret_val;
2805 }
2806
2807 /**
2808  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2809  *  @hw:   pointer to the HW structure
2810  *  @gate: boolean set to TRUE to gate, FALSE to ungate
2811  *
2812  *  Gate/ungate the automatic PHY configuration via hardware; perform
2813  *  the configuration via software instead.
2814  **/
2815 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2816 {
2817         u32 extcnf_ctrl;
2818
2819         DEBUGFUNC("e1000_gate_hw_phy_config_ich8lan");
2820
2821         if (hw->mac.type < e1000_pch2lan)
2822                 return;
2823
2824         extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2825
2826         if (gate)
2827                 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2828         else
2829                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2830
2831         E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
2832 }
2833
2834 /**
2835  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2836  *  @hw: pointer to the HW structure
2837  *
2838  *  Check the appropriate indication the MAC has finished configuring the
2839  *  PHY after a software reset.
2840  **/
2841 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2842 {
2843         u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2844
2845         DEBUGFUNC("e1000_lan_init_done_ich8lan");
2846
2847         /* Wait for basic configuration completes before proceeding */
2848         do {
2849                 data = E1000_READ_REG(hw, E1000_STATUS);
2850                 data &= E1000_STATUS_LAN_INIT_DONE;
2851                 usec_delay(100);
2852         } while ((!data) && --loop);
2853
2854         /* If basic configuration is incomplete before the above loop
2855          * count reaches 0, loading the configuration from NVM will
2856          * leave the PHY in a bad state possibly resulting in no link.
2857          */
2858         if (loop == 0)
2859                 DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n");
2860
2861         /* Clear the Init Done bit for the next init event */
2862         data = E1000_READ_REG(hw, E1000_STATUS);
2863         data &= ~E1000_STATUS_LAN_INIT_DONE;
2864         E1000_WRITE_REG(hw, E1000_STATUS, data);
2865 }
2866
2867 /**
2868  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2869  *  @hw: pointer to the HW structure
2870  **/
2871 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2872 {
2873         s32 ret_val = E1000_SUCCESS;
2874         u16 reg;
2875
2876         DEBUGFUNC("e1000_post_phy_reset_ich8lan");
2877
2878         if (hw->phy.ops.check_reset_block(hw))
2879                 return E1000_SUCCESS;
2880
2881         /* Allow time for h/w to get to quiescent state after reset */
2882         msec_delay(10);
2883
2884         /* Perform any necessary post-reset workarounds */
2885         switch (hw->mac.type) {
2886         case e1000_pchlan:
2887                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2888                 if (ret_val)
2889                         return ret_val;
2890                 break;
2891         case e1000_pch2lan:
2892                 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2893                 if (ret_val)
2894                         return ret_val;
2895                 break;
2896         default:
2897                 break;
2898         }
2899
2900         /* Clear the host wakeup bit after lcd reset */
2901         if (hw->mac.type >= e1000_pchlan) {
2902                 hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &reg);
2903                 reg &= ~BM_WUC_HOST_WU_BIT;
2904                 hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, reg);
2905         }
2906
2907         /* Configure the LCD with the extended configuration region in NVM */
2908         ret_val = e1000_sw_lcd_config_ich8lan(hw);
2909         if (ret_val)
2910                 return ret_val;
2911
2912         /* Configure the LCD with the OEM bits in NVM */
2913         ret_val = e1000_oem_bits_config_ich8lan(hw, TRUE);
2914
2915         if (hw->mac.type == e1000_pch2lan) {
2916                 /* Ungate automatic PHY configuration on non-managed 82579 */
2917                 if (!(E1000_READ_REG(hw, E1000_FWSM) &
2918                     E1000_ICH_FWSM_FW_VALID)) {
2919                         msec_delay(10);
2920                         e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
2921                 }
2922
2923                 /* Set EEE LPI Update Timer to 200usec */
2924                 ret_val = hw->phy.ops.acquire(hw);
2925                 if (ret_val)
2926                         return ret_val;
2927                 ret_val = e1000_write_emi_reg_locked(hw,
2928                                                      I82579_LPI_UPDATE_TIMER,
2929                                                      0x1387);
2930                 hw->phy.ops.release(hw);
2931         }
2932
2933         return ret_val;
2934 }
2935
2936 /**
2937  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2938  *  @hw: pointer to the HW structure
2939  *
2940  *  Resets the PHY
2941  *  This is a function pointer entry point called by drivers
2942  *  or other shared routines.
2943  **/
2944 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2945 {
2946         s32 ret_val = E1000_SUCCESS;
2947
2948         DEBUGFUNC("e1000_phy_hw_reset_ich8lan");
2949
2950         /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2951         if ((hw->mac.type == e1000_pch2lan) &&
2952             !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
2953                 e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
2954
2955         ret_val = e1000_phy_hw_reset_generic(hw);
2956         if (ret_val)
2957                 return ret_val;
2958
2959         return e1000_post_phy_reset_ich8lan(hw);
2960 }
2961
2962 /**
2963  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2964  *  @hw: pointer to the HW structure
2965  *  @active: TRUE to enable LPLU, FALSE to disable
2966  *
2967  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2968  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2969  *  the phy speed. This function will manually set the LPLU bit and restart
2970  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2971  *  since it configures the same bit.
2972  **/
2973 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2974 {
2975         s32 ret_val;
2976         u16 oem_reg;
2977
2978         DEBUGFUNC("e1000_set_lplu_state_pchlan");
2979
2980         ret_val = hw->phy.ops.read_reg(hw, HV_OEM_BITS, &oem_reg);
2981         if (ret_val)
2982                 return ret_val;
2983
2984         if (active)
2985                 oem_reg |= HV_OEM_BITS_LPLU;
2986         else
2987                 oem_reg &= ~HV_OEM_BITS_LPLU;
2988
2989         if (!hw->phy.ops.check_reset_block(hw))
2990                 oem_reg |= HV_OEM_BITS_RESTART_AN;
2991
2992         return hw->phy.ops.write_reg(hw, HV_OEM_BITS, oem_reg);
2993 }
2994
2995 /**
2996  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2997  *  @hw: pointer to the HW structure
2998  *  @active: TRUE to enable LPLU, FALSE to disable
2999  *
3000  *  Sets the LPLU D0 state according to the active flag.  When
3001  *  activating LPLU this function also disables smart speed
3002  *  and vice versa.  LPLU will not be activated unless the
3003  *  device autonegotiation advertisement meets standards of
3004  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3005  *  This is a function pointer entry point only called by
3006  *  PHY setup routines.
3007  **/
3008 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3009 {
3010         struct e1000_phy_info *phy = &hw->phy;
3011         u32 phy_ctrl;
3012         s32 ret_val = E1000_SUCCESS;
3013         u16 data;
3014
3015         DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan");
3016
3017         if (phy->type == e1000_phy_ife)
3018                 return E1000_SUCCESS;
3019
3020         phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3021
3022         if (active) {
3023                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3024                 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3025
3026                 if (phy->type != e1000_phy_igp_3)
3027                         return E1000_SUCCESS;
3028
3029                 /* Call gig speed drop workaround on LPLU before accessing
3030                  * any PHY registers
3031                  */
3032                 if (hw->mac.type == e1000_ich8lan)
3033                         e1000_gig_downshift_workaround_ich8lan(hw);
3034
3035                 /* When LPLU is enabled, we should disable SmartSpeed */
3036                 ret_val = phy->ops.read_reg(hw,
3037                                             IGP01E1000_PHY_PORT_CONFIG,
3038                                             &data);
3039                 if (ret_val)
3040                         return ret_val;
3041                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3042                 ret_val = phy->ops.write_reg(hw,
3043                                              IGP01E1000_PHY_PORT_CONFIG,
3044                                              data);
3045                 if (ret_val)
3046                         return ret_val;
3047         } else {
3048                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3049                 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3050
3051                 if (phy->type != e1000_phy_igp_3)
3052                         return E1000_SUCCESS;
3053
3054                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3055                  * during Dx states where the power conservation is most
3056                  * important.  During driver activity we should enable
3057                  * SmartSpeed, so performance is maintained.
3058                  */
3059                 if (phy->smart_speed == e1000_smart_speed_on) {
3060                         ret_val = phy->ops.read_reg(hw,
3061                                                     IGP01E1000_PHY_PORT_CONFIG,
3062                                                     &data);
3063                         if (ret_val)
3064                                 return ret_val;
3065
3066                         data |= IGP01E1000_PSCFR_SMART_SPEED;
3067                         ret_val = phy->ops.write_reg(hw,
3068                                                      IGP01E1000_PHY_PORT_CONFIG,
3069                                                      data);
3070                         if (ret_val)
3071                                 return ret_val;
3072                 } else if (phy->smart_speed == e1000_smart_speed_off) {
3073                         ret_val = phy->ops.read_reg(hw,
3074                                                     IGP01E1000_PHY_PORT_CONFIG,
3075                                                     &data);
3076                         if (ret_val)
3077                                 return ret_val;
3078
3079                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3080                         ret_val = phy->ops.write_reg(hw,
3081                                                      IGP01E1000_PHY_PORT_CONFIG,
3082                                                      data);
3083                         if (ret_val)
3084                                 return ret_val;
3085                 }
3086         }
3087
3088         return E1000_SUCCESS;
3089 }
3090
3091 /**
3092  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3093  *  @hw: pointer to the HW structure
3094  *  @active: TRUE to enable LPLU, FALSE to disable
3095  *
3096  *  Sets the LPLU D3 state according to the active flag.  When
3097  *  activating LPLU this function also disables smart speed
3098  *  and vice versa.  LPLU will not be activated unless the
3099  *  device autonegotiation advertisement meets standards of
3100  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3101  *  This is a function pointer entry point only called by
3102  *  PHY setup routines.
3103  **/
3104 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3105 {
3106         struct e1000_phy_info *phy = &hw->phy;
3107         u32 phy_ctrl;
3108         s32 ret_val = E1000_SUCCESS;
3109         u16 data;
3110
3111         DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan");
3112
3113         phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3114
3115         if (!active) {
3116                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3117                 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3118
3119                 if (phy->type != e1000_phy_igp_3)
3120                         return E1000_SUCCESS;
3121
3122                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3123                  * during Dx states where the power conservation is most
3124                  * important.  During driver activity we should enable
3125                  * SmartSpeed, so performance is maintained.
3126                  */
3127                 if (phy->smart_speed == e1000_smart_speed_on) {
3128                         ret_val = phy->ops.read_reg(hw,
3129                                                     IGP01E1000_PHY_PORT_CONFIG,
3130                                                     &data);
3131                         if (ret_val)
3132                                 return ret_val;
3133
3134                         data |= IGP01E1000_PSCFR_SMART_SPEED;
3135                         ret_val = phy->ops.write_reg(hw,
3136                                                      IGP01E1000_PHY_PORT_CONFIG,
3137                                                      data);
3138                         if (ret_val)
3139                                 return ret_val;
3140                 } else if (phy->smart_speed == e1000_smart_speed_off) {
3141                         ret_val = phy->ops.read_reg(hw,
3142                                                     IGP01E1000_PHY_PORT_CONFIG,
3143                                                     &data);
3144                         if (ret_val)
3145                                 return ret_val;
3146
3147                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3148                         ret_val = phy->ops.write_reg(hw,
3149                                                      IGP01E1000_PHY_PORT_CONFIG,
3150                                                      data);
3151                         if (ret_val)
3152                                 return ret_val;
3153                 }
3154         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3155                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3156                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3157                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3158                 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3159
3160                 if (phy->type != e1000_phy_igp_3)
3161                         return E1000_SUCCESS;
3162
3163                 /* Call gig speed drop workaround on LPLU before accessing
3164                  * any PHY registers
3165                  */
3166                 if (hw->mac.type == e1000_ich8lan)
3167                         e1000_gig_downshift_workaround_ich8lan(hw);
3168
3169                 /* When LPLU is enabled, we should disable SmartSpeed */
3170                 ret_val = phy->ops.read_reg(hw,
3171                                             IGP01E1000_PHY_PORT_CONFIG,
3172                                             &data);
3173                 if (ret_val)
3174                         return ret_val;
3175
3176                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3177                 ret_val = phy->ops.write_reg(hw,
3178                                              IGP01E1000_PHY_PORT_CONFIG,
3179                                              data);
3180         }
3181
3182         return ret_val;
3183 }
3184
3185 /**
3186  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3187  *  @hw: pointer to the HW structure
3188  *  @bank:  pointer to the variable that returns the active bank
3189  *
3190  *  Reads signature byte from the NVM using the flash access registers.
3191  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3192  **/
3193 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3194 {
3195         u32 eecd;
3196         struct e1000_nvm_info *nvm = &hw->nvm;
3197         u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3198         u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3199         u8 sig_byte = 0;
3200         s32 ret_val;
3201
3202         DEBUGFUNC("e1000_valid_nvm_bank_detect_ich8lan");
3203
3204         switch (hw->mac.type) {
3205         case e1000_ich8lan:
3206         case e1000_ich9lan:
3207                 eecd = E1000_READ_REG(hw, E1000_EECD);
3208                 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3209                     E1000_EECD_SEC1VAL_VALID_MASK) {
3210                         if (eecd & E1000_EECD_SEC1VAL)
3211                                 *bank = 1;
3212                         else
3213                                 *bank = 0;
3214
3215                         return E1000_SUCCESS;
3216                 }
3217                 DEBUGOUT("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3218                 /* fall-thru */
3219         default:
3220                 /* set bank to 0 in case flash read fails */
3221                 *bank = 0;
3222
3223                 /* Check bank 0 */
3224                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3225                                                         &sig_byte);
3226                 if (ret_val)
3227                         return ret_val;
3228                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3229                     E1000_ICH_NVM_SIG_VALUE) {
3230                         *bank = 0;
3231                         return E1000_SUCCESS;
3232                 }
3233
3234                 /* Check bank 1 */
3235                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3236                                                         bank1_offset,
3237                                                         &sig_byte);
3238                 if (ret_val)
3239                         return ret_val;
3240                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3241                     E1000_ICH_NVM_SIG_VALUE) {
3242                         *bank = 1;
3243                         return E1000_SUCCESS;
3244                 }
3245
3246                 DEBUGOUT("ERROR: No valid NVM bank present\n");
3247                 return -E1000_ERR_NVM;
3248         }
3249 }
3250
3251 /**
3252  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3253  *  @hw: pointer to the HW structure
3254  *  @offset: The offset (in bytes) of the word(s) to read.
3255  *  @words: Size of data to read in words
3256  *  @data: Pointer to the word(s) to read at offset.
3257  *
3258  *  Reads a word(s) from the NVM using the flash access registers.
3259  **/
3260 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3261                                   u16 *data)
3262 {
3263         struct e1000_nvm_info *nvm = &hw->nvm;
3264         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3265         u32 act_offset;
3266         s32 ret_val = E1000_SUCCESS;
3267         u32 bank = 0;
3268         u16 i, word;
3269
3270         DEBUGFUNC("e1000_read_nvm_ich8lan");
3271
3272         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3273             (words == 0)) {
3274                 DEBUGOUT("nvm parameter(s) out of bounds\n");
3275                 ret_val = -E1000_ERR_NVM;
3276                 goto out;
3277         }
3278
3279         nvm->ops.acquire(hw);
3280
3281         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3282         if (ret_val != E1000_SUCCESS) {
3283                 DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3284                 bank = 0;
3285         }
3286
3287         act_offset = (bank) ? nvm->flash_bank_size : 0;
3288         act_offset += offset;
3289
3290         ret_val = E1000_SUCCESS;
3291         for (i = 0; i < words; i++) {
3292                 if (dev_spec->shadow_ram[offset+i].modified) {
3293                         data[i] = dev_spec->shadow_ram[offset+i].value;
3294                 } else {
3295                         ret_val = e1000_read_flash_word_ich8lan(hw,
3296                                                                 act_offset + i,
3297                                                                 &word);
3298                         if (ret_val)
3299                                 break;
3300                         data[i] = word;
3301                 }
3302         }
3303
3304         nvm->ops.release(hw);
3305
3306 out:
3307         if (ret_val)
3308                 DEBUGOUT1("NVM read error: %d\n", ret_val);
3309
3310         return ret_val;
3311 }
3312
3313 /**
3314  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3315  *  @hw: pointer to the HW structure
3316  *
3317  *  This function does initial flash setup so that a new read/write/erase cycle
3318  *  can be started.
3319  **/
3320 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3321 {
3322         union ich8_hws_flash_status hsfsts;
3323         s32 ret_val = -E1000_ERR_NVM;
3324
3325         DEBUGFUNC("e1000_flash_cycle_init_ich8lan");
3326
3327         hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3328
3329         /* Check if the flash descriptor is valid */
3330         if (!hsfsts.hsf_status.fldesvalid) {
3331                 DEBUGOUT("Flash descriptor invalid.  SW Sequencing must be used.\n");
3332                 return -E1000_ERR_NVM;
3333         }
3334
3335         /* Clear FCERR and DAEL in hw status by writing 1 */
3336         hsfsts.hsf_status.flcerr = 1;
3337         hsfsts.hsf_status.dael = 1;
3338         E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
3339
3340         /* Either we should have a hardware SPI cycle in progress
3341          * bit to check against, in order to start a new cycle or
3342          * FDONE bit should be changed in the hardware so that it
3343          * is 1 after hardware reset, which can then be used as an
3344          * indication whether a cycle is in progress or has been
3345          * completed.
3346          */
3347
3348         if (!hsfsts.hsf_status.flcinprog) {
3349                 /* There is no cycle running at present,
3350                  * so we can start a cycle.
3351                  * Begin by setting Flash Cycle Done.
3352                  */
3353                 hsfsts.hsf_status.flcdone = 1;
3354                 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
3355                 ret_val = E1000_SUCCESS;
3356         } else {
3357                 s32 i;
3358
3359                 /* Otherwise poll for sometime so the current
3360                  * cycle has a chance to end before giving up.
3361                  */
3362                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3363                         hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3364                                                               ICH_FLASH_HSFSTS);
3365                         if (!hsfsts.hsf_status.flcinprog) {
3366                                 ret_val = E1000_SUCCESS;
3367                                 break;
3368                         }
3369                         usec_delay(1);
3370                 }
3371                 if (ret_val == E1000_SUCCESS) {
3372                         /* Successful in waiting for previous cycle to timeout,
3373                          * now set the Flash Cycle Done.
3374                          */
3375                         hsfsts.hsf_status.flcdone = 1;
3376                         E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3377                                                 hsfsts.regval);
3378                 } else {
3379                         DEBUGOUT("Flash controller busy, cannot get access\n");
3380                 }
3381         }
3382
3383         return ret_val;
3384 }
3385
3386 /**
3387  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3388  *  @hw: pointer to the HW structure
3389  *  @timeout: maximum time to wait for completion
3390  *
3391  *  This function starts a flash cycle and waits for its completion.
3392  **/
3393 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3394 {
3395         union ich8_hws_flash_ctrl hsflctl;
3396         union ich8_hws_flash_status hsfsts;
3397         u32 i = 0;
3398
3399         DEBUGFUNC("e1000_flash_cycle_ich8lan");
3400
3401         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3402         hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3403         hsflctl.hsf_ctrl.flcgo = 1;
3404
3405         E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3406
3407         /* wait till FDONE bit is set to 1 */
3408         do {
3409                 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3410                 if (hsfsts.hsf_status.flcdone)
3411                         break;
3412                 usec_delay(1);
3413         } while (i++ < timeout);
3414
3415         if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3416                 return E1000_SUCCESS;
3417
3418         return -E1000_ERR_NVM;
3419 }
3420
3421 /**
3422  *  e1000_read_flash_word_ich8lan - Read word from flash
3423  *  @hw: pointer to the HW structure
3424  *  @offset: offset to data location
3425  *  @data: pointer to the location for storing the data
3426  *
3427  *  Reads the flash word at offset into data.  Offset is converted
3428  *  to bytes before read.
3429  **/
3430 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3431                                          u16 *data)
3432 {
3433         DEBUGFUNC("e1000_read_flash_word_ich8lan");
3434
3435         if (!data)
3436                 return -E1000_ERR_NVM;
3437
3438         /* Must convert offset into bytes. */
3439         offset <<= 1;
3440
3441         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3442 }
3443
3444 /**
3445  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3446  *  @hw: pointer to the HW structure
3447  *  @offset: The offset of the byte to read.
3448  *  @data: Pointer to a byte to store the value read.
3449  *
3450  *  Reads a single byte from the NVM using the flash access registers.
3451  **/
3452 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3453                                          u8 *data)
3454 {
3455         s32 ret_val;
3456         u16 word = 0;
3457
3458         ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3459
3460         if (ret_val)
3461                 return ret_val;
3462
3463         *data = (u8)word;
3464
3465         return E1000_SUCCESS;
3466 }
3467
3468 /**
3469  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3470  *  @hw: pointer to the HW structure
3471  *  @offset: The offset (in bytes) of the byte or word to read.
3472  *  @size: Size of data to read, 1=byte 2=word
3473  *  @data: Pointer to the word to store the value read.
3474  *
3475  *  Reads a byte or word from the NVM using the flash access registers.
3476  **/
3477 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3478                                          u8 size, u16 *data)
3479 {
3480         union ich8_hws_flash_status hsfsts;
3481         union ich8_hws_flash_ctrl hsflctl;
3482         u32 flash_linear_addr;
3483         u32 flash_data = 0;
3484         s32 ret_val = -E1000_ERR_NVM;
3485         u8 count = 0;
3486
3487         DEBUGFUNC("e1000_read_flash_data_ich8lan");
3488
3489         if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3490                 return -E1000_ERR_NVM;
3491         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3492                              hw->nvm.flash_base_addr);
3493
3494         do {
3495                 usec_delay(1);
3496                 /* Steps */
3497                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3498                 if (ret_val != E1000_SUCCESS)
3499                         break;
3500                 hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3501
3502                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3503                 hsflctl.hsf_ctrl.fldbcount = size - 1;
3504                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3505                 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3506                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3507
3508                 ret_val = e1000_flash_cycle_ich8lan(hw,
3509                                                 ICH_FLASH_READ_COMMAND_TIMEOUT);
3510
3511                 /* Check if FCERR is set to 1, if set to 1, clear it
3512                  * and try the whole sequence a few more times, else
3513                  * read in (shift in) the Flash Data0, the order is
3514                  * least significant byte first msb to lsb
3515                  */
3516                 if (ret_val == E1000_SUCCESS) {
3517                         flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
3518                         if (size == 1)
3519                                 *data = (u8)(flash_data & 0x000000FF);
3520                         else if (size == 2)
3521                                 *data = (u16)(flash_data & 0x0000FFFF);
3522                         break;
3523                 } else {
3524                         /* If we've gotten here, then things are probably
3525                          * completely hosed, but if the error condition is
3526                          * detected, it won't hurt to give it another try...
3527                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3528                          */
3529                         hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3530                                                               ICH_FLASH_HSFSTS);
3531                         if (hsfsts.hsf_status.flcerr) {
3532                                 /* Repeat for some time before giving up. */
3533                                 continue;
3534                         } else if (!hsfsts.hsf_status.flcdone) {
3535                                 DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3536                                 break;
3537                         }
3538                 }
3539         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3540
3541         return ret_val;
3542 }
3543
3544
3545 /**
3546  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3547  *  @hw: pointer to the HW structure
3548  *  @offset: The offset (in bytes) of the word(s) to write.
3549  *  @words: Size of data to write in words
3550  *  @data: Pointer to the word(s) to write at offset.
3551  *
3552  *  Writes a byte or word to the NVM using the flash access registers.
3553  **/
3554 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3555                                    u16 *data)
3556 {
3557         struct e1000_nvm_info *nvm = &hw->nvm;
3558         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3559         u16 i;
3560
3561         DEBUGFUNC("e1000_write_nvm_ich8lan");
3562
3563         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3564             (words == 0)) {
3565                 DEBUGOUT("nvm parameter(s) out of bounds\n");
3566                 return -E1000_ERR_NVM;
3567         }
3568
3569         nvm->ops.acquire(hw);
3570
3571         for (i = 0; i < words; i++) {
3572                 dev_spec->shadow_ram[offset+i].modified = TRUE;
3573                 dev_spec->shadow_ram[offset+i].value = data[i];
3574         }
3575
3576         nvm->ops.release(hw);
3577
3578         return E1000_SUCCESS;
3579 }
3580
3581 /**
3582  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3583  *  @hw: pointer to the HW structure
3584  *
3585  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3586  *  which writes the checksum to the shadow ram.  The changes in the shadow
3587  *  ram are then committed to the EEPROM by processing each bank at a time
3588  *  checking for the modified bit and writing only the pending changes.
3589  *  After a successful commit, the shadow ram is cleared and is ready for
3590  *  future writes.
3591  **/
3592 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3593 {
3594         struct e1000_nvm_info *nvm = &hw->nvm;
3595         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3596         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3597         s32 ret_val;
3598         u16 data = 0;
3599
3600         DEBUGFUNC("e1000_update_nvm_checksum_ich8lan");
3601
3602         ret_val = e1000_update_nvm_checksum_generic(hw);
3603         if (ret_val)
3604                 goto out;
3605
3606         if (nvm->type != e1000_nvm_flash_sw)
3607                 goto out;
3608
3609         nvm->ops.acquire(hw);
3610
3611         /* We're writing to the opposite bank so if we're on bank 1,
3612          * write to bank 0 etc.  We also need to erase the segment that
3613          * is going to be written
3614          */
3615         ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3616         if (ret_val != E1000_SUCCESS) {
3617                 DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3618                 bank = 0;
3619         }
3620
3621         if (bank == 0) {
3622                 new_bank_offset = nvm->flash_bank_size;
3623                 old_bank_offset = 0;
3624                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3625                 if (ret_val)
3626                         goto release;
3627         } else {
3628                 old_bank_offset = nvm->flash_bank_size;
3629                 new_bank_offset = 0;
3630                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3631                 if (ret_val)
3632                         goto release;
3633         }
3634         for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
3635                 if (dev_spec->shadow_ram[i].modified) {
3636                         data = dev_spec->shadow_ram[i].value;
3637                 } else {
3638                         ret_val = e1000_read_flash_word_ich8lan(hw, i +
3639                                                                 old_bank_offset,
3640                                                                 &data);
3641                         if (ret_val)
3642                                 break;
3643                 }
3644                 /* If the word is 0x13, then make sure the signature bits
3645                  * (15:14) are 11b until the commit has completed.
3646                  * This will allow us to write 10b which indicates the
3647                  * signature is valid.  We want to do this after the write
3648                  * has completed so that we don't mark the segment valid
3649                  * while the write is still in progress
3650                  */
3651                 if (i == E1000_ICH_NVM_SIG_WORD)
3652                         data |= E1000_ICH_NVM_SIG_MASK;
3653
3654                 /* Convert offset to bytes. */
3655                 act_offset = (i + new_bank_offset) << 1;
3656
3657                 usec_delay(100);
3658
3659                 /* Write the bytes to the new bank. */
3660                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3661                                                                act_offset,
3662                                                                (u8)data);
3663                 if (ret_val)
3664                         break;
3665
3666                 usec_delay(100);
3667                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3668                                                           act_offset + 1,
3669                                                           (u8)(data >> 8));
3670                 if (ret_val)
3671                         break;
3672          }
3673
3674         /* Don't bother writing the segment valid bits if sector
3675          * programming failed.
3676          */
3677         if (ret_val) {
3678                 DEBUGOUT("Flash commit failed.\n");
3679                 goto release;
3680         }
3681
3682         /* Finally validate the new segment by setting bit 15:14
3683          * to 10b in word 0x13 , this can be done without an
3684          * erase as well since these bits are 11 to start with
3685          * and we need to change bit 14 to 0b
3686          */
3687         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3688         ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
3689         if (ret_val)
3690                 goto release;
3691
3692         data &= 0xBFFF;
3693         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset * 2 + 1,
3694                                                        (u8)(data >> 8));
3695         if (ret_val)
3696                 goto release;
3697
3698         /* And invalidate the previously valid segment by setting
3699          * its signature word (0x13) high_byte to 0b. This can be
3700          * done without an erase because flash erase sets all bits
3701          * to 1's. We can write 1's to 0's without an erase
3702          */
3703         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3704
3705         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
3706
3707         if (ret_val)
3708                 goto release;
3709
3710         /* Great!  Everything worked, we can now clear the cached entries. */
3711         for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
3712                 dev_spec->shadow_ram[i].modified = FALSE;
3713                 dev_spec->shadow_ram[i].value = 0xFFFF;
3714         }
3715
3716 release:
3717         nvm->ops.release(hw);
3718
3719         /* Reload the EEPROM, or else modifications will not appear
3720          * until after the next adapter reset.
3721          */
3722         if (!ret_val) {
3723                 nvm->ops.reload(hw);
3724                 msec_delay(10);
3725         }
3726
3727 out:
3728         if (ret_val)
3729                 DEBUGOUT1("NVM update error: %d\n", ret_val);
3730
3731         return ret_val;
3732 }
3733
3734 /**
3735  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
3736  *  @hw: pointer to the HW structure
3737  *
3738  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
3739  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
3740  *  calculated, in which case we need to calculate the checksum and set bit 6.
3741  **/
3742 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
3743 {
3744         s32 ret_val;
3745         u16 data;
3746         u16 word;
3747         u16 valid_csum_mask;
3748
3749         DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan");
3750
3751         /* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
3752          * the checksum needs to be fixed.  This bit is an indication that
3753          * the NVM was prepared by OEM software and did not calculate
3754          * the checksum...a likely scenario.
3755          */
3756         switch (hw->mac.type) {
3757         case e1000_pch_lpt:
3758                 word = NVM_COMPAT;
3759                 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
3760                 break;
3761         default:
3762                 word = NVM_FUTURE_INIT_WORD1;
3763                 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
3764                 break;
3765         }
3766
3767         ret_val = hw->nvm.ops.read(hw, word, 1, &data);
3768         if (ret_val)
3769                 return ret_val;
3770
3771         if (!(data & valid_csum_mask)) {
3772                 data |= valid_csum_mask;
3773                 ret_val = hw->nvm.ops.write(hw, word, 1, &data);
3774                 if (ret_val)
3775                         return ret_val;
3776                 ret_val = hw->nvm.ops.update(hw);
3777                 if (ret_val)
3778                         return ret_val;
3779         }
3780
3781         return e1000_validate_nvm_checksum_generic(hw);
3782 }
3783
3784 /**
3785  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
3786  *  @hw: pointer to the HW structure
3787  *  @offset: The offset (in bytes) of the byte/word to read.
3788  *  @size: Size of data to read, 1=byte 2=word
3789  *  @data: The byte(s) to write to the NVM.
3790  *
3791  *  Writes one/two bytes to the NVM using the flash access registers.
3792  **/
3793 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3794                                           u8 size, u16 data)
3795 {
3796         union ich8_hws_flash_status hsfsts;
3797         union ich8_hws_flash_ctrl hsflctl;
3798         u32 flash_linear_addr;
3799         u32 flash_data = 0;
3800         s32 ret_val;
3801         u8 count = 0;
3802
3803         DEBUGFUNC("e1000_write_ich8_data");
3804
3805         if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3806                 return -E1000_ERR_NVM;
3807
3808         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3809                              hw->nvm.flash_base_addr);
3810
3811         do {
3812                 usec_delay(1);
3813                 /* Steps */
3814                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3815                 if (ret_val != E1000_SUCCESS)
3816                         break;
3817                 hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3818
3819                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3820                 hsflctl.hsf_ctrl.fldbcount = size - 1;
3821                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
3822                 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3823
3824                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3825
3826                 if (size == 1)
3827                         flash_data = (u32)data & 0x00FF;
3828                 else
3829                         flash_data = (u32)data;
3830
3831                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
3832
3833                 /* check if FCERR is set to 1 , if set to 1, clear it
3834                  * and try the whole sequence a few more times else done
3835                  */
3836                 ret_val =
3837                     e1000_flash_cycle_ich8lan(hw,
3838                                               ICH_FLASH_WRITE_COMMAND_TIMEOUT);
3839                 if (ret_val == E1000_SUCCESS)
3840                         break;
3841
3842                 /* If we're here, then things are most likely
3843                  * completely hosed, but if the error condition
3844                  * is detected, it won't hurt to give it another
3845                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
3846                  */
3847                 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3848                 if (hsfsts.hsf_status.flcerr)
3849                         /* Repeat for some time before giving up. */
3850                         continue;
3851                 if (!hsfsts.hsf_status.flcdone) {
3852                         DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3853                         break;
3854                 }
3855         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3856
3857         return ret_val;
3858 }
3859
3860
3861 /**
3862  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
3863  *  @hw: pointer to the HW structure
3864  *  @offset: The index of the byte to read.
3865  *  @data: The byte to write to the NVM.
3866  *
3867  *  Writes a single byte to the NVM using the flash access registers.
3868  **/
3869 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3870                                           u8 data)
3871 {
3872         u16 word = (u16)data;
3873
3874         DEBUGFUNC("e1000_write_flash_byte_ich8lan");
3875
3876         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
3877 }
3878
3879
3880
3881 /**
3882  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
3883  *  @hw: pointer to the HW structure
3884  *  @offset: The offset of the byte to write.
3885  *  @byte: The byte to write to the NVM.
3886  *
3887  *  Writes a single byte to the NVM using the flash access registers.
3888  *  Goes through a retry algorithm before giving up.
3889  **/
3890 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
3891                                                 u32 offset, u8 byte)
3892 {
3893         s32 ret_val;
3894         u16 program_retries;
3895
3896         DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan");
3897
3898         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3899         if (!ret_val)
3900                 return ret_val;
3901
3902         for (program_retries = 0; program_retries < 100; program_retries++) {
3903                 DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset);
3904                 usec_delay(100);
3905                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3906                 if (ret_val == E1000_SUCCESS)
3907                         break;
3908         }
3909         if (program_retries == 100)
3910                 return -E1000_ERR_NVM;
3911
3912         return E1000_SUCCESS;
3913 }
3914
3915 /**
3916  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
3917  *  @hw: pointer to the HW structure
3918  *  @bank: 0 for first bank, 1 for second bank, etc.
3919  *
3920  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
3921  *  bank N is 4096 * N + flash_reg_addr.
3922  **/
3923 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
3924 {
3925         struct e1000_nvm_info *nvm = &hw->nvm;
3926         union ich8_hws_flash_status hsfsts;
3927         union ich8_hws_flash_ctrl hsflctl;
3928         u32 flash_linear_addr;
3929         /* bank size is in 16bit words - adjust to bytes */
3930         u32 flash_bank_size = nvm->flash_bank_size * 2;
3931         s32 ret_val;
3932         s32 count = 0;
3933         s32 j, iteration, sector_size;
3934
3935         DEBUGFUNC("e1000_erase_flash_bank_ich8lan");
3936
3937         hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3938
3939         /* Determine HW Sector size: Read BERASE bits of hw flash status
3940          * register
3941          * 00: The Hw sector is 256 bytes, hence we need to erase 16
3942          *     consecutive sectors.  The start index for the nth Hw sector
3943          *     can be calculated as = bank * 4096 + n * 256
3944          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
3945          *     The start index for the nth Hw sector can be calculated
3946          *     as = bank * 4096
3947          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
3948          *     (ich9 only, otherwise error condition)
3949          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
3950          */
3951         switch (hsfsts.hsf_status.berasesz) {
3952         case 0:
3953                 /* Hw sector size 256 */
3954                 sector_size = ICH_FLASH_SEG_SIZE_256;
3955                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
3956                 break;
3957         case 1:
3958                 sector_size = ICH_FLASH_SEG_SIZE_4K;
3959                 iteration = 1;
3960                 break;
3961         case 2:
3962                 sector_size = ICH_FLASH_SEG_SIZE_8K;
3963                 iteration = 1;
3964                 break;
3965         case 3:
3966                 sector_size = ICH_FLASH_SEG_SIZE_64K;
3967                 iteration = 1;
3968                 break;
3969         default:
3970                 return -E1000_ERR_NVM;
3971         }
3972
3973         /* Start with the base address, then add the sector offset. */
3974         flash_linear_addr = hw->nvm.flash_base_addr;
3975         flash_linear_addr += (bank) ? flash_bank_size : 0;
3976
3977         for (j = 0; j < iteration; j++) {
3978                 do {
3979                         u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
3980
3981                         /* Steps */
3982                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
3983                         if (ret_val)
3984                                 return ret_val;
3985
3986                         /* Write a value 11 (block Erase) in Flash
3987                          * Cycle field in hw flash control
3988                          */
3989                         hsflctl.regval =
3990                             E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3991
3992                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
3993                         E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
3994                                                 hsflctl.regval);
3995
3996                         /* Write the last 24 bits of an index within the
3997                          * block into Flash Linear address field in Flash
3998                          * Address.
3999                          */
4000                         flash_linear_addr += (j * sector_size);
4001                         E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR,
4002                                               flash_linear_addr);
4003
4004                         ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4005                         if (ret_val == E1000_SUCCESS)
4006                                 break;
4007
4008                         /* Check if FCERR is set to 1.  If 1,
4009                          * clear it and try the whole sequence
4010                          * a few more times else Done
4011                          */
4012                         hsfsts.regval = E1000_READ_FLASH_REG16(hw,
4013                                                       ICH_FLASH_HSFSTS);
4014                         if (hsfsts.hsf_status.flcerr)
4015                                 /* repeat for some time before giving up */
4016                                 continue;
4017                         else if (!hsfsts.hsf_status.flcdone)
4018                                 return ret_val;
4019                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4020         }
4021
4022         return E1000_SUCCESS;
4023 }
4024
4025 /**
4026  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4027  *  @hw: pointer to the HW structure
4028  *  @data: Pointer to the LED settings
4029  *
4030  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4031  *  settings is all 0's or F's, set the LED default to a valid LED default
4032  *  setting.
4033  **/
4034 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4035 {
4036         s32 ret_val;
4037
4038         DEBUGFUNC("e1000_valid_led_default_ich8lan");
4039
4040         ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
4041         if (ret_val) {
4042                 DEBUGOUT("NVM Read Error\n");
4043                 return ret_val;
4044         }
4045
4046         if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4047                 *data = ID_LED_DEFAULT_ICH8LAN;
4048
4049         return E1000_SUCCESS;
4050 }
4051
4052 /**
4053  *  e1000_id_led_init_pchlan - store LED configurations
4054  *  @hw: pointer to the HW structure
4055  *
4056  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4057  *  the PHY LED configuration register.
4058  *
4059  *  PCH also does not have an "always on" or "always off" mode which
4060  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4061  *  in ledctl_mode2 the LEDs to use for ID (see e1000_id_led_init_generic()),
4062  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4063  *  link based on logic in e1000_led_[on|off]_pchlan().
4064  **/
4065 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4066 {
4067         struct e1000_mac_info *mac = &hw->mac;
4068         s32 ret_val;
4069         const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4070         const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4071         u16 data, i, temp, shift;
4072
4073         DEBUGFUNC("e1000_id_led_init_pchlan");
4074
4075         /* Get default ID LED modes */
4076         ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4077         if (ret_val)
4078                 return ret_val;
4079
4080         mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
4081         mac->ledctl_mode1 = mac->ledctl_default;
4082         mac->ledctl_mode2 = mac->ledctl_default;
4083
4084         for (i = 0; i < 4; i++) {
4085                 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4086                 shift = (i * 5);
4087                 switch (temp) {
4088                 case ID_LED_ON1_DEF2:
4089                 case ID_LED_ON1_ON2:
4090                 case ID_LED_ON1_OFF2:
4091                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4092                         mac->ledctl_mode1 |= (ledctl_on << shift);
4093                         break;
4094                 case ID_LED_OFF1_DEF2:
4095                 case ID_LED_OFF1_ON2:
4096                 case ID_LED_OFF1_OFF2:
4097                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4098                         mac->ledctl_mode1 |= (ledctl_off << shift);
4099                         break;
4100                 default:
4101                         /* Do nothing */
4102                         break;
4103                 }
4104                 switch (temp) {
4105                 case ID_LED_DEF1_ON2:
4106                 case ID_LED_ON1_ON2:
4107                 case ID_LED_OFF1_ON2:
4108                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4109                         mac->ledctl_mode2 |= (ledctl_on << shift);
4110                         break;
4111                 case ID_LED_DEF1_OFF2:
4112                 case ID_LED_ON1_OFF2:
4113                 case ID_LED_OFF1_OFF2:
4114                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4115                         mac->ledctl_mode2 |= (ledctl_off << shift);
4116                         break;
4117                 default:
4118                         /* Do nothing */
4119                         break;
4120                 }
4121         }
4122
4123         return E1000_SUCCESS;
4124 }
4125
4126 /**
4127  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4128  *  @hw: pointer to the HW structure
4129  *
4130  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4131  *  register, so the the bus width is hard coded.
4132  **/
4133 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4134 {
4135         struct e1000_bus_info *bus = &hw->bus;
4136         s32 ret_val;
4137
4138         DEBUGFUNC("e1000_get_bus_info_ich8lan");
4139
4140         ret_val = e1000_get_bus_info_pcie_generic(hw);
4141
4142         /* ICH devices are "PCI Express"-ish.  They have
4143          * a configuration space, but do not contain
4144          * PCI Express Capability registers, so bus width
4145          * must be hardcoded.
4146          */
4147         if (bus->width == e1000_bus_width_unknown)
4148                 bus->width = e1000_bus_width_pcie_x1;
4149
4150         return ret_val;
4151 }
4152
4153 /**
4154  *  e1000_reset_hw_ich8lan - Reset the hardware
4155  *  @hw: pointer to the HW structure
4156  *
4157  *  Does a full reset of the hardware which includes a reset of the PHY and
4158  *  MAC.
4159  **/
4160 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4161 {
4162         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4163         u16 kum_cfg;
4164         u32 ctrl, reg;
4165         s32 ret_val;
4166
4167         DEBUGFUNC("e1000_reset_hw_ich8lan");
4168
4169         /* Prevent the PCI-E bus from sticking if there is no TLP connection
4170          * on the last TLP read/write transaction when MAC is reset.
4171          */
4172         ret_val = e1000_disable_pcie_master_generic(hw);
4173         if (ret_val)
4174                 DEBUGOUT("PCI-E Master disable polling has failed.\n");
4175
4176         DEBUGOUT("Masking off all interrupts\n");
4177         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4178
4179         /* Disable the Transmit and Receive units.  Then delay to allow
4180          * any pending transactions to complete before we hit the MAC
4181          * with the global reset.
4182          */
4183         E1000_WRITE_REG(hw, E1000_RCTL, 0);
4184         E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
4185         E1000_WRITE_FLUSH(hw);
4186
4187         msec_delay(10);
4188
4189         /* Workaround for ICH8 bit corruption issue in FIFO memory */
4190         if (hw->mac.type == e1000_ich8lan) {
4191                 /* Set Tx and Rx buffer allocation to 8k apiece. */
4192                 E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K);
4193                 /* Set Packet Buffer Size to 16k. */
4194                 E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K);
4195         }
4196
4197         if (hw->mac.type == e1000_pchlan) {
4198                 /* Save the NVM K1 bit setting*/
4199                 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4200                 if (ret_val)
4201                         return ret_val;
4202
4203                 if (kum_cfg & E1000_NVM_K1_ENABLE)
4204                         dev_spec->nvm_k1_enabled = TRUE;
4205                 else
4206                         dev_spec->nvm_k1_enabled = FALSE;
4207         }
4208
4209         ctrl = E1000_READ_REG(hw, E1000_CTRL);
4210
4211         if (!hw->phy.ops.check_reset_block(hw)) {
4212                 /* Full-chip reset requires MAC and PHY reset at the same
4213                  * time to make sure the interface between MAC and the
4214                  * external PHY is reset.
4215                  */
4216                 ctrl |= E1000_CTRL_PHY_RST;
4217
4218                 /* Gate automatic PHY configuration by hardware on
4219                  * non-managed 82579
4220                  */
4221                 if ((hw->mac.type == e1000_pch2lan) &&
4222                     !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
4223                         e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
4224         }
4225         ret_val = e1000_acquire_swflag_ich8lan(hw);
4226         DEBUGOUT("Issuing a global reset to ich8lan\n");
4227         E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST));
4228         /* cannot issue a flush here because it hangs the hardware */
4229         msec_delay(20);
4230
4231         /* Set Phy Config Counter to 50msec */
4232         if (hw->mac.type == e1000_pch2lan) {
4233                 reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
4234                 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4235                 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4236                 E1000_WRITE_REG(hw, E1000_FEXTNVM3, reg);
4237         }
4238
4239         if (ctrl & E1000_CTRL_PHY_RST) {
4240                 ret_val = hw->phy.ops.get_cfg_done(hw);
4241                 if (ret_val)
4242                         return ret_val;
4243
4244                 ret_val = e1000_post_phy_reset_ich8lan(hw);
4245                 if (ret_val)
4246                         return ret_val;
4247         }
4248
4249         /* For PCH, this write will make sure that any noise
4250          * will be detected as a CRC error and be dropped rather than show up
4251          * as a bad packet to the DMA engine.
4252          */
4253         if (hw->mac.type == e1000_pchlan)
4254                 E1000_WRITE_REG(hw, E1000_CRC_OFFSET, 0x65656565);
4255
4256         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4257         E1000_READ_REG(hw, E1000_ICR);
4258
4259         reg = E1000_READ_REG(hw, E1000_KABGTXD);
4260         reg |= E1000_KABGTXD_BGSQLBIAS;
4261         E1000_WRITE_REG(hw, E1000_KABGTXD, reg);
4262
4263         return E1000_SUCCESS;
4264 }
4265
4266 /**
4267  *  e1000_init_hw_ich8lan - Initialize the hardware
4268  *  @hw: pointer to the HW structure
4269  *
4270  *  Prepares the hardware for transmit and receive by doing the following:
4271  *   - initialize hardware bits
4272  *   - initialize LED identification
4273  *   - setup receive address registers
4274  *   - setup flow control
4275  *   - setup transmit descriptors
4276  *   - clear statistics
4277  **/
4278 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4279 {
4280         struct e1000_mac_info *mac = &hw->mac;
4281         u32 ctrl_ext, txdctl, snoop;
4282         s32 ret_val;
4283         u16 i;
4284
4285         DEBUGFUNC("e1000_init_hw_ich8lan");
4286
4287         e1000_initialize_hw_bits_ich8lan(hw);
4288
4289         /* Initialize identification LED */
4290         ret_val = mac->ops.id_led_init(hw);
4291         /* An error is not fatal and we should not stop init due to this */
4292         if (ret_val)
4293                 DEBUGOUT("Error initializing identification LED\n");
4294
4295         /* Setup the receive address. */
4296         e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
4297
4298         /* Zero out the Multicast HASH table */
4299         DEBUGOUT("Zeroing the MTA\n");
4300         for (i = 0; i < mac->mta_reg_count; i++)
4301                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4302
4303         /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4304          * the ME.  Disable wakeup by clearing the host wakeup bit.
4305          * Reset the phy after disabling host wakeup to reset the Rx buffer.
4306          */
4307         if (hw->phy.type == e1000_phy_82578) {
4308                 hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &i);
4309                 i &= ~BM_WUC_HOST_WU_BIT;
4310                 hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, i);
4311                 ret_val = e1000_phy_hw_reset_ich8lan(hw);
4312                 if (ret_val)
4313                         return ret_val;
4314         }
4315
4316         /* Setup link and flow control */
4317         ret_val = mac->ops.setup_link(hw);
4318
4319         /* Set the transmit descriptor write-back policy for both queues */
4320         txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
4321         txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4322                   E1000_TXDCTL_FULL_TX_DESC_WB);
4323         txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4324                   E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4325         E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
4326         txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1));
4327         txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4328                   E1000_TXDCTL_FULL_TX_DESC_WB);
4329         txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4330                   E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4331         E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl);
4332
4333         /* ICH8 has opposite polarity of no_snoop bits.
4334          * By default, we should use snoop behavior.
4335          */
4336         if (mac->type == e1000_ich8lan)
4337                 snoop = PCIE_ICH8_SNOOP_ALL;
4338         else
4339                 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
4340         e1000_set_pcie_no_snoop_generic(hw, snoop);
4341
4342         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
4343         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4344         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
4345
4346         /* Clear all of the statistics registers (clear on read).  It is
4347          * important that we do this after we have tried to establish link
4348          * because the symbol error count will increment wildly if there
4349          * is no link.
4350          */
4351         e1000_clear_hw_cntrs_ich8lan(hw);
4352
4353         return ret_val;
4354 }
4355
4356 /**
4357  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4358  *  @hw: pointer to the HW structure
4359  *
4360  *  Sets/Clears required hardware bits necessary for correctly setting up the
4361  *  hardware for transmit and receive.
4362  **/
4363 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4364 {
4365         u32 reg;
4366
4367         DEBUGFUNC("e1000_initialize_hw_bits_ich8lan");
4368
4369         /* Extended Device Control */
4370         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
4371         reg |= (1 << 22);
4372         /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4373         if (hw->mac.type >= e1000_pchlan)
4374                 reg |= E1000_CTRL_EXT_PHYPDEN;
4375         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
4376
4377         /* Transmit Descriptor Control 0 */
4378         reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
4379         reg |= (1 << 22);
4380         E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
4381
4382         /* Transmit Descriptor Control 1 */
4383         reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
4384         reg |= (1 << 22);
4385         E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
4386
4387         /* Transmit Arbitration Control 0 */
4388         reg = E1000_READ_REG(hw, E1000_TARC(0));
4389         if (hw->mac.type == e1000_ich8lan)
4390                 reg |= (1 << 28) | (1 << 29);
4391         reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
4392         E1000_WRITE_REG(hw, E1000_TARC(0), reg);
4393
4394         /* Transmit Arbitration Control 1 */
4395         reg = E1000_READ_REG(hw, E1000_TARC(1));
4396         if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
4397                 reg &= ~(1 << 28);
4398         else
4399                 reg |= (1 << 28);
4400         reg |= (1 << 24) | (1 << 26) | (1 << 30);
4401         E1000_WRITE_REG(hw, E1000_TARC(1), reg);
4402
4403         /* Device Status */
4404         if (hw->mac.type == e1000_ich8lan) {
4405                 reg = E1000_READ_REG(hw, E1000_STATUS);
4406                 reg &= ~(1 << 31);
4407                 E1000_WRITE_REG(hw, E1000_STATUS, reg);
4408         }
4409
4410         /* work-around descriptor data corruption issue during nfs v2 udp
4411          * traffic, just disable the nfs filtering capability
4412          */
4413         reg = E1000_READ_REG(hw, E1000_RFCTL);
4414         reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4415
4416         /* Disable IPv6 extension header parsing because some malformed
4417          * IPv6 headers can hang the Rx.
4418          */
4419         if (hw->mac.type == e1000_ich8lan)
4420                 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4421         E1000_WRITE_REG(hw, E1000_RFCTL, reg);
4422
4423         /* Enable ECC on Lynxpoint */
4424         if (hw->mac.type == e1000_pch_lpt) {
4425                 reg = E1000_READ_REG(hw, E1000_PBECCSTS);
4426                 reg |= E1000_PBECCSTS_ECC_ENABLE;
4427                 E1000_WRITE_REG(hw, E1000_PBECCSTS, reg);
4428
4429                 reg = E1000_READ_REG(hw, E1000_CTRL);
4430                 reg |= E1000_CTRL_MEHE;
4431                 E1000_WRITE_REG(hw, E1000_CTRL, reg);
4432         }
4433
4434         return;
4435 }
4436
4437 /**
4438  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4439  *  @hw: pointer to the HW structure
4440  *
4441  *  Determines which flow control settings to use, then configures flow
4442  *  control.  Calls the appropriate media-specific link configuration
4443  *  function.  Assuming the adapter has a valid link partner, a valid link
4444  *  should be established.  Assumes the hardware has previously been reset
4445  *  and the transmitter and receiver are not enabled.
4446  **/
4447 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4448 {
4449         s32 ret_val;
4450
4451         DEBUGFUNC("e1000_setup_link_ich8lan");
4452
4453         if (hw->phy.ops.check_reset_block(hw))
4454                 return E1000_SUCCESS;
4455
4456         /* ICH parts do not have a word in the NVM to determine
4457          * the default flow control setting, so we explicitly
4458          * set it to full.
4459          */
4460         if (hw->fc.requested_mode == e1000_fc_default)
4461                 hw->fc.requested_mode = e1000_fc_full;
4462
4463         /* Save off the requested flow control mode for use later.  Depending
4464          * on the link partner's capabilities, we may or may not use this mode.
4465          */
4466         hw->fc.current_mode = hw->fc.requested_mode;
4467
4468         DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
4469                 hw->fc.current_mode);
4470
4471         /* Continue to configure the copper link. */
4472         ret_val = hw->mac.ops.setup_physical_interface(hw);
4473         if (ret_val)
4474                 return ret_val;
4475
4476         E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
4477         if ((hw->phy.type == e1000_phy_82578) ||
4478             (hw->phy.type == e1000_phy_82579) ||
4479             (hw->phy.type == e1000_phy_i217) ||
4480             (hw->phy.type == e1000_phy_82577)) {
4481                 E1000_WRITE_REG(hw, E1000_FCRTV_PCH, hw->fc.refresh_time);
4482
4483                 ret_val = hw->phy.ops.write_reg(hw,
4484                                              PHY_REG(BM_PORT_CTRL_PAGE, 27),
4485                                              hw->fc.pause_time);
4486                 if (ret_val)
4487                         return ret_val;
4488         }
4489
4490         return e1000_set_fc_watermarks_generic(hw);
4491 }
4492
4493 /**
4494  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4495  *  @hw: pointer to the HW structure
4496  *
4497  *  Configures the kumeran interface to the PHY to wait the appropriate time
4498  *  when polling the PHY, then call the generic setup_copper_link to finish
4499  *  configuring the copper link.
4500  **/
4501 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4502 {
4503         u32 ctrl;
4504         s32 ret_val;
4505         u16 reg_data;
4506
4507         DEBUGFUNC("e1000_setup_copper_link_ich8lan");
4508
4509         ctrl = E1000_READ_REG(hw, E1000_CTRL);
4510         ctrl |= E1000_CTRL_SLU;
4511         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4512         E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4513
4514         /* Set the mac to wait the maximum time between each iteration
4515          * and increase the max iterations when polling the phy;
4516          * this fixes erroneous timeouts at 10Mbps.
4517          */
4518         ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_TIMEOUTS,
4519                                                0xFFFF);
4520         if (ret_val)
4521                 return ret_val;
4522         ret_val = e1000_read_kmrn_reg_generic(hw,
4523                                               E1000_KMRNCTRLSTA_INBAND_PARAM,
4524                                               &reg_data);
4525         if (ret_val)
4526                 return ret_val;
4527         reg_data |= 0x3F;
4528         ret_val = e1000_write_kmrn_reg_generic(hw,
4529                                                E1000_KMRNCTRLSTA_INBAND_PARAM,
4530                                                reg_data);
4531         if (ret_val)
4532                 return ret_val;
4533
4534         switch (hw->phy.type) {
4535         case e1000_phy_igp_3:
4536                 ret_val = e1000_copper_link_setup_igp(hw);
4537                 if (ret_val)
4538                         return ret_val;
4539                 break;
4540         case e1000_phy_bm:
4541         case e1000_phy_82578:
4542                 ret_val = e1000_copper_link_setup_m88(hw);
4543                 if (ret_val)
4544                         return ret_val;
4545                 break;
4546         case e1000_phy_82577:
4547         case e1000_phy_82579:
4548                 ret_val = e1000_copper_link_setup_82577(hw);
4549                 if (ret_val)
4550                         return ret_val;
4551                 break;
4552         case e1000_phy_ife:
4553                 ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
4554                                                &reg_data);
4555                 if (ret_val)
4556                         return ret_val;
4557
4558                 reg_data &= ~IFE_PMC_AUTO_MDIX;
4559
4560                 switch (hw->phy.mdix) {
4561                 case 1:
4562                         reg_data &= ~IFE_PMC_FORCE_MDIX;
4563                         break;
4564                 case 2:
4565                         reg_data |= IFE_PMC_FORCE_MDIX;
4566                         break;
4567                 case 0:
4568                 default:
4569                         reg_data |= IFE_PMC_AUTO_MDIX;
4570                         break;
4571                 }
4572                 ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
4573                                                 reg_data);
4574                 if (ret_val)
4575                         return ret_val;
4576                 break;
4577         default:
4578                 break;
4579         }
4580
4581         return e1000_setup_copper_link_generic(hw);
4582 }
4583
4584 /**
4585  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
4586  *  @hw: pointer to the HW structure
4587  *
4588  *  Calls the PHY specific link setup function and then calls the
4589  *  generic setup_copper_link to finish configuring the link for
4590  *  Lynxpoint PCH devices
4591  **/
4592 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
4593 {
4594         u32 ctrl;
4595         s32 ret_val;
4596
4597         DEBUGFUNC("e1000_setup_copper_link_pch_lpt");
4598
4599         ctrl = E1000_READ_REG(hw, E1000_CTRL);
4600         ctrl |= E1000_CTRL_SLU;
4601         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4602         E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4603
4604         ret_val = e1000_copper_link_setup_82577(hw);
4605         if (ret_val)
4606                 return ret_val;
4607
4608         return e1000_setup_copper_link_generic(hw);
4609 }
4610
4611 /**
4612  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
4613  *  @hw: pointer to the HW structure
4614  *  @speed: pointer to store current link speed
4615  *  @duplex: pointer to store the current link duplex
4616  *
4617  *  Calls the generic get_speed_and_duplex to retrieve the current link
4618  *  information and then calls the Kumeran lock loss workaround for links at
4619  *  gigabit speeds.
4620  **/
4621 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
4622                                           u16 *duplex)
4623 {
4624         s32 ret_val;
4625
4626         DEBUGFUNC("e1000_get_link_up_info_ich8lan");
4627
4628         ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
4629         if (ret_val)
4630                 return ret_val;
4631
4632         if ((hw->mac.type == e1000_ich8lan) &&
4633             (hw->phy.type == e1000_phy_igp_3) &&
4634             (*speed == SPEED_1000)) {
4635                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
4636         }
4637
4638         return ret_val;
4639 }
4640
4641 /**
4642  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
4643  *  @hw: pointer to the HW structure
4644  *
4645  *  Work-around for 82566 Kumeran PCS lock loss:
4646  *  On link status change (i.e. PCI reset, speed change) and link is up and
4647  *  speed is gigabit-
4648  *    0) if workaround is optionally disabled do nothing
4649  *    1) wait 1ms for Kumeran link to come up
4650  *    2) check Kumeran Diagnostic register PCS lock loss bit
4651  *    3) if not set the link is locked (all is good), otherwise...
4652  *    4) reset the PHY
4653  *    5) repeat up to 10 times
4654  *  Note: this is only called for IGP3 copper when speed is 1gb.
4655  **/
4656 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
4657 {
4658         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4659         u32 phy_ctrl;
4660         s32 ret_val;
4661         u16 i, data;
4662         bool link;
4663
4664         DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan");
4665
4666         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
4667                 return E1000_SUCCESS;
4668
4669         /* Make sure link is up before proceeding.  If not just return.
4670          * Attempting this while link is negotiating fouled up link
4671          * stability
4672          */
4673         ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
4674         if (!link)
4675                 return E1000_SUCCESS;
4676
4677         for (i = 0; i < 10; i++) {
4678                 /* read once to clear */
4679                 ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
4680                 if (ret_val)
4681                         return ret_val;
4682                 /* and again to get new status */
4683                 ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
4684                 if (ret_val)
4685                         return ret_val;
4686
4687                 /* check for PCS lock */
4688                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
4689                         return E1000_SUCCESS;
4690
4691                 /* Issue PHY reset */
4692                 hw->phy.ops.reset(hw);
4693                 msec_delay_irq(5);
4694         }
4695         /* Disable GigE link negotiation */
4696         phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
4697         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
4698                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4699         E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
4700
4701         /* Call gig speed drop workaround on Gig disable before accessing
4702          * any PHY registers
4703          */
4704         e1000_gig_downshift_workaround_ich8lan(hw);
4705
4706         /* unable to acquire PCS lock */
4707         return -E1000_ERR_PHY;
4708 }
4709
4710 /**
4711  *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
4712  *  @hw: pointer to the HW structure
4713  *  @state: boolean value used to set the current Kumeran workaround state
4714  *
4715  *  If ICH8, set the current Kumeran workaround state (enabled - TRUE
4716  *  /disabled - FALSE).
4717  **/
4718 void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
4719                                                  bool state)
4720 {
4721         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4722
4723         DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan");
4724
4725         if (hw->mac.type != e1000_ich8lan) {
4726                 DEBUGOUT("Workaround applies to ICH8 only.\n");
4727                 return;
4728         }
4729
4730         dev_spec->kmrn_lock_loss_workaround_enabled = state;
4731
4732         return;
4733 }
4734
4735 /**
4736  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
4737  *  @hw: pointer to the HW structure
4738  *
4739  *  Workaround for 82566 power-down on D3 entry:
4740  *    1) disable gigabit link
4741  *    2) write VR power-down enable
4742  *    3) read it back
4743  *  Continue if successful, else issue LCD reset and repeat
4744  **/
4745 void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
4746 {
4747         u32 reg;
4748         u16 data;
4749         u8  retry = 0;
4750
4751         DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan");
4752
4753         if (hw->phy.type != e1000_phy_igp_3)
4754                 return;
4755
4756         /* Try the workaround twice (if needed) */
4757         do {
4758                 /* Disable link */
4759                 reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
4760                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
4761                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4762                 E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg);
4763
4764                 /* Call gig speed drop workaround on Gig disable before
4765                  * accessing any PHY registers
4766                  */
4767                 if (hw->mac.type == e1000_ich8lan)
4768                         e1000_gig_downshift_workaround_ich8lan(hw);
4769
4770                 /* Write VR power-down enable */
4771                 hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
4772                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4773                 hw->phy.ops.write_reg(hw, IGP3_VR_CTRL,
4774                                       data | IGP3_VR_CTRL_MODE_SHUTDOWN);
4775
4776                 /* Read it back and test */
4777                 hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
4778                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4779                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
4780                         break;
4781
4782                 /* Issue PHY reset and repeat at most one more time */
4783                 reg = E1000_READ_REG(hw, E1000_CTRL);
4784                 E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST);
4785                 retry++;
4786         } while (retry);
4787 }
4788
4789 /**
4790  *  e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working
4791  *  @hw: pointer to the HW structure
4792  *
4793  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
4794  *  LPLU, Gig disable, MDIC PHY reset):
4795  *    1) Set Kumeran Near-end loopback
4796  *    2) Clear Kumeran Near-end loopback
4797  *  Should only be called for ICH8[m] devices with any 1G Phy.
4798  **/
4799 void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
4800 {
4801         s32 ret_val;
4802         u16 reg_data;
4803
4804         DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan");
4805
4806         if ((hw->mac.type != e1000_ich8lan) ||
4807             (hw->phy.type == e1000_phy_ife))
4808                 return;
4809
4810         ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4811                                               &reg_data);
4812         if (ret_val)
4813                 return;
4814         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
4815         ret_val = e1000_write_kmrn_reg_generic(hw,
4816                                                E1000_KMRNCTRLSTA_DIAG_OFFSET,
4817                                                reg_data);
4818         if (ret_val)
4819                 return;
4820         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
4821         e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4822                                      reg_data);
4823 }
4824
4825 /**
4826  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
4827  *  @hw: pointer to the HW structure
4828  *
4829  *  During S0 to Sx transition, it is possible the link remains at gig
4830  *  instead of negotiating to a lower speed.  Before going to Sx, set
4831  *  'Gig Disable' to force link speed negotiation to a lower speed based on
4832  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
4833  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
4834  *  needs to be written.
4835  *  Parts that support (and are linked to a partner which support) EEE in
4836  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
4837  *  than 10Mbps w/o EEE.
4838  **/
4839 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
4840 {
4841         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4842         u32 phy_ctrl;
4843         s32 ret_val;
4844
4845         DEBUGFUNC("e1000_suspend_workarounds_ich8lan");
4846
4847         phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
4848         phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
4849
4850         if (hw->phy.type == e1000_phy_i217) {
4851                 u16 phy_reg, device_id = hw->device_id;
4852
4853                 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
4854                     (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
4855                     (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
4856                     (device_id == E1000_DEV_ID_PCH_I218_V3)) {
4857                         u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
4858
4859                         E1000_WRITE_REG(hw, E1000_FEXTNVM6,
4860                                         fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
4861                 }
4862
4863                 ret_val = hw->phy.ops.acquire(hw);
4864                 if (ret_val)
4865                         goto out;
4866
4867                 if (!dev_spec->eee_disable) {
4868                         u16 eee_advert;
4869
4870                         ret_val =
4871                             e1000_read_emi_reg_locked(hw,
4872                                                       I217_EEE_ADVERTISEMENT,
4873                                                       &eee_advert);
4874                         if (ret_val)
4875                                 goto release;
4876
4877                         /* Disable LPLU if both link partners support 100BaseT
4878                          * EEE and 100Full is advertised on both ends of the
4879                          * link, and enable Auto Enable LPI since there will
4880                          * be no driver to enable LPI while in Sx.
4881                          */
4882                         if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
4883                             (dev_spec->eee_lp_ability &
4884                              I82579_EEE_100_SUPPORTED) &&
4885                             (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
4886                                 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
4887                                               E1000_PHY_CTRL_NOND0A_LPLU);
4888
4889                                 /* Set Auto Enable LPI after link up */
4890                                 hw->phy.ops.read_reg_locked(hw,
4891                                                             I217_LPI_GPIO_CTRL,
4892                                                             &phy_reg);
4893                                 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
4894                                 hw->phy.ops.write_reg_locked(hw,
4895                                                              I217_LPI_GPIO_CTRL,
4896                                                              phy_reg);
4897                         }
4898                 }
4899
4900                 /* For i217 Intel Rapid Start Technology support,
4901                  * when the system is going into Sx and no manageability engine
4902                  * is present, the driver must configure proxy to reset only on
4903                  * power good.  LPI (Low Power Idle) state must also reset only
4904                  * on power good, as well as the MTA (Multicast table array).
4905                  * The SMBus release must also be disabled on LCD reset.
4906                  */
4907                 if (!(E1000_READ_REG(hw, E1000_FWSM) &
4908                       E1000_ICH_FWSM_FW_VALID)) {
4909                         /* Enable proxy to reset only on power good. */
4910                         hw->phy.ops.read_reg_locked(hw, I217_PROXY_CTRL,
4911                                                     &phy_reg);
4912                         phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
4913                         hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL,
4914                                                      phy_reg);
4915
4916                         /* Set bit enable LPI (EEE) to reset only on
4917                          * power good.
4918                         */
4919                         hw->phy.ops.read_reg_locked(hw, I217_SxCTRL, &phy_reg);
4920                         phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
4921                         hw->phy.ops.write_reg_locked(hw, I217_SxCTRL, phy_reg);
4922
4923                         /* Disable the SMB release on LCD reset. */
4924                         hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, &phy_reg);
4925                         phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
4926                         hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
4927                 }
4928
4929                 /* Enable MTA to reset for Intel Rapid Start Technology
4930                  * Support
4931                  */
4932                 hw->phy.ops.read_reg_locked(hw, I217_CGFREG, &phy_reg);
4933                 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
4934                 hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
4935
4936 release:
4937                 hw->phy.ops.release(hw);
4938         }
4939 out:
4940         E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
4941
4942         if (hw->mac.type == e1000_ich8lan)
4943                 e1000_gig_downshift_workaround_ich8lan(hw);
4944
4945         if (hw->mac.type >= e1000_pchlan) {
4946                 e1000_oem_bits_config_ich8lan(hw, FALSE);
4947
4948                 /* Reset PHY to activate OEM bits on 82577/8 */
4949                 if (hw->mac.type == e1000_pchlan)
4950                         e1000_phy_hw_reset_generic(hw);
4951
4952                 ret_val = hw->phy.ops.acquire(hw);
4953                 if (ret_val)
4954                         return;
4955                 e1000_write_smbus_addr(hw);
4956                 hw->phy.ops.release(hw);
4957         }
4958
4959         return;
4960 }
4961
4962 /**
4963  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
4964  *  @hw: pointer to the HW structure
4965  *
4966  *  During Sx to S0 transitions on non-managed devices or managed devices
4967  *  on which PHY resets are not blocked, if the PHY registers cannot be
4968  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
4969  *  the PHY.
4970  *  On i217, setup Intel Rapid Start Technology.
4971  **/
4972 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
4973 {
4974         s32 ret_val;
4975
4976         DEBUGFUNC("e1000_resume_workarounds_pchlan");
4977
4978         if (hw->mac.type < e1000_pch2lan)
4979                 return;
4980
4981         ret_val = e1000_init_phy_workarounds_pchlan(hw);
4982         if (ret_val) {
4983                 DEBUGOUT1("Failed to init PHY flow ret_val=%d\n", ret_val);
4984                 return;
4985         }
4986
4987         /* For i217 Intel Rapid Start Technology support when the system
4988          * is transitioning from Sx and no manageability engine is present
4989          * configure SMBus to restore on reset, disable proxy, and enable
4990          * the reset on MTA (Multicast table array).
4991          */
4992         if (hw->phy.type == e1000_phy_i217) {
4993                 u16 phy_reg;
4994
4995                 ret_val = hw->phy.ops.acquire(hw);
4996                 if (ret_val) {
4997                         DEBUGOUT("Failed to setup iRST\n");
4998                         return;
4999                 }
5000
5001                 /* Clear Auto Enable LPI after link up */
5002                 hw->phy.ops.read_reg_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5003                 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5004                 hw->phy.ops.write_reg_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5005
5006                 if (!(E1000_READ_REG(hw, E1000_FWSM) &
5007                     E1000_ICH_FWSM_FW_VALID)) {
5008                         /* Restore clear on SMB if no manageability engine
5009                          * is present
5010                          */
5011                         ret_val = hw->phy.ops.read_reg_locked(hw, I217_MEMPWR,
5012                                                               &phy_reg);
5013                         if (ret_val)
5014                                 goto release;
5015                         phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5016                         hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5017
5018                         /* Disable Proxy */
5019                         hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, 0);
5020                 }
5021                 /* Enable reset on MTA */
5022                 ret_val = hw->phy.ops.read_reg_locked(hw, I217_CGFREG,
5023                                                       &phy_reg);
5024                 if (ret_val)
5025                         goto release;
5026                 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5027                 hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5028 release:
5029                 if (ret_val)
5030                         DEBUGOUT1("Error %d in resume workarounds\n", ret_val);
5031                 hw->phy.ops.release(hw);
5032         }
5033 }
5034
5035 /**
5036  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5037  *  @hw: pointer to the HW structure
5038  *
5039  *  Return the LED back to the default configuration.
5040  **/
5041 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5042 {
5043         DEBUGFUNC("e1000_cleanup_led_ich8lan");
5044
5045         if (hw->phy.type == e1000_phy_ife)
5046                 return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5047                                              0);
5048
5049         E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
5050         return E1000_SUCCESS;
5051 }
5052
5053 /**
5054  *  e1000_led_on_ich8lan - Turn LEDs on
5055  *  @hw: pointer to the HW structure
5056  *
5057  *  Turn on the LEDs.
5058  **/
5059 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5060 {
5061         DEBUGFUNC("e1000_led_on_ich8lan");
5062
5063         if (hw->phy.type == e1000_phy_ife)
5064                 return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5065                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5066
5067         E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
5068         return E1000_SUCCESS;
5069 }
5070
5071 /**
5072  *  e1000_led_off_ich8lan - Turn LEDs off
5073  *  @hw: pointer to the HW structure
5074  *
5075  *  Turn off the LEDs.
5076  **/
5077 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5078 {
5079         DEBUGFUNC("e1000_led_off_ich8lan");
5080
5081         if (hw->phy.type == e1000_phy_ife)
5082                 return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5083                                (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
5084
5085         E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
5086         return E1000_SUCCESS;
5087 }
5088
5089 /**
5090  *  e1000_setup_led_pchlan - Configures SW controllable LED
5091  *  @hw: pointer to the HW structure
5092  *
5093  *  This prepares the SW controllable LED for use.
5094  **/
5095 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5096 {
5097         DEBUGFUNC("e1000_setup_led_pchlan");
5098
5099         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5100                                      (u16)hw->mac.ledctl_mode1);
5101 }
5102
5103 /**
5104  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5105  *  @hw: pointer to the HW structure
5106  *
5107  *  Return the LED back to the default configuration.
5108  **/
5109 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5110 {
5111         DEBUGFUNC("e1000_cleanup_led_pchlan");
5112
5113         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5114                                      (u16)hw->mac.ledctl_default);
5115 }
5116
5117 /**
5118  *  e1000_led_on_pchlan - Turn LEDs on
5119  *  @hw: pointer to the HW structure
5120  *
5121  *  Turn on the LEDs.
5122  **/
5123 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5124 {
5125         u16 data = (u16)hw->mac.ledctl_mode2;
5126         u32 i, led;
5127
5128         DEBUGFUNC("e1000_led_on_pchlan");
5129
5130         /* If no link, then turn LED on by setting the invert bit
5131          * for each LED that's mode is "link_up" in ledctl_mode2.
5132          */
5133         if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5134                 for (i = 0; i < 3; i++) {
5135                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5136                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
5137                             E1000_LEDCTL_MODE_LINK_UP)
5138                                 continue;
5139                         if (led & E1000_PHY_LED0_IVRT)
5140                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5141                         else
5142                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5143                 }
5144         }
5145
5146         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5147 }
5148
5149 /**
5150  *  e1000_led_off_pchlan - Turn LEDs off
5151  *  @hw: pointer to the HW structure
5152  *
5153  *  Turn off the LEDs.
5154  **/
5155 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5156 {
5157         u16 data = (u16)hw->mac.ledctl_mode1;
5158         u32 i, led;
5159
5160         DEBUGFUNC("e1000_led_off_pchlan");
5161
5162         /* If no link, then turn LED off by clearing the invert bit
5163          * for each LED that's mode is "link_up" in ledctl_mode1.
5164          */
5165         if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5166                 for (i = 0; i < 3; i++) {
5167                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5168                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
5169                             E1000_LEDCTL_MODE_LINK_UP)
5170                                 continue;
5171                         if (led & E1000_PHY_LED0_IVRT)
5172                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5173                         else
5174                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5175                 }
5176         }
5177
5178         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5179 }
5180
5181 /**
5182  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5183  *  @hw: pointer to the HW structure
5184  *
5185  *  Read appropriate register for the config done bit for completion status
5186  *  and configure the PHY through s/w for EEPROM-less parts.
5187  *
5188  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5189  *  config done bit, so only an error is logged and continues.  If we were
5190  *  to return with error, EEPROM-less silicon would not be able to be reset
5191  *  or change link.
5192  **/
5193 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5194 {
5195         s32 ret_val = E1000_SUCCESS;
5196         u32 bank = 0;
5197         u32 status;
5198
5199         DEBUGFUNC("e1000_get_cfg_done_ich8lan");
5200
5201         e1000_get_cfg_done_generic(hw);
5202
5203         /* Wait for indication from h/w that it has completed basic config */
5204         if (hw->mac.type >= e1000_ich10lan) {
5205                 e1000_lan_init_done_ich8lan(hw);
5206         } else {
5207                 ret_val = e1000_get_auto_rd_done_generic(hw);
5208                 if (ret_val) {
5209                         /* When auto config read does not complete, do not
5210                          * return with an error. This can happen in situations
5211                          * where there is no eeprom and prevents getting link.
5212                          */
5213                         DEBUGOUT("Auto Read Done did not complete\n");
5214                         ret_val = E1000_SUCCESS;
5215                 }
5216         }
5217
5218         /* Clear PHY Reset Asserted bit */
5219         status = E1000_READ_REG(hw, E1000_STATUS);
5220         if (status & E1000_STATUS_PHYRA)
5221                 E1000_WRITE_REG(hw, E1000_STATUS, status & ~E1000_STATUS_PHYRA);
5222         else
5223                 DEBUGOUT("PHY Reset Asserted not set - needs delay\n");
5224
5225         /* If EEPROM is not marked present, init the IGP 3 PHY manually */
5226         if (hw->mac.type <= e1000_ich9lan) {
5227                 if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
5228                     (hw->phy.type == e1000_phy_igp_3)) {
5229                         e1000_phy_init_script_igp3(hw);
5230                 }
5231         } else {
5232                 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5233                         /* Maybe we should do a basic PHY config */
5234                         DEBUGOUT("EEPROM not present\n");
5235                         ret_val = -E1000_ERR_CONFIG;
5236                 }
5237         }
5238
5239         return ret_val;
5240 }
5241
5242 /**
5243  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5244  * @hw: pointer to the HW structure
5245  *
5246  * In the case of a PHY power down to save power, or to turn off link during a
5247  * driver unload, or wake on lan is not enabled, remove the link.
5248  **/
5249 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5250 {
5251         /* If the management interface is not enabled, then power down */
5252         if (!(hw->mac.ops.check_mng_mode(hw) ||
5253               hw->phy.ops.check_reset_block(hw)))
5254                 e1000_power_down_phy_copper(hw);
5255
5256         return;
5257 }
5258
5259 /**
5260  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5261  *  @hw: pointer to the HW structure
5262  *
5263  *  Clears hardware counters specific to the silicon family and calls
5264  *  clear_hw_cntrs_generic to clear all general purpose counters.
5265  **/
5266 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5267 {
5268         u16 phy_data;
5269         s32 ret_val;
5270
5271         DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan");
5272
5273         e1000_clear_hw_cntrs_base_generic(hw);
5274
5275         E1000_READ_REG(hw, E1000_ALGNERRC);
5276         E1000_READ_REG(hw, E1000_RXERRC);
5277         E1000_READ_REG(hw, E1000_TNCRS);
5278         E1000_READ_REG(hw, E1000_CEXTERR);
5279         E1000_READ_REG(hw, E1000_TSCTC);
5280         E1000_READ_REG(hw, E1000_TSCTFC);
5281
5282         E1000_READ_REG(hw, E1000_MGTPRC);
5283         E1000_READ_REG(hw, E1000_MGTPDC);
5284         E1000_READ_REG(hw, E1000_MGTPTC);
5285
5286         E1000_READ_REG(hw, E1000_IAC);
5287         E1000_READ_REG(hw, E1000_ICRXOC);
5288
5289         /* Clear PHY statistics registers */
5290         if ((hw->phy.type == e1000_phy_82578) ||
5291             (hw->phy.type == e1000_phy_82579) ||
5292             (hw->phy.type == e1000_phy_i217) ||
5293             (hw->phy.type == e1000_phy_82577)) {
5294                 ret_val = hw->phy.ops.acquire(hw);
5295                 if (ret_val)
5296                         return;
5297                 ret_val = hw->phy.ops.set_page(hw,
5298                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
5299                 if (ret_val)
5300                         goto release;
5301                 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5302                 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5303                 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5304                 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5305                 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5306                 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5307                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5308                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5309                 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5310                 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5311                 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5312                 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5313                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5314                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5315 release:
5316                 hw->phy.ops.release(hw);
5317         }
5318 }
5319