Merge from vendor branch NCURSES:
[dragonfly.git] / sys / vm / vm_map.c
1 /*
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by the University of
19  *      California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
65  * $DragonFly: src/sys/vm/vm_map.c,v 1.38 2005/02/07 20:39:01 dillon Exp $
66  */
67
68 /*
69  *      Virtual memory mapping module.
70  */
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>
75 #include <sys/lock.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/vnode.h>
79 #include <sys/resourcevar.h>
80 #include <sys/shm.h>
81 #include <sys/tree.h>
82
83 #include <vm/vm.h>
84 #include <vm/vm_param.h>
85 #include <vm/pmap.h>
86 #include <vm/vm_map.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_pager.h>
90 #include <vm/vm_kern.h>
91 #include <vm/vm_extern.h>
92 #include <vm/swap_pager.h>
93 #include <vm/vm_zone.h>
94
95 #include <sys/thread2.h>
96
97 /*
98  *      Virtual memory maps provide for the mapping, protection,
99  *      and sharing of virtual memory objects.  In addition,
100  *      this module provides for an efficient virtual copy of
101  *      memory from one map to another.
102  *
103  *      Synchronization is required prior to most operations.
104  *
105  *      Maps consist of an ordered doubly-linked list of simple
106  *      entries; a single hint is used to speed up lookups.
107  *
108  *      Since portions of maps are specified by start/end addresses,
109  *      which may not align with existing map entries, all
110  *      routines merely "clip" entries to these start/end values.
111  *      [That is, an entry is split into two, bordering at a
112  *      start or end value.]  Note that these clippings may not
113  *      always be necessary (as the two resulting entries are then
114  *      not changed); however, the clipping is done for convenience.
115  *
116  *      As mentioned above, virtual copy operations are performed
117  *      by copying VM object references from one map to
118  *      another, and then marking both regions as copy-on-write.
119  */
120
121 /*
122  *      vm_map_startup:
123  *
124  *      Initialize the vm_map module.  Must be called before
125  *      any other vm_map routines.
126  *
127  *      Map and entry structures are allocated from the general
128  *      purpose memory pool with some exceptions:
129  *
130  *      - The kernel map and kmem submap are allocated statically.
131  *      - Kernel map entries are allocated out of a static pool.
132  *
133  *      These restrictions are necessary since malloc() uses the
134  *      maps and requires map entries.
135  */
136
137 #define VMEPERCPU       2
138
139 static struct vm_zone mapentzone_store, mapzone_store;
140 static vm_zone_t mapentzone, mapzone, vmspace_zone;
141 static struct vm_object mapentobj, mapobj;
142
143 static struct vm_map_entry map_entry_init[MAX_MAPENT];
144 static struct vm_map_entry cpu_map_entry_init[MAXCPU][VMEPERCPU];
145 static struct vm_map map_init[MAX_KMAP];
146
147 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
148 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
149 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
150 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
151 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
152 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
153 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
154                 vm_map_entry_t);
155 static void vm_map_split (vm_map_entry_t);
156 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
157
158 void
159 vm_map_startup(void)
160 {
161         mapzone = &mapzone_store;
162         zbootinit(mapzone, "MAP", sizeof (struct vm_map),
163                 map_init, MAX_KMAP);
164         mapentzone = &mapentzone_store;
165         zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
166                 map_entry_init, MAX_MAPENT);
167 }
168
169 /*
170  * Red black tree functions
171  */
172 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
173 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
174
175 /* a->start is address, and the only field has to be initialized */
176 static int
177 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
178 {
179         if (a->start < b->start)
180                 return(-1);
181         else if (a->start > b->start)
182                 return(1);
183         return(0);
184 }
185
186 /*
187  * Allocate a vmspace structure, including a vm_map and pmap,
188  * and initialize those structures.  The refcnt is set to 1.
189  * The remaining fields must be initialized by the caller.
190  */
191 struct vmspace *
192 vmspace_alloc(vm_offset_t min, vm_offset_t max)
193 {
194         struct vmspace *vm;
195
196         vm = zalloc(vmspace_zone);
197         vm_map_init(&vm->vm_map, min, max);
198         pmap_pinit(vmspace_pmap(vm));
199         vm->vm_map.pmap = vmspace_pmap(vm);             /* XXX */
200         vm->vm_refcnt = 1;
201         vm->vm_shm = NULL;
202         vm->vm_exitingcnt = 0;
203         return (vm);
204 }
205
206 void
207 vm_init2(void) 
208 {
209         zinitna(mapentzone, &mapentobj, NULL, 0, 0, 
210                 ZONE_USE_RESERVE | ZONE_SPECIAL, 1);
211         zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
212         vmspace_zone = zinit("VMSPACE", sizeof (struct vmspace), 0, 0, 3);
213         pmap_init2();
214         vm_object_init2();
215 }
216
217 static __inline void
218 vmspace_dofree(struct vmspace *vm)
219 {
220         int count;
221
222         /*
223          * Make sure any SysV shm is freed, it might not have in
224          * exit1()
225          */
226         shmexit(vm);
227
228         KKASSERT(vm->vm_upcalls == NULL);
229
230         /*
231          * Lock the map, to wait out all other references to it.
232          * Delete all of the mappings and pages they hold, then call
233          * the pmap module to reclaim anything left.
234          */
235         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
236         vm_map_lock(&vm->vm_map);
237         vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
238                 vm->vm_map.max_offset, &count);
239         vm_map_unlock(&vm->vm_map);
240         vm_map_entry_release(count);
241
242         pmap_release(vmspace_pmap(vm));
243         zfree(vmspace_zone, vm);
244 }
245
246 void
247 vmspace_free(struct vmspace *vm)
248 {
249         if (vm->vm_refcnt == 0)
250                 panic("vmspace_free: attempt to free already freed vmspace");
251
252         if (--vm->vm_refcnt == 0 && vm->vm_exitingcnt == 0)
253                 vmspace_dofree(vm);
254 }
255
256 void
257 vmspace_exitfree(struct proc *p)
258 {
259         struct vmspace *vm;
260
261         vm = p->p_vmspace;
262         p->p_vmspace = NULL;
263
264         /*
265          * cleanup by parent process wait()ing on exiting child.  vm_refcnt
266          * may not be 0 (e.g. fork() and child exits without exec()ing).
267          * exitingcnt may increment above 0 and drop back down to zero
268          * several times while vm_refcnt is held non-zero.  vm_refcnt
269          * may also increment above 0 and drop back down to zero several
270          * times while vm_exitingcnt is held non-zero.
271          *
272          * The last wait on the exiting child's vmspace will clean up
273          * the remainder of the vmspace.
274          */
275         if (--vm->vm_exitingcnt == 0 && vm->vm_refcnt == 0)
276                 vmspace_dofree(vm);
277 }
278
279 /*
280  * vmspace_swap_count() - count the approximate swap useage in pages for a
281  *                        vmspace.
282  *
283  *      Swap useage is determined by taking the proportional swap used by
284  *      VM objects backing the VM map.  To make up for fractional losses,
285  *      if the VM object has any swap use at all the associated map entries
286  *      count for at least 1 swap page.
287  */
288 int
289 vmspace_swap_count(struct vmspace *vmspace)
290 {
291         vm_map_t map = &vmspace->vm_map;
292         vm_map_entry_t cur;
293         int count = 0;
294
295         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
296                 vm_object_t object;
297
298                 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
299                     (object = cur->object.vm_object) != NULL &&
300                     object->type == OBJT_SWAP
301                 ) {
302                         int n = (cur->end - cur->start) / PAGE_SIZE;
303
304                         if (object->un_pager.swp.swp_bcount) {
305                                 count += object->un_pager.swp.swp_bcount *
306                                     SWAP_META_PAGES * n / object->size + 1;
307                         }
308                 }
309         }
310         return(count);
311 }
312
313
314 /*
315  *      vm_map_create:
316  *
317  *      Creates and returns a new empty VM map with
318  *      the given physical map structure, and having
319  *      the given lower and upper address bounds.
320  */
321 vm_map_t
322 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
323 {
324         vm_map_t result;
325
326         result = zalloc(mapzone);
327         vm_map_init(result, min, max);
328         result->pmap = pmap;
329         return (result);
330 }
331
332 /*
333  * Initialize an existing vm_map structure
334  * such as that in the vmspace structure.
335  * The pmap is set elsewhere.
336  */
337 void
338 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max)
339 {
340         map->header.next = map->header.prev = &map->header;
341         RB_INIT(&map->rb_root);
342         map->nentries = 0;
343         map->size = 0;
344         map->system_map = 0;
345         map->infork = 0;
346         map->min_offset = min;
347         map->max_offset = max;
348         map->first_free = &map->header;
349         map->hint = &map->header;
350         map->timestamp = 0;
351         lockinit(&map->lock, 0, "thrd_sleep", 0, LK_NOPAUSE);
352 }
353
354 /*
355  *      vm_map_entry_reserve_cpu_init:
356  *
357  *      Set an initial negative count so the first attempt to reserve
358  *      space preloads a bunch of vm_map_entry's for this cpu.  Also
359  *      pre-allocate 2 vm_map_entries which will be needed by zalloc() to
360  *      map a new page for vm_map_entry structures.  SMP systems are
361  *      particularly sensitive.
362  *
363  *      This routine is called in early boot so we cannot just call
364  *      vm_map_entry_reserve().
365  *
366  *      May be called for a gd other then mycpu, but may only be called
367  *      during early boot.
368  */
369 void
370 vm_map_entry_reserve_cpu_init(globaldata_t gd)
371 {
372         vm_map_entry_t entry;
373         int i;
374
375         gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
376         entry = &cpu_map_entry_init[gd->gd_cpuid][0];
377         for (i = 0; i < VMEPERCPU; ++i, ++entry) {
378                 entry->next = gd->gd_vme_base;
379                 gd->gd_vme_base = entry;
380         }
381 }
382
383 /*
384  *      vm_map_entry_reserve:
385  *
386  *      Reserves vm_map_entry structures so code later on can manipulate
387  *      map_entry structures within a locked map without blocking trying
388  *      to allocate a new vm_map_entry.
389  */
390 int
391 vm_map_entry_reserve(int count)
392 {
393         struct globaldata *gd = mycpu;
394         vm_map_entry_t entry;
395
396         crit_enter();
397
398         /*
399          * Make sure we have enough structures in gd_vme_base to handle
400          * the reservation request.
401          */
402         while (gd->gd_vme_avail < count) {
403                 entry = zalloc(mapentzone);
404                 entry->next = gd->gd_vme_base;
405                 gd->gd_vme_base = entry;
406                 ++gd->gd_vme_avail;
407         }
408         gd->gd_vme_avail -= count;
409         crit_exit();
410         return(count);
411 }
412
413 /*
414  *      vm_map_entry_release:
415  *
416  *      Releases previously reserved vm_map_entry structures that were not
417  *      used.  If we have too much junk in our per-cpu cache clean some of
418  *      it out.
419  */
420 void
421 vm_map_entry_release(int count)
422 {
423         struct globaldata *gd = mycpu;
424         vm_map_entry_t entry;
425
426         crit_enter();
427         gd->gd_vme_avail += count;
428         while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
429                 entry = gd->gd_vme_base;
430                 KKASSERT(entry != NULL);
431                 gd->gd_vme_base = entry->next;
432                 --gd->gd_vme_avail;
433                 crit_exit();
434                 zfree(mapentzone, entry);
435                 crit_enter();
436         }
437         crit_exit();
438 }
439
440 /*
441  *      vm_map_entry_kreserve:
442  *
443  *      Reserve map entry structures for use in kernel_map itself.  These
444  *      entries have *ALREADY* been reserved on a per-cpu basis when the map
445  *      was inited.  This function is used by zalloc() to avoid a recursion
446  *      when zalloc() itself needs to allocate additional kernel memory.
447  *
448  *      This function works like the normal reserve but does not load the
449  *      vm_map_entry cache (because that would result in an infinite
450  *      recursion).  Note that gd_vme_avail may go negative.  This is expected.
451  *
452  *      Any caller of this function must be sure to renormalize after 
453  *      potentially eating entries to ensure that the reserve supply
454  *      remains intact.
455  */
456 int
457 vm_map_entry_kreserve(int count)
458 {
459         struct globaldata *gd = mycpu;
460
461         crit_enter();
462         gd->gd_vme_avail -= count;
463         crit_exit();
464         KASSERT(gd->gd_vme_base != NULL, ("no reserved entries left, gd_vme_avail = %d\n", gd->gd_vme_avail));
465         return(count);
466 }
467
468 /*
469  *      vm_map_entry_krelease:
470  *
471  *      Release previously reserved map entries for kernel_map.  We do not
472  *      attempt to clean up like the normal release function as this would
473  *      cause an unnecessary (but probably not fatal) deep procedure call.
474  */
475 void
476 vm_map_entry_krelease(int count)
477 {
478         struct globaldata *gd = mycpu;
479
480         crit_enter();
481         gd->gd_vme_avail += count;
482         crit_exit();
483 }
484
485 /*
486  *      vm_map_entry_create:    [ internal use only ]
487  *
488  *      Allocates a VM map entry for insertion.  No entry fields are filled 
489  *      in.
490  *
491  *      This routine may be called from an interrupt thread but not a FAST
492  *      interrupt.  This routine may recurse the map lock.
493  */
494 static vm_map_entry_t
495 vm_map_entry_create(vm_map_t map, int *countp)
496 {
497         struct globaldata *gd = mycpu;
498         vm_map_entry_t entry;
499
500         KKASSERT(*countp > 0);
501         --*countp;
502         crit_enter();
503         entry = gd->gd_vme_base;
504         KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
505         gd->gd_vme_base = entry->next;
506         crit_exit();
507         return(entry);
508 }
509
510 /*
511  *      vm_map_entry_dispose:   [ internal use only ]
512  *
513  *      Dispose of a vm_map_entry that is no longer being referenced.  This
514  *      function may be called from an interrupt.
515  */
516 static void
517 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
518 {
519         struct globaldata *gd = mycpu;
520
521         KKASSERT(map->hint != entry);
522         KKASSERT(map->first_free != entry);
523
524         ++*countp;
525         crit_enter();
526         entry->next = gd->gd_vme_base;
527         gd->gd_vme_base = entry;
528         crit_exit();
529 }
530
531
532 /*
533  *      vm_map_entry_{un,}link:
534  *
535  *      Insert/remove entries from maps.
536  */
537 static __inline void
538 vm_map_entry_link(vm_map_t map,
539                   vm_map_entry_t after_where,
540                   vm_map_entry_t entry)
541 {
542         map->nentries++;
543         entry->prev = after_where;
544         entry->next = after_where->next;
545         entry->next->prev = entry;
546         after_where->next = entry;
547         if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
548                 panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
549 }
550
551 static __inline void
552 vm_map_entry_unlink(vm_map_t map,
553                     vm_map_entry_t entry)
554 {
555         vm_map_entry_t prev;
556         vm_map_entry_t next;
557
558         if (entry->eflags & MAP_ENTRY_IN_TRANSITION)
559                 panic("vm_map_entry_unlink: attempt to mess with locked entry! %p", entry);
560         prev = entry->prev;
561         next = entry->next;
562         next->prev = prev;
563         prev->next = next;
564         vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
565         map->nentries--;
566 }
567
568 /*
569  *      vm_map_lookup_entry:    [ internal use only ]
570  *
571  *      Finds the map entry containing (or
572  *      immediately preceding) the specified address
573  *      in the given map; the entry is returned
574  *      in the "entry" parameter.  The boolean
575  *      result indicates whether the address is
576  *      actually contained in the map.
577  */
578 boolean_t
579 vm_map_lookup_entry(vm_map_t map, vm_offset_t address,
580     vm_map_entry_t *entry /* OUT */)
581 {
582         vm_map_entry_t tmp;
583         vm_map_entry_t last;
584
585 #if 0
586         /*
587          * XXX TEMPORARILY DISABLED.  For some reason our attempt to revive
588          * the hint code with the red-black lookup meets with system crashes
589          * and lockups.  We do not yet know why.
590          *
591          * It is possible that the problem is related to the setting
592          * of the hint during map_entry deletion, in the code specified
593          * at the GGG comment later on in this file.
594          */
595         /*
596          * Quickly check the cached hint, there's a good chance of a match.
597          */
598         if (map->hint != &map->header) {
599                 tmp = map->hint;
600                 if (address >= tmp->start && address < tmp->end) {
601                         *entry = tmp;
602                         return(TRUE);
603                 }
604         }
605 #endif
606
607         /*
608          * Locate the record from the top of the tree.  'last' tracks the
609          * closest prior record and is returned if no match is found, which
610          * in binary tree terms means tracking the most recent right-branch
611          * taken.  If there is no prior record, &map->header is returned.
612          */
613         last = &map->header;
614         tmp = RB_ROOT(&map->rb_root);
615
616         while (tmp) {
617                 if (address >= tmp->start) {
618                         if (address < tmp->end) {
619                                 *entry = tmp;
620                                 map->hint = tmp;
621                                 return(TRUE);
622                         }
623                         last = tmp;
624                         tmp = RB_RIGHT(tmp, rb_entry);
625                 } else {
626                         tmp = RB_LEFT(tmp, rb_entry);
627                 }
628                 *entry = last;
629         }
630         *entry = last;
631         return (FALSE);
632 }
633
634 /*
635  *      vm_map_insert:
636  *
637  *      Inserts the given whole VM object into the target
638  *      map at the specified address range.  The object's
639  *      size should match that of the address range.
640  *
641  *      Requires that the map be locked, and leaves it so.  Requires that
642  *      sufficient vm_map_entry structures have been reserved and tracks
643  *      the use via countp.
644  *
645  *      If object is non-NULL, ref count must be bumped by caller
646  *      prior to making call to account for the new entry.
647  */
648 int
649 vm_map_insert(vm_map_t map, int *countp,
650               vm_object_t object, vm_ooffset_t offset,
651               vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
652               int cow)
653 {
654         vm_map_entry_t new_entry;
655         vm_map_entry_t prev_entry;
656         vm_map_entry_t temp_entry;
657         vm_eflags_t protoeflags;
658
659         /*
660          * Check that the start and end points are not bogus.
661          */
662
663         if ((start < map->min_offset) || (end > map->max_offset) ||
664             (start >= end))
665                 return (KERN_INVALID_ADDRESS);
666
667         /*
668          * Find the entry prior to the proposed starting address; if it's part
669          * of an existing entry, this range is bogus.
670          */
671
672         if (vm_map_lookup_entry(map, start, &temp_entry))
673                 return (KERN_NO_SPACE);
674
675         prev_entry = temp_entry;
676
677         /*
678          * Assert that the next entry doesn't overlap the end point.
679          */
680
681         if ((prev_entry->next != &map->header) &&
682             (prev_entry->next->start < end))
683                 return (KERN_NO_SPACE);
684
685         protoeflags = 0;
686
687         if (cow & MAP_COPY_ON_WRITE)
688                 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
689
690         if (cow & MAP_NOFAULT) {
691                 protoeflags |= MAP_ENTRY_NOFAULT;
692
693                 KASSERT(object == NULL,
694                         ("vm_map_insert: paradoxical MAP_NOFAULT request"));
695         }
696         if (cow & MAP_DISABLE_SYNCER)
697                 protoeflags |= MAP_ENTRY_NOSYNC;
698         if (cow & MAP_DISABLE_COREDUMP)
699                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
700
701         if (object) {
702                 /*
703                  * When object is non-NULL, it could be shared with another
704                  * process.  We have to set or clear OBJ_ONEMAPPING 
705                  * appropriately.
706                  */
707                 if ((object->ref_count > 1) || (object->shadow_count != 0)) {
708                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
709                 }
710         }
711         else if ((prev_entry != &map->header) &&
712                  (prev_entry->eflags == protoeflags) &&
713                  (prev_entry->end == start) &&
714                  (prev_entry->wired_count == 0) &&
715                  ((prev_entry->object.vm_object == NULL) ||
716                   vm_object_coalesce(prev_entry->object.vm_object,
717                                      OFF_TO_IDX(prev_entry->offset),
718                                      (vm_size_t)(prev_entry->end - prev_entry->start),
719                                      (vm_size_t)(end - prev_entry->end)))) {
720                 /*
721                  * We were able to extend the object.  Determine if we
722                  * can extend the previous map entry to include the 
723                  * new range as well.
724                  */
725                 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
726                     (prev_entry->protection == prot) &&
727                     (prev_entry->max_protection == max)) {
728                         map->size += (end - prev_entry->end);
729                         prev_entry->end = end;
730                         vm_map_simplify_entry(map, prev_entry, countp);
731                         return (KERN_SUCCESS);
732                 }
733
734                 /*
735                  * If we can extend the object but cannot extend the
736                  * map entry, we have to create a new map entry.  We
737                  * must bump the ref count on the extended object to
738                  * account for it.  object may be NULL.
739                  */
740                 object = prev_entry->object.vm_object;
741                 offset = prev_entry->offset +
742                         (prev_entry->end - prev_entry->start);
743                 vm_object_reference(object);
744         }
745
746         /*
747          * NOTE: if conditionals fail, object can be NULL here.  This occurs
748          * in things like the buffer map where we manage kva but do not manage
749          * backing objects.
750          */
751
752         /*
753          * Create a new entry
754          */
755
756         new_entry = vm_map_entry_create(map, countp);
757         new_entry->start = start;
758         new_entry->end = end;
759
760         new_entry->eflags = protoeflags;
761         new_entry->object.vm_object = object;
762         new_entry->offset = offset;
763         new_entry->avail_ssize = 0;
764
765         new_entry->inheritance = VM_INHERIT_DEFAULT;
766         new_entry->protection = prot;
767         new_entry->max_protection = max;
768         new_entry->wired_count = 0;
769
770         /*
771          * Insert the new entry into the list
772          */
773
774         vm_map_entry_link(map, prev_entry, new_entry);
775         map->size += new_entry->end - new_entry->start;
776
777         /*
778          * Update the free space hint
779          */
780         if ((map->first_free == prev_entry) &&
781             (prev_entry->end >= new_entry->start)) {
782                 map->first_free = new_entry;
783         }
784
785 #if 0
786         /*
787          * Temporarily removed to avoid MAP_STACK panic, due to
788          * MAP_STACK being a huge hack.  Will be added back in
789          * when MAP_STACK (and the user stack mapping) is fixed.
790          */
791         /*
792          * It may be possible to simplify the entry
793          */
794         vm_map_simplify_entry(map, new_entry, countp);
795 #endif
796
797         if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
798                 pmap_object_init_pt(map->pmap, start, prot,
799                                     object, OFF_TO_IDX(offset), end - start,
800                                     cow & MAP_PREFAULT_PARTIAL);
801         }
802
803         return (KERN_SUCCESS);
804 }
805
806 /*
807  * Find sufficient space for `length' bytes in the given map, starting at
808  * `start'.  The map must be locked.  Returns 0 on success, 1 on no space.
809  *
810  * This function will returned an arbitrarily aligned pointer.  If no
811  * particular alignment is required you should pass align as 1.  Note that
812  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
813  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
814  * argument.
815  *
816  * 'align' should be a power of 2 but is not required to be.
817  */
818 int
819 vm_map_findspace(
820         vm_map_t map,
821         vm_offset_t start,
822         vm_size_t length,
823         vm_offset_t align,
824         vm_offset_t *addr)
825 {
826         vm_map_entry_t entry, next;
827         vm_offset_t end;
828         vm_offset_t align_mask;
829
830         if (start < map->min_offset)
831                 start = map->min_offset;
832         if (start > map->max_offset)
833                 return (1);
834
835         /*
836          * If the alignment is not a power of 2 we will have to use
837          * a mod/division, set align_mask to a special value.
838          */
839         if ((align | (align - 1)) + 1 != (align << 1))
840                 align_mask = (vm_offset_t)-1;
841         else
842                 align_mask = align - 1;
843
844 retry:
845         /*
846          * Look for the first possible address; if there's already something
847          * at this address, we have to start after it.
848          */
849         if (start == map->min_offset) {
850                 if ((entry = map->first_free) != &map->header)
851                         start = entry->end;
852         } else {
853                 vm_map_entry_t tmp;
854
855                 if (vm_map_lookup_entry(map, start, &tmp))
856                         start = tmp->end;
857                 entry = tmp;
858         }
859
860         /*
861          * Look through the rest of the map, trying to fit a new region in the
862          * gap between existing regions, or after the very last region.
863          */
864         for (;; start = (entry = next)->end) {
865                 /*
866                  * Adjust the proposed start by the requested alignment,
867                  * be sure that we didn't wrap the address.
868                  */
869                 if (align_mask == (vm_offset_t)-1)
870                         end = ((start + align - 1) / align) * align;
871                 else
872                         end = (start + align_mask) & ~align_mask;
873                 if (end < start)
874                         return (1);
875                 start = end;
876                 /*
877                  * Find the end of the proposed new region.  Be sure we didn't
878                  * go beyond the end of the map, or wrap around the address.
879                  * Then check to see if this is the last entry or if the 
880                  * proposed end fits in the gap between this and the next
881                  * entry.
882                  */
883                 end = start + length;
884                 if (end > map->max_offset || end < start)
885                         return (1);
886                 next = entry->next;
887                 if (next == &map->header || next->start >= end)
888                         break;
889         }
890         map->hint = entry;
891         if (map == kernel_map) {
892                 vm_offset_t ksize;
893                 if ((ksize = round_page(start + length)) > kernel_vm_end) {
894                         pmap_growkernel(ksize);
895                         goto retry;
896                 }
897         }
898         *addr = start;
899         return (0);
900 }
901
902 /*
903  *      vm_map_find finds an unallocated region in the target address
904  *      map with the given length.  The search is defined to be
905  *      first-fit from the specified address; the region found is
906  *      returned in the same parameter.
907  *
908  *      If object is non-NULL, ref count must be bumped by caller
909  *      prior to making call to account for the new entry.
910  */
911 int
912 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
913             vm_offset_t *addr,  /* IN/OUT */
914             vm_size_t length, boolean_t find_space, vm_prot_t prot,
915             vm_prot_t max, int cow)
916 {
917         vm_offset_t start;
918         int result;
919         int count;
920
921         start = *addr;
922
923         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
924         vm_map_lock(map);
925         if (find_space) {
926                 if (vm_map_findspace(map, start, length, 1, addr)) {
927                         vm_map_unlock(map);
928                         vm_map_entry_release(count);
929                         return (KERN_NO_SPACE);
930                 }
931                 start = *addr;
932         }
933         result = vm_map_insert(map, &count, object, offset,
934                 start, start + length, prot, max, cow);
935         vm_map_unlock(map);
936         vm_map_entry_release(count);
937
938         return (result);
939 }
940
941 /*
942  *      vm_map_simplify_entry:
943  *
944  *      Simplify the given map entry by merging with either neighbor.  This
945  *      routine also has the ability to merge with both neighbors.
946  *
947  *      The map must be locked.
948  *
949  *      This routine guarentees that the passed entry remains valid (though
950  *      possibly extended).  When merging, this routine may delete one or
951  *      both neighbors.  No action is taken on entries which have their
952  *      in-transition flag set.
953  */
954 void
955 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
956 {
957         vm_map_entry_t next, prev;
958         vm_size_t prevsize, esize;
959
960         if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) {
961                 ++mycpu->gd_cnt.v_intrans_coll;
962                 return;
963         }
964
965         prev = entry->prev;
966         if (prev != &map->header) {
967                 prevsize = prev->end - prev->start;
968                 if ( (prev->end == entry->start) &&
969                      (prev->object.vm_object == entry->object.vm_object) &&
970                      (!prev->object.vm_object ||
971                         (prev->offset + prevsize == entry->offset)) &&
972                      (prev->eflags == entry->eflags) &&
973                      (prev->protection == entry->protection) &&
974                      (prev->max_protection == entry->max_protection) &&
975                      (prev->inheritance == entry->inheritance) &&
976                      (prev->wired_count == entry->wired_count)) {
977                         if (map->first_free == prev)
978                                 map->first_free = entry;
979                         if (map->hint == prev)
980                                 map->hint = entry;
981                         vm_map_entry_unlink(map, prev);
982                         entry->start = prev->start;
983                         entry->offset = prev->offset;
984                         if (prev->object.vm_object)
985                                 vm_object_deallocate(prev->object.vm_object);
986                         vm_map_entry_dispose(map, prev, countp);
987                 }
988         }
989
990         next = entry->next;
991         if (next != &map->header) {
992                 esize = entry->end - entry->start;
993                 if ((entry->end == next->start) &&
994                     (next->object.vm_object == entry->object.vm_object) &&
995                      (!entry->object.vm_object ||
996                         (entry->offset + esize == next->offset)) &&
997                     (next->eflags == entry->eflags) &&
998                     (next->protection == entry->protection) &&
999                     (next->max_protection == entry->max_protection) &&
1000                     (next->inheritance == entry->inheritance) &&
1001                     (next->wired_count == entry->wired_count)) {
1002                         if (map->first_free == next)
1003                                 map->first_free = entry;
1004                         if (map->hint == next)
1005                                 map->hint = entry;
1006                         vm_map_entry_unlink(map, next);
1007                         entry->end = next->end;
1008                         if (next->object.vm_object)
1009                                 vm_object_deallocate(next->object.vm_object);
1010                         vm_map_entry_dispose(map, next, countp);
1011                 }
1012         }
1013 }
1014 /*
1015  *      vm_map_clip_start:      [ internal use only ]
1016  *
1017  *      Asserts that the given entry begins at or after
1018  *      the specified address; if necessary,
1019  *      it splits the entry into two.
1020  */
1021 #define vm_map_clip_start(map, entry, startaddr, countp) \
1022 { \
1023         if (startaddr > entry->start) \
1024                 _vm_map_clip_start(map, entry, startaddr, countp); \
1025 }
1026
1027 /*
1028  *      This routine is called only when it is known that
1029  *      the entry must be split.
1030  */
1031 static void
1032 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start, int *countp)
1033 {
1034         vm_map_entry_t new_entry;
1035
1036         /*
1037          * Split off the front portion -- note that we must insert the new
1038          * entry BEFORE this one, so that this entry has the specified
1039          * starting address.
1040          */
1041
1042         vm_map_simplify_entry(map, entry, countp);
1043
1044         /*
1045          * If there is no object backing this entry, we might as well create
1046          * one now.  If we defer it, an object can get created after the map
1047          * is clipped, and individual objects will be created for the split-up
1048          * map.  This is a bit of a hack, but is also about the best place to
1049          * put this improvement.
1050          */
1051
1052         if (entry->object.vm_object == NULL && !map->system_map) {
1053                 vm_object_t object;
1054                 object = vm_object_allocate(OBJT_DEFAULT,
1055                                 atop(entry->end - entry->start));
1056                 entry->object.vm_object = object;
1057                 entry->offset = 0;
1058         }
1059
1060         new_entry = vm_map_entry_create(map, countp);
1061         *new_entry = *entry;
1062
1063         new_entry->end = start;
1064         entry->offset += (start - entry->start);
1065         entry->start = start;
1066
1067         vm_map_entry_link(map, entry->prev, new_entry);
1068
1069         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1070                 vm_object_reference(new_entry->object.vm_object);
1071         }
1072 }
1073
1074 /*
1075  *      vm_map_clip_end:        [ internal use only ]
1076  *
1077  *      Asserts that the given entry ends at or before
1078  *      the specified address; if necessary,
1079  *      it splits the entry into two.
1080  */
1081
1082 #define vm_map_clip_end(map, entry, endaddr, countp) \
1083 { \
1084         if (endaddr < entry->end) \
1085                 _vm_map_clip_end(map, entry, endaddr, countp); \
1086 }
1087
1088 /*
1089  *      This routine is called only when it is known that
1090  *      the entry must be split.
1091  */
1092 static void
1093 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end, int *countp)
1094 {
1095         vm_map_entry_t new_entry;
1096
1097         /*
1098          * If there is no object backing this entry, we might as well create
1099          * one now.  If we defer it, an object can get created after the map
1100          * is clipped, and individual objects will be created for the split-up
1101          * map.  This is a bit of a hack, but is also about the best place to
1102          * put this improvement.
1103          */
1104
1105         if (entry->object.vm_object == NULL && !map->system_map) {
1106                 vm_object_t object;
1107                 object = vm_object_allocate(OBJT_DEFAULT,
1108                                 atop(entry->end - entry->start));
1109                 entry->object.vm_object = object;
1110                 entry->offset = 0;
1111         }
1112
1113         /*
1114          * Create a new entry and insert it AFTER the specified entry
1115          */
1116
1117         new_entry = vm_map_entry_create(map, countp);
1118         *new_entry = *entry;
1119
1120         new_entry->start = entry->end = end;
1121         new_entry->offset += (end - entry->start);
1122
1123         vm_map_entry_link(map, entry, new_entry);
1124
1125         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1126                 vm_object_reference(new_entry->object.vm_object);
1127         }
1128 }
1129
1130 /*
1131  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
1132  *
1133  *      Asserts that the starting and ending region
1134  *      addresses fall within the valid range of the map.
1135  */
1136 #define VM_MAP_RANGE_CHECK(map, start, end)             \
1137                 {                                       \
1138                 if (start < vm_map_min(map))            \
1139                         start = vm_map_min(map);        \
1140                 if (end > vm_map_max(map))              \
1141                         end = vm_map_max(map);          \
1142                 if (start > end)                        \
1143                         start = end;                    \
1144                 }
1145
1146 /*
1147  *      vm_map_transition_wait: [ kernel use only ]
1148  *
1149  *      Used to block when an in-transition collison occurs.  The map
1150  *      is unlocked for the sleep and relocked before the return.
1151  */
1152 static
1153 void
1154 vm_map_transition_wait(vm_map_t map)
1155 {
1156         vm_map_unlock(map);
1157         tsleep(map, 0, "vment", 0);
1158         vm_map_lock(map);
1159 }
1160
1161 /*
1162  * CLIP_CHECK_BACK
1163  * CLIP_CHECK_FWD
1164  *
1165  *      When we do blocking operations with the map lock held it is
1166  *      possible that a clip might have occured on our in-transit entry,
1167  *      requiring an adjustment to the entry in our loop.  These macros
1168  *      help the pageable and clip_range code deal with the case.  The
1169  *      conditional costs virtually nothing if no clipping has occured.
1170  */
1171
1172 #define CLIP_CHECK_BACK(entry, save_start)              \
1173     do {                                                \
1174             while (entry->start != save_start) {        \
1175                     entry = entry->prev;                \
1176                     KASSERT(entry != &map->header, ("bad entry clip")); \
1177             }                                           \
1178     } while(0)
1179
1180 #define CLIP_CHECK_FWD(entry, save_end)                 \
1181     do {                                                \
1182             while (entry->end != save_end) {            \
1183                     entry = entry->next;                \
1184                     KASSERT(entry != &map->header, ("bad entry clip")); \
1185             }                                           \
1186     } while(0)
1187
1188
1189 /*
1190  *      vm_map_clip_range:      [ kernel use only ]
1191  *
1192  *      Clip the specified range and return the base entry.  The
1193  *      range may cover several entries starting at the returned base
1194  *      and the first and last entry in the covering sequence will be
1195  *      properly clipped to the requested start and end address.
1196  *
1197  *      If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1198  *      flag.  
1199  *
1200  *      The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1201  *      covered by the requested range.
1202  *
1203  *      The map must be exclusively locked on entry and will remain locked
1204  *      on return. If no range exists or the range contains holes and you
1205  *      specified that no holes were allowed, NULL will be returned.  This
1206  *      routine may temporarily unlock the map in order avoid a deadlock when
1207  *      sleeping.
1208  */
1209 static
1210 vm_map_entry_t
1211 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end, 
1212         int *countp, int flags)
1213 {
1214         vm_map_entry_t start_entry;
1215         vm_map_entry_t entry;
1216
1217         /*
1218          * Locate the entry and effect initial clipping.  The in-transition
1219          * case does not occur very often so do not try to optimize it.
1220          */
1221 again:
1222         if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1223                 return (NULL);
1224         entry = start_entry;
1225         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1226                 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1227                 ++mycpu->gd_cnt.v_intrans_coll;
1228                 ++mycpu->gd_cnt.v_intrans_wait;
1229                 vm_map_transition_wait(map);
1230                 /*
1231                  * entry and/or start_entry may have been clipped while
1232                  * we slept, or may have gone away entirely.  We have
1233                  * to restart from the lookup.
1234                  */
1235                 goto again;
1236         }
1237         /*
1238          * Since we hold an exclusive map lock we do not have to restart
1239          * after clipping, even though clipping may block in zalloc.
1240          */
1241         vm_map_clip_start(map, entry, start, countp);
1242         vm_map_clip_end(map, entry, end, countp);
1243         entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1244
1245         /*
1246          * Scan entries covered by the range.  When working on the next
1247          * entry a restart need only re-loop on the current entry which
1248          * we have already locked, since 'next' may have changed.  Also,
1249          * even though entry is safe, it may have been clipped so we
1250          * have to iterate forwards through the clip after sleeping.
1251          */
1252         while (entry->next != &map->header && entry->next->start < end) {
1253                 vm_map_entry_t next = entry->next;
1254
1255                 if (flags & MAP_CLIP_NO_HOLES) {
1256                         if (next->start > entry->end) {
1257                                 vm_map_unclip_range(map, start_entry,
1258                                         start, entry->end, countp, flags);
1259                                 return(NULL);
1260                         }
1261                 }
1262
1263                 if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1264                         vm_offset_t save_end = entry->end;
1265                         next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1266                         ++mycpu->gd_cnt.v_intrans_coll;
1267                         ++mycpu->gd_cnt.v_intrans_wait;
1268                         vm_map_transition_wait(map);
1269
1270                         /*
1271                          * clips might have occured while we blocked.
1272                          */
1273                         CLIP_CHECK_FWD(entry, save_end);
1274                         CLIP_CHECK_BACK(start_entry, start);
1275                         continue;
1276                 }
1277                 /*
1278                  * No restart necessary even though clip_end may block, we
1279                  * are holding the map lock.
1280                  */
1281                 vm_map_clip_end(map, next, end, countp);
1282                 next->eflags |= MAP_ENTRY_IN_TRANSITION;
1283                 entry = next;
1284         }
1285         if (flags & MAP_CLIP_NO_HOLES) {
1286                 if (entry->end != end) {
1287                         vm_map_unclip_range(map, start_entry,
1288                                 start, entry->end, countp, flags);
1289                         return(NULL);
1290                 }
1291         }
1292         return(start_entry);
1293 }
1294
1295 /*
1296  *      vm_map_unclip_range:    [ kernel use only ]
1297  *
1298  *      Undo the effect of vm_map_clip_range().  You should pass the same
1299  *      flags and the same range that you passed to vm_map_clip_range().
1300  *      This code will clear the in-transition flag on the entries and
1301  *      wake up anyone waiting.  This code will also simplify the sequence 
1302  *      and attempt to merge it with entries before and after the sequence.
1303  *
1304  *      The map must be locked on entry and will remain locked on return.
1305  *
1306  *      Note that you should also pass the start_entry returned by 
1307  *      vm_map_clip_range().  However, if you block between the two calls
1308  *      with the map unlocked please be aware that the start_entry may
1309  *      have been clipped and you may need to scan it backwards to find
1310  *      the entry corresponding with the original start address.  You are
1311  *      responsible for this, vm_map_unclip_range() expects the correct
1312  *      start_entry to be passed to it and will KASSERT otherwise.
1313  */
1314 static
1315 void
1316 vm_map_unclip_range(
1317         vm_map_t map,
1318         vm_map_entry_t start_entry,
1319         vm_offset_t start,
1320         vm_offset_t end,
1321         int *countp,
1322         int flags)
1323 {
1324         vm_map_entry_t entry;
1325
1326         entry = start_entry;
1327
1328         KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1329         while (entry != &map->header && entry->start < end) {
1330                 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, ("in-transition flag not set during unclip on: %p", entry));
1331                 KASSERT(entry->end <= end, ("unclip_range: tail wasn't clipped"));
1332                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1333                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1334                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1335                         wakeup(map);
1336                 }
1337                 entry = entry->next;
1338         }
1339
1340         /*
1341          * Simplification does not block so there is no restart case.
1342          */
1343         entry = start_entry;
1344         while (entry != &map->header && entry->start < end) {
1345                 vm_map_simplify_entry(map, entry, countp);
1346                 entry = entry->next;
1347         }
1348 }
1349
1350 /*
1351  *      vm_map_submap:          [ kernel use only ]
1352  *
1353  *      Mark the given range as handled by a subordinate map.
1354  *
1355  *      This range must have been created with vm_map_find,
1356  *      and no other operations may have been performed on this
1357  *      range prior to calling vm_map_submap.
1358  *
1359  *      Only a limited number of operations can be performed
1360  *      within this rage after calling vm_map_submap:
1361  *              vm_fault
1362  *      [Don't try vm_map_copy!]
1363  *
1364  *      To remove a submapping, one must first remove the
1365  *      range from the superior map, and then destroy the
1366  *      submap (if desired).  [Better yet, don't try it.]
1367  */
1368 int
1369 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1370 {
1371         vm_map_entry_t entry;
1372         int result = KERN_INVALID_ARGUMENT;
1373         int count;
1374
1375         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1376         vm_map_lock(map);
1377
1378         VM_MAP_RANGE_CHECK(map, start, end);
1379
1380         if (vm_map_lookup_entry(map, start, &entry)) {
1381                 vm_map_clip_start(map, entry, start, &count);
1382         } else {
1383                 entry = entry->next;
1384         }
1385
1386         vm_map_clip_end(map, entry, end, &count);
1387
1388         if ((entry->start == start) && (entry->end == end) &&
1389             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1390             (entry->object.vm_object == NULL)) {
1391                 entry->object.sub_map = submap;
1392                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1393                 result = KERN_SUCCESS;
1394         }
1395         vm_map_unlock(map);
1396         vm_map_entry_release(count);
1397
1398         return (result);
1399 }
1400
1401 /*
1402  *      vm_map_protect:
1403  *
1404  *      Sets the protection of the specified address
1405  *      region in the target map.  If "set_max" is
1406  *      specified, the maximum protection is to be set;
1407  *      otherwise, only the current protection is affected.
1408  */
1409 int
1410 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1411                vm_prot_t new_prot, boolean_t set_max)
1412 {
1413         vm_map_entry_t current;
1414         vm_map_entry_t entry;
1415         int count;
1416
1417         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1418         vm_map_lock(map);
1419
1420         VM_MAP_RANGE_CHECK(map, start, end);
1421
1422         if (vm_map_lookup_entry(map, start, &entry)) {
1423                 vm_map_clip_start(map, entry, start, &count);
1424         } else {
1425                 entry = entry->next;
1426         }
1427
1428         /*
1429          * Make a first pass to check for protection violations.
1430          */
1431
1432         current = entry;
1433         while ((current != &map->header) && (current->start < end)) {
1434                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1435                         vm_map_unlock(map);
1436                         vm_map_entry_release(count);
1437                         return (KERN_INVALID_ARGUMENT);
1438                 }
1439                 if ((new_prot & current->max_protection) != new_prot) {
1440                         vm_map_unlock(map);
1441                         vm_map_entry_release(count);
1442                         return (KERN_PROTECTION_FAILURE);
1443                 }
1444                 current = current->next;
1445         }
1446
1447         /*
1448          * Go back and fix up protections. [Note that clipping is not
1449          * necessary the second time.]
1450          */
1451         current = entry;
1452
1453         while ((current != &map->header) && (current->start < end)) {
1454                 vm_prot_t old_prot;
1455
1456                 vm_map_clip_end(map, current, end, &count);
1457
1458                 old_prot = current->protection;
1459                 if (set_max)
1460                         current->protection =
1461                             (current->max_protection = new_prot) &
1462                             old_prot;
1463                 else
1464                         current->protection = new_prot;
1465
1466                 /*
1467                  * Update physical map if necessary. Worry about copy-on-write
1468                  * here -- CHECK THIS XXX
1469                  */
1470
1471                 if (current->protection != old_prot) {
1472 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1473                                                         VM_PROT_ALL)
1474
1475                         pmap_protect(map->pmap, current->start,
1476                             current->end,
1477                             current->protection & MASK(current));
1478 #undef  MASK
1479                 }
1480
1481                 vm_map_simplify_entry(map, current, &count);
1482
1483                 current = current->next;
1484         }
1485
1486         vm_map_unlock(map);
1487         vm_map_entry_release(count);
1488         return (KERN_SUCCESS);
1489 }
1490
1491 /*
1492  *      vm_map_madvise:
1493  *
1494  *      This routine traverses a processes map handling the madvise
1495  *      system call.  Advisories are classified as either those effecting
1496  *      the vm_map_entry structure, or those effecting the underlying 
1497  *      objects.
1498  */
1499
1500 int
1501 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end, int behav)
1502 {
1503         vm_map_entry_t current, entry;
1504         int modify_map = 0;
1505         int count;
1506
1507         /*
1508          * Some madvise calls directly modify the vm_map_entry, in which case
1509          * we need to use an exclusive lock on the map and we need to perform 
1510          * various clipping operations.  Otherwise we only need a read-lock
1511          * on the map.
1512          */
1513
1514         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1515
1516         switch(behav) {
1517         case MADV_NORMAL:
1518         case MADV_SEQUENTIAL:
1519         case MADV_RANDOM:
1520         case MADV_NOSYNC:
1521         case MADV_AUTOSYNC:
1522         case MADV_NOCORE:
1523         case MADV_CORE:
1524                 modify_map = 1;
1525                 vm_map_lock(map);
1526                 break;
1527         case MADV_WILLNEED:
1528         case MADV_DONTNEED:
1529         case MADV_FREE:
1530                 vm_map_lock_read(map);
1531                 break;
1532         default:
1533                 vm_map_entry_release(count);
1534                 return (KERN_INVALID_ARGUMENT);
1535         }
1536
1537         /*
1538          * Locate starting entry and clip if necessary.
1539          */
1540
1541         VM_MAP_RANGE_CHECK(map, start, end);
1542
1543         if (vm_map_lookup_entry(map, start, &entry)) {
1544                 if (modify_map)
1545                         vm_map_clip_start(map, entry, start, &count);
1546         } else {
1547                 entry = entry->next;
1548         }
1549
1550         if (modify_map) {
1551                 /*
1552                  * madvise behaviors that are implemented in the vm_map_entry.
1553                  *
1554                  * We clip the vm_map_entry so that behavioral changes are
1555                  * limited to the specified address range.
1556                  */
1557                 for (current = entry;
1558                      (current != &map->header) && (current->start < end);
1559                      current = current->next
1560                 ) {
1561                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1562                                 continue;
1563
1564                         vm_map_clip_end(map, current, end, &count);
1565
1566                         switch (behav) {
1567                         case MADV_NORMAL:
1568                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1569                                 break;
1570                         case MADV_SEQUENTIAL:
1571                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1572                                 break;
1573                         case MADV_RANDOM:
1574                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1575                                 break;
1576                         case MADV_NOSYNC:
1577                                 current->eflags |= MAP_ENTRY_NOSYNC;
1578                                 break;
1579                         case MADV_AUTOSYNC:
1580                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
1581                                 break;
1582                         case MADV_NOCORE:
1583                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
1584                                 break;
1585                         case MADV_CORE:
1586                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1587                                 break;
1588                         default:
1589                                 break;
1590                         }
1591                         vm_map_simplify_entry(map, current, &count);
1592                 }
1593                 vm_map_unlock(map);
1594         } else {
1595                 vm_pindex_t pindex;
1596                 int count;
1597
1598                 /*
1599                  * madvise behaviors that are implemented in the underlying
1600                  * vm_object.
1601                  *
1602                  * Since we don't clip the vm_map_entry, we have to clip
1603                  * the vm_object pindex and count.
1604                  */
1605                 for (current = entry;
1606                      (current != &map->header) && (current->start < end);
1607                      current = current->next
1608                 ) {
1609                         vm_offset_t useStart;
1610
1611                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1612                                 continue;
1613
1614                         pindex = OFF_TO_IDX(current->offset);
1615                         count = atop(current->end - current->start);
1616                         useStart = current->start;
1617
1618                         if (current->start < start) {
1619                                 pindex += atop(start - current->start);
1620                                 count -= atop(start - current->start);
1621                                 useStart = start;
1622                         }
1623                         if (current->end > end)
1624                                 count -= atop(current->end - end);
1625
1626                         if (count <= 0)
1627                                 continue;
1628
1629                         vm_object_madvise(current->object.vm_object,
1630                                           pindex, count, behav);
1631                         if (behav == MADV_WILLNEED) {
1632                                 pmap_object_init_pt(
1633                                     map->pmap, 
1634                                     useStart,
1635                                     current->protection,
1636                                     current->object.vm_object,
1637                                     pindex, 
1638                                     (count << PAGE_SHIFT),
1639                                     MAP_PREFAULT_MADVISE
1640                                 );
1641                         }
1642                 }
1643                 vm_map_unlock_read(map);
1644         }
1645         vm_map_entry_release(count);
1646         return(0);
1647 }       
1648
1649
1650 /*
1651  *      vm_map_inherit:
1652  *
1653  *      Sets the inheritance of the specified address
1654  *      range in the target map.  Inheritance
1655  *      affects how the map will be shared with
1656  *      child maps at the time of vm_map_fork.
1657  */
1658 int
1659 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1660                vm_inherit_t new_inheritance)
1661 {
1662         vm_map_entry_t entry;
1663         vm_map_entry_t temp_entry;
1664         int count;
1665
1666         switch (new_inheritance) {
1667         case VM_INHERIT_NONE:
1668         case VM_INHERIT_COPY:
1669         case VM_INHERIT_SHARE:
1670                 break;
1671         default:
1672                 return (KERN_INVALID_ARGUMENT);
1673         }
1674
1675         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1676         vm_map_lock(map);
1677
1678         VM_MAP_RANGE_CHECK(map, start, end);
1679
1680         if (vm_map_lookup_entry(map, start, &temp_entry)) {
1681                 entry = temp_entry;
1682                 vm_map_clip_start(map, entry, start, &count);
1683         } else
1684                 entry = temp_entry->next;
1685
1686         while ((entry != &map->header) && (entry->start < end)) {
1687                 vm_map_clip_end(map, entry, end, &count);
1688
1689                 entry->inheritance = new_inheritance;
1690
1691                 vm_map_simplify_entry(map, entry, &count);
1692
1693                 entry = entry->next;
1694         }
1695         vm_map_unlock(map);
1696         vm_map_entry_release(count);
1697         return (KERN_SUCCESS);
1698 }
1699
1700 /*
1701  * Implement the semantics of mlock
1702  */
1703 int
1704 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
1705     boolean_t new_pageable)
1706 {
1707         vm_map_entry_t entry;
1708         vm_map_entry_t start_entry;
1709         vm_offset_t end;
1710         int rv = KERN_SUCCESS;
1711         int count;
1712
1713         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1714         vm_map_lock(map);
1715         VM_MAP_RANGE_CHECK(map, start, real_end);
1716         end = real_end;
1717
1718         start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1719         if (start_entry == NULL) {
1720                 vm_map_unlock(map);
1721                 vm_map_entry_release(count);
1722                 return (KERN_INVALID_ADDRESS);
1723         }
1724
1725         if (new_pageable == 0) {
1726                 entry = start_entry;
1727                 while ((entry != &map->header) && (entry->start < end)) {
1728                         vm_offset_t save_start;
1729                         vm_offset_t save_end;
1730
1731                         /*
1732                          * Already user wired or hard wired (trivial cases)
1733                          */
1734                         if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1735                                 entry = entry->next;
1736                                 continue;
1737                         }
1738                         if (entry->wired_count != 0) {
1739                                 entry->wired_count++;
1740                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
1741                                 entry = entry->next;
1742                                 continue;
1743                         }
1744
1745                         /*
1746                          * A new wiring requires instantiation of appropriate
1747                          * management structures and the faulting in of the
1748                          * page.
1749                          */
1750                         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1751                                 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1752                                 if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) {
1753
1754                                         vm_object_shadow(&entry->object.vm_object,
1755                                             &entry->offset,
1756                                             atop(entry->end - entry->start));
1757                                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1758
1759                                 } else if (entry->object.vm_object == NULL &&
1760                                            !map->system_map) {
1761
1762                                         entry->object.vm_object =
1763                                             vm_object_allocate(OBJT_DEFAULT,
1764                                                 atop(entry->end - entry->start));
1765                                         entry->offset = (vm_offset_t) 0;
1766
1767                                 }
1768                         }
1769                         entry->wired_count++;
1770                         entry->eflags |= MAP_ENTRY_USER_WIRED;
1771
1772                         /*
1773                          * Now fault in the area.  Note that vm_fault_wire()
1774                          * may release the map lock temporarily, it will be
1775                          * relocked on return.  The in-transition
1776                          * flag protects the entries. 
1777                          */
1778                         save_start = entry->start;
1779                         save_end = entry->end;
1780                         rv = vm_fault_wire(map, entry, TRUE);
1781                         if (rv) {
1782                                 CLIP_CHECK_BACK(entry, save_start);
1783                                 for (;;) {
1784                                         KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
1785                                         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1786                                         entry->wired_count = 0;
1787                                         if (entry->end == save_end)
1788                                                 break;
1789                                         entry = entry->next;
1790                                         KASSERT(entry != &map->header, ("bad entry clip during backout"));
1791                                 }
1792                                 end = save_start;       /* unwire the rest */
1793                                 break;
1794                         }
1795                         /*
1796                          * note that even though the entry might have been
1797                          * clipped, the USER_WIRED flag we set prevents
1798                          * duplication so we do not have to do a 
1799                          * clip check.
1800                          */
1801                         entry = entry->next;
1802                 }
1803
1804                 /*
1805                  * If we failed fall through to the unwiring section to
1806                  * unwire what we had wired so far.  'end' has already
1807                  * been adjusted.
1808                  */
1809                 if (rv)
1810                         new_pageable = 1;
1811
1812                 /*
1813                  * start_entry might have been clipped if we unlocked the
1814                  * map and blocked.  No matter how clipped it has gotten
1815                  * there should be a fragment that is on our start boundary.
1816                  */
1817                 CLIP_CHECK_BACK(start_entry, start);
1818         }
1819
1820         /*
1821          * Deal with the unwiring case.
1822          */
1823         if (new_pageable) {
1824                 /*
1825                  * This is the unwiring case.  We must first ensure that the
1826                  * range to be unwired is really wired down.  We know there
1827                  * are no holes.
1828                  */
1829                 entry = start_entry;
1830                 while ((entry != &map->header) && (entry->start < end)) {
1831                         if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
1832                                 rv = KERN_INVALID_ARGUMENT;
1833                                 goto done;
1834                         }
1835                         KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
1836                         entry = entry->next;
1837                 }
1838
1839                 /*
1840                  * Now decrement the wiring count for each region. If a region
1841                  * becomes completely unwired, unwire its physical pages and
1842                  * mappings.
1843                  */
1844                 /*
1845                  * The map entries are processed in a loop, checking to
1846                  * make sure the entry is wired and asserting it has a wired
1847                  * count. However, another loop was inserted more-or-less in
1848                  * the middle of the unwiring path. This loop picks up the
1849                  * "entry" loop variable from the first loop without first
1850                  * setting it to start_entry. Naturally, the secound loop
1851                  * is never entered and the pages backing the entries are
1852                  * never unwired. This can lead to a leak of wired pages.
1853                  */
1854                 entry = start_entry;
1855                 while ((entry != &map->header) && (entry->start < end)) {
1856                         KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
1857                                 ("expected USER_WIRED on entry %p", entry));
1858                         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1859                         entry->wired_count--;
1860                         if (entry->wired_count == 0)
1861                                 vm_fault_unwire(map, entry);
1862                         entry = entry->next;
1863                 }
1864         }
1865 done:
1866         vm_map_unclip_range(map, start_entry, start, real_end, &count,
1867                 MAP_CLIP_NO_HOLES);
1868         map->timestamp++;
1869         vm_map_unlock(map);
1870         vm_map_entry_release(count);
1871         return (rv);
1872 }
1873
1874 /*
1875  *      vm_map_wire:
1876  *
1877  *      Sets the pageability of the specified address
1878  *      range in the target map.  Regions specified
1879  *      as not pageable require locked-down physical
1880  *      memory and physical page maps.
1881  *
1882  *      The map must not be locked, but a reference
1883  *      must remain to the map throughout the call.
1884  *
1885  *      This function may be called via the zalloc path and must properly
1886  *      reserve map entries for kernel_map.
1887  */
1888 int
1889 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
1890 {
1891         vm_map_entry_t entry;
1892         vm_map_entry_t start_entry;
1893         vm_offset_t end;
1894         int rv = KERN_SUCCESS;
1895         int count;
1896
1897         if (kmflags & KM_KRESERVE)
1898                 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
1899         else
1900                 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1901         vm_map_lock(map);
1902         VM_MAP_RANGE_CHECK(map, start, real_end);
1903         end = real_end;
1904
1905         start_entry = vm_map_clip_range(map, start, end, &count, MAP_CLIP_NO_HOLES);
1906         if (start_entry == NULL) {
1907                 vm_map_unlock(map);
1908                 rv = KERN_INVALID_ADDRESS;
1909                 goto failure;
1910         }
1911         if ((kmflags & KM_PAGEABLE) == 0) {
1912                 /*
1913                  * Wiring.  
1914                  *
1915                  * 1.  Holding the write lock, we create any shadow or zero-fill
1916                  * objects that need to be created. Then we clip each map
1917                  * entry to the region to be wired and increment its wiring
1918                  * count.  We create objects before clipping the map entries
1919                  * to avoid object proliferation.
1920                  *
1921                  * 2.  We downgrade to a read lock, and call vm_fault_wire to
1922                  * fault in the pages for any newly wired area (wired_count is
1923                  * 1).
1924                  *
1925                  * Downgrading to a read lock for vm_fault_wire avoids a 
1926                  * possible deadlock with another process that may have faulted
1927                  * on one of the pages to be wired (it would mark the page busy,
1928                  * blocking us, then in turn block on the map lock that we
1929                  * hold).  Because of problems in the recursive lock package,
1930                  * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
1931                  * any actions that require the write lock must be done
1932                  * beforehand.  Because we keep the read lock on the map, the
1933                  * copy-on-write status of the entries we modify here cannot
1934                  * change.
1935                  */
1936
1937                 entry = start_entry;
1938                 while ((entry != &map->header) && (entry->start < end)) {
1939                         /*
1940                          * Trivial case if the entry is already wired
1941                          */
1942                         if (entry->wired_count) {
1943                                 entry->wired_count++;
1944                                 entry = entry->next;
1945                                 continue;
1946                         }
1947
1948                         /*
1949                          * The entry is being newly wired, we have to setup
1950                          * appropriate management structures.  A shadow 
1951                          * object is required for a copy-on-write region,
1952                          * or a normal object for a zero-fill region.  We
1953                          * do not have to do this for entries that point to sub
1954                          * maps because we won't hold the lock on the sub map.
1955                          */
1956                         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1957                                 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1958                                 if (copyflag &&
1959                                     ((entry->protection & VM_PROT_WRITE) != 0)) {
1960
1961                                         vm_object_shadow(&entry->object.vm_object,
1962                                             &entry->offset,
1963                                             atop(entry->end - entry->start));
1964                                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1965                                 } else if (entry->object.vm_object == NULL &&
1966                                            !map->system_map) {
1967                                         entry->object.vm_object =
1968                                             vm_object_allocate(OBJT_DEFAULT,
1969                                                 atop(entry->end - entry->start));
1970                                         entry->offset = (vm_offset_t) 0;
1971                                 }
1972                         }
1973
1974                         entry->wired_count++;
1975                         entry = entry->next;
1976                 }
1977
1978                 /*
1979                  * Pass 2.
1980                  */
1981
1982                 /*
1983                  * HACK HACK HACK HACK
1984                  *
1985                  * Unlock the map to avoid deadlocks.  The in-transit flag
1986                  * protects us from most changes but note that
1987                  * clipping may still occur.  To prevent clipping from
1988                  * occuring after the unlock, except for when we are
1989                  * blocking in vm_fault_wire, we must run in a critical
1990                  * section, otherwise our accesses to entry->start and 
1991                  * entry->end could be corrupted.  We have to enter the
1992                  * critical section prior to unlocking so start_entry does
1993                  * not change out from under us at the very beginning of the
1994                  * loop.
1995                  *
1996                  * HACK HACK HACK HACK
1997                  */
1998
1999                 crit_enter();
2000
2001                 entry = start_entry;
2002                 while (entry != &map->header && entry->start < end) {
2003                         /*
2004                          * If vm_fault_wire fails for any page we need to undo
2005                          * what has been done.  We decrement the wiring count
2006                          * for those pages which have not yet been wired (now)
2007                          * and unwire those that have (later).
2008                          */
2009                         vm_offset_t save_start = entry->start;
2010                         vm_offset_t save_end = entry->end;
2011
2012                         if (entry->wired_count == 1)
2013                                 rv = vm_fault_wire(map, entry, FALSE);
2014                         if (rv) {
2015                                 CLIP_CHECK_BACK(entry, save_start);
2016                                 for (;;) {
2017                                         KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2018                                         entry->wired_count = 0;
2019                                         if (entry->end == save_end)
2020                                                 break;
2021                                         entry = entry->next;
2022                                         KASSERT(entry != &map->header, ("bad entry clip during backout"));
2023                                 }
2024                                 end = save_start;
2025                                 break;
2026                         }
2027                         CLIP_CHECK_FWD(entry, save_end);
2028                         entry = entry->next;
2029                 }
2030                 crit_exit();
2031
2032                 /*
2033                  * If a failure occured undo everything by falling through
2034                  * to the unwiring code.  'end' has already been adjusted
2035                  * appropriately.
2036                  */
2037                 if (rv)
2038                         kmflags |= KM_PAGEABLE;
2039
2040                 /*
2041                  * start_entry is still IN_TRANSITION but may have been 
2042                  * clipped since vm_fault_wire() unlocks and relocks the
2043                  * map.  No matter how clipped it has gotten there should
2044                  * be a fragment that is on our start boundary.
2045                  */
2046                 CLIP_CHECK_BACK(start_entry, start);
2047         }
2048
2049         if (kmflags & KM_PAGEABLE) {
2050                 /*
2051                  * This is the unwiring case.  We must first ensure that the
2052                  * range to be unwired is really wired down.  We know there
2053                  * are no holes.
2054                  */
2055                 entry = start_entry;
2056                 while ((entry != &map->header) && (entry->start < end)) {
2057                         if (entry->wired_count == 0) {
2058                                 rv = KERN_INVALID_ARGUMENT;
2059                                 goto done;
2060                         }
2061                         entry = entry->next;
2062                 }
2063
2064                 /*
2065                  * Now decrement the wiring count for each region. If a region
2066                  * becomes completely unwired, unwire its physical pages and
2067                  * mappings.
2068                  */
2069                 entry = start_entry;
2070                 while ((entry != &map->header) && (entry->start < end)) {
2071                         entry->wired_count--;
2072                         if (entry->wired_count == 0)
2073                                 vm_fault_unwire(map, entry);
2074                         entry = entry->next;
2075                 }
2076         }
2077 done:
2078         vm_map_unclip_range(map, start_entry, start, real_end, &count,
2079                 MAP_CLIP_NO_HOLES);
2080         map->timestamp++;
2081         vm_map_unlock(map);
2082 failure:
2083         if (kmflags & KM_KRESERVE)
2084                 vm_map_entry_krelease(count);
2085         else
2086                 vm_map_entry_release(count);
2087         return (rv);
2088 }
2089
2090 /*
2091  * vm_map_set_wired_quick()
2092  *
2093  *      Mark a newly allocated address range as wired but do not fault in
2094  *      the pages.  The caller is expected to load the pages into the object.
2095  *
2096  *      The map must be locked on entry and will remain locked on return.
2097  */
2098 void
2099 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size, int *countp)
2100 {
2101         vm_map_entry_t scan;
2102         vm_map_entry_t entry;
2103
2104         entry = vm_map_clip_range(map, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2105         for (scan = entry; scan != &map->header && scan->start < addr + size; scan = scan->next) {
2106             KKASSERT(entry->wired_count == 0);
2107             entry->wired_count = 1;                                              
2108         }
2109         vm_map_unclip_range(map, entry, addr, addr + size, countp, MAP_CLIP_NO_HOLES);
2110 }
2111
2112 /*
2113  * vm_map_clean
2114  *
2115  * Push any dirty cached pages in the address range to their pager.
2116  * If syncio is TRUE, dirty pages are written synchronously.
2117  * If invalidate is TRUE, any cached pages are freed as well.
2118  *
2119  * Returns an error if any part of the specified range is not mapped.
2120  */
2121 int
2122 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end, boolean_t syncio,
2123     boolean_t invalidate)
2124 {
2125         vm_map_entry_t current;
2126         vm_map_entry_t entry;
2127         vm_size_t size;
2128         vm_object_t object;
2129         vm_ooffset_t offset;
2130
2131         vm_map_lock_read(map);
2132         VM_MAP_RANGE_CHECK(map, start, end);
2133         if (!vm_map_lookup_entry(map, start, &entry)) {
2134                 vm_map_unlock_read(map);
2135                 return (KERN_INVALID_ADDRESS);
2136         }
2137         /*
2138          * Make a first pass to check for holes.
2139          */
2140         for (current = entry; current->start < end; current = current->next) {
2141                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2142                         vm_map_unlock_read(map);
2143                         return (KERN_INVALID_ARGUMENT);
2144                 }
2145                 if (end > current->end &&
2146                     (current->next == &map->header ||
2147                         current->end != current->next->start)) {
2148                         vm_map_unlock_read(map);
2149                         return (KERN_INVALID_ADDRESS);
2150                 }
2151         }
2152
2153         if (invalidate)
2154                 pmap_remove(vm_map_pmap(map), start, end);
2155         /*
2156          * Make a second pass, cleaning/uncaching pages from the indicated
2157          * objects as we go.
2158          */
2159         for (current = entry; current->start < end; current = current->next) {
2160                 offset = current->offset + (start - current->start);
2161                 size = (end <= current->end ? end : current->end) - start;
2162                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2163                         vm_map_t smap;
2164                         vm_map_entry_t tentry;
2165                         vm_size_t tsize;
2166
2167                         smap = current->object.sub_map;
2168                         vm_map_lock_read(smap);
2169                         (void) vm_map_lookup_entry(smap, offset, &tentry);
2170                         tsize = tentry->end - offset;
2171                         if (tsize < size)
2172                                 size = tsize;
2173                         object = tentry->object.vm_object;
2174                         offset = tentry->offset + (offset - tentry->start);
2175                         vm_map_unlock_read(smap);
2176                 } else {
2177                         object = current->object.vm_object;
2178                 }
2179                 /*
2180                  * Note that there is absolutely no sense in writing out
2181                  * anonymous objects, so we track down the vnode object
2182                  * to write out.
2183                  * We invalidate (remove) all pages from the address space
2184                  * anyway, for semantic correctness.
2185                  *
2186                  * note: certain anonymous maps, such as MAP_NOSYNC maps,
2187                  * may start out with a NULL object.
2188                  */
2189                 while (object && object->backing_object) {
2190                         offset += object->backing_object_offset;
2191                         object = object->backing_object;
2192                         if (object->size < OFF_TO_IDX( offset + size))
2193                                 size = IDX_TO_OFF(object->size) - offset;
2194                 }
2195                 if (object && (object->type == OBJT_VNODE) && 
2196                     (current->protection & VM_PROT_WRITE)) {
2197                         /*
2198                          * Flush pages if writing is allowed, invalidate them
2199                          * if invalidation requested.  Pages undergoing I/O
2200                          * will be ignored by vm_object_page_remove().
2201                          *
2202                          * We cannot lock the vnode and then wait for paging
2203                          * to complete without deadlocking against vm_fault.
2204                          * Instead we simply call vm_object_page_remove() and
2205                          * allow it to block internally on a page-by-page 
2206                          * basis when it encounters pages undergoing async 
2207                          * I/O.
2208                          */
2209                         int flags;
2210
2211                         vm_object_reference(object);
2212                         vn_lock(object->handle, 
2213                                 LK_EXCLUSIVE | LK_RETRY, curthread);
2214                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2215                         flags |= invalidate ? OBJPC_INVAL : 0;
2216                         vm_object_page_clean(object,
2217                             OFF_TO_IDX(offset),
2218                             OFF_TO_IDX(offset + size + PAGE_MASK),
2219                             flags);
2220                         VOP_UNLOCK(((struct vnode *)object->handle), 
2221                                     0, curthread);
2222                         vm_object_deallocate(object);
2223                 }
2224                 if (object && invalidate &&
2225                    ((object->type == OBJT_VNODE) ||
2226                     (object->type == OBJT_DEVICE))) {
2227                         int clean_only = 
2228                                 (object->type == OBJT_DEVICE) ? FALSE : TRUE;
2229                         vm_object_reference(object);
2230                         vm_object_page_remove(object,
2231                             OFF_TO_IDX(offset),
2232                             OFF_TO_IDX(offset + size + PAGE_MASK),
2233                             clean_only);
2234                         vm_object_deallocate(object);
2235                 }
2236                 start += size;
2237         }
2238
2239         vm_map_unlock_read(map);
2240         return (KERN_SUCCESS);
2241 }
2242
2243 /*
2244  *      vm_map_entry_unwire:    [ internal use only ]
2245  *
2246  *      Make the region specified by this entry pageable.
2247  *
2248  *      The map in question should be locked.
2249  *      [This is the reason for this routine's existence.]
2250  */
2251 static void 
2252 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2253 {
2254         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2255         entry->wired_count = 0;
2256         vm_fault_unwire(map, entry);
2257 }
2258
2259 /*
2260  *      vm_map_entry_delete:    [ internal use only ]
2261  *
2262  *      Deallocate the given entry from the target map.
2263  */
2264 static void
2265 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2266 {
2267         vm_map_entry_unlink(map, entry);
2268         map->size -= entry->end - entry->start;
2269
2270         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2271                 vm_object_deallocate(entry->object.vm_object);
2272         }
2273
2274         vm_map_entry_dispose(map, entry, countp);
2275 }
2276
2277 /*
2278  *      vm_map_delete:  [ internal use only ]
2279  *
2280  *      Deallocates the given address range from the target
2281  *      map.
2282  */
2283 int
2284 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2285 {
2286         vm_object_t object;
2287         vm_map_entry_t entry;
2288         vm_map_entry_t first_entry;
2289
2290 again:
2291         /*
2292          * Find the start of the region, and clip it.  Set entry to point
2293          * at the first record containing the requested address or, if no
2294          * such record exists, the next record with a greater address.  The
2295          * loop will run from this point until a record beyond the termination
2296          * address is encountered.
2297          *
2298          * map->hint must be adjusted to not point to anything we delete,
2299          * so set it to the entry prior to the one being deleted.
2300          *
2301          * GGG see other GGG comment.
2302          */
2303         if (vm_map_lookup_entry(map, start, &first_entry)) {
2304                 entry = first_entry;
2305                 vm_map_clip_start(map, entry, start, countp);
2306                 map->hint = entry->prev;        /* possible problem XXX */
2307         } else {
2308                 map->hint = first_entry;        /* possible problem XXX */
2309                 entry = first_entry->next;
2310         }
2311
2312         /*
2313          * If a hole opens up prior to the current first_free then
2314          * adjust first_free.  As with map->hint, map->first_free
2315          * cannot be left set to anything we might delete.
2316          */
2317         if (entry == &map->header) {
2318                 map->first_free = &map->header;
2319         } else if (map->first_free->start >= start) {
2320                 map->first_free = entry->prev;
2321         }
2322
2323         /*
2324          * Step through all entries in this region
2325          */
2326
2327         while ((entry != &map->header) && (entry->start < end)) {
2328                 vm_map_entry_t next;
2329                 vm_offset_t s, e;
2330                 vm_pindex_t offidxstart, offidxend, count;
2331
2332                 /*
2333                  * If we hit an in-transition entry we have to sleep and
2334                  * retry.  It's easier (and not really slower) to just retry
2335                  * since this case occurs so rarely and the hint is already
2336                  * pointing at the right place.  We have to reset the
2337                  * start offset so as not to accidently delete an entry
2338                  * another process just created in vacated space.
2339                  */
2340                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2341                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2342                         start = entry->start;
2343                         ++mycpu->gd_cnt.v_intrans_coll;
2344                         ++mycpu->gd_cnt.v_intrans_wait;
2345                         vm_map_transition_wait(map);
2346                         goto again;
2347                 }
2348                 vm_map_clip_end(map, entry, end, countp);
2349
2350                 s = entry->start;
2351                 e = entry->end;
2352                 next = entry->next;
2353
2354                 offidxstart = OFF_TO_IDX(entry->offset);
2355                 count = OFF_TO_IDX(e - s);
2356                 object = entry->object.vm_object;
2357
2358                 /*
2359                  * Unwire before removing addresses from the pmap; otherwise,
2360                  * unwiring will put the entries back in the pmap.
2361                  */
2362                 if (entry->wired_count != 0)
2363                         vm_map_entry_unwire(map, entry);
2364
2365                 offidxend = offidxstart + count;
2366
2367                 if ((object == kernel_object) || (object == kmem_object)) {
2368                         vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2369                 } else {
2370                         pmap_remove(map->pmap, s, e);
2371                         if (object != NULL &&
2372                             object->ref_count != 1 &&
2373                             (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
2374                             (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2375                                 vm_object_collapse(object);
2376                                 vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2377                                 if (object->type == OBJT_SWAP) {
2378                                         swap_pager_freespace(object, offidxstart, count);
2379                                 }
2380                                 if (offidxend >= object->size &&
2381                                     offidxstart < object->size) {
2382                                         object->size = offidxstart;
2383                                 }
2384                         }
2385                 }
2386
2387                 /*
2388                  * Delete the entry (which may delete the object) only after
2389                  * removing all pmap entries pointing to its pages.
2390                  * (Otherwise, its page frames may be reallocated, and any
2391                  * modify bits will be set in the wrong object!)
2392                  */
2393                 vm_map_entry_delete(map, entry, countp);
2394                 entry = next;
2395         }
2396         return (KERN_SUCCESS);
2397 }
2398
2399 /*
2400  *      vm_map_remove:
2401  *
2402  *      Remove the given address range from the target map.
2403  *      This is the exported form of vm_map_delete.
2404  */
2405 int
2406 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2407 {
2408         int result;
2409         int count;
2410
2411         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2412         vm_map_lock(map);
2413         VM_MAP_RANGE_CHECK(map, start, end);
2414         result = vm_map_delete(map, start, end, &count);
2415         vm_map_unlock(map);
2416         vm_map_entry_release(count);
2417
2418         return (result);
2419 }
2420
2421 /*
2422  *      vm_map_check_protection:
2423  *
2424  *      Assert that the target map allows the specified
2425  *      privilege on the entire address region given.
2426  *      The entire region must be allocated.
2427  */
2428 boolean_t
2429 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2430                         vm_prot_t protection)
2431 {
2432         vm_map_entry_t entry;
2433         vm_map_entry_t tmp_entry;
2434
2435         if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2436                 return (FALSE);
2437         }
2438         entry = tmp_entry;
2439
2440         while (start < end) {
2441                 if (entry == &map->header) {
2442                         return (FALSE);
2443                 }
2444                 /*
2445                  * No holes allowed!
2446                  */
2447
2448                 if (start < entry->start) {
2449                         return (FALSE);
2450                 }
2451                 /*
2452                  * Check protection associated with entry.
2453                  */
2454
2455                 if ((entry->protection & protection) != protection) {
2456                         return (FALSE);
2457                 }
2458                 /* go to next entry */
2459
2460                 start = entry->end;
2461                 entry = entry->next;
2462         }
2463         return (TRUE);
2464 }
2465
2466 /*
2467  * Split the pages in a map entry into a new object.  This affords
2468  * easier removal of unused pages, and keeps object inheritance from
2469  * being a negative impact on memory usage.
2470  */
2471 static void
2472 vm_map_split(vm_map_entry_t entry)
2473 {
2474         vm_page_t m;
2475         vm_object_t orig_object, new_object, source;
2476         vm_offset_t s, e;
2477         vm_pindex_t offidxstart, offidxend, idx;
2478         vm_size_t size;
2479         vm_ooffset_t offset;
2480
2481         orig_object = entry->object.vm_object;
2482         if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
2483                 return;
2484         if (orig_object->ref_count <= 1)
2485                 return;
2486
2487         offset = entry->offset;
2488         s = entry->start;
2489         e = entry->end;
2490
2491         offidxstart = OFF_TO_IDX(offset);
2492         offidxend = offidxstart + OFF_TO_IDX(e - s);
2493         size = offidxend - offidxstart;
2494
2495         new_object = vm_pager_allocate(orig_object->type,
2496                 NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL);
2497         if (new_object == NULL)
2498                 return;
2499
2500         source = orig_object->backing_object;
2501         if (source != NULL) {
2502                 vm_object_reference(source);    /* Referenced by new_object */
2503                 LIST_INSERT_HEAD(&source->shadow_head,
2504                                   new_object, shadow_list);
2505                 vm_object_clear_flag(source, OBJ_ONEMAPPING);
2506                 new_object->backing_object_offset = 
2507                         orig_object->backing_object_offset + IDX_TO_OFF(offidxstart);
2508                 new_object->backing_object = source;
2509                 source->shadow_count++;
2510                 source->generation++;
2511         }
2512
2513         for (idx = 0; idx < size; idx++) {
2514                 vm_page_t m;
2515
2516                 /*
2517                  * A critical section is required to avoid a race between
2518                  * the lookup and an interrupt/unbusy/free and our busy
2519                  * check.
2520                  */
2521                 crit_enter();
2522         retry:
2523                 m = vm_page_lookup(orig_object, offidxstart + idx);
2524                 if (m == NULL) {
2525                         crit_exit();
2526                         continue;
2527                 }
2528
2529                 /*
2530                  * We must wait for pending I/O to complete before we can
2531                  * rename the page.
2532                  *
2533                  * We do not have to VM_PROT_NONE the page as mappings should
2534                  * not be changed by this operation.
2535                  */
2536                 if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2537                         goto retry;
2538                 vm_page_busy(m);
2539                 vm_page_rename(m, new_object, idx);
2540                 /* page automatically made dirty by rename and cache handled */
2541                 vm_page_busy(m);
2542                 crit_exit();
2543         }
2544
2545         if (orig_object->type == OBJT_SWAP) {
2546                 vm_object_pip_add(orig_object, 1);
2547                 /*
2548                  * copy orig_object pages into new_object
2549                  * and destroy unneeded pages in
2550                  * shadow object.
2551                  */
2552                 swap_pager_copy(orig_object, new_object, offidxstart, 0);
2553                 vm_object_pip_wakeup(orig_object);
2554         }
2555
2556         /*
2557          * Wakeup the pages we played with.  No spl protection is needed
2558          * for a simple wakeup.
2559          */
2560         for (idx = 0; idx < size; idx++) {
2561                 m = vm_page_lookup(new_object, idx);
2562                 if (m)
2563                         vm_page_wakeup(m);
2564         }
2565
2566         entry->object.vm_object = new_object;
2567         entry->offset = 0LL;
2568         vm_object_deallocate(orig_object);
2569 }
2570
2571 /*
2572  *      vm_map_copy_entry:
2573  *
2574  *      Copies the contents of the source entry to the destination
2575  *      entry.  The entries *must* be aligned properly.
2576  */
2577 static void
2578 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
2579         vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
2580 {
2581         vm_object_t src_object;
2582
2583         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2584                 return;
2585
2586         if (src_entry->wired_count == 0) {
2587
2588                 /*
2589                  * If the source entry is marked needs_copy, it is already
2590                  * write-protected.
2591                  */
2592                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2593                         pmap_protect(src_map->pmap,
2594                             src_entry->start,
2595                             src_entry->end,
2596                             src_entry->protection & ~VM_PROT_WRITE);
2597                 }
2598
2599                 /*
2600                  * Make a copy of the object.
2601                  */
2602                 if ((src_object = src_entry->object.vm_object) != NULL) {
2603
2604                         if ((src_object->handle == NULL) &&
2605                                 (src_object->type == OBJT_DEFAULT ||
2606                                  src_object->type == OBJT_SWAP)) {
2607                                 vm_object_collapse(src_object);
2608                                 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2609                                         vm_map_split(src_entry);
2610                                         src_object = src_entry->object.vm_object;
2611                                 }
2612                         }
2613
2614                         vm_object_reference(src_object);
2615                         vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2616                         dst_entry->object.vm_object = src_object;
2617                         src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2618                         dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2619                         dst_entry->offset = src_entry->offset;
2620                 } else {
2621                         dst_entry->object.vm_object = NULL;
2622                         dst_entry->offset = 0;
2623                 }
2624
2625                 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2626                     dst_entry->end - dst_entry->start, src_entry->start);
2627         } else {
2628                 /*
2629                  * Of course, wired down pages can't be set copy-on-write.
2630                  * Cause wired pages to be copied into the new map by
2631                  * simulating faults (the new pages are pageable)
2632                  */
2633                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2634         }
2635 }
2636
2637 /*
2638  * vmspace_fork:
2639  * Create a new process vmspace structure and vm_map
2640  * based on those of an existing process.  The new map
2641  * is based on the old map, according to the inheritance
2642  * values on the regions in that map.
2643  *
2644  * The source map must not be locked.
2645  */
2646 struct vmspace *
2647 vmspace_fork(struct vmspace *vm1)
2648 {
2649         struct vmspace *vm2;
2650         vm_map_t old_map = &vm1->vm_map;
2651         vm_map_t new_map;
2652         vm_map_entry_t old_entry;
2653         vm_map_entry_t new_entry;
2654         vm_object_t object;
2655         int count;
2656
2657         vm_map_lock(old_map);
2658         old_map->infork = 1;
2659
2660         /*
2661          * XXX Note: upcalls are not copied.
2662          */
2663         vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2664         bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2665             (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
2666         new_map = &vm2->vm_map; /* XXX */
2667         new_map->timestamp = 1;
2668
2669         count = 0;
2670         old_entry = old_map->header.next;
2671         while (old_entry != &old_map->header) {
2672                 ++count;
2673                 old_entry = old_entry->next;
2674         }
2675
2676         count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
2677
2678         old_entry = old_map->header.next;
2679         while (old_entry != &old_map->header) {
2680                 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2681                         panic("vm_map_fork: encountered a submap");
2682
2683                 switch (old_entry->inheritance) {
2684                 case VM_INHERIT_NONE:
2685                         break;
2686
2687                 case VM_INHERIT_SHARE:
2688                         /*
2689                          * Clone the entry, creating the shared object if necessary.
2690                          */
2691                         object = old_entry->object.vm_object;
2692                         if (object == NULL) {
2693                                 object = vm_object_allocate(OBJT_DEFAULT,
2694                                         atop(old_entry->end - old_entry->start));
2695                                 old_entry->object.vm_object = object;
2696                                 old_entry->offset = (vm_offset_t) 0;
2697                         }
2698
2699                         /*
2700                          * Add the reference before calling vm_object_shadow
2701                          * to insure that a shadow object is created.
2702                          */
2703                         vm_object_reference(object);
2704                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2705                                 vm_object_shadow(&old_entry->object.vm_object,
2706                                         &old_entry->offset,
2707                                         atop(old_entry->end - old_entry->start));
2708                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2709                                 /* Transfer the second reference too. */
2710                                 vm_object_reference(
2711                                     old_entry->object.vm_object);
2712                                 vm_object_deallocate(object);
2713                                 object = old_entry->object.vm_object;
2714                         }
2715                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
2716
2717                         /*
2718                          * Clone the entry, referencing the shared object.
2719                          */
2720                         new_entry = vm_map_entry_create(new_map, &count);
2721                         *new_entry = *old_entry;
2722                         new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2723                         new_entry->wired_count = 0;
2724
2725                         /*
2726                          * Insert the entry into the new map -- we know we're
2727                          * inserting at the end of the new map.
2728                          */
2729
2730                         vm_map_entry_link(new_map, new_map->header.prev,
2731                             new_entry);
2732
2733                         /*
2734                          * Update the physical map
2735                          */
2736
2737                         pmap_copy(new_map->pmap, old_map->pmap,
2738                             new_entry->start,
2739                             (old_entry->end - old_entry->start),
2740                             old_entry->start);
2741                         break;
2742
2743                 case VM_INHERIT_COPY:
2744                         /*
2745                          * Clone the entry and link into the map.
2746                          */
2747                         new_entry = vm_map_entry_create(new_map, &count);
2748                         *new_entry = *old_entry;
2749                         new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2750                         new_entry->wired_count = 0;
2751                         new_entry->object.vm_object = NULL;
2752                         vm_map_entry_link(new_map, new_map->header.prev,
2753                             new_entry);
2754                         vm_map_copy_entry(old_map, new_map, old_entry,
2755                             new_entry);
2756                         break;
2757                 }
2758                 old_entry = old_entry->next;
2759         }
2760
2761         new_map->size = old_map->size;
2762         old_map->infork = 0;
2763         vm_map_unlock(old_map);
2764         vm_map_entry_release(count);
2765
2766         return (vm2);
2767 }
2768
2769 int
2770 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2771               vm_prot_t prot, vm_prot_t max, int cow)
2772 {
2773         vm_map_entry_t prev_entry;
2774         vm_map_entry_t new_stack_entry;
2775         vm_size_t      init_ssize;
2776         int            rv;
2777         int             count;
2778
2779         if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS)
2780                 return (KERN_NO_SPACE);
2781
2782         if (max_ssize < sgrowsiz)
2783                 init_ssize = max_ssize;
2784         else
2785                 init_ssize = sgrowsiz;
2786
2787         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2788         vm_map_lock(map);
2789
2790         /* If addr is already mapped, no go */
2791         if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2792                 vm_map_unlock(map);
2793                 vm_map_entry_release(count);
2794                 return (KERN_NO_SPACE);
2795         }
2796
2797         /* If we would blow our VMEM resource limit, no go */
2798         if (map->size + init_ssize >
2799             curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2800                 vm_map_unlock(map);
2801                 vm_map_entry_release(count);
2802                 return (KERN_NO_SPACE);
2803         }
2804
2805         /* If we can't accomodate max_ssize in the current mapping,
2806          * no go.  However, we need to be aware that subsequent user
2807          * mappings might map into the space we have reserved for
2808          * stack, and currently this space is not protected.  
2809          * 
2810          * Hopefully we will at least detect this condition 
2811          * when we try to grow the stack.
2812          */
2813         if ((prev_entry->next != &map->header) &&
2814             (prev_entry->next->start < addrbos + max_ssize)) {
2815                 vm_map_unlock(map);
2816                 vm_map_entry_release(count);
2817                 return (KERN_NO_SPACE);
2818         }
2819
2820         /* We initially map a stack of only init_ssize.  We will
2821          * grow as needed later.  Since this is to be a grow 
2822          * down stack, we map at the top of the range.
2823          *
2824          * Note: we would normally expect prot and max to be
2825          * VM_PROT_ALL, and cow to be 0.  Possibly we should
2826          * eliminate these as input parameters, and just
2827          * pass these values here in the insert call.
2828          */
2829         rv = vm_map_insert(map, &count,
2830                            NULL, 0, addrbos + max_ssize - init_ssize,
2831                            addrbos + max_ssize, prot, max, cow);
2832
2833         /* Now set the avail_ssize amount */
2834         if (rv == KERN_SUCCESS) {
2835                 if (prev_entry != &map->header)
2836                         vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
2837                 new_stack_entry = prev_entry->next;
2838                 if (new_stack_entry->end   != addrbos + max_ssize ||
2839                     new_stack_entry->start != addrbos + max_ssize - init_ssize)
2840                         panic ("Bad entry start/end for new stack entry");
2841                 else 
2842                         new_stack_entry->avail_ssize = max_ssize - init_ssize;
2843         }
2844
2845         vm_map_unlock(map);
2846         vm_map_entry_release(count);
2847         return (rv);
2848 }
2849
2850 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
2851  * desired address is already mapped, or if we successfully grow
2852  * the stack.  Also returns KERN_SUCCESS if addr is outside the
2853  * stack range (this is strange, but preserves compatibility with
2854  * the grow function in vm_machdep.c).
2855  */
2856 int
2857 vm_map_growstack (struct proc *p, vm_offset_t addr)
2858 {
2859         vm_map_entry_t prev_entry;
2860         vm_map_entry_t stack_entry;
2861         vm_map_entry_t new_stack_entry;
2862         struct vmspace *vm = p->p_vmspace;
2863         vm_map_t map = &vm->vm_map;
2864         vm_offset_t    end;
2865         int grow_amount;
2866         int rv = KERN_SUCCESS;
2867         int is_procstack;
2868         int use_read_lock = 1;
2869         int count;
2870
2871         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2872 Retry:
2873         if (use_read_lock)
2874                 vm_map_lock_read(map);
2875         else
2876                 vm_map_lock(map);
2877
2878         /* If addr is already in the entry range, no need to grow.*/
2879         if (vm_map_lookup_entry(map, addr, &prev_entry))
2880                 goto done;
2881
2882         if ((stack_entry = prev_entry->next) == &map->header)
2883                 goto done;
2884         if (prev_entry == &map->header) 
2885                 end = stack_entry->start - stack_entry->avail_ssize;
2886         else
2887                 end = prev_entry->end;
2888
2889         /* This next test mimics the old grow function in vm_machdep.c.
2890          * It really doesn't quite make sense, but we do it anyway
2891          * for compatibility.
2892          *
2893          * If not growable stack, return success.  This signals the
2894          * caller to proceed as he would normally with normal vm.
2895          */
2896         if (stack_entry->avail_ssize < 1 ||
2897             addr >= stack_entry->start ||
2898             addr <  stack_entry->start - stack_entry->avail_ssize) {
2899                 goto done;
2900         } 
2901         
2902         /* Find the minimum grow amount */
2903         grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
2904         if (grow_amount > stack_entry->avail_ssize) {
2905                 rv = KERN_NO_SPACE;
2906                 goto done;
2907         }
2908
2909         /* If there is no longer enough space between the entries
2910          * nogo, and adjust the available space.  Note: this 
2911          * should only happen if the user has mapped into the
2912          * stack area after the stack was created, and is
2913          * probably an error.
2914          *
2915          * This also effectively destroys any guard page the user
2916          * might have intended by limiting the stack size.
2917          */
2918         if (grow_amount > stack_entry->start - end) {
2919                 if (use_read_lock && vm_map_lock_upgrade(map)) {
2920                         use_read_lock = 0;
2921                         goto Retry;
2922                 }
2923                 use_read_lock = 0;
2924                 stack_entry->avail_ssize = stack_entry->start - end;
2925                 rv = KERN_NO_SPACE;
2926                 goto done;
2927         }
2928
2929         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
2930
2931         /* If this is the main process stack, see if we're over the 
2932          * stack limit.
2933          */
2934         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2935                              p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2936                 rv = KERN_NO_SPACE;
2937                 goto done;
2938         }
2939
2940         /* Round up the grow amount modulo SGROWSIZ */
2941         grow_amount = roundup (grow_amount, sgrowsiz);
2942         if (grow_amount > stack_entry->avail_ssize) {
2943                 grow_amount = stack_entry->avail_ssize;
2944         }
2945         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2946                              p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2947                 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
2948                               ctob(vm->vm_ssize);
2949         }
2950
2951         /* If we would blow our VMEM resource limit, no go */
2952         if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2953                 rv = KERN_NO_SPACE;
2954                 goto done;
2955         }
2956
2957         if (use_read_lock && vm_map_lock_upgrade(map)) {
2958                 use_read_lock = 0;
2959                 goto Retry;
2960         }
2961         use_read_lock = 0;
2962
2963         /* Get the preliminary new entry start value */
2964         addr = stack_entry->start - grow_amount;
2965
2966         /* If this puts us into the previous entry, cut back our growth
2967          * to the available space.  Also, see the note above.
2968          */
2969         if (addr < end) {
2970                 stack_entry->avail_ssize = stack_entry->start - end;
2971                 addr = end;
2972         }
2973
2974         rv = vm_map_insert(map, &count,
2975                            NULL, 0, addr, stack_entry->start,
2976                            VM_PROT_ALL,
2977                            VM_PROT_ALL,
2978                            0);
2979
2980         /* Adjust the available stack space by the amount we grew. */
2981         if (rv == KERN_SUCCESS) {
2982                 if (prev_entry != &map->header)
2983                         vm_map_clip_end(map, prev_entry, addr, &count);
2984                 new_stack_entry = prev_entry->next;
2985                 if (new_stack_entry->end   != stack_entry->start  ||
2986                     new_stack_entry->start != addr)
2987                         panic ("Bad stack grow start/end in new stack entry");
2988                 else {
2989                         new_stack_entry->avail_ssize = stack_entry->avail_ssize -
2990                                                         (new_stack_entry->end -
2991                                                          new_stack_entry->start);
2992                         if (is_procstack)
2993                                 vm->vm_ssize += btoc(new_stack_entry->end -
2994                                                      new_stack_entry->start);
2995                 }
2996         }
2997
2998 done:
2999         if (use_read_lock)
3000                 vm_map_unlock_read(map);
3001         else
3002                 vm_map_unlock(map);
3003         vm_map_entry_release(count);
3004         return (rv);
3005 }
3006
3007 /*
3008  * Unshare the specified VM space for exec.  If other processes are
3009  * mapped to it, then create a new one.  The new vmspace is null.
3010  */
3011
3012 void
3013 vmspace_exec(struct proc *p, struct vmspace *vmcopy) 
3014 {
3015         struct vmspace *oldvmspace = p->p_vmspace;
3016         struct vmspace *newvmspace;
3017         vm_map_t map = &p->p_vmspace->vm_map;
3018
3019         /*
3020          * If we are execing a resident vmspace we fork it, otherwise
3021          * we create a new vmspace.  Note that exitingcnt and upcalls
3022          * are not copied to the new vmspace.
3023          */
3024         if (vmcopy)  {
3025             newvmspace = vmspace_fork(vmcopy);
3026         } else {
3027             newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3028             bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3029                 (caddr_t)&oldvmspace->vm_endcopy - 
3030                     (caddr_t)&oldvmspace->vm_startcopy);
3031         }
3032
3033         /*
3034          * This code is written like this for prototype purposes.  The
3035          * goal is to avoid running down the vmspace here, but let the
3036          * other process's that are still using the vmspace to finally
3037          * run it down.  Even though there is little or no chance of blocking
3038          * here, it is a good idea to keep this form for future mods.
3039          */
3040         p->p_vmspace = newvmspace;
3041         pmap_pinit2(vmspace_pmap(newvmspace));
3042         if (p == curproc)
3043                 pmap_activate(p);
3044         vmspace_free(oldvmspace);
3045 }
3046
3047 /*
3048  * Unshare the specified VM space for forcing COW.  This
3049  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3050  *
3051  * The exitingcnt test is not strictly necessary but has been
3052  * included for code sanity (to make the code a bit more deterministic).
3053  */
3054
3055 void
3056 vmspace_unshare(struct proc *p) 
3057 {
3058         struct vmspace *oldvmspace = p->p_vmspace;
3059         struct vmspace *newvmspace;
3060
3061         if (oldvmspace->vm_refcnt == 1 && oldvmspace->vm_exitingcnt == 0)
3062                 return;
3063         newvmspace = vmspace_fork(oldvmspace);
3064         p->p_vmspace = newvmspace;
3065         pmap_pinit2(vmspace_pmap(newvmspace));
3066         if (p == curproc)
3067                 pmap_activate(p);
3068         vmspace_free(oldvmspace);
3069 }
3070
3071 /*
3072  *      vm_map_lookup:
3073  *
3074  *      Finds the VM object, offset, and
3075  *      protection for a given virtual address in the
3076  *      specified map, assuming a page fault of the
3077  *      type specified.
3078  *
3079  *      Leaves the map in question locked for read; return
3080  *      values are guaranteed until a vm_map_lookup_done
3081  *      call is performed.  Note that the map argument
3082  *      is in/out; the returned map must be used in
3083  *      the call to vm_map_lookup_done.
3084  *
3085  *      A handle (out_entry) is returned for use in
3086  *      vm_map_lookup_done, to make that fast.
3087  *
3088  *      If a lookup is requested with "write protection"
3089  *      specified, the map may be changed to perform virtual
3090  *      copying operations, although the data referenced will
3091  *      remain the same.
3092  */
3093 int
3094 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
3095               vm_offset_t vaddr,
3096               vm_prot_t fault_typea,
3097               vm_map_entry_t *out_entry,        /* OUT */
3098               vm_object_t *object,              /* OUT */
3099               vm_pindex_t *pindex,              /* OUT */
3100               vm_prot_t *out_prot,              /* OUT */
3101               boolean_t *wired)                 /* OUT */
3102 {
3103         vm_map_entry_t entry;
3104         vm_map_t map = *var_map;
3105         vm_prot_t prot;
3106         vm_prot_t fault_type = fault_typea;
3107         int use_read_lock = 1;
3108         int rv = KERN_SUCCESS;
3109
3110 RetryLookup:
3111         if (use_read_lock)
3112                 vm_map_lock_read(map);
3113         else
3114                 vm_map_lock(map);
3115
3116         /*
3117          * If the map has an interesting hint, try it before calling full
3118          * blown lookup routine.
3119          */
3120         entry = map->hint;
3121         *out_entry = entry;
3122
3123         if ((entry == &map->header) ||
3124             (vaddr < entry->start) || (vaddr >= entry->end)) {
3125                 vm_map_entry_t tmp_entry;
3126
3127                 /*
3128                  * Entry was either not a valid hint, or the vaddr was not
3129                  * contained in the entry, so do a full lookup.
3130                  */
3131                 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3132                         rv = KERN_INVALID_ADDRESS;
3133                         goto done;
3134                 }
3135
3136                 entry = tmp_entry;
3137                 *out_entry = entry;
3138         }
3139         
3140         /*
3141          * Handle submaps.
3142          */
3143
3144         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3145                 vm_map_t old_map = map;
3146
3147                 *var_map = map = entry->object.sub_map;
3148                 if (use_read_lock)
3149                         vm_map_unlock_read(old_map);
3150                 else
3151                         vm_map_unlock(old_map);
3152                 use_read_lock = 1;
3153                 goto RetryLookup;
3154         }
3155
3156         /*
3157          * Check whether this task is allowed to have this page.
3158          * Note the special case for MAP_ENTRY_COW
3159          * pages with an override.  This is to implement a forced
3160          * COW for debuggers.
3161          */
3162
3163         if (fault_type & VM_PROT_OVERRIDE_WRITE)
3164                 prot = entry->max_protection;
3165         else
3166                 prot = entry->protection;
3167
3168         fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3169         if ((fault_type & prot) != fault_type) {
3170                 rv = KERN_PROTECTION_FAILURE;
3171                 goto done;
3172         }
3173
3174         if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3175             (entry->eflags & MAP_ENTRY_COW) &&
3176             (fault_type & VM_PROT_WRITE) &&
3177             (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3178                 rv = KERN_PROTECTION_FAILURE;
3179                 goto done;
3180         }
3181
3182         /*
3183          * If this page is not pageable, we have to get it for all possible
3184          * accesses.
3185          */
3186
3187         *wired = (entry->wired_count != 0);
3188         if (*wired)
3189                 prot = fault_type = entry->protection;
3190
3191         /*
3192          * If the entry was copy-on-write, we either ...
3193          */
3194
3195         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3196                 /*
3197                  * If we want to write the page, we may as well handle that
3198                  * now since we've got the map locked.
3199                  *
3200                  * If we don't need to write the page, we just demote the
3201                  * permissions allowed.
3202                  */
3203
3204                 if (fault_type & VM_PROT_WRITE) {
3205                         /*
3206                          * Make a new object, and place it in the object
3207                          * chain.  Note that no new references have appeared
3208                          * -- one just moved from the map to the new
3209                          * object.
3210                          */
3211
3212                         if (use_read_lock && vm_map_lock_upgrade(map)) {
3213                                 use_read_lock = 0;
3214                                 goto RetryLookup;
3215                         }
3216                         use_read_lock = 0;
3217
3218                         vm_object_shadow(
3219                             &entry->object.vm_object,
3220                             &entry->offset,
3221                             atop(entry->end - entry->start));
3222
3223                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3224                 } else {
3225                         /*
3226                          * We're attempting to read a copy-on-write page --
3227                          * don't allow writes.
3228                          */
3229
3230                         prot &= ~VM_PROT_WRITE;
3231                 }
3232         }
3233
3234         /*
3235          * Create an object if necessary.
3236          */
3237         if (entry->object.vm_object == NULL &&
3238             !map->system_map) {
3239                 if (use_read_lock && vm_map_lock_upgrade(map))  {
3240                         use_read_lock = 0;
3241                         goto RetryLookup;
3242                 }
3243                 use_read_lock = 0;
3244                 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3245                     atop(entry->end - entry->start));
3246                 entry->offset = 0;
3247         }
3248
3249         /*
3250          * Return the object/offset from this entry.  If the entry was
3251          * copy-on-write or empty, it has been fixed up.
3252          */
3253
3254         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3255         *object = entry->object.vm_object;
3256
3257         /*
3258          * Return whether this is the only map sharing this data.  On
3259          * success we return with a read lock held on the map.  On failure
3260          * we return with the map unlocked.
3261          */
3262         *out_prot = prot;
3263 done:
3264         if (rv == KERN_SUCCESS) {
3265                 if (use_read_lock == 0)
3266                         vm_map_lock_downgrade(map);
3267         } else if (use_read_lock) {
3268                 vm_map_unlock_read(map);
3269         } else {
3270                 vm_map_unlock(map);
3271         }
3272         return (rv);
3273 }
3274
3275 /*
3276  *      vm_map_lookup_done:
3277  *
3278  *      Releases locks acquired by a vm_map_lookup
3279  *      (according to the handle returned by that lookup).
3280  */
3281
3282 void
3283 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
3284 {
3285         /*
3286          * Unlock the main-level map
3287          */
3288         vm_map_unlock_read(map);
3289         if (count)
3290                 vm_map_entry_release(count);
3291 }
3292
3293 /*
3294  * Performs the copy_on_write operations necessary to allow the virtual copies
3295  * into user space to work.  This has to be called for write(2) system calls
3296  * from other processes, file unlinking, and file size shrinkage.
3297  */
3298 void
3299 vm_freeze_copyopts(vm_object_t object, vm_pindex_t froma, vm_pindex_t toa)
3300 {
3301         int rv;
3302         vm_object_t robject;
3303         vm_pindex_t idx;
3304
3305         if ((object == NULL) ||
3306                 ((object->flags & OBJ_OPT) == 0))
3307                 return;
3308
3309         if (object->shadow_count > object->ref_count)
3310                 panic("vm_freeze_copyopts: sc > rc");
3311
3312         while ((robject = LIST_FIRST(&object->shadow_head)) != NULL) {
3313                 vm_pindex_t bo_pindex;
3314                 vm_page_t m_in, m_out;
3315
3316                 bo_pindex = OFF_TO_IDX(robject->backing_object_offset);
3317
3318                 vm_object_reference(robject);
3319
3320                 vm_object_pip_wait(robject, "objfrz");
3321
3322                 if (robject->ref_count == 1) {
3323                         vm_object_deallocate(robject);
3324                         continue;
3325                 }
3326
3327                 vm_object_pip_add(robject, 1);
3328
3329                 for (idx = 0; idx < robject->size; idx++) {
3330
3331                         m_out = vm_page_grab(robject, idx,
3332                                             VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3333
3334                         if (m_out->valid == 0) {
3335                                 m_in = vm_page_grab(object, bo_pindex + idx,
3336                                             VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3337                                 if (m_in->valid == 0) {
3338                                         rv = vm_pager_get_pages(object, &m_in, 1, 0);
3339                                         if (rv != VM_PAGER_OK) {
3340                                                 printf("vm_freeze_copyopts: cannot read page from file: %lx\n", (long)m_in->pindex);
3341                                                 continue;
3342                                         }
3343                                         vm_page_deactivate(m_in);
3344                                 }
3345
3346                                 vm_page_protect(m_in, VM_PROT_NONE);
3347                                 pmap_copy_page(VM_PAGE_TO_PHYS(m_in), VM_PAGE_TO_PHYS(m_out));
3348                                 m_out->valid = m_in->valid;
3349                                 vm_page_dirty(m_out);
3350                                 vm_page_activate(m_out);
3351                                 vm_page_wakeup(m_in);
3352                         }
3353                         vm_page_wakeup(m_out);
3354                 }
3355
3356                 object->shadow_count--;
3357                 object->ref_count--;
3358                 LIST_REMOVE(robject, shadow_list);
3359                 robject->backing_object = NULL;
3360                 robject->backing_object_offset = 0;
3361
3362                 vm_object_pip_wakeup(robject);
3363                 vm_object_deallocate(robject);
3364         }
3365
3366         vm_object_clear_flag(object, OBJ_OPT);
3367 }
3368
3369 #include "opt_ddb.h"
3370 #ifdef DDB
3371 #include <sys/kernel.h>
3372
3373 #include <ddb/ddb.h>
3374
3375 /*
3376  *      vm_map_print:   [ debug ]
3377  */
3378 DB_SHOW_COMMAND(map, vm_map_print)
3379 {
3380         static int nlines;
3381         /* XXX convert args. */
3382         vm_map_t map = (vm_map_t)addr;
3383         boolean_t full = have_addr;
3384
3385         vm_map_entry_t entry;
3386
3387         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3388             (void *)map,
3389             (void *)map->pmap, map->nentries, map->timestamp);
3390         nlines++;
3391
3392         if (!full && db_indent)
3393                 return;
3394
3395         db_indent += 2;
3396         for (entry = map->header.next; entry != &map->header;
3397             entry = entry->next) {
3398                 db_iprintf("map entry %p: start=%p, end=%p\n",
3399                     (void *)entry, (void *)entry->start, (void *)entry->end);
3400                 nlines++;
3401                 {
3402                         static char *inheritance_name[4] =
3403                         {"share", "copy", "none", "donate_copy"};
3404
3405                         db_iprintf(" prot=%x/%x/%s",
3406                             entry->protection,
3407                             entry->max_protection,
3408                             inheritance_name[(int)(unsigned char)entry->inheritance]);
3409                         if (entry->wired_count != 0)
3410                                 db_printf(", wired");
3411                 }
3412                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3413                         /* XXX no %qd in kernel.  Truncate entry->offset. */
3414                         db_printf(", share=%p, offset=0x%lx\n",
3415                             (void *)entry->object.sub_map,
3416                             (long)entry->offset);
3417                         nlines++;
3418                         if ((entry->prev == &map->header) ||
3419                             (entry->prev->object.sub_map !=
3420                                 entry->object.sub_map)) {
3421                                 db_indent += 2;
3422                                 vm_map_print((db_expr_t)(intptr_t)
3423                                              entry->object.sub_map,
3424                                              full, 0, (char *)0);
3425                                 db_indent -= 2;
3426                         }
3427                 } else {
3428                         /* XXX no %qd in kernel.  Truncate entry->offset. */
3429                         db_printf(", object=%p, offset=0x%lx",
3430                             (void *)entry->object.vm_object,
3431                             (long)entry->offset);
3432                         if (entry->eflags & MAP_ENTRY_COW)
3433                                 db_printf(", copy (%s)",
3434                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3435                         db_printf("\n");
3436                         nlines++;
3437
3438                         if ((entry->prev == &map->header) ||
3439                             (entry->prev->object.vm_object !=
3440                                 entry->object.vm_object)) {
3441                                 db_indent += 2;
3442                                 vm_object_print((db_expr_t)(intptr_t)
3443                                                 entry->object.vm_object,
3444                                                 full, 0, (char *)0);
3445                                 nlines += 4;
3446                                 db_indent -= 2;
3447                         }
3448                 }
3449         }
3450         db_indent -= 2;
3451         if (db_indent == 0)
3452                 nlines = 0;
3453 }
3454
3455
3456 DB_SHOW_COMMAND(procvm, procvm)
3457 {
3458         struct proc *p;
3459
3460         if (have_addr) {
3461                 p = (struct proc *) addr;
3462         } else {
3463                 p = curproc;
3464         }
3465
3466         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3467             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3468             (void *)vmspace_pmap(p->p_vmspace));
3469
3470         vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3471 }
3472
3473 #endif /* DDB */