Merge from vendor branch ZLIB:
[dragonfly.git] / sys / vm / vm_object.c
1 /*
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by the University of
19  *      California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
65  * $DragonFly: src/sys/vm/vm_object.c,v 1.20 2004/10/12 19:21:16 dillon Exp $
66  */
67
68 /*
69  *      Virtual memory object module.
70  */
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>           /* for curproc, pageproc */
75 #include <sys/vnode.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/mount.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_pager.h>
90 #include <vm/swap_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/vm_zone.h>
94
95 #include <sys/thread2.h>
96
97 #define EASY_SCAN_FACTOR        8
98
99 #define MSYNC_FLUSH_HARDSEQ     0x01
100 #define MSYNC_FLUSH_SOFTSEQ     0x02
101
102 static int msync_flush_flags = MSYNC_FLUSH_HARDSEQ | MSYNC_FLUSH_SOFTSEQ;
103 SYSCTL_INT(_vm, OID_AUTO, msync_flush_flags,
104         CTLFLAG_RW, &msync_flush_flags, 0, "");
105
106 static void     vm_object_qcollapse (vm_object_t object);
107 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags);
108
109 /*
110  *      Virtual memory objects maintain the actual data
111  *      associated with allocated virtual memory.  A given
112  *      page of memory exists within exactly one object.
113  *
114  *      An object is only deallocated when all "references"
115  *      are given up.  Only one "reference" to a given
116  *      region of an object should be writeable.
117  *
118  *      Associated with each object is a list of all resident
119  *      memory pages belonging to that object; this list is
120  *      maintained by the "vm_page" module, and locked by the object's
121  *      lock.
122  *
123  *      Each object also records a "pager" routine which is
124  *      used to retrieve (and store) pages to the proper backing
125  *      storage.  In addition, objects may be backed by other
126  *      objects from which they were virtual-copied.
127  *
128  *      The only items within the object structure which are
129  *      modified after time of creation are:
130  *              reference count         locked by object's lock
131  *              pager routine           locked by object's lock
132  *
133  */
134
135 struct object_q vm_object_list;
136 static struct lwkt_token vm_object_list_token;
137 static long vm_object_count;            /* count of all objects */
138 vm_object_t kernel_object;
139 vm_object_t kmem_object;
140 static struct vm_object kernel_object_store;
141 static struct vm_object kmem_object_store;
142 extern int vm_pageout_page_count;
143
144 static long object_collapses;
145 static long object_bypasses;
146 static int next_index;
147 static vm_zone_t obj_zone;
148 static struct vm_zone obj_zone_store;
149 static int object_hash_rand;
150 #define VM_OBJECTS_INIT 256
151 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
152
153 void
154 _vm_object_allocate(objtype_t type, vm_size_t size, vm_object_t object)
155 {
156         int incr;
157         TAILQ_INIT(&object->memq);
158         LIST_INIT(&object->shadow_head);
159
160         object->type = type;
161         object->size = size;
162         object->ref_count = 1;
163         object->flags = 0;
164         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
165                 vm_object_set_flag(object, OBJ_ONEMAPPING);
166         object->paging_in_progress = 0;
167         object->resident_page_count = 0;
168         object->shadow_count = 0;
169         object->pg_color = next_index;
170         if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
171                 incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
172         else
173                 incr = size;
174         next_index = (next_index + incr) & PQ_L2_MASK;
175         object->handle = NULL;
176         object->backing_object = NULL;
177         object->backing_object_offset = (vm_ooffset_t) 0;
178         /*
179          * Try to generate a number that will spread objects out in the
180          * hash table.  We 'wipe' new objects across the hash in 128 page
181          * increments plus 1 more to offset it a little more by the time
182          * it wraps around.
183          */
184         object->hash_rand = object_hash_rand - 129;
185
186         object->generation++;
187
188         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
189         vm_object_count++;
190         object_hash_rand = object->hash_rand;
191 }
192
193 /*
194  *      vm_object_init:
195  *
196  *      Initialize the VM objects module.
197  */
198 void
199 vm_object_init(void)
200 {
201         TAILQ_INIT(&vm_object_list);
202         lwkt_token_init(&vm_object_list_token);
203         vm_object_count = 0;
204         
205         kernel_object = &kernel_object_store;
206         _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
207             kernel_object);
208
209         kmem_object = &kmem_object_store;
210         _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS),
211             kmem_object);
212
213         obj_zone = &obj_zone_store;
214         zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
215                 vm_objects_init, VM_OBJECTS_INIT);
216 }
217
218 void
219 vm_object_init2(void)
220 {
221         zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
222 }
223
224 /*
225  *      vm_object_allocate:
226  *
227  *      Returns a new object with the given size.
228  */
229
230 vm_object_t
231 vm_object_allocate(objtype_t type, vm_size_t size)
232 {
233         vm_object_t result;
234
235         result = (vm_object_t) zalloc(obj_zone);
236
237         _vm_object_allocate(type, size, result);
238
239         return (result);
240 }
241
242
243 /*
244  *      vm_object_reference:
245  *
246  *      Gets another reference to the given object.
247  */
248 void
249 vm_object_reference(vm_object_t object)
250 {
251         if (object == NULL)
252                 return;
253
254 #if 0
255         /* object can be re-referenced during final cleaning */
256         KASSERT(!(object->flags & OBJ_DEAD),
257             ("vm_object_reference: attempting to reference dead obj"));
258 #endif
259
260         object->ref_count++;
261         if (object->type == OBJT_VNODE) {
262                 vref(object->handle);
263                 /* XXX what if the vnode is being destroyed? */
264 #if 0
265                 while (vget((struct vnode *) object->handle, 
266                     LK_RETRY|LK_NOOBJ, curthread)) {
267                         printf("vm_object_reference: delay in getting object\n");
268                 }
269 #endif
270         }
271 }
272
273 void
274 vm_object_vndeallocate(vm_object_t object)
275 {
276         struct vnode *vp = (struct vnode *) object->handle;
277
278         KASSERT(object->type == OBJT_VNODE,
279             ("vm_object_vndeallocate: not a vnode object"));
280         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
281 #ifdef INVARIANTS
282         if (object->ref_count == 0) {
283                 vprint("vm_object_vndeallocate", vp);
284                 panic("vm_object_vndeallocate: bad object reference count");
285         }
286 #endif
287
288         object->ref_count--;
289         if (object->ref_count == 0) {
290                 vp->v_flag &= ~VTEXT;
291                 vm_object_clear_flag(object, OBJ_OPT);
292         }
293         vrele(vp);
294 }
295
296 /*
297  *      vm_object_deallocate:
298  *
299  *      Release a reference to the specified object,
300  *      gained either through a vm_object_allocate
301  *      or a vm_object_reference call.  When all references
302  *      are gone, storage associated with this object
303  *      may be relinquished.
304  *
305  *      No object may be locked.
306  */
307 void
308 vm_object_deallocate(vm_object_t object)
309 {
310         vm_object_t temp;
311
312         while (object != NULL) {
313
314                 if (object->type == OBJT_VNODE) {
315                         vm_object_vndeallocate(object);
316                         return;
317                 }
318
319                 if (object->ref_count == 0) {
320                         panic("vm_object_deallocate: object deallocated too many times: %d", object->type);
321                 } else if (object->ref_count > 2) {
322                         object->ref_count--;
323                         return;
324                 }
325
326                 /*
327                  * Here on ref_count of one or two, which are special cases for
328                  * objects.
329                  */
330                 if ((object->ref_count == 2) && (object->shadow_count == 0)) {
331                         vm_object_set_flag(object, OBJ_ONEMAPPING);
332                         object->ref_count--;
333                         return;
334                 } else if ((object->ref_count == 2) && (object->shadow_count == 1)) {
335                         object->ref_count--;
336                         if ((object->handle == NULL) &&
337                             (object->type == OBJT_DEFAULT ||
338                              object->type == OBJT_SWAP)) {
339                                 vm_object_t robject;
340
341                                 robject = LIST_FIRST(&object->shadow_head);
342                                 KASSERT(robject != NULL,
343                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
344                                          object->ref_count,
345                                          object->shadow_count));
346                                 if ((robject->handle == NULL) &&
347                                     (robject->type == OBJT_DEFAULT ||
348                                      robject->type == OBJT_SWAP)) {
349
350                                         robject->ref_count++;
351
352                                         while (
353                                                 robject->paging_in_progress ||
354                                                 object->paging_in_progress
355                                         ) {
356                                                 vm_object_pip_sleep(robject, "objde1");
357                                                 vm_object_pip_sleep(object, "objde2");
358                                         }
359
360                                         if (robject->ref_count == 1) {
361                                                 robject->ref_count--;
362                                                 object = robject;
363                                                 goto doterm;
364                                         }
365
366                                         object = robject;
367                                         vm_object_collapse(object);
368                                         continue;
369                                 }
370                         }
371
372                         return;
373
374                 } else {
375                         object->ref_count--;
376                         if (object->ref_count != 0)
377                                 return;
378                 }
379
380 doterm:
381
382                 temp = object->backing_object;
383                 if (temp) {
384                         LIST_REMOVE(object, shadow_list);
385                         temp->shadow_count--;
386                         if (temp->ref_count == 0)
387                                 vm_object_clear_flag(temp, OBJ_OPT);
388                         temp->generation++;
389                         object->backing_object = NULL;
390                 }
391
392                 /*
393                  * Don't double-terminate, we could be in a termination
394                  * recursion due to the terminate having to sync data
395                  * to disk.
396                  */
397                 if ((object->flags & OBJ_DEAD) == 0)
398                         vm_object_terminate(object);
399                 object = temp;
400         }
401 }
402
403 /*
404  *      vm_object_terminate actually destroys the specified object, freeing
405  *      up all previously used resources.
406  *
407  *      The object must be locked.
408  *      This routine may block.
409  */
410 void
411 vm_object_terminate(vm_object_t object)
412 {
413         lwkt_tokref ilock;
414         vm_page_t p;
415
416         /*
417          * Make sure no one uses us.
418          */
419         vm_object_set_flag(object, OBJ_DEAD);
420
421         /*
422          * wait for the pageout daemon to be done with the object
423          */
424         vm_object_pip_wait(object, "objtrm");
425
426         KASSERT(!object->paging_in_progress,
427                 ("vm_object_terminate: pageout in progress"));
428
429         /*
430          * Clean and free the pages, as appropriate. All references to the
431          * object are gone, so we don't need to lock it.
432          */
433         if (object->type == OBJT_VNODE) {
434                 struct vnode *vp;
435
436                 /*
437                  * Freeze optimized copies.
438                  */
439                 vm_freeze_copyopts(object, 0, object->size);
440
441                 /*
442                  * Clean pages and flush buffers.
443                  */
444                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
445
446                 vp = (struct vnode *) object->handle;
447                 vinvalbuf(vp, V_SAVE, NULL, 0, 0);
448         }
449
450         /*
451          * Wait for any I/O to complete, after which there had better not
452          * be any references left on the object.
453          */
454         vm_object_pip_wait(object, "objtrm");
455
456         if (object->ref_count != 0)
457                 panic("vm_object_terminate: object with references, ref_count=%d", object->ref_count);
458
459         /*
460          * Now free any remaining pages. For internal objects, this also
461          * removes them from paging queues. Don't free wired pages, just
462          * remove them from the object. 
463          */
464         crit_enter();
465         while ((p = TAILQ_FIRST(&object->memq)) != NULL) {
466                 if (p->busy || (p->flags & PG_BUSY))
467                         panic("vm_object_terminate: freeing busy page %p", p);
468                 if (p->wire_count == 0) {
469                         vm_page_busy(p);
470                         vm_page_free(p);
471                         mycpu->gd_cnt.v_pfree++;
472                 } else {
473                         vm_page_busy(p);
474                         vm_page_remove(p);
475                         vm_page_wakeup(p);
476                 }
477         }
478         crit_exit();
479
480         /*
481          * Let the pager know object is dead.
482          */
483         vm_pager_deallocate(object);
484
485         /*
486          * Remove the object from the global object list.
487          */
488         lwkt_gettoken(&ilock, &vm_object_list_token);
489         TAILQ_REMOVE(&vm_object_list, object, object_list);
490         lwkt_reltoken(&ilock);
491
492         wakeup(object);
493
494         /*
495          * Free the space for the object.
496          */
497         zfree(obj_zone, object);
498 }
499
500 /*
501  *      vm_object_page_clean
502  *
503  *      Clean all dirty pages in the specified range of object.  Leaves page 
504  *      on whatever queue it is currently on.   If NOSYNC is set then do not
505  *      write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
506  *      leaving the object dirty.
507  *
508  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
509  *      synchronous clustering mode implementation.
510  *
511  *      Odd semantics: if start == end, we clean everything.
512  */
513
514 void
515 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
516     int flags)
517 {
518         vm_page_t p, np;
519         vm_offset_t tstart, tend;
520         vm_pindex_t pi;
521         struct vnode *vp;
522         int clearobjflags;
523         int pagerflags;
524         int curgeneration;
525
526         if (object->type != OBJT_VNODE ||
527                 (object->flags & OBJ_MIGHTBEDIRTY) == 0)
528                 return;
529
530         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
531         pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
532
533         vp = object->handle;
534
535         vm_object_set_flag(object, OBJ_CLEANING);
536
537         /*
538          * Handle 'entire object' case
539          */
540         tstart = start;
541         if (end == 0) {
542                 tend = object->size;
543         } else {
544                 tend = end;
545         }
546
547         /*
548          * If the caller is smart and only msync()s a range he knows is
549          * dirty, we may be able to avoid an object scan.  This results in
550          * a phenominal improvement in performance.  We cannot do this
551          * as a matter of course because the object may be huge - e.g.
552          * the size might be in the gigabytes or terrabytes.
553          */
554         if (msync_flush_flags & MSYNC_FLUSH_HARDSEQ) {
555                 vm_offset_t tscan;
556                 int scanlimit;
557                 int scanreset;
558
559                 scanreset = object->resident_page_count / EASY_SCAN_FACTOR;
560                 if (scanreset < 16)
561                         scanreset = 16;
562                 pagerflags |= VM_PAGER_IGNORE_CLEANCHK;
563
564                 scanlimit = scanreset;
565                 tscan = tstart;
566
567                 /*
568                  * spl protection is required despite the obj generation
569                  * tracking because we cannot safely call vm_page_test_dirty()
570                  * or avoid page field tests against an interrupt unbusy/free
571                  * race that might occur prior to the busy check in
572                  * vm_object_page_collect_flush().
573                  */
574                 crit_enter();
575                 while (tscan < tend) {
576                         curgeneration = object->generation;
577                         p = vm_page_lookup(object, tscan);
578                         if (p == NULL || p->valid == 0 ||
579                             (p->queue - p->pc) == PQ_CACHE) {
580                                 if (--scanlimit == 0)
581                                         break;
582                                 ++tscan;
583                                 continue;
584                         }
585                         vm_page_test_dirty(p);
586                         if ((p->dirty & p->valid) == 0) {
587                                 if (--scanlimit == 0)
588                                         break;
589                                 ++tscan;
590                                 continue;
591                         }
592                         /*
593                          * If we have been asked to skip nosync pages and 
594                          * this is a nosync page, we can't continue.
595                          */
596                         if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
597                                 if (--scanlimit == 0)
598                                         break;
599                                 ++tscan;
600                                 continue;
601                         }
602                         scanlimit = scanreset;
603
604                         /*
605                          * This returns 0 if it was unable to busy the first
606                          * page (i.e. had to sleep).
607                          */
608                         tscan += vm_object_page_collect_flush(object, p, 
609                                                 curgeneration, pagerflags);
610                 }
611                 crit_exit();
612
613                 /*
614                  * If everything was dirty and we flushed it successfully,
615                  * and the requested range is not the entire object, we
616                  * don't have to mess with CLEANCHK or MIGHTBEDIRTY and can
617                  * return immediately.
618                  */
619                 if (tscan >= tend && (tstart || tend < object->size)) {
620                         vm_object_clear_flag(object, OBJ_CLEANING);
621                         return;
622                 }
623                 pagerflags &= ~VM_PAGER_IGNORE_CLEANCHK;
624         }
625
626         /*
627          * Generally set CLEANCHK interlock and make the page read-only so
628          * we can then clear the object flags.
629          *
630          * However, if this is a nosync mmap then the object is likely to 
631          * stay dirty so do not mess with the page and do not clear the
632          * object flags.
633          *
634          * spl protection is required because an interrupt can remove page
635          * from the object.
636          */
637         clearobjflags = 1;
638
639         crit_enter();
640         for (p = TAILQ_FIRST(&object->memq); p; p = TAILQ_NEXT(p, listq)) {
641                 vm_page_flag_set(p, PG_CLEANCHK);
642                 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
643                         clearobjflags = 0;
644                 else
645                         vm_page_protect(p, VM_PROT_READ);
646         }
647         crit_exit();
648
649         if (clearobjflags && (tstart == 0) && (tend == object->size)) {
650                 struct vnode *vp;
651
652                 vm_object_clear_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
653                 if (object->type == OBJT_VNODE &&
654                     (vp = (struct vnode *)object->handle) != NULL) {
655                         if (vp->v_flag & VOBJDIRTY) 
656                                 vclrflags(vp, VOBJDIRTY);
657                 }
658         }
659
660         /*
661          * spl protection is required both to avoid an interrupt unbusy/free
662          * race against a vm_page_lookup(), and also to ensure that the
663          * memq is consistent.  We do not want a busy page to be ripped out
664          * from under us.
665          */
666         crit_enter();
667 rescan:
668         crit_exit();
669         crit_enter();
670         curgeneration = object->generation;
671
672         for (p = TAILQ_FIRST(&object->memq); p; p = np) {
673                 int n;
674
675                 np = TAILQ_NEXT(p, listq);
676
677 again:
678                 pi = p->pindex;
679                 if (((p->flags & PG_CLEANCHK) == 0) ||
680                         (pi < tstart) || (pi >= tend) ||
681                         (p->valid == 0) ||
682                         ((p->queue - p->pc) == PQ_CACHE)) {
683                         vm_page_flag_clear(p, PG_CLEANCHK);
684                         continue;
685                 }
686
687                 vm_page_test_dirty(p);
688                 if ((p->dirty & p->valid) == 0) {
689                         vm_page_flag_clear(p, PG_CLEANCHK);
690                         continue;
691                 }
692
693                 /*
694                  * If we have been asked to skip nosync pages and this is a
695                  * nosync page, skip it.  Note that the object flags were
696                  * not cleared in this case so we do not have to set them.
697                  */
698                 if ((flags & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
699                         vm_page_flag_clear(p, PG_CLEANCHK);
700                         continue;
701                 }
702
703                 n = vm_object_page_collect_flush(object, p,
704                         curgeneration, pagerflags);
705                 if (n == 0)
706                         goto rescan;
707                 if (object->generation != curgeneration)
708                         goto rescan;
709
710                 /*
711                  * Try to optimize the next page.  If we can't we pick up
712                  * our (random) scan where we left off.
713                  */
714                 if (msync_flush_flags & MSYNC_FLUSH_SOFTSEQ) {
715                         if ((p = vm_page_lookup(object, pi + n)) != NULL)
716                                 goto again;
717                 }
718         }
719         crit_exit();
720
721 #if 0
722         VOP_FSYNC(vp, NULL, (pagerflags & VM_PAGER_PUT_SYNC)?MNT_WAIT:0, curproc);
723 #endif
724
725         vm_object_clear_flag(object, OBJ_CLEANING);
726         return;
727 }
728
729 /*
730  * This routine must be called within a critical section to properly avoid
731  * an interrupt unbusy/free race that can occur prior to the busy check.
732  *
733  * Using the object generation number here to detect page ripout is not
734  * the best idea in the world. XXX
735  *
736  * NOTE: we operate under the assumption that a page found to not be busy
737  * will not be ripped out from under us by an interrupt.  XXX we should
738  * recode this to explicitly busy the pages.
739  */
740 static int
741 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int curgeneration, int pagerflags)
742 {
743         int runlen;
744         int maxf;
745         int chkb;
746         int maxb;
747         int i;
748         vm_pindex_t pi;
749         vm_page_t maf[vm_pageout_page_count];
750         vm_page_t mab[vm_pageout_page_count];
751         vm_page_t ma[vm_pageout_page_count];
752
753         pi = p->pindex;
754         while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
755                 if (object->generation != curgeneration) {
756                         return(0);
757                 }
758         }
759
760         maxf = 0;
761         for(i = 1; i < vm_pageout_page_count; i++) {
762                 vm_page_t tp;
763
764                 if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
765                         if ((tp->flags & PG_BUSY) ||
766                                 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 
767                                  (tp->flags & PG_CLEANCHK) == 0) ||
768                                 (tp->busy != 0))
769                                 break;
770                         if((tp->queue - tp->pc) == PQ_CACHE) {
771                                 vm_page_flag_clear(tp, PG_CLEANCHK);
772                                 break;
773                         }
774                         vm_page_test_dirty(tp);
775                         if ((tp->dirty & tp->valid) == 0) {
776                                 vm_page_flag_clear(tp, PG_CLEANCHK);
777                                 break;
778                         }
779                         maf[ i - 1 ] = tp;
780                         maxf++;
781                         continue;
782                 }
783                 break;
784         }
785
786         maxb = 0;
787         chkb = vm_pageout_page_count -  maxf;
788         if (chkb) {
789                 for(i = 1; i < chkb;i++) {
790                         vm_page_t tp;
791
792                         if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
793                                 if ((tp->flags & PG_BUSY) ||
794                                         ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 
795                                          (tp->flags & PG_CLEANCHK) == 0) ||
796                                         (tp->busy != 0))
797                                         break;
798                                 if((tp->queue - tp->pc) == PQ_CACHE) {
799                                         vm_page_flag_clear(tp, PG_CLEANCHK);
800                                         break;
801                                 }
802                                 vm_page_test_dirty(tp);
803                                 if ((tp->dirty & tp->valid) == 0) {
804                                         vm_page_flag_clear(tp, PG_CLEANCHK);
805                                         break;
806                                 }
807                                 mab[ i - 1 ] = tp;
808                                 maxb++;
809                                 continue;
810                         }
811                         break;
812                 }
813         }
814
815         for(i = 0; i < maxb; i++) {
816                 int index = (maxb - i) - 1;
817                 ma[index] = mab[i];
818                 vm_page_flag_clear(ma[index], PG_CLEANCHK);
819         }
820         vm_page_flag_clear(p, PG_CLEANCHK);
821         ma[maxb] = p;
822         for(i = 0; i < maxf; i++) {
823                 int index = (maxb + i) + 1;
824                 ma[index] = maf[i];
825                 vm_page_flag_clear(ma[index], PG_CLEANCHK);
826         }
827         runlen = maxb + maxf + 1;
828
829         vm_pageout_flush(ma, runlen, pagerflags);
830         for (i = 0; i < runlen; i++) {
831                 if (ma[i]->valid & ma[i]->dirty) {
832                         vm_page_protect(ma[i], VM_PROT_READ);
833                         vm_page_flag_set(ma[i], PG_CLEANCHK);
834
835                         /*
836                          * maxf will end up being the actual number of pages
837                          * we wrote out contiguously, non-inclusive of the
838                          * first page.  We do not count look-behind pages.
839                          */
840                         if (i >= maxb + 1 && (maxf > i - maxb - 1))
841                                 maxf = i - maxb - 1;
842                 }
843         }
844         return(maxf + 1);
845 }
846
847 #ifdef not_used
848 /* XXX I cannot tell if this should be an exported symbol */
849 /*
850  *      vm_object_deactivate_pages
851  *
852  *      Deactivate all pages in the specified object.  (Keep its pages
853  *      in memory even though it is no longer referenced.)
854  *
855  *      The object must be locked.
856  */
857 static void
858 vm_object_deactivate_pages(vm_object_t object)
859 {
860         vm_page_t p, next;
861         int s;
862
863         crit_enter();
864         for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
865                 next = TAILQ_NEXT(p, listq);
866                 vm_page_deactivate(p);
867         }
868         crit_exit();
869 }
870 #endif
871
872 /*
873  * Same as vm_object_pmap_copy, except range checking really
874  * works, and is meant for small sections of an object.
875  *
876  * This code protects resident pages by making them read-only
877  * and is typically called on a fork or split when a page
878  * is converted to copy-on-write.  
879  *
880  * NOTE: If the page is already at VM_PROT_NONE, calling
881  * vm_page_protect will have no effect.
882  */
883 void
884 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
885 {
886         vm_pindex_t idx;
887         vm_page_t p;
888
889         if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
890                 return;
891
892         /*
893          * spl protection needed to prevent races between the lookup,
894          * an interrupt unbusy/free, and our protect call.
895          */
896         crit_enter();
897         for (idx = start; idx < end; idx++) {
898                 p = vm_page_lookup(object, idx);
899                 if (p == NULL)
900                         continue;
901                 vm_page_protect(p, VM_PROT_READ);
902         }
903         crit_exit();
904 }
905
906 /*
907  *      vm_object_pmap_remove:
908  *
909  *      Removes all physical pages in the specified
910  *      object range from all physical maps.
911  *
912  *      The object must *not* be locked.
913  */
914 void
915 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
916 {
917         vm_page_t p;
918
919         if (object == NULL)
920                 return;
921
922         /*
923          * spl protection is required because an interrupt can unbusy/free
924          * a page.
925          */
926         crit_enter();
927         for (p = TAILQ_FIRST(&object->memq);
928             p != NULL;
929             p = TAILQ_NEXT(p, listq)
930         ) {
931                 if (p->pindex >= start && p->pindex < end)
932                         vm_page_protect(p, VM_PROT_NONE);
933         }
934         crit_exit();
935         if ((start == 0) && (object->size == end))
936                 vm_object_clear_flag(object, OBJ_WRITEABLE);
937 }
938
939 /*
940  *      vm_object_madvise:
941  *
942  *      Implements the madvise function at the object/page level.
943  *
944  *      MADV_WILLNEED   (any object)
945  *
946  *          Activate the specified pages if they are resident.
947  *
948  *      MADV_DONTNEED   (any object)
949  *
950  *          Deactivate the specified pages if they are resident.
951  *
952  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
953  *                       OBJ_ONEMAPPING only)
954  *
955  *          Deactivate and clean the specified pages if they are
956  *          resident.  This permits the process to reuse the pages
957  *          without faulting or the kernel to reclaim the pages
958  *          without I/O.
959  */
960 void
961 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
962 {
963         vm_pindex_t end, tpindex;
964         vm_object_t tobject;
965         vm_page_t m;
966
967         if (object == NULL)
968                 return;
969
970         end = pindex + count;
971
972         /*
973          * Locate and adjust resident pages
974          */
975
976         for (; pindex < end; pindex += 1) {
977 relookup:
978                 tobject = object;
979                 tpindex = pindex;
980 shadowlookup:
981                 /*
982                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
983                  * and those pages must be OBJ_ONEMAPPING.
984                  */
985                 if (advise == MADV_FREE) {
986                         if ((tobject->type != OBJT_DEFAULT &&
987                              tobject->type != OBJT_SWAP) ||
988                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
989                                 continue;
990                         }
991                 }
992
993                 /*
994                  * spl protection is required to avoid a race between the
995                  * lookup, an interrupt unbusy/free, and our busy check.
996                  */
997
998                 crit_enter();
999                 m = vm_page_lookup(tobject, tpindex);
1000
1001                 if (m == NULL) {
1002                         /*
1003                          * There may be swap even if there is no backing page
1004                          */
1005                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1006                                 swap_pager_freespace(tobject, tpindex, 1);
1007
1008                         /*
1009                          * next object
1010                          */
1011                         crit_exit();
1012                         if (tobject->backing_object == NULL)
1013                                 continue;
1014                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1015                         tobject = tobject->backing_object;
1016                         goto shadowlookup;
1017                 }
1018
1019                 /*
1020                  * If the page is busy or not in a normal active state,
1021                  * we skip it.  If the page is not managed there are no
1022                  * page queues to mess with.  Things can break if we mess
1023                  * with pages in any of the below states.
1024                  */
1025                 if (
1026                     m->hold_count ||
1027                     m->wire_count ||
1028                     (m->flags & PG_UNMANAGED) ||
1029                     m->valid != VM_PAGE_BITS_ALL
1030                 ) {
1031                         crit_exit();
1032                         continue;
1033                 }
1034
1035                 if (vm_page_sleep_busy(m, TRUE, "madvpo")) {
1036                         crit_exit();
1037                         goto relookup;
1038                 }
1039                 crit_exit();
1040
1041                 /*
1042                  * Theoretically once a page is known not to be busy, an
1043                  * interrupt cannot come along and rip it out from under us.
1044                  */
1045
1046                 if (advise == MADV_WILLNEED) {
1047                         vm_page_activate(m);
1048                 } else if (advise == MADV_DONTNEED) {
1049                         vm_page_dontneed(m);
1050                 } else if (advise == MADV_FREE) {
1051                         /*
1052                          * Mark the page clean.  This will allow the page
1053                          * to be freed up by the system.  However, such pages
1054                          * are often reused quickly by malloc()/free()
1055                          * so we do not do anything that would cause
1056                          * a page fault if we can help it.
1057                          *
1058                          * Specifically, we do not try to actually free
1059                          * the page now nor do we try to put it in the
1060                          * cache (which would cause a page fault on reuse).
1061                          *
1062                          * But we do make the page is freeable as we
1063                          * can without actually taking the step of unmapping
1064                          * it.
1065                          */
1066                         pmap_clear_modify(m);
1067                         m->dirty = 0;
1068                         m->act_count = 0;
1069                         vm_page_dontneed(m);
1070                         if (tobject->type == OBJT_SWAP)
1071                                 swap_pager_freespace(tobject, tpindex, 1);
1072                 }
1073         }       
1074 }
1075
1076 /*
1077  *      vm_object_shadow:
1078  *
1079  *      Create a new object which is backed by the
1080  *      specified existing object range.  The source
1081  *      object reference is deallocated.
1082  *
1083  *      The new object and offset into that object
1084  *      are returned in the source parameters.
1085  */
1086
1087 void
1088 vm_object_shadow(vm_object_t *object,   /* IN/OUT */
1089                  vm_ooffset_t *offset,  /* IN/OUT */
1090                  vm_size_t length)
1091 {
1092         vm_object_t source;
1093         vm_object_t result;
1094
1095         source = *object;
1096
1097         /*
1098          * Don't create the new object if the old object isn't shared.
1099          */
1100
1101         if (source != NULL &&
1102             source->ref_count == 1 &&
1103             source->handle == NULL &&
1104             (source->type == OBJT_DEFAULT ||
1105              source->type == OBJT_SWAP))
1106                 return;
1107
1108         /*
1109          * Allocate a new object with the given length
1110          */
1111
1112         if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1113                 panic("vm_object_shadow: no object for shadowing");
1114
1115         /*
1116          * The new object shadows the source object, adding a reference to it.
1117          * Our caller changes his reference to point to the new object,
1118          * removing a reference to the source object.  Net result: no change
1119          * of reference count.
1120          *
1121          * Try to optimize the result object's page color when shadowing
1122          * in order to maintain page coloring consistency in the combined 
1123          * shadowed object.
1124          */
1125         result->backing_object = source;
1126         if (source) {
1127                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1128                 source->shadow_count++;
1129                 source->generation++;
1130                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK;
1131         }
1132
1133         /*
1134          * Store the offset into the source object, and fix up the offset into
1135          * the new object.
1136          */
1137
1138         result->backing_object_offset = *offset;
1139
1140         /*
1141          * Return the new things
1142          */
1143
1144         *offset = 0;
1145         *object = result;
1146 }
1147
1148 #define OBSC_TEST_ALL_SHADOWED  0x0001
1149 #define OBSC_COLLAPSE_NOWAIT    0x0002
1150 #define OBSC_COLLAPSE_WAIT      0x0004
1151
1152 static __inline int
1153 vm_object_backing_scan(vm_object_t object, int op)
1154 {
1155         int r = 1;
1156         vm_page_t p;
1157         vm_object_t backing_object;
1158         vm_pindex_t backing_offset_index;
1159
1160         /*
1161          * spl protection is required to avoid races between the memq/lookup,
1162          * an interrupt doing an unbusy/free, and our busy check.  Amoung
1163          * other things.
1164          */
1165         crit_enter();
1166
1167         backing_object = object->backing_object;
1168         backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1169
1170         /*
1171          * Initial conditions
1172          */
1173
1174         if (op & OBSC_TEST_ALL_SHADOWED) {
1175                 /*
1176                  * We do not want to have to test for the existence of
1177                  * swap pages in the backing object.  XXX but with the
1178                  * new swapper this would be pretty easy to do.
1179                  *
1180                  * XXX what about anonymous MAP_SHARED memory that hasn't
1181                  * been ZFOD faulted yet?  If we do not test for this, the
1182                  * shadow test may succeed! XXX
1183                  */
1184                 if (backing_object->type != OBJT_DEFAULT) {
1185                         crit_exit();
1186                         return(0);
1187                 }
1188         }
1189         if (op & OBSC_COLLAPSE_WAIT) {
1190                 vm_object_set_flag(backing_object, OBJ_DEAD);
1191         }
1192
1193         /*
1194          * Our scan
1195          */
1196
1197         p = TAILQ_FIRST(&backing_object->memq);
1198         while (p) {
1199                 vm_page_t next = TAILQ_NEXT(p, listq);
1200                 vm_pindex_t new_pindex = p->pindex - backing_offset_index;
1201
1202                 if (op & OBSC_TEST_ALL_SHADOWED) {
1203                         vm_page_t pp;
1204
1205                         /*
1206                          * Ignore pages outside the parent object's range
1207                          * and outside the parent object's mapping of the 
1208                          * backing object.
1209                          *
1210                          * note that we do not busy the backing object's
1211                          * page.
1212                          */
1213
1214                         if (
1215                             p->pindex < backing_offset_index ||
1216                             new_pindex >= object->size
1217                         ) {
1218                                 p = next;
1219                                 continue;
1220                         }
1221
1222                         /*
1223                          * See if the parent has the page or if the parent's
1224                          * object pager has the page.  If the parent has the
1225                          * page but the page is not valid, the parent's
1226                          * object pager must have the page.
1227                          *
1228                          * If this fails, the parent does not completely shadow
1229                          * the object and we might as well give up now.
1230                          */
1231
1232                         pp = vm_page_lookup(object, new_pindex);
1233                         if (
1234                             (pp == NULL || pp->valid == 0) &&
1235                             !vm_pager_has_page(object, new_pindex, NULL, NULL)
1236                         ) {
1237                                 r = 0;
1238                                 break;
1239                         }
1240                 }
1241
1242                 /*
1243                  * Check for busy page
1244                  */
1245
1246                 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1247                         vm_page_t pp;
1248
1249                         if (op & OBSC_COLLAPSE_NOWAIT) {
1250                                 if (
1251                                     (p->flags & PG_BUSY) ||
1252                                     !p->valid || 
1253                                     p->hold_count || 
1254                                     p->wire_count ||
1255                                     p->busy
1256                                 ) {
1257                                         p = next;
1258                                         continue;
1259                                 }
1260                         } else if (op & OBSC_COLLAPSE_WAIT) {
1261                                 if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1262                                         /*
1263                                          * If we slept, anything could have
1264                                          * happened.  Since the object is
1265                                          * marked dead, the backing offset
1266                                          * should not have changed so we
1267                                          * just restart our scan.
1268                                          */
1269                                         p = TAILQ_FIRST(&backing_object->memq);
1270                                         continue;
1271                                 }
1272                         }
1273
1274                         /* 
1275                          * Busy the page
1276                          */
1277                         vm_page_busy(p);
1278
1279                         KASSERT(
1280                             p->object == backing_object,
1281                             ("vm_object_qcollapse(): object mismatch")
1282                         );
1283
1284                         /*
1285                          * Destroy any associated swap
1286                          */
1287                         if (backing_object->type == OBJT_SWAP) {
1288                                 swap_pager_freespace(
1289                                     backing_object, 
1290                                     p->pindex,
1291                                     1
1292                                 );
1293                         }
1294
1295                         if (
1296                             p->pindex < backing_offset_index ||
1297                             new_pindex >= object->size
1298                         ) {
1299                                 /*
1300                                  * Page is out of the parent object's range, we 
1301                                  * can simply destroy it. 
1302                                  */
1303                                 vm_page_protect(p, VM_PROT_NONE);
1304                                 vm_page_free(p);
1305                                 p = next;
1306                                 continue;
1307                         }
1308
1309                         pp = vm_page_lookup(object, new_pindex);
1310                         if (
1311                             pp != NULL ||
1312                             vm_pager_has_page(object, new_pindex, NULL, NULL)
1313                         ) {
1314                                 /*
1315                                  * page already exists in parent OR swap exists
1316                                  * for this location in the parent.  Destroy 
1317                                  * the original page from the backing object.
1318                                  *
1319                                  * Leave the parent's page alone
1320                                  */
1321                                 vm_page_protect(p, VM_PROT_NONE);
1322                                 vm_page_free(p);
1323                                 p = next;
1324                                 continue;
1325                         }
1326
1327                         /*
1328                          * Page does not exist in parent, rename the
1329                          * page from the backing object to the main object. 
1330                          *
1331                          * If the page was mapped to a process, it can remain 
1332                          * mapped through the rename.
1333                          */
1334                         if ((p->queue - p->pc) == PQ_CACHE)
1335                                 vm_page_deactivate(p);
1336
1337                         vm_page_rename(p, object, new_pindex);
1338                         /* page automatically made dirty by rename */
1339                 }
1340                 p = next;
1341         }
1342         crit_exit();
1343         return(r);
1344 }
1345
1346
1347 /*
1348  * this version of collapse allows the operation to occur earlier and
1349  * when paging_in_progress is true for an object...  This is not a complete
1350  * operation, but should plug 99.9% of the rest of the leaks.
1351  */
1352 static void
1353 vm_object_qcollapse(vm_object_t object)
1354 {
1355         vm_object_t backing_object = object->backing_object;
1356
1357         if (backing_object->ref_count != 1)
1358                 return;
1359
1360         backing_object->ref_count += 2;
1361
1362         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1363
1364         backing_object->ref_count -= 2;
1365 }
1366
1367 /*
1368  *      vm_object_collapse:
1369  *
1370  *      Collapse an object with the object backing it.
1371  *      Pages in the backing object are moved into the
1372  *      parent, and the backing object is deallocated.
1373  */
1374 void
1375 vm_object_collapse(vm_object_t object)
1376 {
1377         while (TRUE) {
1378                 vm_object_t backing_object;
1379
1380                 /*
1381                  * Verify that the conditions are right for collapse:
1382                  *
1383                  * The object exists and the backing object exists.
1384                  */
1385                 if (object == NULL)
1386                         break;
1387
1388                 if ((backing_object = object->backing_object) == NULL)
1389                         break;
1390
1391                 /*
1392                  * we check the backing object first, because it is most likely
1393                  * not collapsable.
1394                  */
1395                 if (backing_object->handle != NULL ||
1396                     (backing_object->type != OBJT_DEFAULT &&
1397                      backing_object->type != OBJT_SWAP) ||
1398                     (backing_object->flags & OBJ_DEAD) ||
1399                     object->handle != NULL ||
1400                     (object->type != OBJT_DEFAULT &&
1401                      object->type != OBJT_SWAP) ||
1402                     (object->flags & OBJ_DEAD)) {
1403                         break;
1404                 }
1405
1406                 if (
1407                     object->paging_in_progress != 0 ||
1408                     backing_object->paging_in_progress != 0
1409                 ) {
1410                         vm_object_qcollapse(object);
1411                         break;
1412                 }
1413
1414                 /*
1415                  * We know that we can either collapse the backing object (if
1416                  * the parent is the only reference to it) or (perhaps) have
1417                  * the parent bypass the object if the parent happens to shadow
1418                  * all the resident pages in the entire backing object.
1419                  *
1420                  * This is ignoring pager-backed pages such as swap pages.
1421                  * vm_object_backing_scan fails the shadowing test in this
1422                  * case.
1423                  */
1424
1425                 if (backing_object->ref_count == 1) {
1426                         /*
1427                          * If there is exactly one reference to the backing
1428                          * object, we can collapse it into the parent.  
1429                          */
1430
1431                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1432
1433                         /*
1434                          * Move the pager from backing_object to object.
1435                          */
1436
1437                         if (backing_object->type == OBJT_SWAP) {
1438                                 vm_object_pip_add(backing_object, 1);
1439
1440                                 /*
1441                                  * scrap the paging_offset junk and do a 
1442                                  * discrete copy.  This also removes major 
1443                                  * assumptions about how the swap-pager 
1444                                  * works from where it doesn't belong.  The
1445                                  * new swapper is able to optimize the
1446                                  * destroy-source case.
1447                                  */
1448
1449                                 vm_object_pip_add(object, 1);
1450                                 swap_pager_copy(
1451                                     backing_object,
1452                                     object,
1453                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1454                                 vm_object_pip_wakeup(object);
1455
1456                                 vm_object_pip_wakeup(backing_object);
1457                         }
1458                         /*
1459                          * Object now shadows whatever backing_object did.
1460                          * Note that the reference to 
1461                          * backing_object->backing_object moves from within 
1462                          * backing_object to within object.
1463                          */
1464
1465                         LIST_REMOVE(object, shadow_list);
1466                         object->backing_object->shadow_count--;
1467                         object->backing_object->generation++;
1468                         if (backing_object->backing_object) {
1469                                 LIST_REMOVE(backing_object, shadow_list);
1470                                 backing_object->backing_object->shadow_count--;
1471                                 backing_object->backing_object->generation++;
1472                         }
1473                         object->backing_object = backing_object->backing_object;
1474                         if (object->backing_object) {
1475                                 LIST_INSERT_HEAD(
1476                                     &object->backing_object->shadow_head,
1477                                     object, 
1478                                     shadow_list
1479                                 );
1480                                 object->backing_object->shadow_count++;
1481                                 object->backing_object->generation++;
1482                         }
1483
1484                         object->backing_object_offset +=
1485                             backing_object->backing_object_offset;
1486
1487                         /*
1488                          * Discard backing_object.
1489                          *
1490                          * Since the backing object has no pages, no pager left,
1491                          * and no object references within it, all that is
1492                          * necessary is to dispose of it.
1493                          */
1494
1495                         KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1496                         KASSERT(TAILQ_FIRST(&backing_object->memq) == NULL, ("backing_object %p somehow has left over pages during collapse!", backing_object));
1497                         TAILQ_REMOVE(
1498                             &vm_object_list, 
1499                             backing_object,
1500                             object_list
1501                         );
1502                         vm_object_count--;
1503
1504                         zfree(obj_zone, backing_object);
1505
1506                         object_collapses++;
1507                 } else {
1508                         vm_object_t new_backing_object;
1509
1510                         /*
1511                          * If we do not entirely shadow the backing object,
1512                          * there is nothing we can do so we give up.
1513                          */
1514
1515                         if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1516                                 break;
1517                         }
1518
1519                         /*
1520                          * Make the parent shadow the next object in the
1521                          * chain.  Deallocating backing_object will not remove
1522                          * it, since its reference count is at least 2.
1523                          */
1524
1525                         LIST_REMOVE(object, shadow_list);
1526                         backing_object->shadow_count--;
1527                         backing_object->generation++;
1528
1529                         new_backing_object = backing_object->backing_object;
1530                         if ((object->backing_object = new_backing_object) != NULL) {
1531                                 vm_object_reference(new_backing_object);
1532                                 LIST_INSERT_HEAD(
1533                                     &new_backing_object->shadow_head,
1534                                     object,
1535                                     shadow_list
1536                                 );
1537                                 new_backing_object->shadow_count++;
1538                                 new_backing_object->generation++;
1539                                 object->backing_object_offset +=
1540                                         backing_object->backing_object_offset;
1541                         }
1542
1543                         /*
1544                          * Drop the reference count on backing_object. Since
1545                          * its ref_count was at least 2, it will not vanish;
1546                          * so we don't need to call vm_object_deallocate, but
1547                          * we do anyway.
1548                          */
1549                         vm_object_deallocate(backing_object);
1550                         object_bypasses++;
1551                 }
1552
1553                 /*
1554                  * Try again with this object's new backing object.
1555                  */
1556         }
1557 }
1558
1559 /*
1560  *      vm_object_page_remove: [internal]
1561  *
1562  *      Removes all physical pages in the specified
1563  *      object range from the object's list of pages.
1564  */
1565 void
1566 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1567     boolean_t clean_only)
1568 {
1569         vm_page_t p, next;
1570         unsigned int size;
1571         int all;
1572
1573         if (object == NULL || object->resident_page_count == 0)
1574                 return;
1575
1576         all = ((end == 0) && (start == 0));
1577
1578         /*
1579          * Since physically-backed objects do not use managed pages, we can't
1580          * remove pages from the object (we must instead remove the page
1581          * references, and then destroy the object).
1582          */
1583         KASSERT(object->type != OBJT_PHYS, 
1584                 ("attempt to remove pages from a physical object"));
1585
1586         /*
1587          * Indicating that the object is undergoing paging.
1588          *
1589          * spl protection is required to avoid a race between the memq scan,
1590          * an interrupt unbusy/free, and the busy check.
1591          */
1592         vm_object_pip_add(object, 1);
1593         crit_enter();
1594 again:
1595         size = end - start;
1596         if (all || size > object->resident_page_count / 4) {
1597                 for (p = TAILQ_FIRST(&object->memq); p != NULL; p = next) {
1598                         next = TAILQ_NEXT(p, listq);
1599                         if (all || ((start <= p->pindex) && (p->pindex < end))) {
1600                                 if (p->wire_count != 0) {
1601                                         vm_page_protect(p, VM_PROT_NONE);
1602                                         if (!clean_only)
1603                                                 p->valid = 0;
1604                                         continue;
1605                                 }
1606
1607                                 /*
1608                                  * The busy flags are only cleared at
1609                                  * interrupt -- minimize the spl transitions
1610                                  */
1611
1612                                 if (vm_page_sleep_busy(p, TRUE, "vmopar"))
1613                                         goto again;
1614
1615                                 if (clean_only && p->valid) {
1616                                         vm_page_test_dirty(p);
1617                                         if (p->valid & p->dirty)
1618                                                 continue;
1619                                 }
1620
1621                                 vm_page_busy(p);
1622                                 vm_page_protect(p, VM_PROT_NONE);
1623                                 vm_page_free(p);
1624                         }
1625                 }
1626         } else {
1627                 while (size > 0) {
1628                         if ((p = vm_page_lookup(object, start)) != 0) {
1629                                 if (p->wire_count != 0) {
1630                                         vm_page_protect(p, VM_PROT_NONE);
1631                                         if (!clean_only)
1632                                                 p->valid = 0;
1633                                         start += 1;
1634                                         size -= 1;
1635                                         continue;
1636                                 }
1637
1638                                 /*
1639                                  * The busy flags are only cleared at
1640                                  * interrupt -- minimize the spl transitions
1641                                  */
1642                                 if (vm_page_sleep_busy(p, TRUE, "vmopar"))
1643                                         goto again;
1644
1645                                 if (clean_only && p->valid) {
1646                                         vm_page_test_dirty(p);
1647                                         if (p->valid & p->dirty) {
1648                                                 start += 1;
1649                                                 size -= 1;
1650                                                 continue;
1651                                         }
1652                                 }
1653
1654                                 vm_page_busy(p);
1655                                 vm_page_protect(p, VM_PROT_NONE);
1656                                 vm_page_free(p);
1657                         }
1658                         start += 1;
1659                         size -= 1;
1660                 }
1661         }
1662         crit_exit();
1663         vm_object_pip_wakeup(object);
1664 }
1665
1666 /*
1667  *      Routine:        vm_object_coalesce
1668  *      Function:       Coalesces two objects backing up adjoining
1669  *                      regions of memory into a single object.
1670  *
1671  *      returns TRUE if objects were combined.
1672  *
1673  *      NOTE:   Only works at the moment if the second object is NULL -
1674  *              if it's not, which object do we lock first?
1675  *
1676  *      Parameters:
1677  *              prev_object     First object to coalesce
1678  *              prev_offset     Offset into prev_object
1679  *              next_object     Second object into coalesce
1680  *              next_offset     Offset into next_object
1681  *
1682  *              prev_size       Size of reference to prev_object
1683  *              next_size       Size of reference to next_object
1684  *
1685  *      Conditions:
1686  *      The object must *not* be locked.
1687  */
1688 boolean_t
1689 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1690     vm_size_t prev_size, vm_size_t next_size)
1691 {
1692         vm_pindex_t next_pindex;
1693
1694         if (prev_object == NULL) {
1695                 return (TRUE);
1696         }
1697
1698         if (prev_object->type != OBJT_DEFAULT &&
1699             prev_object->type != OBJT_SWAP) {
1700                 return (FALSE);
1701         }
1702
1703         /*
1704          * Try to collapse the object first
1705          */
1706         vm_object_collapse(prev_object);
1707
1708         /*
1709          * Can't coalesce if: . more than one reference . paged out . shadows
1710          * another object . has a copy elsewhere (any of which mean that the
1711          * pages not mapped to prev_entry may be in use anyway)
1712          */
1713
1714         if (prev_object->backing_object != NULL) {
1715                 return (FALSE);
1716         }
1717
1718         prev_size >>= PAGE_SHIFT;
1719         next_size >>= PAGE_SHIFT;
1720         next_pindex = prev_pindex + prev_size;
1721
1722         if ((prev_object->ref_count > 1) &&
1723             (prev_object->size != next_pindex)) {
1724                 return (FALSE);
1725         }
1726
1727         /*
1728          * Remove any pages that may still be in the object from a previous
1729          * deallocation.
1730          */
1731         if (next_pindex < prev_object->size) {
1732                 vm_object_page_remove(prev_object,
1733                                       next_pindex,
1734                                       next_pindex + next_size, FALSE);
1735                 if (prev_object->type == OBJT_SWAP)
1736                         swap_pager_freespace(prev_object,
1737                                              next_pindex, next_size);
1738         }
1739
1740         /*
1741          * Extend the object if necessary.
1742          */
1743         if (next_pindex + next_size > prev_object->size)
1744                 prev_object->size = next_pindex + next_size;
1745
1746         return (TRUE);
1747 }
1748
1749 void
1750 vm_object_set_writeable_dirty(vm_object_t object)
1751 {
1752         struct vnode *vp;
1753
1754         vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1755         if (object->type == OBJT_VNODE &&
1756             (vp = (struct vnode *)object->handle) != NULL) {
1757                 if ((vp->v_flag & VOBJDIRTY) == 0) {
1758                         vsetflags(vp, VOBJDIRTY);
1759                 }
1760         }
1761 }
1762
1763
1764
1765 #include "opt_ddb.h"
1766 #ifdef DDB
1767 #include <sys/kernel.h>
1768
1769 #include <sys/cons.h>
1770
1771 #include <ddb/ddb.h>
1772
1773 static int      _vm_object_in_map (vm_map_t map, vm_object_t object,
1774                                        vm_map_entry_t entry);
1775 static int      vm_object_in_map (vm_object_t object);
1776
1777 static int
1778 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1779 {
1780         vm_map_t tmpm;
1781         vm_map_entry_t tmpe;
1782         vm_object_t obj;
1783         int entcount;
1784
1785         if (map == 0)
1786                 return 0;
1787
1788         if (entry == 0) {
1789                 tmpe = map->header.next;
1790                 entcount = map->nentries;
1791                 while (entcount-- && (tmpe != &map->header)) {
1792                         if( _vm_object_in_map(map, object, tmpe)) {
1793                                 return 1;
1794                         }
1795                         tmpe = tmpe->next;
1796                 }
1797         } else if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
1798                 tmpm = entry->object.sub_map;
1799                 tmpe = tmpm->header.next;
1800                 entcount = tmpm->nentries;
1801                 while (entcount-- && tmpe != &tmpm->header) {
1802                         if( _vm_object_in_map(tmpm, object, tmpe)) {
1803                                 return 1;
1804                         }
1805                         tmpe = tmpe->next;
1806                 }
1807         } else if ((obj = entry->object.vm_object) != NULL) {
1808                 for(; obj; obj=obj->backing_object)
1809                         if( obj == object) {
1810                                 return 1;
1811                         }
1812         }
1813         return 0;
1814 }
1815
1816 static int
1817 vm_object_in_map(vm_object_t object)
1818 {
1819         struct proc *p;
1820         for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1821                 if( !p->p_vmspace /* || (p->p_flag & (P_SYSTEM|P_WEXIT)) */)
1822                         continue;
1823                 if( _vm_object_in_map(&p->p_vmspace->vm_map, object, 0))
1824                         return 1;
1825         }
1826         if( _vm_object_in_map( kernel_map, object, 0))
1827                 return 1;
1828         if( _vm_object_in_map( pager_map, object, 0))
1829                 return 1;
1830         if( _vm_object_in_map( buffer_map, object, 0))
1831                 return 1;
1832         return 0;
1833 }
1834
1835 DB_SHOW_COMMAND(vmochk, vm_object_check)
1836 {
1837         vm_object_t object;
1838
1839         /*
1840          * make sure that internal objs are in a map somewhere
1841          * and none have zero ref counts.
1842          */
1843         for (object = TAILQ_FIRST(&vm_object_list);
1844                         object != NULL;
1845                         object = TAILQ_NEXT(object, object_list)) {
1846                 if (object->handle == NULL &&
1847                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1848                         if (object->ref_count == 0) {
1849                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
1850                                         (long)object->size);
1851                         }
1852                         if (!vm_object_in_map(object)) {
1853                                 db_printf(
1854                         "vmochk: internal obj is not in a map: "
1855                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1856                                     object->ref_count, (u_long)object->size, 
1857                                     (u_long)object->size,
1858                                     (void *)object->backing_object);
1859                         }
1860                 }
1861         }
1862 }
1863
1864 /*
1865  *      vm_object_print:        [ debug ]
1866  */
1867 DB_SHOW_COMMAND(object, vm_object_print_static)
1868 {
1869         /* XXX convert args. */
1870         vm_object_t object = (vm_object_t)addr;
1871         boolean_t full = have_addr;
1872
1873         vm_page_t p;
1874
1875         /* XXX count is an (unused) arg.  Avoid shadowing it. */
1876 #define count   was_count
1877
1878         int count;
1879
1880         if (object == NULL)
1881                 return;
1882
1883         db_iprintf(
1884             "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
1885             object, (int)object->type, (u_long)object->size,
1886             object->resident_page_count, object->ref_count, object->flags);
1887         /*
1888          * XXX no %qd in kernel.  Truncate object->backing_object_offset.
1889          */
1890         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
1891             object->shadow_count, 
1892             object->backing_object ? object->backing_object->ref_count : 0,
1893             object->backing_object, (long)object->backing_object_offset);
1894
1895         if (!full)
1896                 return;
1897
1898         db_indent += 2;
1899         count = 0;
1900         for (p = TAILQ_FIRST(&object->memq); p != NULL; p = TAILQ_NEXT(p, listq)) {
1901                 if (count == 0)
1902                         db_iprintf("memory:=");
1903                 else if (count == 6) {
1904                         db_printf("\n");
1905                         db_iprintf(" ...");
1906                         count = 0;
1907                 } else
1908                         db_printf(",");
1909                 count++;
1910
1911                 db_printf("(off=0x%lx,page=0x%lx)",
1912                     (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
1913         }
1914         if (count != 0)
1915                 db_printf("\n");
1916         db_indent -= 2;
1917 }
1918
1919 /* XXX. */
1920 #undef count
1921
1922 /* XXX need this non-static entry for calling from vm_map_print. */
1923 void
1924 vm_object_print(/* db_expr_t */ long addr,
1925                 boolean_t have_addr,
1926                 /* db_expr_t */ long count,
1927                 char *modif)
1928 {
1929         vm_object_print_static(addr, have_addr, count, modif);
1930 }
1931
1932 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
1933 {
1934         vm_object_t object;
1935         int nl = 0;
1936         int c;
1937         for (object = TAILQ_FIRST(&vm_object_list);
1938                         object != NULL;
1939                         object = TAILQ_NEXT(object, object_list)) {
1940                 vm_pindex_t idx, fidx;
1941                 vm_pindex_t osize;
1942                 vm_paddr_t pa = -1, padiff;
1943                 int rcount;
1944                 vm_page_t m;
1945
1946                 db_printf("new object: %p\n", (void *)object);
1947                 if ( nl > 18) {
1948                         c = cngetc();
1949                         if (c != ' ')
1950                                 return;
1951                         nl = 0;
1952                 }
1953                 nl++;
1954                 rcount = 0;
1955                 fidx = 0;
1956                 osize = object->size;
1957                 if (osize > 128)
1958                         osize = 128;
1959                 for (idx = 0; idx < osize; idx++) {
1960                         m = vm_page_lookup(object, idx);
1961                         if (m == NULL) {
1962                                 if (rcount) {
1963                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1964                                                 (long)fidx, rcount, (long)pa);
1965                                         if ( nl > 18) {
1966                                                 c = cngetc();
1967                                                 if (c != ' ')
1968                                                         return;
1969                                                 nl = 0;
1970                                         }
1971                                         nl++;
1972                                         rcount = 0;
1973                                 }
1974                                 continue;
1975                         }
1976
1977                                 
1978                         if (rcount &&
1979                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
1980                                 ++rcount;
1981                                 continue;
1982                         }
1983                         if (rcount) {
1984                                 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
1985                                 padiff >>= PAGE_SHIFT;
1986                                 padiff &= PQ_L2_MASK;
1987                                 if (padiff == 0) {
1988                                         pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
1989                                         ++rcount;
1990                                         continue;
1991                                 }
1992                                 db_printf(" index(%ld)run(%d)pa(0x%lx)",
1993                                         (long)fidx, rcount, (long)pa);
1994                                 db_printf("pd(%ld)\n", (long)padiff);
1995                                 if ( nl > 18) {
1996                                         c = cngetc();
1997                                         if (c != ' ')
1998                                                 return;
1999                                         nl = 0;
2000                                 }
2001                                 nl++;
2002                         }
2003                         fidx = idx;
2004                         pa = VM_PAGE_TO_PHYS(m);
2005                         rcount = 1;
2006                 }
2007                 if (rcount) {
2008                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2009                                 (long)fidx, rcount, (long)pa);
2010                         if ( nl > 18) {
2011                                 c = cngetc();
2012                                 if (c != ' ')
2013                                         return;
2014                                 nl = 0;
2015                         }
2016                         nl++;
2017                 }
2018         }
2019 }
2020 #endif /* DDB */