Update zlib from version 1.2.7 to 1.2.8 on vendor branch
[dragonfly.git] / contrib / zlib-1.2 / deflate.c
1 /* deflate.c -- compress data using the deflation algorithm
2  * Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler
3  * For conditions of distribution and use, see copyright notice in zlib.h
4  */
5
6 /*
7  *  ALGORITHM
8  *
9  *      The "deflation" process depends on being able to identify portions
10  *      of the input text which are identical to earlier input (within a
11  *      sliding window trailing behind the input currently being processed).
12  *
13  *      The most straightforward technique turns out to be the fastest for
14  *      most input files: try all possible matches and select the longest.
15  *      The key feature of this algorithm is that insertions into the string
16  *      dictionary are very simple and thus fast, and deletions are avoided
17  *      completely. Insertions are performed at each input character, whereas
18  *      string matches are performed only when the previous match ends. So it
19  *      is preferable to spend more time in matches to allow very fast string
20  *      insertions and avoid deletions. The matching algorithm for small
21  *      strings is inspired from that of Rabin & Karp. A brute force approach
22  *      is used to find longer strings when a small match has been found.
23  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24  *      (by Leonid Broukhis).
25  *         A previous version of this file used a more sophisticated algorithm
26  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
27  *      time, but has a larger average cost, uses more memory and is patented.
28  *      However the F&G algorithm may be faster for some highly redundant
29  *      files if the parameter max_chain_length (described below) is too large.
30  *
31  *  ACKNOWLEDGEMENTS
32  *
33  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34  *      I found it in 'freeze' written by Leonid Broukhis.
35  *      Thanks to many people for bug reports and testing.
36  *
37  *  REFERENCES
38  *
39  *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40  *      Available in http://tools.ietf.org/html/rfc1951
41  *
42  *      A description of the Rabin and Karp algorithm is given in the book
43  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44  *
45  *      Fiala,E.R., and Greene,D.H.
46  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47  *
48  */
49
50 /* @(#) $Id$ */
51
52 #include "deflate.h"
53
54 const char deflate_copyright[] =
55    " deflate 1.2.8 Copyright 1995-2013 Jean-loup Gailly and Mark Adler ";
56 /*
57   If you use the zlib library in a product, an acknowledgment is welcome
58   in the documentation of your product. If for some reason you cannot
59   include such an acknowledgment, I would appreciate that you keep this
60   copyright string in the executable of your product.
61  */
62
63 /* ===========================================================================
64  *  Function prototypes.
65  */
66 typedef enum {
67     need_more,      /* block not completed, need more input or more output */
68     block_done,     /* block flush performed */
69     finish_started, /* finish started, need only more output at next deflate */
70     finish_done     /* finish done, accept no more input or output */
71 } block_state;
72
73 typedef block_state (*compress_func) OF((deflate_state *s, int flush));
74 /* Compression function. Returns the block state after the call. */
75
76 local void fill_window    OF((deflate_state *s));
77 local block_state deflate_stored OF((deflate_state *s, int flush));
78 local block_state deflate_fast   OF((deflate_state *s, int flush));
79 #ifndef FASTEST
80 local block_state deflate_slow   OF((deflate_state *s, int flush));
81 #endif
82 local block_state deflate_rle    OF((deflate_state *s, int flush));
83 local block_state deflate_huff   OF((deflate_state *s, int flush));
84 local void lm_init        OF((deflate_state *s));
85 local void putShortMSB    OF((deflate_state *s, uInt b));
86 local void flush_pending  OF((z_streamp strm));
87 local int read_buf        OF((z_streamp strm, Bytef *buf, unsigned size));
88 #ifdef ASMV
89       void match_init OF((void)); /* asm code initialization */
90       uInt longest_match  OF((deflate_state *s, IPos cur_match));
91 #else
92 local uInt longest_match  OF((deflate_state *s, IPos cur_match));
93 #endif
94
95 #ifdef DEBUG
96 local  void check_match OF((deflate_state *s, IPos start, IPos match,
97                             int length));
98 #endif
99
100 /* ===========================================================================
101  * Local data
102  */
103
104 #define NIL 0
105 /* Tail of hash chains */
106
107 #ifndef TOO_FAR
108 #  define TOO_FAR 4096
109 #endif
110 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
111
112 /* Values for max_lazy_match, good_match and max_chain_length, depending on
113  * the desired pack level (0..9). The values given below have been tuned to
114  * exclude worst case performance for pathological files. Better values may be
115  * found for specific files.
116  */
117 typedef struct config_s {
118    ush good_length; /* reduce lazy search above this match length */
119    ush max_lazy;    /* do not perform lazy search above this match length */
120    ush nice_length; /* quit search above this match length */
121    ush max_chain;
122    compress_func func;
123 } config;
124
125 #ifdef FASTEST
126 local const config configuration_table[2] = {
127 /*      good lazy nice chain */
128 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
129 /* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
130 #else
131 local const config configuration_table[10] = {
132 /*      good lazy nice chain */
133 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
134 /* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
135 /* 2 */ {4,    5, 16,    8, deflate_fast},
136 /* 3 */ {4,    6, 32,   32, deflate_fast},
137
138 /* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
139 /* 5 */ {8,   16, 32,   32, deflate_slow},
140 /* 6 */ {8,   16, 128, 128, deflate_slow},
141 /* 7 */ {8,   32, 128, 256, deflate_slow},
142 /* 8 */ {32, 128, 258, 1024, deflate_slow},
143 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
144 #endif
145
146 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
147  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
148  * meaning.
149  */
150
151 #define EQUAL 0
152 /* result of memcmp for equal strings */
153
154 #ifndef NO_DUMMY_DECL
155 struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
156 #endif
157
158 /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
159 #define RANK(f) (((f) << 1) - ((f) > 4 ? 9 : 0))
160
161 /* ===========================================================================
162  * Update a hash value with the given input byte
163  * IN  assertion: all calls to to UPDATE_HASH are made with consecutive
164  *    input characters, so that a running hash key can be computed from the
165  *    previous key instead of complete recalculation each time.
166  */
167 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
168
169
170 /* ===========================================================================
171  * Insert string str in the dictionary and set match_head to the previous head
172  * of the hash chain (the most recent string with same hash key). Return
173  * the previous length of the hash chain.
174  * If this file is compiled with -DFASTEST, the compression level is forced
175  * to 1, and no hash chains are maintained.
176  * IN  assertion: all calls to to INSERT_STRING are made with consecutive
177  *    input characters and the first MIN_MATCH bytes of str are valid
178  *    (except for the last MIN_MATCH-1 bytes of the input file).
179  */
180 #ifdef FASTEST
181 #define INSERT_STRING(s, str, match_head) \
182    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
183     match_head = s->head[s->ins_h], \
184     s->head[s->ins_h] = (Pos)(str))
185 #else
186 #define INSERT_STRING(s, str, match_head) \
187    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
188     match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
189     s->head[s->ins_h] = (Pos)(str))
190 #endif
191
192 /* ===========================================================================
193  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
194  * prev[] will be initialized on the fly.
195  */
196 #define CLEAR_HASH(s) \
197     s->head[s->hash_size-1] = NIL; \
198     zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
199
200 /* ========================================================================= */
201 int ZEXPORT deflateInit_(strm, level, version, stream_size)
202     z_streamp strm;
203     int level;
204     const char *version;
205     int stream_size;
206 {
207     return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
208                          Z_DEFAULT_STRATEGY, version, stream_size);
209     /* To do: ignore strm->next_in if we use it as window */
210 }
211
212 /* ========================================================================= */
213 int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
214                   version, stream_size)
215     z_streamp strm;
216     int  level;
217     int  method;
218     int  windowBits;
219     int  memLevel;
220     int  strategy;
221     const char *version;
222     int stream_size;
223 {
224     deflate_state *s;
225     int wrap = 1;
226     static const char my_version[] = ZLIB_VERSION;
227
228     ushf *overlay;
229     /* We overlay pending_buf and d_buf+l_buf. This works since the average
230      * output size for (length,distance) codes is <= 24 bits.
231      */
232
233     if (version == Z_NULL || version[0] != my_version[0] ||
234         stream_size != sizeof(z_stream)) {
235         return Z_VERSION_ERROR;
236     }
237     if (strm == Z_NULL) return Z_STREAM_ERROR;
238
239     strm->msg = Z_NULL;
240     if (strm->zalloc == (alloc_func)0) {
241 #ifdef Z_SOLO
242         return Z_STREAM_ERROR;
243 #else
244         strm->zalloc = zcalloc;
245         strm->opaque = (voidpf)0;
246 #endif
247     }
248     if (strm->zfree == (free_func)0)
249 #ifdef Z_SOLO
250         return Z_STREAM_ERROR;
251 #else
252         strm->zfree = zcfree;
253 #endif
254
255 #ifdef FASTEST
256     if (level != 0) level = 1;
257 #else
258     if (level == Z_DEFAULT_COMPRESSION) level = 6;
259 #endif
260
261     if (windowBits < 0) { /* suppress zlib wrapper */
262         wrap = 0;
263         windowBits = -windowBits;
264     }
265 #ifdef GZIP
266     else if (windowBits > 15) {
267         wrap = 2;       /* write gzip wrapper instead */
268         windowBits -= 16;
269     }
270 #endif
271     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
272         windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
273         strategy < 0 || strategy > Z_FIXED) {
274         return Z_STREAM_ERROR;
275     }
276     if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
277     s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
278     if (s == Z_NULL) return Z_MEM_ERROR;
279     strm->state = (struct internal_state FAR *)s;
280     s->strm = strm;
281
282     s->wrap = wrap;
283     s->gzhead = Z_NULL;
284     s->w_bits = windowBits;
285     s->w_size = 1 << s->w_bits;
286     s->w_mask = s->w_size - 1;
287
288     s->hash_bits = memLevel + 7;
289     s->hash_size = 1 << s->hash_bits;
290     s->hash_mask = s->hash_size - 1;
291     s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
292
293     s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
294     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
295     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
296
297     s->high_water = 0;      /* nothing written to s->window yet */
298
299     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
300
301     overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
302     s->pending_buf = (uchf *) overlay;
303     s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
304
305     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
306         s->pending_buf == Z_NULL) {
307         s->status = FINISH_STATE;
308         strm->msg = ERR_MSG(Z_MEM_ERROR);
309         deflateEnd (strm);
310         return Z_MEM_ERROR;
311     }
312     s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
313     s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
314
315     s->level = level;
316     s->strategy = strategy;
317     s->method = (Byte)method;
318
319     return deflateReset(strm);
320 }
321
322 /* ========================================================================= */
323 int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
324     z_streamp strm;
325     const Bytef *dictionary;
326     uInt  dictLength;
327 {
328     deflate_state *s;
329     uInt str, n;
330     int wrap;
331     unsigned avail;
332     z_const unsigned char *next;
333
334     if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
335         return Z_STREAM_ERROR;
336     s = strm->state;
337     wrap = s->wrap;
338     if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
339         return Z_STREAM_ERROR;
340
341     /* when using zlib wrappers, compute Adler-32 for provided dictionary */
342     if (wrap == 1)
343         strm->adler = adler32(strm->adler, dictionary, dictLength);
344     s->wrap = 0;                    /* avoid computing Adler-32 in read_buf */
345
346     /* if dictionary would fill window, just replace the history */
347     if (dictLength >= s->w_size) {
348         if (wrap == 0) {            /* already empty otherwise */
349             CLEAR_HASH(s);
350             s->strstart = 0;
351             s->block_start = 0L;
352             s->insert = 0;
353         }
354         dictionary += dictLength - s->w_size;  /* use the tail */
355         dictLength = s->w_size;
356     }
357
358     /* insert dictionary into window and hash */
359     avail = strm->avail_in;
360     next = strm->next_in;
361     strm->avail_in = dictLength;
362     strm->next_in = (z_const Bytef *)dictionary;
363     fill_window(s);
364     while (s->lookahead >= MIN_MATCH) {
365         str = s->strstart;
366         n = s->lookahead - (MIN_MATCH-1);
367         do {
368             UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
369 #ifndef FASTEST
370             s->prev[str & s->w_mask] = s->head[s->ins_h];
371 #endif
372             s->head[s->ins_h] = (Pos)str;
373             str++;
374         } while (--n);
375         s->strstart = str;
376         s->lookahead = MIN_MATCH-1;
377         fill_window(s);
378     }
379     s->strstart += s->lookahead;
380     s->block_start = (long)s->strstart;
381     s->insert = s->lookahead;
382     s->lookahead = 0;
383     s->match_length = s->prev_length = MIN_MATCH-1;
384     s->match_available = 0;
385     strm->next_in = next;
386     strm->avail_in = avail;
387     s->wrap = wrap;
388     return Z_OK;
389 }
390
391 /* ========================================================================= */
392 int ZEXPORT deflateResetKeep (strm)
393     z_streamp strm;
394 {
395     deflate_state *s;
396
397     if (strm == Z_NULL || strm->state == Z_NULL ||
398         strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) {
399         return Z_STREAM_ERROR;
400     }
401
402     strm->total_in = strm->total_out = 0;
403     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
404     strm->data_type = Z_UNKNOWN;
405
406     s = (deflate_state *)strm->state;
407     s->pending = 0;
408     s->pending_out = s->pending_buf;
409
410     if (s->wrap < 0) {
411         s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
412     }
413     s->status = s->wrap ? INIT_STATE : BUSY_STATE;
414     strm->adler =
415 #ifdef GZIP
416         s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
417 #endif
418         adler32(0L, Z_NULL, 0);
419     s->last_flush = Z_NO_FLUSH;
420
421     _tr_init(s);
422
423     return Z_OK;
424 }
425
426 /* ========================================================================= */
427 int ZEXPORT deflateReset (strm)
428     z_streamp strm;
429 {
430     int ret;
431
432     ret = deflateResetKeep(strm);
433     if (ret == Z_OK)
434         lm_init(strm->state);
435     return ret;
436 }
437
438 /* ========================================================================= */
439 int ZEXPORT deflateSetHeader (strm, head)
440     z_streamp strm;
441     gz_headerp head;
442 {
443     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
444     if (strm->state->wrap != 2) return Z_STREAM_ERROR;
445     strm->state->gzhead = head;
446     return Z_OK;
447 }
448
449 /* ========================================================================= */
450 int ZEXPORT deflatePending (strm, pending, bits)
451     unsigned *pending;
452     int *bits;
453     z_streamp strm;
454 {
455     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
456     if (pending != Z_NULL)
457         *pending = strm->state->pending;
458     if (bits != Z_NULL)
459         *bits = strm->state->bi_valid;
460     return Z_OK;
461 }
462
463 /* ========================================================================= */
464 int ZEXPORT deflatePrime (strm, bits, value)
465     z_streamp strm;
466     int bits;
467     int value;
468 {
469     deflate_state *s;
470     int put;
471
472     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
473     s = strm->state;
474     if ((Bytef *)(s->d_buf) < s->pending_out + ((Buf_size + 7) >> 3))
475         return Z_BUF_ERROR;
476     do {
477         put = Buf_size - s->bi_valid;
478         if (put > bits)
479             put = bits;
480         s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
481         s->bi_valid += put;
482         _tr_flush_bits(s);
483         value >>= put;
484         bits -= put;
485     } while (bits);
486     return Z_OK;
487 }
488
489 /* ========================================================================= */
490 int ZEXPORT deflateParams(strm, level, strategy)
491     z_streamp strm;
492     int level;
493     int strategy;
494 {
495     deflate_state *s;
496     compress_func func;
497     int err = Z_OK;
498
499     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
500     s = strm->state;
501
502 #ifdef FASTEST
503     if (level != 0) level = 1;
504 #else
505     if (level == Z_DEFAULT_COMPRESSION) level = 6;
506 #endif
507     if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
508         return Z_STREAM_ERROR;
509     }
510     func = configuration_table[s->level].func;
511
512     if ((strategy != s->strategy || func != configuration_table[level].func) &&
513         strm->total_in != 0) {
514         /* Flush the last buffer: */
515         err = deflate(strm, Z_BLOCK);
516         if (err == Z_BUF_ERROR && s->pending == 0)
517             err = Z_OK;
518     }
519     if (s->level != level) {
520         s->level = level;
521         s->max_lazy_match   = configuration_table[level].max_lazy;
522         s->good_match       = configuration_table[level].good_length;
523         s->nice_match       = configuration_table[level].nice_length;
524         s->max_chain_length = configuration_table[level].max_chain;
525     }
526     s->strategy = strategy;
527     return err;
528 }
529
530 /* ========================================================================= */
531 int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
532     z_streamp strm;
533     int good_length;
534     int max_lazy;
535     int nice_length;
536     int max_chain;
537 {
538     deflate_state *s;
539
540     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
541     s = strm->state;
542     s->good_match = good_length;
543     s->max_lazy_match = max_lazy;
544     s->nice_match = nice_length;
545     s->max_chain_length = max_chain;
546     return Z_OK;
547 }
548
549 /* =========================================================================
550  * For the default windowBits of 15 and memLevel of 8, this function returns
551  * a close to exact, as well as small, upper bound on the compressed size.
552  * They are coded as constants here for a reason--if the #define's are
553  * changed, then this function needs to be changed as well.  The return
554  * value for 15 and 8 only works for those exact settings.
555  *
556  * For any setting other than those defaults for windowBits and memLevel,
557  * the value returned is a conservative worst case for the maximum expansion
558  * resulting from using fixed blocks instead of stored blocks, which deflate
559  * can emit on compressed data for some combinations of the parameters.
560  *
561  * This function could be more sophisticated to provide closer upper bounds for
562  * every combination of windowBits and memLevel.  But even the conservative
563  * upper bound of about 14% expansion does not seem onerous for output buffer
564  * allocation.
565  */
566 uLong ZEXPORT deflateBound(strm, sourceLen)
567     z_streamp strm;
568     uLong sourceLen;
569 {
570     deflate_state *s;
571     uLong complen, wraplen;
572     Bytef *str;
573
574     /* conservative upper bound for compressed data */
575     complen = sourceLen +
576               ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;
577
578     /* if can't get parameters, return conservative bound plus zlib wrapper */
579     if (strm == Z_NULL || strm->state == Z_NULL)
580         return complen + 6;
581
582     /* compute wrapper length */
583     s = strm->state;
584     switch (s->wrap) {
585     case 0:                                 /* raw deflate */
586         wraplen = 0;
587         break;
588     case 1:                                 /* zlib wrapper */
589         wraplen = 6 + (s->strstart ? 4 : 0);
590         break;
591     case 2:                                 /* gzip wrapper */
592         wraplen = 18;
593         if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
594             if (s->gzhead->extra != Z_NULL)
595                 wraplen += 2 + s->gzhead->extra_len;
596             str = s->gzhead->name;
597             if (str != Z_NULL)
598                 do {
599                     wraplen++;
600                 } while (*str++);
601             str = s->gzhead->comment;
602             if (str != Z_NULL)
603                 do {
604                     wraplen++;
605                 } while (*str++);
606             if (s->gzhead->hcrc)
607                 wraplen += 2;
608         }
609         break;
610     default:                                /* for compiler happiness */
611         wraplen = 6;
612     }
613
614     /* if not default parameters, return conservative bound */
615     if (s->w_bits != 15 || s->hash_bits != 8 + 7)
616         return complen + wraplen;
617
618     /* default settings: return tight bound for that case */
619     return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
620            (sourceLen >> 25) + 13 - 6 + wraplen;
621 }
622
623 /* =========================================================================
624  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
625  * IN assertion: the stream state is correct and there is enough room in
626  * pending_buf.
627  */
628 local void putShortMSB (s, b)
629     deflate_state *s;
630     uInt b;
631 {
632     put_byte(s, (Byte)(b >> 8));
633     put_byte(s, (Byte)(b & 0xff));
634 }
635
636 /* =========================================================================
637  * Flush as much pending output as possible. All deflate() output goes
638  * through this function so some applications may wish to modify it
639  * to avoid allocating a large strm->next_out buffer and copying into it.
640  * (See also read_buf()).
641  */
642 local void flush_pending(strm)
643     z_streamp strm;
644 {
645     unsigned len;
646     deflate_state *s = strm->state;
647
648     _tr_flush_bits(s);
649     len = s->pending;
650     if (len > strm->avail_out) len = strm->avail_out;
651     if (len == 0) return;
652
653     zmemcpy(strm->next_out, s->pending_out, len);
654     strm->next_out  += len;
655     s->pending_out  += len;
656     strm->total_out += len;
657     strm->avail_out  -= len;
658     s->pending -= len;
659     if (s->pending == 0) {
660         s->pending_out = s->pending_buf;
661     }
662 }
663
664 /* ========================================================================= */
665 int ZEXPORT deflate (strm, flush)
666     z_streamp strm;
667     int flush;
668 {
669     int old_flush; /* value of flush param for previous deflate call */
670     deflate_state *s;
671
672     if (strm == Z_NULL || strm->state == Z_NULL ||
673         flush > Z_BLOCK || flush < 0) {
674         return Z_STREAM_ERROR;
675     }
676     s = strm->state;
677
678     if (strm->next_out == Z_NULL ||
679         (strm->next_in == Z_NULL && strm->avail_in != 0) ||
680         (s->status == FINISH_STATE && flush != Z_FINISH)) {
681         ERR_RETURN(strm, Z_STREAM_ERROR);
682     }
683     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
684
685     s->strm = strm; /* just in case */
686     old_flush = s->last_flush;
687     s->last_flush = flush;
688
689     /* Write the header */
690     if (s->status == INIT_STATE) {
691 #ifdef GZIP
692         if (s->wrap == 2) {
693             strm->adler = crc32(0L, Z_NULL, 0);
694             put_byte(s, 31);
695             put_byte(s, 139);
696             put_byte(s, 8);
697             if (s->gzhead == Z_NULL) {
698                 put_byte(s, 0);
699                 put_byte(s, 0);
700                 put_byte(s, 0);
701                 put_byte(s, 0);
702                 put_byte(s, 0);
703                 put_byte(s, s->level == 9 ? 2 :
704                             (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
705                              4 : 0));
706                 put_byte(s, OS_CODE);
707                 s->status = BUSY_STATE;
708             }
709             else {
710                 put_byte(s, (s->gzhead->text ? 1 : 0) +
711                             (s->gzhead->hcrc ? 2 : 0) +
712                             (s->gzhead->extra == Z_NULL ? 0 : 4) +
713                             (s->gzhead->name == Z_NULL ? 0 : 8) +
714                             (s->gzhead->comment == Z_NULL ? 0 : 16)
715                         );
716                 put_byte(s, (Byte)(s->gzhead->time & 0xff));
717                 put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
718                 put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
719                 put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
720                 put_byte(s, s->level == 9 ? 2 :
721                             (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
722                              4 : 0));
723                 put_byte(s, s->gzhead->os & 0xff);
724                 if (s->gzhead->extra != Z_NULL) {
725                     put_byte(s, s->gzhead->extra_len & 0xff);
726                     put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
727                 }
728                 if (s->gzhead->hcrc)
729                     strm->adler = crc32(strm->adler, s->pending_buf,
730                                         s->pending);
731                 s->gzindex = 0;
732                 s->status = EXTRA_STATE;
733             }
734         }
735         else
736 #endif
737         {
738             uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
739             uInt level_flags;
740
741             if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
742                 level_flags = 0;
743             else if (s->level < 6)
744                 level_flags = 1;
745             else if (s->level == 6)
746                 level_flags = 2;
747             else
748                 level_flags = 3;
749             header |= (level_flags << 6);
750             if (s->strstart != 0) header |= PRESET_DICT;
751             header += 31 - (header % 31);
752
753             s->status = BUSY_STATE;
754             putShortMSB(s, header);
755
756             /* Save the adler32 of the preset dictionary: */
757             if (s->strstart != 0) {
758                 putShortMSB(s, (uInt)(strm->adler >> 16));
759                 putShortMSB(s, (uInt)(strm->adler & 0xffff));
760             }
761             strm->adler = adler32(0L, Z_NULL, 0);
762         }
763     }
764 #ifdef GZIP
765     if (s->status == EXTRA_STATE) {
766         if (s->gzhead->extra != Z_NULL) {
767             uInt beg = s->pending;  /* start of bytes to update crc */
768
769             while (s->gzindex < (s->gzhead->extra_len & 0xffff)) {
770                 if (s->pending == s->pending_buf_size) {
771                     if (s->gzhead->hcrc && s->pending > beg)
772                         strm->adler = crc32(strm->adler, s->pending_buf + beg,
773                                             s->pending - beg);
774                     flush_pending(strm);
775                     beg = s->pending;
776                     if (s->pending == s->pending_buf_size)
777                         break;
778                 }
779                 put_byte(s, s->gzhead->extra[s->gzindex]);
780                 s->gzindex++;
781             }
782             if (s->gzhead->hcrc && s->pending > beg)
783                 strm->adler = crc32(strm->adler, s->pending_buf + beg,
784                                     s->pending - beg);
785             if (s->gzindex == s->gzhead->extra_len) {
786                 s->gzindex = 0;
787                 s->status = NAME_STATE;
788             }
789         }
790         else
791             s->status = NAME_STATE;
792     }
793     if (s->status == NAME_STATE) {
794         if (s->gzhead->name != Z_NULL) {
795             uInt beg = s->pending;  /* start of bytes to update crc */
796             int val;
797
798             do {
799                 if (s->pending == s->pending_buf_size) {
800                     if (s->gzhead->hcrc && s->pending > beg)
801                         strm->adler = crc32(strm->adler, s->pending_buf + beg,
802                                             s->pending - beg);
803                     flush_pending(strm);
804                     beg = s->pending;
805                     if (s->pending == s->pending_buf_size) {
806                         val = 1;
807                         break;
808                     }
809                 }
810                 val = s->gzhead->name[s->gzindex++];
811                 put_byte(s, val);
812             } while (val != 0);
813             if (s->gzhead->hcrc && s->pending > beg)
814                 strm->adler = crc32(strm->adler, s->pending_buf + beg,
815                                     s->pending - beg);
816             if (val == 0) {
817                 s->gzindex = 0;
818                 s->status = COMMENT_STATE;
819             }
820         }
821         else
822             s->status = COMMENT_STATE;
823     }
824     if (s->status == COMMENT_STATE) {
825         if (s->gzhead->comment != Z_NULL) {
826             uInt beg = s->pending;  /* start of bytes to update crc */
827             int val;
828
829             do {
830                 if (s->pending == s->pending_buf_size) {
831                     if (s->gzhead->hcrc && s->pending > beg)
832                         strm->adler = crc32(strm->adler, s->pending_buf + beg,
833                                             s->pending - beg);
834                     flush_pending(strm);
835                     beg = s->pending;
836                     if (s->pending == s->pending_buf_size) {
837                         val = 1;
838                         break;
839                     }
840                 }
841                 val = s->gzhead->comment[s->gzindex++];
842                 put_byte(s, val);
843             } while (val != 0);
844             if (s->gzhead->hcrc && s->pending > beg)
845                 strm->adler = crc32(strm->adler, s->pending_buf + beg,
846                                     s->pending - beg);
847             if (val == 0)
848                 s->status = HCRC_STATE;
849         }
850         else
851             s->status = HCRC_STATE;
852     }
853     if (s->status == HCRC_STATE) {
854         if (s->gzhead->hcrc) {
855             if (s->pending + 2 > s->pending_buf_size)
856                 flush_pending(strm);
857             if (s->pending + 2 <= s->pending_buf_size) {
858                 put_byte(s, (Byte)(strm->adler & 0xff));
859                 put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
860                 strm->adler = crc32(0L, Z_NULL, 0);
861                 s->status = BUSY_STATE;
862             }
863         }
864         else
865             s->status = BUSY_STATE;
866     }
867 #endif
868
869     /* Flush as much pending output as possible */
870     if (s->pending != 0) {
871         flush_pending(strm);
872         if (strm->avail_out == 0) {
873             /* Since avail_out is 0, deflate will be called again with
874              * more output space, but possibly with both pending and
875              * avail_in equal to zero. There won't be anything to do,
876              * but this is not an error situation so make sure we
877              * return OK instead of BUF_ERROR at next call of deflate:
878              */
879             s->last_flush = -1;
880             return Z_OK;
881         }
882
883     /* Make sure there is something to do and avoid duplicate consecutive
884      * flushes. For repeated and useless calls with Z_FINISH, we keep
885      * returning Z_STREAM_END instead of Z_BUF_ERROR.
886      */
887     } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
888                flush != Z_FINISH) {
889         ERR_RETURN(strm, Z_BUF_ERROR);
890     }
891
892     /* User must not provide more input after the first FINISH: */
893     if (s->status == FINISH_STATE && strm->avail_in != 0) {
894         ERR_RETURN(strm, Z_BUF_ERROR);
895     }
896
897     /* Start a new block or continue the current one.
898      */
899     if (strm->avail_in != 0 || s->lookahead != 0 ||
900         (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
901         block_state bstate;
902
903         bstate = s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
904                     (s->strategy == Z_RLE ? deflate_rle(s, flush) :
905                         (*(configuration_table[s->level].func))(s, flush));
906
907         if (bstate == finish_started || bstate == finish_done) {
908             s->status = FINISH_STATE;
909         }
910         if (bstate == need_more || bstate == finish_started) {
911             if (strm->avail_out == 0) {
912                 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
913             }
914             return Z_OK;
915             /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
916              * of deflate should use the same flush parameter to make sure
917              * that the flush is complete. So we don't have to output an
918              * empty block here, this will be done at next call. This also
919              * ensures that for a very small output buffer, we emit at most
920              * one empty block.
921              */
922         }
923         if (bstate == block_done) {
924             if (flush == Z_PARTIAL_FLUSH) {
925                 _tr_align(s);
926             } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
927                 _tr_stored_block(s, (char*)0, 0L, 0);
928                 /* For a full flush, this empty block will be recognized
929                  * as a special marker by inflate_sync().
930                  */
931                 if (flush == Z_FULL_FLUSH) {
932                     CLEAR_HASH(s);             /* forget history */
933                     if (s->lookahead == 0) {
934                         s->strstart = 0;
935                         s->block_start = 0L;
936                         s->insert = 0;
937                     }
938                 }
939             }
940             flush_pending(strm);
941             if (strm->avail_out == 0) {
942               s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
943               return Z_OK;
944             }
945         }
946     }
947     Assert(strm->avail_out > 0, "bug2");
948
949     if (flush != Z_FINISH) return Z_OK;
950     if (s->wrap <= 0) return Z_STREAM_END;
951
952     /* Write the trailer */
953 #ifdef GZIP
954     if (s->wrap == 2) {
955         put_byte(s, (Byte)(strm->adler & 0xff));
956         put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
957         put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
958         put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
959         put_byte(s, (Byte)(strm->total_in & 0xff));
960         put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
961         put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
962         put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
963     }
964     else
965 #endif
966     {
967         putShortMSB(s, (uInt)(strm->adler >> 16));
968         putShortMSB(s, (uInt)(strm->adler & 0xffff));
969     }
970     flush_pending(strm);
971     /* If avail_out is zero, the application will call deflate again
972      * to flush the rest.
973      */
974     if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
975     return s->pending != 0 ? Z_OK : Z_STREAM_END;
976 }
977
978 /* ========================================================================= */
979 int ZEXPORT deflateEnd (strm)
980     z_streamp strm;
981 {
982     int status;
983
984     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
985
986     status = strm->state->status;
987     if (status != INIT_STATE &&
988         status != EXTRA_STATE &&
989         status != NAME_STATE &&
990         status != COMMENT_STATE &&
991         status != HCRC_STATE &&
992         status != BUSY_STATE &&
993         status != FINISH_STATE) {
994       return Z_STREAM_ERROR;
995     }
996
997     /* Deallocate in reverse order of allocations: */
998     TRY_FREE(strm, strm->state->pending_buf);
999     TRY_FREE(strm, strm->state->head);
1000     TRY_FREE(strm, strm->state->prev);
1001     TRY_FREE(strm, strm->state->window);
1002
1003     ZFREE(strm, strm->state);
1004     strm->state = Z_NULL;
1005
1006     return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1007 }
1008
1009 /* =========================================================================
1010  * Copy the source state to the destination state.
1011  * To simplify the source, this is not supported for 16-bit MSDOS (which
1012  * doesn't have enough memory anyway to duplicate compression states).
1013  */
1014 int ZEXPORT deflateCopy (dest, source)
1015     z_streamp dest;
1016     z_streamp source;
1017 {
1018 #ifdef MAXSEG_64K
1019     return Z_STREAM_ERROR;
1020 #else
1021     deflate_state *ds;
1022     deflate_state *ss;
1023     ushf *overlay;
1024
1025
1026     if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) {
1027         return Z_STREAM_ERROR;
1028     }
1029
1030     ss = source->state;
1031
1032     zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1033
1034     ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1035     if (ds == Z_NULL) return Z_MEM_ERROR;
1036     dest->state = (struct internal_state FAR *) ds;
1037     zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1038     ds->strm = dest;
1039
1040     ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1041     ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1042     ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1043     overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
1044     ds->pending_buf = (uchf *) overlay;
1045
1046     if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1047         ds->pending_buf == Z_NULL) {
1048         deflateEnd (dest);
1049         return Z_MEM_ERROR;
1050     }
1051     /* following zmemcpy do not work for 16-bit MSDOS */
1052     zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1053     zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1054     zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1055     zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1056
1057     ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1058     ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
1059     ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
1060
1061     ds->l_desc.dyn_tree = ds->dyn_ltree;
1062     ds->d_desc.dyn_tree = ds->dyn_dtree;
1063     ds->bl_desc.dyn_tree = ds->bl_tree;
1064
1065     return Z_OK;
1066 #endif /* MAXSEG_64K */
1067 }
1068
1069 /* ===========================================================================
1070  * Read a new buffer from the current input stream, update the adler32
1071  * and total number of bytes read.  All deflate() input goes through
1072  * this function so some applications may wish to modify it to avoid
1073  * allocating a large strm->next_in buffer and copying from it.
1074  * (See also flush_pending()).
1075  */
1076 local int read_buf(strm, buf, size)
1077     z_streamp strm;
1078     Bytef *buf;
1079     unsigned size;
1080 {
1081     unsigned len = strm->avail_in;
1082
1083     if (len > size) len = size;
1084     if (len == 0) return 0;
1085
1086     strm->avail_in  -= len;
1087
1088     zmemcpy(buf, strm->next_in, len);
1089     if (strm->state->wrap == 1) {
1090         strm->adler = adler32(strm->adler, buf, len);
1091     }
1092 #ifdef GZIP
1093     else if (strm->state->wrap == 2) {
1094         strm->adler = crc32(strm->adler, buf, len);
1095     }
1096 #endif
1097     strm->next_in  += len;
1098     strm->total_in += len;
1099
1100     return (int)len;
1101 }
1102
1103 /* ===========================================================================
1104  * Initialize the "longest match" routines for a new zlib stream
1105  */
1106 local void lm_init (s)
1107     deflate_state *s;
1108 {
1109     s->window_size = (ulg)2L*s->w_size;
1110
1111     CLEAR_HASH(s);
1112
1113     /* Set the default configuration parameters:
1114      */
1115     s->max_lazy_match   = configuration_table[s->level].max_lazy;
1116     s->good_match       = configuration_table[s->level].good_length;
1117     s->nice_match       = configuration_table[s->level].nice_length;
1118     s->max_chain_length = configuration_table[s->level].max_chain;
1119
1120     s->strstart = 0;
1121     s->block_start = 0L;
1122     s->lookahead = 0;
1123     s->insert = 0;
1124     s->match_length = s->prev_length = MIN_MATCH-1;
1125     s->match_available = 0;
1126     s->ins_h = 0;
1127 #ifndef FASTEST
1128 #ifdef ASMV
1129     match_init(); /* initialize the asm code */
1130 #endif
1131 #endif
1132 }
1133
1134 #ifndef FASTEST
1135 /* ===========================================================================
1136  * Set match_start to the longest match starting at the given string and
1137  * return its length. Matches shorter or equal to prev_length are discarded,
1138  * in which case the result is equal to prev_length and match_start is
1139  * garbage.
1140  * IN assertions: cur_match is the head of the hash chain for the current
1141  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1142  * OUT assertion: the match length is not greater than s->lookahead.
1143  */
1144 #ifndef ASMV
1145 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1146  * match.S. The code will be functionally equivalent.
1147  */
1148 local uInt longest_match(s, cur_match)
1149     deflate_state *s;
1150     IPos cur_match;                             /* current match */
1151 {
1152     unsigned chain_length = s->max_chain_length;/* max hash chain length */
1153     register Bytef *scan = s->window + s->strstart; /* current string */
1154     register Bytef *match;                       /* matched string */
1155     register int len;                           /* length of current match */
1156     int best_len = s->prev_length;              /* best match length so far */
1157     int nice_match = s->nice_match;             /* stop if match long enough */
1158     IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1159         s->strstart - (IPos)MAX_DIST(s) : NIL;
1160     /* Stop when cur_match becomes <= limit. To simplify the code,
1161      * we prevent matches with the string of window index 0.
1162      */
1163     Posf *prev = s->prev;
1164     uInt wmask = s->w_mask;
1165
1166 #ifdef UNALIGNED_OK
1167     /* Compare two bytes at a time. Note: this is not always beneficial.
1168      * Try with and without -DUNALIGNED_OK to check.
1169      */
1170     register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1171     register ush scan_start = *(ushf*)scan;
1172     register ush scan_end   = *(ushf*)(scan+best_len-1);
1173 #else
1174     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1175     register Byte scan_end1  = scan[best_len-1];
1176     register Byte scan_end   = scan[best_len];
1177 #endif
1178
1179     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1180      * It is easy to get rid of this optimization if necessary.
1181      */
1182     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1183
1184     /* Do not waste too much time if we already have a good match: */
1185     if (s->prev_length >= s->good_match) {
1186         chain_length >>= 2;
1187     }
1188     /* Do not look for matches beyond the end of the input. This is necessary
1189      * to make deflate deterministic.
1190      */
1191     if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
1192
1193     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1194
1195     do {
1196         Assert(cur_match < s->strstart, "no future");
1197         match = s->window + cur_match;
1198
1199         /* Skip to next match if the match length cannot increase
1200          * or if the match length is less than 2.  Note that the checks below
1201          * for insufficient lookahead only occur occasionally for performance
1202          * reasons.  Therefore uninitialized memory will be accessed, and
1203          * conditional jumps will be made that depend on those values.
1204          * However the length of the match is limited to the lookahead, so
1205          * the output of deflate is not affected by the uninitialized values.
1206          */
1207 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1208         /* This code assumes sizeof(unsigned short) == 2. Do not use
1209          * UNALIGNED_OK if your compiler uses a different size.
1210          */
1211         if (*(ushf*)(match+best_len-1) != scan_end ||
1212             *(ushf*)match != scan_start) continue;
1213
1214         /* It is not necessary to compare scan[2] and match[2] since they are
1215          * always equal when the other bytes match, given that the hash keys
1216          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1217          * strstart+3, +5, ... up to strstart+257. We check for insufficient
1218          * lookahead only every 4th comparison; the 128th check will be made
1219          * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1220          * necessary to put more guard bytes at the end of the window, or
1221          * to check more often for insufficient lookahead.
1222          */
1223         Assert(scan[2] == match[2], "scan[2]?");
1224         scan++, match++;
1225         do {
1226         } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1227                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1228                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1229                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1230                  scan < strend);
1231         /* The funny "do {}" generates better code on most compilers */
1232
1233         /* Here, scan <= window+strstart+257 */
1234         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1235         if (*scan == *match) scan++;
1236
1237         len = (MAX_MATCH - 1) - (int)(strend-scan);
1238         scan = strend - (MAX_MATCH-1);
1239
1240 #else /* UNALIGNED_OK */
1241
1242         if (match[best_len]   != scan_end  ||
1243             match[best_len-1] != scan_end1 ||
1244             *match            != *scan     ||
1245             *++match          != scan[1])      continue;
1246
1247         /* The check at best_len-1 can be removed because it will be made
1248          * again later. (This heuristic is not always a win.)
1249          * It is not necessary to compare scan[2] and match[2] since they
1250          * are always equal when the other bytes match, given that
1251          * the hash keys are equal and that HASH_BITS >= 8.
1252          */
1253         scan += 2, match++;
1254         Assert(*scan == *match, "match[2]?");
1255
1256         /* We check for insufficient lookahead only every 8th comparison;
1257          * the 256th check will be made at strstart+258.
1258          */
1259         do {
1260         } while (*++scan == *++match && *++scan == *++match &&
1261                  *++scan == *++match && *++scan == *++match &&
1262                  *++scan == *++match && *++scan == *++match &&
1263                  *++scan == *++match && *++scan == *++match &&
1264                  scan < strend);
1265
1266         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1267
1268         len = MAX_MATCH - (int)(strend - scan);
1269         scan = strend - MAX_MATCH;
1270
1271 #endif /* UNALIGNED_OK */
1272
1273         if (len > best_len) {
1274             s->match_start = cur_match;
1275             best_len = len;
1276             if (len >= nice_match) break;
1277 #ifdef UNALIGNED_OK
1278             scan_end = *(ushf*)(scan+best_len-1);
1279 #else
1280             scan_end1  = scan[best_len-1];
1281             scan_end   = scan[best_len];
1282 #endif
1283         }
1284     } while ((cur_match = prev[cur_match & wmask]) > limit
1285              && --chain_length != 0);
1286
1287     if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1288     return s->lookahead;
1289 }
1290 #endif /* ASMV */
1291
1292 #else /* FASTEST */
1293
1294 /* ---------------------------------------------------------------------------
1295  * Optimized version for FASTEST only
1296  */
1297 local uInt longest_match(s, cur_match)
1298     deflate_state *s;
1299     IPos cur_match;                             /* current match */
1300 {
1301     register Bytef *scan = s->window + s->strstart; /* current string */
1302     register Bytef *match;                       /* matched string */
1303     register int len;                           /* length of current match */
1304     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1305
1306     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1307      * It is easy to get rid of this optimization if necessary.
1308      */
1309     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1310
1311     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1312
1313     Assert(cur_match < s->strstart, "no future");
1314
1315     match = s->window + cur_match;
1316
1317     /* Return failure if the match length is less than 2:
1318      */
1319     if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1320
1321     /* The check at best_len-1 can be removed because it will be made
1322      * again later. (This heuristic is not always a win.)
1323      * It is not necessary to compare scan[2] and match[2] since they
1324      * are always equal when the other bytes match, given that
1325      * the hash keys are equal and that HASH_BITS >= 8.
1326      */
1327     scan += 2, match += 2;
1328     Assert(*scan == *match, "match[2]?");
1329
1330     /* We check for insufficient lookahead only every 8th comparison;
1331      * the 256th check will be made at strstart+258.
1332      */
1333     do {
1334     } while (*++scan == *++match && *++scan == *++match &&
1335              *++scan == *++match && *++scan == *++match &&
1336              *++scan == *++match && *++scan == *++match &&
1337              *++scan == *++match && *++scan == *++match &&
1338              scan < strend);
1339
1340     Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1341
1342     len = MAX_MATCH - (int)(strend - scan);
1343
1344     if (len < MIN_MATCH) return MIN_MATCH - 1;
1345
1346     s->match_start = cur_match;
1347     return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1348 }
1349
1350 #endif /* FASTEST */
1351
1352 #ifdef DEBUG
1353 /* ===========================================================================
1354  * Check that the match at match_start is indeed a match.
1355  */
1356 local void check_match(s, start, match, length)
1357     deflate_state *s;
1358     IPos start, match;
1359     int length;
1360 {
1361     /* check that the match is indeed a match */
1362     if (zmemcmp(s->window + match,
1363                 s->window + start, length) != EQUAL) {
1364         fprintf(stderr, " start %u, match %u, length %d\n",
1365                 start, match, length);
1366         do {
1367             fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1368         } while (--length != 0);
1369         z_error("invalid match");
1370     }
1371     if (z_verbose > 1) {
1372         fprintf(stderr,"\\[%d,%d]", start-match, length);
1373         do { putc(s->window[start++], stderr); } while (--length != 0);
1374     }
1375 }
1376 #else
1377 #  define check_match(s, start, match, length)
1378 #endif /* DEBUG */
1379
1380 /* ===========================================================================
1381  * Fill the window when the lookahead becomes insufficient.
1382  * Updates strstart and lookahead.
1383  *
1384  * IN assertion: lookahead < MIN_LOOKAHEAD
1385  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1386  *    At least one byte has been read, or avail_in == 0; reads are
1387  *    performed for at least two bytes (required for the zip translate_eol
1388  *    option -- not supported here).
1389  */
1390 local void fill_window(s)
1391     deflate_state *s;
1392 {
1393     register unsigned n, m;
1394     register Posf *p;
1395     unsigned more;    /* Amount of free space at the end of the window. */
1396     uInt wsize = s->w_size;
1397
1398     Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
1399
1400     do {
1401         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1402
1403         /* Deal with !@#$% 64K limit: */
1404         if (sizeof(int) <= 2) {
1405             if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1406                 more = wsize;
1407
1408             } else if (more == (unsigned)(-1)) {
1409                 /* Very unlikely, but possible on 16 bit machine if
1410                  * strstart == 0 && lookahead == 1 (input done a byte at time)
1411                  */
1412                 more--;
1413             }
1414         }
1415
1416         /* If the window is almost full and there is insufficient lookahead,
1417          * move the upper half to the lower one to make room in the upper half.
1418          */
1419         if (s->strstart >= wsize+MAX_DIST(s)) {
1420
1421             zmemcpy(s->window, s->window+wsize, (unsigned)wsize);
1422             s->match_start -= wsize;
1423             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
1424             s->block_start -= (long) wsize;
1425
1426             /* Slide the hash table (could be avoided with 32 bit values
1427                at the expense of memory usage). We slide even when level == 0
1428                to keep the hash table consistent if we switch back to level > 0
1429                later. (Using level 0 permanently is not an optimal usage of
1430                zlib, so we don't care about this pathological case.)
1431              */
1432             n = s->hash_size;
1433             p = &s->head[n];
1434             do {
1435                 m = *--p;
1436                 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1437             } while (--n);
1438
1439             n = wsize;
1440 #ifndef FASTEST
1441             p = &s->prev[n];
1442             do {
1443                 m = *--p;
1444                 *p = (Pos)(m >= wsize ? m-wsize : NIL);
1445                 /* If n is not on any hash chain, prev[n] is garbage but
1446                  * its value will never be used.
1447                  */
1448             } while (--n);
1449 #endif
1450             more += wsize;
1451         }
1452         if (s->strm->avail_in == 0) break;
1453
1454         /* If there was no sliding:
1455          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1456          *    more == window_size - lookahead - strstart
1457          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1458          * => more >= window_size - 2*WSIZE + 2
1459          * In the BIG_MEM or MMAP case (not yet supported),
1460          *   window_size == input_size + MIN_LOOKAHEAD  &&
1461          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1462          * Otherwise, window_size == 2*WSIZE so more >= 2.
1463          * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1464          */
1465         Assert(more >= 2, "more < 2");
1466
1467         n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1468         s->lookahead += n;
1469
1470         /* Initialize the hash value now that we have some input: */
1471         if (s->lookahead + s->insert >= MIN_MATCH) {
1472             uInt str = s->strstart - s->insert;
1473             s->ins_h = s->window[str];
1474             UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
1475 #if MIN_MATCH != 3
1476             Call UPDATE_HASH() MIN_MATCH-3 more times
1477 #endif
1478             while (s->insert) {
1479                 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
1480 #ifndef FASTEST
1481                 s->prev[str & s->w_mask] = s->head[s->ins_h];
1482 #endif
1483                 s->head[s->ins_h] = (Pos)str;
1484                 str++;
1485                 s->insert--;
1486                 if (s->lookahead + s->insert < MIN_MATCH)
1487                     break;
1488             }
1489         }
1490         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1491          * but this is not important since only literal bytes will be emitted.
1492          */
1493
1494     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1495
1496     /* If the WIN_INIT bytes after the end of the current data have never been
1497      * written, then zero those bytes in order to avoid memory check reports of
1498      * the use of uninitialized (or uninitialised as Julian writes) bytes by
1499      * the longest match routines.  Update the high water mark for the next
1500      * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
1501      * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
1502      */
1503     if (s->high_water < s->window_size) {
1504         ulg curr = s->strstart + (ulg)(s->lookahead);
1505         ulg init;
1506
1507         if (s->high_water < curr) {
1508             /* Previous high water mark below current data -- zero WIN_INIT
1509              * bytes or up to end of window, whichever is less.
1510              */
1511             init = s->window_size - curr;
1512             if (init > WIN_INIT)
1513                 init = WIN_INIT;
1514             zmemzero(s->window + curr, (unsigned)init);
1515             s->high_water = curr + init;
1516         }
1517         else if (s->high_water < (ulg)curr + WIN_INIT) {
1518             /* High water mark at or above current data, but below current data
1519              * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
1520              * to end of window, whichever is less.
1521              */
1522             init = (ulg)curr + WIN_INIT - s->high_water;
1523             if (init > s->window_size - s->high_water)
1524                 init = s->window_size - s->high_water;
1525             zmemzero(s->window + s->high_water, (unsigned)init);
1526             s->high_water += init;
1527         }
1528     }
1529
1530     Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1531            "not enough room for search");
1532 }
1533
1534 /* ===========================================================================
1535  * Flush the current block, with given end-of-file flag.
1536  * IN assertion: strstart is set to the end of the current match.
1537  */
1538 #define FLUSH_BLOCK_ONLY(s, last) { \
1539    _tr_flush_block(s, (s->block_start >= 0L ? \
1540                    (charf *)&s->window[(unsigned)s->block_start] : \
1541                    (charf *)Z_NULL), \
1542                 (ulg)((long)s->strstart - s->block_start), \
1543                 (last)); \
1544    s->block_start = s->strstart; \
1545    flush_pending(s->strm); \
1546    Tracev((stderr,"[FLUSH]")); \
1547 }
1548
1549 /* Same but force premature exit if necessary. */
1550 #define FLUSH_BLOCK(s, last) { \
1551    FLUSH_BLOCK_ONLY(s, last); \
1552    if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1553 }
1554
1555 /* ===========================================================================
1556  * Copy without compression as much as possible from the input stream, return
1557  * the current block state.
1558  * This function does not insert new strings in the dictionary since
1559  * uncompressible data is probably not useful. This function is used
1560  * only for the level=0 compression option.
1561  * NOTE: this function should be optimized to avoid extra copying from
1562  * window to pending_buf.
1563  */
1564 local block_state deflate_stored(s, flush)
1565     deflate_state *s;
1566     int flush;
1567 {
1568     /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1569      * to pending_buf_size, and each stored block has a 5 byte header:
1570      */
1571     ulg max_block_size = 0xffff;
1572     ulg max_start;
1573
1574     if (max_block_size > s->pending_buf_size - 5) {
1575         max_block_size = s->pending_buf_size - 5;
1576     }
1577
1578     /* Copy as much as possible from input to output: */
1579     for (;;) {
1580         /* Fill the window as much as possible: */
1581         if (s->lookahead <= 1) {
1582
1583             Assert(s->strstart < s->w_size+MAX_DIST(s) ||
1584                    s->block_start >= (long)s->w_size, "slide too late");
1585
1586             fill_window(s);
1587             if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
1588
1589             if (s->lookahead == 0) break; /* flush the current block */
1590         }
1591         Assert(s->block_start >= 0L, "block gone");
1592
1593         s->strstart += s->lookahead;
1594         s->lookahead = 0;
1595
1596         /* Emit a stored block if pending_buf will be full: */
1597         max_start = s->block_start + max_block_size;
1598         if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
1599             /* strstart == 0 is possible when wraparound on 16-bit machine */
1600             s->lookahead = (uInt)(s->strstart - max_start);
1601             s->strstart = (uInt)max_start;
1602             FLUSH_BLOCK(s, 0);
1603         }
1604         /* Flush if we may have to slide, otherwise block_start may become
1605          * negative and the data will be gone:
1606          */
1607         if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
1608             FLUSH_BLOCK(s, 0);
1609         }
1610     }
1611     s->insert = 0;
1612     if (flush == Z_FINISH) {
1613         FLUSH_BLOCK(s, 1);
1614         return finish_done;
1615     }
1616     if ((long)s->strstart > s->block_start)
1617         FLUSH_BLOCK(s, 0);
1618     return block_done;
1619 }
1620
1621 /* ===========================================================================
1622  * Compress as much as possible from the input stream, return the current
1623  * block state.
1624  * This function does not perform lazy evaluation of matches and inserts
1625  * new strings in the dictionary only for unmatched strings or for short
1626  * matches. It is used only for the fast compression options.
1627  */
1628 local block_state deflate_fast(s, flush)
1629     deflate_state *s;
1630     int flush;
1631 {
1632     IPos hash_head;       /* head of the hash chain */
1633     int bflush;           /* set if current block must be flushed */
1634
1635     for (;;) {
1636         /* Make sure that we always have enough lookahead, except
1637          * at the end of the input file. We need MAX_MATCH bytes
1638          * for the next match, plus MIN_MATCH bytes to insert the
1639          * string following the next match.
1640          */
1641         if (s->lookahead < MIN_LOOKAHEAD) {
1642             fill_window(s);
1643             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1644                 return need_more;
1645             }
1646             if (s->lookahead == 0) break; /* flush the current block */
1647         }
1648
1649         /* Insert the string window[strstart .. strstart+2] in the
1650          * dictionary, and set hash_head to the head of the hash chain:
1651          */
1652         hash_head = NIL;
1653         if (s->lookahead >= MIN_MATCH) {
1654             INSERT_STRING(s, s->strstart, hash_head);
1655         }
1656
1657         /* Find the longest match, discarding those <= prev_length.
1658          * At this point we have always match_length < MIN_MATCH
1659          */
1660         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1661             /* To simplify the code, we prevent matches with the string
1662              * of window index 0 (in particular we have to avoid a match
1663              * of the string with itself at the start of the input file).
1664              */
1665             s->match_length = longest_match (s, hash_head);
1666             /* longest_match() sets match_start */
1667         }
1668         if (s->match_length >= MIN_MATCH) {
1669             check_match(s, s->strstart, s->match_start, s->match_length);
1670
1671             _tr_tally_dist(s, s->strstart - s->match_start,
1672                            s->match_length - MIN_MATCH, bflush);
1673
1674             s->lookahead -= s->match_length;
1675
1676             /* Insert new strings in the hash table only if the match length
1677              * is not too large. This saves time but degrades compression.
1678              */
1679 #ifndef FASTEST
1680             if (s->match_length <= s->max_insert_length &&
1681                 s->lookahead >= MIN_MATCH) {
1682                 s->match_length--; /* string at strstart already in table */
1683                 do {
1684                     s->strstart++;
1685                     INSERT_STRING(s, s->strstart, hash_head);
1686                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1687                      * always MIN_MATCH bytes ahead.
1688                      */
1689                 } while (--s->match_length != 0);
1690                 s->strstart++;
1691             } else
1692 #endif
1693             {
1694                 s->strstart += s->match_length;
1695                 s->match_length = 0;
1696                 s->ins_h = s->window[s->strstart];
1697                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1698 #if MIN_MATCH != 3
1699                 Call UPDATE_HASH() MIN_MATCH-3 more times
1700 #endif
1701                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1702                  * matter since it will be recomputed at next deflate call.
1703                  */
1704             }
1705         } else {
1706             /* No match, output a literal byte */
1707             Tracevv((stderr,"%c", s->window[s->strstart]));
1708             _tr_tally_lit (s, s->window[s->strstart], bflush);
1709             s->lookahead--;
1710             s->strstart++;
1711         }
1712         if (bflush) FLUSH_BLOCK(s, 0);
1713     }
1714     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1715     if (flush == Z_FINISH) {
1716         FLUSH_BLOCK(s, 1);
1717         return finish_done;
1718     }
1719     if (s->last_lit)
1720         FLUSH_BLOCK(s, 0);
1721     return block_done;
1722 }
1723
1724 #ifndef FASTEST
1725 /* ===========================================================================
1726  * Same as above, but achieves better compression. We use a lazy
1727  * evaluation for matches: a match is finally adopted only if there is
1728  * no better match at the next window position.
1729  */
1730 local block_state deflate_slow(s, flush)
1731     deflate_state *s;
1732     int flush;
1733 {
1734     IPos hash_head;          /* head of hash chain */
1735     int bflush;              /* set if current block must be flushed */
1736
1737     /* Process the input block. */
1738     for (;;) {
1739         /* Make sure that we always have enough lookahead, except
1740          * at the end of the input file. We need MAX_MATCH bytes
1741          * for the next match, plus MIN_MATCH bytes to insert the
1742          * string following the next match.
1743          */
1744         if (s->lookahead < MIN_LOOKAHEAD) {
1745             fill_window(s);
1746             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1747                 return need_more;
1748             }
1749             if (s->lookahead == 0) break; /* flush the current block */
1750         }
1751
1752         /* Insert the string window[strstart .. strstart+2] in the
1753          * dictionary, and set hash_head to the head of the hash chain:
1754          */
1755         hash_head = NIL;
1756         if (s->lookahead >= MIN_MATCH) {
1757             INSERT_STRING(s, s->strstart, hash_head);
1758         }
1759
1760         /* Find the longest match, discarding those <= prev_length.
1761          */
1762         s->prev_length = s->match_length, s->prev_match = s->match_start;
1763         s->match_length = MIN_MATCH-1;
1764
1765         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1766             s->strstart - hash_head <= MAX_DIST(s)) {
1767             /* To simplify the code, we prevent matches with the string
1768              * of window index 0 (in particular we have to avoid a match
1769              * of the string with itself at the start of the input file).
1770              */
1771             s->match_length = longest_match (s, hash_head);
1772             /* longest_match() sets match_start */
1773
1774             if (s->match_length <= 5 && (s->strategy == Z_FILTERED
1775 #if TOO_FAR <= 32767
1776                 || (s->match_length == MIN_MATCH &&
1777                     s->strstart - s->match_start > TOO_FAR)
1778 #endif
1779                 )) {
1780
1781                 /* If prev_match is also MIN_MATCH, match_start is garbage
1782                  * but we will ignore the current match anyway.
1783                  */
1784                 s->match_length = MIN_MATCH-1;
1785             }
1786         }
1787         /* If there was a match at the previous step and the current
1788          * match is not better, output the previous match:
1789          */
1790         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1791             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1792             /* Do not insert strings in hash table beyond this. */
1793
1794             check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1795
1796             _tr_tally_dist(s, s->strstart -1 - s->prev_match,
1797                            s->prev_length - MIN_MATCH, bflush);
1798
1799             /* Insert in hash table all strings up to the end of the match.
1800              * strstart-1 and strstart are already inserted. If there is not
1801              * enough lookahead, the last two strings are not inserted in
1802              * the hash table.
1803              */
1804             s->lookahead -= s->prev_length-1;
1805             s->prev_length -= 2;
1806             do {
1807                 if (++s->strstart <= max_insert) {
1808                     INSERT_STRING(s, s->strstart, hash_head);
1809                 }
1810             } while (--s->prev_length != 0);
1811             s->match_available = 0;
1812             s->match_length = MIN_MATCH-1;
1813             s->strstart++;
1814
1815             if (bflush) FLUSH_BLOCK(s, 0);
1816
1817         } else if (s->match_available) {
1818             /* If there was no match at the previous position, output a
1819              * single literal. If there was a match but the current match
1820              * is longer, truncate the previous match to a single literal.
1821              */
1822             Tracevv((stderr,"%c", s->window[s->strstart-1]));
1823             _tr_tally_lit(s, s->window[s->strstart-1], bflush);
1824             if (bflush) {
1825                 FLUSH_BLOCK_ONLY(s, 0);
1826             }
1827             s->strstart++;
1828             s->lookahead--;
1829             if (s->strm->avail_out == 0) return need_more;
1830         } else {
1831             /* There is no previous match to compare with, wait for
1832              * the next step to decide.
1833              */
1834             s->match_available = 1;
1835             s->strstart++;
1836             s->lookahead--;
1837         }
1838     }
1839     Assert (flush != Z_NO_FLUSH, "no flush?");
1840     if (s->match_available) {
1841         Tracevv((stderr,"%c", s->window[s->strstart-1]));
1842         _tr_tally_lit(s, s->window[s->strstart-1], bflush);
1843         s->match_available = 0;
1844     }
1845     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1846     if (flush == Z_FINISH) {
1847         FLUSH_BLOCK(s, 1);
1848         return finish_done;
1849     }
1850     if (s->last_lit)
1851         FLUSH_BLOCK(s, 0);
1852     return block_done;
1853 }
1854 #endif /* FASTEST */
1855
1856 /* ===========================================================================
1857  * For Z_RLE, simply look for runs of bytes, generate matches only of distance
1858  * one.  Do not maintain a hash table.  (It will be regenerated if this run of
1859  * deflate switches away from Z_RLE.)
1860  */
1861 local block_state deflate_rle(s, flush)
1862     deflate_state *s;
1863     int flush;
1864 {
1865     int bflush;             /* set if current block must be flushed */
1866     uInt prev;              /* byte at distance one to match */
1867     Bytef *scan, *strend;   /* scan goes up to strend for length of run */
1868
1869     for (;;) {
1870         /* Make sure that we always have enough lookahead, except
1871          * at the end of the input file. We need MAX_MATCH bytes
1872          * for the longest run, plus one for the unrolled loop.
1873          */
1874         if (s->lookahead <= MAX_MATCH) {
1875             fill_window(s);
1876             if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
1877                 return need_more;
1878             }
1879             if (s->lookahead == 0) break; /* flush the current block */
1880         }
1881
1882         /* See how many times the previous byte repeats */
1883         s->match_length = 0;
1884         if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
1885             scan = s->window + s->strstart - 1;
1886             prev = *scan;
1887             if (prev == *++scan && prev == *++scan && prev == *++scan) {
1888                 strend = s->window + s->strstart + MAX_MATCH;
1889                 do {
1890                 } while (prev == *++scan && prev == *++scan &&
1891                          prev == *++scan && prev == *++scan &&
1892                          prev == *++scan && prev == *++scan &&
1893                          prev == *++scan && prev == *++scan &&
1894                          scan < strend);
1895                 s->match_length = MAX_MATCH - (int)(strend - scan);
1896                 if (s->match_length > s->lookahead)
1897                     s->match_length = s->lookahead;
1898             }
1899             Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
1900         }
1901
1902         /* Emit match if have run of MIN_MATCH or longer, else emit literal */
1903         if (s->match_length >= MIN_MATCH) {
1904             check_match(s, s->strstart, s->strstart - 1, s->match_length);
1905
1906             _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
1907
1908             s->lookahead -= s->match_length;
1909             s->strstart += s->match_length;
1910             s->match_length = 0;
1911         } else {
1912             /* No match, output a literal byte */
1913             Tracevv((stderr,"%c", s->window[s->strstart]));
1914             _tr_tally_lit (s, s->window[s->strstart], bflush);
1915             s->lookahead--;
1916             s->strstart++;
1917         }
1918         if (bflush) FLUSH_BLOCK(s, 0);
1919     }
1920     s->insert = 0;
1921     if (flush == Z_FINISH) {
1922         FLUSH_BLOCK(s, 1);
1923         return finish_done;
1924     }
1925     if (s->last_lit)
1926         FLUSH_BLOCK(s, 0);
1927     return block_done;
1928 }
1929
1930 /* ===========================================================================
1931  * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
1932  * (It will be regenerated if this run of deflate switches away from Huffman.)
1933  */
1934 local block_state deflate_huff(s, flush)
1935     deflate_state *s;
1936     int flush;
1937 {
1938     int bflush;             /* set if current block must be flushed */
1939
1940     for (;;) {
1941         /* Make sure that we have a literal to write. */
1942         if (s->lookahead == 0) {
1943             fill_window(s);
1944             if (s->lookahead == 0) {
1945                 if (flush == Z_NO_FLUSH)
1946                     return need_more;
1947                 break;      /* flush the current block */
1948             }
1949         }
1950
1951         /* Output a literal byte */
1952         s->match_length = 0;
1953         Tracevv((stderr,"%c", s->window[s->strstart]));
1954         _tr_tally_lit (s, s->window[s->strstart], bflush);
1955         s->lookahead--;
1956         s->strstart++;
1957         if (bflush) FLUSH_BLOCK(s, 0);
1958     }
1959     s->insert = 0;
1960     if (flush == Z_FINISH) {
1961         FLUSH_BLOCK(s, 1);
1962         return finish_done;
1963     }
1964     if (s->last_lit)
1965         FLUSH_BLOCK(s, 0);
1966     return block_done;
1967 }