drm: Import drm2+i915 work from FreeBSD
[dragonfly.git] / sys / dev / drm2 / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD: src/sys/dev/drm2/i915/intel_dp.c,v 1.1 2012/05/22 11:07:44 kib Exp $");
30
31 #include <dev/drm2/drmP.h>
32 #include <dev/drm2/drm.h>
33 #include <dev/drm2/drm_crtc.h>
34 #include <dev/drm2/drm_crtc_helper.h>
35 #include <dev/drm2/i915/i915_drm.h>
36 #include <dev/drm2/i915/i915_drv.h>
37 #include <dev/drm2/i915/intel_drv.h>
38 #include <dev/drm2/drm_dp_helper.h>
39
40 #define DP_RECEIVER_CAP_SIZE    0xf
41 #define DP_LINK_STATUS_SIZE     6
42 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
43
44 #define DP_LINK_CONFIGURATION_SIZE      9
45
46 /* XXXKIB what is the right code for the FreeBSD ? */
47 #define EREMOTEIO       ENXIO
48
49 struct intel_dp {
50         struct intel_encoder base;
51         uint32_t output_reg;
52         uint32_t DP;
53         uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
54         bool has_audio;
55         enum hdmi_force_audio force_audio;
56         uint32_t color_range;
57         int dpms_mode;
58         uint8_t link_bw;
59         uint8_t lane_count;
60         uint8_t dpcd[DP_RECEIVER_CAP_SIZE];
61         device_t dp_iic_bus;
62         device_t adapter;
63         bool is_pch_edp;
64         uint8_t train_set[4];
65         int panel_power_up_delay;
66         int panel_power_down_delay;
67         int panel_power_cycle_delay;
68         int backlight_on_delay;
69         int backlight_off_delay;
70         struct drm_display_mode *panel_fixed_mode;  /* for eDP */
71         struct timeout_task panel_vdd_task;
72         bool want_panel_vdd;
73 };
74
75 /**
76  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
77  * @intel_dp: DP struct
78  *
79  * If a CPU or PCH DP output is attached to an eDP panel, this function
80  * will return true, and false otherwise.
81  */
82 static bool is_edp(struct intel_dp *intel_dp)
83 {
84         return intel_dp->base.type == INTEL_OUTPUT_EDP;
85 }
86
87 /**
88  * is_pch_edp - is the port on the PCH and attached to an eDP panel?
89  * @intel_dp: DP struct
90  *
91  * Returns true if the given DP struct corresponds to a PCH DP port attached
92  * to an eDP panel, false otherwise.  Helpful for determining whether we
93  * may need FDI resources for a given DP output or not.
94  */
95 static bool is_pch_edp(struct intel_dp *intel_dp)
96 {
97         return intel_dp->is_pch_edp;
98 }
99
100 /**
101  * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
102  * @intel_dp: DP struct
103  *
104  * Returns true if the given DP struct corresponds to a CPU eDP port.
105  */
106 static bool is_cpu_edp(struct intel_dp *intel_dp)
107 {
108         return is_edp(intel_dp) && !is_pch_edp(intel_dp);
109 }
110
111 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
112 {
113         return container_of(encoder, struct intel_dp, base.base);
114 }
115
116 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
117 {
118         return container_of(intel_attached_encoder(connector),
119                             struct intel_dp, base);
120 }
121
122 /**
123  * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
124  * @encoder: DRM encoder
125  *
126  * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
127  * by intel_display.c.
128  */
129 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
130 {
131         struct intel_dp *intel_dp;
132
133         if (!encoder)
134                 return false;
135
136         intel_dp = enc_to_intel_dp(encoder);
137
138         return is_pch_edp(intel_dp);
139 }
140
141 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
142 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
143 static void intel_dp_link_down(struct intel_dp *intel_dp);
144
145 void
146 intel_edp_link_config(struct intel_encoder *intel_encoder,
147                        int *lane_num, int *link_bw)
148 {
149         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
150
151         *lane_num = intel_dp->lane_count;
152         if (intel_dp->link_bw == DP_LINK_BW_1_62)
153                 *link_bw = 162000;
154         else if (intel_dp->link_bw == DP_LINK_BW_2_7)
155                 *link_bw = 270000;
156 }
157
158 static int
159 intel_dp_max_lane_count(struct intel_dp *intel_dp)
160 {
161         int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
162         switch (max_lane_count) {
163         case 1: case 2: case 4:
164                 break;
165         default:
166                 max_lane_count = 4;
167         }
168         return max_lane_count;
169 }
170
171 static int
172 intel_dp_max_link_bw(struct intel_dp *intel_dp)
173 {
174         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
175
176         switch (max_link_bw) {
177         case DP_LINK_BW_1_62:
178         case DP_LINK_BW_2_7:
179                 break;
180         default:
181                 max_link_bw = DP_LINK_BW_1_62;
182                 break;
183         }
184         return max_link_bw;
185 }
186
187 static int
188 intel_dp_link_clock(uint8_t link_bw)
189 {
190         if (link_bw == DP_LINK_BW_2_7)
191                 return 270000;
192         else
193                 return 162000;
194 }
195
196 /*
197  * The units on the numbers in the next two are... bizarre.  Examples will
198  * make it clearer; this one parallels an example in the eDP spec.
199  *
200  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
201  *
202  *     270000 * 1 * 8 / 10 == 216000
203  *
204  * The actual data capacity of that configuration is 2.16Gbit/s, so the
205  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
206  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
207  * 119000.  At 18bpp that's 2142000 kilobits per second.
208  *
209  * Thus the strange-looking division by 10 in intel_dp_link_required, to
210  * get the result in decakilobits instead of kilobits.
211  */
212
213 static int
214 intel_dp_link_required(int pixel_clock, int bpp)
215 {
216         return (pixel_clock * bpp + 9) / 10;
217 }
218
219 static int
220 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
221 {
222         return (max_link_clock * max_lanes * 8) / 10;
223 }
224
225 static bool
226 intel_dp_adjust_dithering(struct intel_dp *intel_dp,
227                           struct drm_display_mode *mode,
228                           struct drm_display_mode *adjusted_mode)
229 {
230         int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
231         int max_lanes = intel_dp_max_lane_count(intel_dp);
232         int max_rate, mode_rate;
233
234         mode_rate = intel_dp_link_required(mode->clock, 24);
235         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
236
237         if (mode_rate > max_rate) {
238                 mode_rate = intel_dp_link_required(mode->clock, 18);
239                 if (mode_rate > max_rate)
240                         return false;
241
242                 if (adjusted_mode)
243                         adjusted_mode->private_flags
244                                 |= INTEL_MODE_DP_FORCE_6BPC;
245
246                 return true;
247         }
248
249         return true;
250 }
251
252 static int
253 intel_dp_mode_valid(struct drm_connector *connector,
254                     struct drm_display_mode *mode)
255 {
256         struct intel_dp *intel_dp = intel_attached_dp(connector);
257
258         if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
259                 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
260                         return MODE_PANEL;
261
262                 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
263                         return MODE_PANEL;
264         }
265
266         if (!intel_dp_adjust_dithering(intel_dp, mode, NULL))
267                 return MODE_CLOCK_HIGH;
268
269         if (mode->clock < 10000)
270                 return MODE_CLOCK_LOW;
271
272         return MODE_OK;
273 }
274
275 static uint32_t
276 pack_aux(uint8_t *src, int src_bytes)
277 {
278         int     i;
279         uint32_t v = 0;
280
281         if (src_bytes > 4)
282                 src_bytes = 4;
283         for (i = 0; i < src_bytes; i++)
284                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
285         return v;
286 }
287
288 static void
289 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
290 {
291         int i;
292         if (dst_bytes > 4)
293                 dst_bytes = 4;
294         for (i = 0; i < dst_bytes; i++)
295                 dst[i] = src >> ((3-i) * 8);
296 }
297
298 /* hrawclock is 1/4 the FSB frequency */
299 static int
300 intel_hrawclk(struct drm_device *dev)
301 {
302         struct drm_i915_private *dev_priv = dev->dev_private;
303         uint32_t clkcfg;
304
305         clkcfg = I915_READ(CLKCFG);
306         switch (clkcfg & CLKCFG_FSB_MASK) {
307         case CLKCFG_FSB_400:
308                 return 100;
309         case CLKCFG_FSB_533:
310                 return 133;
311         case CLKCFG_FSB_667:
312                 return 166;
313         case CLKCFG_FSB_800:
314                 return 200;
315         case CLKCFG_FSB_1067:
316                 return 266;
317         case CLKCFG_FSB_1333:
318                 return 333;
319         /* these two are just a guess; one of them might be right */
320         case CLKCFG_FSB_1600:
321         case CLKCFG_FSB_1600_ALT:
322                 return 400;
323         default:
324                 return 133;
325         }
326 }
327
328 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
329 {
330         struct drm_device *dev = intel_dp->base.base.dev;
331         struct drm_i915_private *dev_priv = dev->dev_private;
332
333         return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
334 }
335
336 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
337 {
338         struct drm_device *dev = intel_dp->base.base.dev;
339         struct drm_i915_private *dev_priv = dev->dev_private;
340
341         return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
342 }
343
344 static void
345 intel_dp_check_edp(struct intel_dp *intel_dp)
346 {
347         struct drm_device *dev = intel_dp->base.base.dev;
348         struct drm_i915_private *dev_priv = dev->dev_private;
349
350         if (!is_edp(intel_dp))
351                 return;
352         if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
353                 printf("eDP powered off while attempting aux channel communication.\n");
354                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
355                               I915_READ(PCH_PP_STATUS),
356                               I915_READ(PCH_PP_CONTROL));
357         }
358 }
359
360 static int
361 intel_dp_aux_ch(struct intel_dp *intel_dp,
362                 uint8_t *send, int send_bytes,
363                 uint8_t *recv, int recv_size)
364 {
365         uint32_t output_reg = intel_dp->output_reg;
366         struct drm_device *dev = intel_dp->base.base.dev;
367         struct drm_i915_private *dev_priv = dev->dev_private;
368         uint32_t ch_ctl = output_reg + 0x10;
369         uint32_t ch_data = ch_ctl + 4;
370         int i;
371         int recv_bytes;
372         uint32_t status;
373         uint32_t aux_clock_divider;
374         int try, precharge = 5;
375
376         intel_dp_check_edp(intel_dp);
377         /* The clock divider is based off the hrawclk,
378          * and would like to run at 2MHz. So, take the
379          * hrawclk value and divide by 2 and use that
380          *
381          * Note that PCH attached eDP panels should use a 125MHz input
382          * clock divider.
383          */
384         if (is_cpu_edp(intel_dp)) {
385                 if (IS_GEN6(dev) || IS_GEN7(dev))
386                         aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
387                 else
388                         aux_clock_divider = 225; /* eDP input clock at 450Mhz */
389         } else if (HAS_PCH_SPLIT(dev))
390                 aux_clock_divider = 63; /* IRL input clock fixed at 125Mhz */
391         else
392                 aux_clock_divider = intel_hrawclk(dev) / 2;
393
394         /* Try to wait for any previous AUX channel activity */
395         for (try = 0; try < 3; try++) {
396                 status = I915_READ(ch_ctl);
397                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
398                         break;
399                 drm_msleep(1, "915ach");
400         }
401
402         if (try == 3) {
403                 printf("dp_aux_ch not started status 0x%08x\n",
404                      I915_READ(ch_ctl));
405                 return -EBUSY;
406         }
407
408         /* Must try at least 3 times according to DP spec */
409         for (try = 0; try < 5; try++) {
410                 /* Load the send data into the aux channel data registers */
411                 for (i = 0; i < send_bytes; i += 4)
412                         I915_WRITE(ch_data + i,
413                                    pack_aux(send + i, send_bytes - i));
414
415                 /* Send the command and wait for it to complete */
416                 I915_WRITE(ch_ctl,
417                            DP_AUX_CH_CTL_SEND_BUSY |
418                            DP_AUX_CH_CTL_TIME_OUT_400us |
419                            (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
420                            (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
421                            (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
422                            DP_AUX_CH_CTL_DONE |
423                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
424                            DP_AUX_CH_CTL_RECEIVE_ERROR);
425                 for (;;) {
426                         status = I915_READ(ch_ctl);
427                         if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
428                                 break;
429                         DELAY(100);
430                 }
431
432                 /* Clear done status and any errors */
433                 I915_WRITE(ch_ctl,
434                            status |
435                            DP_AUX_CH_CTL_DONE |
436                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
437                            DP_AUX_CH_CTL_RECEIVE_ERROR);
438
439                 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
440                               DP_AUX_CH_CTL_RECEIVE_ERROR))
441                         continue;
442                 if (status & DP_AUX_CH_CTL_DONE)
443                         break;
444         }
445
446         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
447                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
448                 return -EBUSY;
449         }
450
451         /* Check for timeout or receive error.
452          * Timeouts occur when the sink is not connected
453          */
454         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
455                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
456                 return -EIO;
457         }
458
459         /* Timeouts occur when the device isn't connected, so they're
460          * "normal" -- don't fill the kernel log with these */
461         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
462                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
463                 return -ETIMEDOUT;
464         }
465
466         /* Unload any bytes sent back from the other side */
467         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
468                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
469         if (recv_bytes > recv_size)
470                 recv_bytes = recv_size;
471
472         for (i = 0; i < recv_bytes; i += 4)
473                 unpack_aux(I915_READ(ch_data + i),
474                            recv + i, recv_bytes - i);
475
476         return recv_bytes;
477 }
478
479 /* Write data to the aux channel in native mode */
480 static int
481 intel_dp_aux_native_write(struct intel_dp *intel_dp,
482                           uint16_t address, uint8_t *send, int send_bytes)
483 {
484         int ret;
485         uint8_t msg[20];
486         int msg_bytes;
487         uint8_t ack;
488
489         intel_dp_check_edp(intel_dp);
490         if (send_bytes > 16)
491                 return -1;
492         msg[0] = AUX_NATIVE_WRITE << 4;
493         msg[1] = address >> 8;
494         msg[2] = address & 0xff;
495         msg[3] = send_bytes - 1;
496         memcpy(&msg[4], send, send_bytes);
497         msg_bytes = send_bytes + 4;
498         for (;;) {
499                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
500                 if (ret < 0)
501                         return ret;
502                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
503                         break;
504                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
505                         DELAY(100);
506                 else
507                         return -EIO;
508         }
509         return send_bytes;
510 }
511
512 /* Write a single byte to the aux channel in native mode */
513 static int
514 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
515                             uint16_t address, uint8_t byte)
516 {
517         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
518 }
519
520 /* read bytes from a native aux channel */
521 static int
522 intel_dp_aux_native_read(struct intel_dp *intel_dp,
523                          uint16_t address, uint8_t *recv, int recv_bytes)
524 {
525         uint8_t msg[4];
526         int msg_bytes;
527         uint8_t reply[20];
528         int reply_bytes;
529         uint8_t ack;
530         int ret;
531
532         intel_dp_check_edp(intel_dp);
533         msg[0] = AUX_NATIVE_READ << 4;
534         msg[1] = address >> 8;
535         msg[2] = address & 0xff;
536         msg[3] = recv_bytes - 1;
537
538         msg_bytes = 4;
539         reply_bytes = recv_bytes + 1;
540
541         for (;;) {
542                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
543                                       reply, reply_bytes);
544                 if (ret == 0)
545                         return -EPROTO;
546                 if (ret < 0)
547                         return ret;
548                 ack = reply[0];
549                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
550                         memcpy(recv, reply + 1, ret - 1);
551                         return ret - 1;
552                 }
553                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
554                         DELAY(100);
555                 else
556                         return -EIO;
557         }
558 }
559
560 static int
561 intel_dp_i2c_aux_ch(device_t idev, int mode, uint8_t write_byte,
562     uint8_t *read_byte)
563 {
564         struct iic_dp_aux_data *data;
565         struct intel_dp *intel_dp;
566         uint16_t address;
567         uint8_t msg[5];
568         uint8_t reply[2];
569         unsigned retry;
570         int msg_bytes;
571         int reply_bytes;
572         int ret;
573
574         data = device_get_softc(idev);
575         intel_dp = data->priv;
576         address = data->address;
577
578         intel_dp_check_edp(intel_dp);
579         /* Set up the command byte */
580         if (mode & MODE_I2C_READ)
581                 msg[0] = AUX_I2C_READ << 4;
582         else
583                 msg[0] = AUX_I2C_WRITE << 4;
584
585         if (!(mode & MODE_I2C_STOP))
586                 msg[0] |= AUX_I2C_MOT << 4;
587
588         msg[1] = address >> 8;
589         msg[2] = address;
590
591         switch (mode) {
592         case MODE_I2C_WRITE:
593                 msg[3] = 0;
594                 msg[4] = write_byte;
595                 msg_bytes = 5;
596                 reply_bytes = 1;
597                 break;
598         case MODE_I2C_READ:
599                 msg[3] = 0;
600                 msg_bytes = 4;
601                 reply_bytes = 2;
602                 break;
603         default:
604                 msg_bytes = 3;
605                 reply_bytes = 1;
606                 break;
607         }
608
609         for (retry = 0; retry < 5; retry++) {
610                 ret = intel_dp_aux_ch(intel_dp,
611                                       msg, msg_bytes,
612                                       reply, reply_bytes);
613                 if (ret < 0) {
614                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
615                         return (-ret);
616                 }
617
618                 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
619                 case AUX_NATIVE_REPLY_ACK:
620                         /* I2C-over-AUX Reply field is only valid
621                          * when paired with AUX ACK.
622                          */
623                         break;
624                 case AUX_NATIVE_REPLY_NACK:
625                         DRM_DEBUG_KMS("aux_ch native nack\n");
626                         return (EREMOTEIO);
627                 case AUX_NATIVE_REPLY_DEFER:
628                         DELAY(100);
629                         continue;
630                 default:
631                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
632                                   reply[0]);
633                         return (EREMOTEIO);
634                 }
635
636                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
637                 case AUX_I2C_REPLY_ACK:
638                         if (mode == MODE_I2C_READ) {
639                                 *read_byte = reply[1];
640                         }
641                         return (0/*reply_bytes - 1*/);
642                 case AUX_I2C_REPLY_NACK:
643                         DRM_DEBUG_KMS("aux_i2c nack\n");
644                         return (EREMOTEIO);
645                 case AUX_I2C_REPLY_DEFER:
646                         DRM_DEBUG_KMS("aux_i2c defer\n");
647                         DELAY(100);
648                         break;
649                 default:
650                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
651                         return (EREMOTEIO);
652                 }
653         }
654
655         DRM_ERROR("too many retries, giving up\n");
656         return (EREMOTEIO);
657 }
658
659 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
660 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
661
662 static int
663 intel_dp_i2c_init(struct intel_dp *intel_dp,
664                   struct intel_connector *intel_connector, const char *name)
665 {
666         int ret;
667
668         DRM_DEBUG_KMS("i2c_init %s\n", name);
669
670         ironlake_edp_panel_vdd_on(intel_dp);
671         ret = iic_dp_aux_add_bus(intel_connector->base.dev->device, name,
672             intel_dp_i2c_aux_ch, intel_dp, &intel_dp->dp_iic_bus,
673             &intel_dp->adapter);
674         ironlake_edp_panel_vdd_off(intel_dp, false);
675         return (ret);
676 }
677
678 static bool
679 intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
680                     struct drm_display_mode *adjusted_mode)
681 {
682         struct drm_device *dev = encoder->dev;
683         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
684         int lane_count, clock;
685         int max_lane_count = intel_dp_max_lane_count(intel_dp);
686         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
687         int bpp;
688         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
689
690         if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
691                 intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
692                 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
693                                         mode, adjusted_mode);
694                 /*
695                  * the mode->clock is used to calculate the Data&Link M/N
696                  * of the pipe. For the eDP the fixed clock should be used.
697                  */
698                 mode->clock = intel_dp->panel_fixed_mode->clock;
699         }
700
701         if (!intel_dp_adjust_dithering(intel_dp, mode, adjusted_mode))
702                 return false;
703
704         bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
705
706         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
707                 for (clock = 0; clock <= max_clock; clock++) {
708                         int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
709
710                         if (intel_dp_link_required(mode->clock, bpp)
711                                         <= link_avail) {
712                                 intel_dp->link_bw = bws[clock];
713                                 intel_dp->lane_count = lane_count;
714                                 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
715                                 DRM_DEBUG_KMS("Display port link bw %02x lane "
716                                                 "count %d clock %d\n",
717                                        intel_dp->link_bw, intel_dp->lane_count,
718                                        adjusted_mode->clock);
719                                 return true;
720                         }
721                 }
722         }
723
724         return false;
725 }
726
727 struct intel_dp_m_n {
728         uint32_t        tu;
729         uint32_t        gmch_m;
730         uint32_t        gmch_n;
731         uint32_t        link_m;
732         uint32_t        link_n;
733 };
734
735 static void
736 intel_reduce_ratio(uint32_t *num, uint32_t *den)
737 {
738         while (*num > 0xffffff || *den > 0xffffff) {
739                 *num >>= 1;
740                 *den >>= 1;
741         }
742 }
743
744 static void
745 intel_dp_compute_m_n(int bpp,
746                      int nlanes,
747                      int pixel_clock,
748                      int link_clock,
749                      struct intel_dp_m_n *m_n)
750 {
751         m_n->tu = 64;
752         m_n->gmch_m = (pixel_clock * bpp) >> 3;
753         m_n->gmch_n = link_clock * nlanes;
754         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
755         m_n->link_m = pixel_clock;
756         m_n->link_n = link_clock;
757         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
758 }
759
760 void
761 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
762                  struct drm_display_mode *adjusted_mode)
763 {
764         struct drm_device *dev = crtc->dev;
765         struct drm_mode_config *mode_config = &dev->mode_config;
766         struct drm_encoder *encoder;
767         struct drm_i915_private *dev_priv = dev->dev_private;
768         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
769         int lane_count = 4;
770         struct intel_dp_m_n m_n;
771         int pipe = intel_crtc->pipe;
772
773         /*
774          * Find the lane count in the intel_encoder private
775          */
776         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
777                 struct intel_dp *intel_dp;
778
779                 if (encoder->crtc != crtc)
780                         continue;
781
782                 intel_dp = enc_to_intel_dp(encoder);
783                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
784                     intel_dp->base.type == INTEL_OUTPUT_EDP)
785                 {
786                         lane_count = intel_dp->lane_count;
787                         break;
788                 }
789         }
790
791         /*
792          * Compute the GMCH and Link ratios. The '3' here is
793          * the number of bytes_per_pixel post-LUT, which we always
794          * set up for 8-bits of R/G/B, or 3 bytes total.
795          */
796         intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
797                              mode->clock, adjusted_mode->clock, &m_n);
798
799         if (HAS_PCH_SPLIT(dev)) {
800                 I915_WRITE(TRANSDATA_M1(pipe),
801                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
802                            m_n.gmch_m);
803                 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
804                 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
805                 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
806         } else {
807                 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
808                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
809                            m_n.gmch_m);
810                 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
811                 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
812                 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
813         }
814 }
815
816 static void ironlake_edp_pll_on(struct drm_encoder *encoder);
817 static void ironlake_edp_pll_off(struct drm_encoder *encoder);
818
819 static void
820 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
821                   struct drm_display_mode *adjusted_mode)
822 {
823         struct drm_device *dev = encoder->dev;
824         struct drm_i915_private *dev_priv = dev->dev_private;
825         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
826         struct drm_crtc *crtc = intel_dp->base.base.crtc;
827         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
828
829         /* Turn on the eDP PLL if needed */
830         if (is_edp(intel_dp)) {
831                 if (!is_pch_edp(intel_dp))
832                         ironlake_edp_pll_on(encoder);
833                 else
834                         ironlake_edp_pll_off(encoder);
835         }
836
837         /*
838          * There are four kinds of DP registers:
839          *
840          *      IBX PCH
841          *      SNB CPU
842          *      IVB CPU
843          *      CPT PCH
844          *
845          * IBX PCH and CPU are the same for almost everything,
846          * except that the CPU DP PLL is configured in this
847          * register
848          *
849          * CPT PCH is quite different, having many bits moved
850          * to the TRANS_DP_CTL register instead. That
851          * configuration happens (oddly) in ironlake_pch_enable
852          */
853
854         /* Preserve the BIOS-computed detected bit. This is
855          * supposed to be read-only.
856          */
857         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
858         intel_dp->DP |=  DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
859
860         /* Handle DP bits in common between all three register formats */
861
862         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
863
864         switch (intel_dp->lane_count) {
865         case 1:
866                 intel_dp->DP |= DP_PORT_WIDTH_1;
867                 break;
868         case 2:
869                 intel_dp->DP |= DP_PORT_WIDTH_2;
870                 break;
871         case 4:
872                 intel_dp->DP |= DP_PORT_WIDTH_4;
873                 break;
874         }
875         if (intel_dp->has_audio) {
876                 DRM_DEBUG_KMS("Enabling DP audio on pipe %c\n",
877                                  pipe_name(intel_crtc->pipe));
878                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
879                 intel_write_eld(encoder, adjusted_mode);
880         }
881         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
882         intel_dp->link_configuration[0] = intel_dp->link_bw;
883         intel_dp->link_configuration[1] = intel_dp->lane_count;
884         /*
885          * Check for DPCD version > 1.1 and enhanced framing support
886          */
887         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
888             (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
889                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
890         }
891
892         /* Split out the IBX/CPU vs CPT settings */
893
894         if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
895                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
896                         intel_dp->DP |= DP_SYNC_HS_HIGH;
897                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
898                         intel_dp->DP |= DP_SYNC_VS_HIGH;
899                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
900
901                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
902                         intel_dp->DP |= DP_ENHANCED_FRAMING;
903
904                 intel_dp->DP |= intel_crtc->pipe << 29;
905
906                 /* don't miss out required setting for eDP */
907                 intel_dp->DP |= DP_PLL_ENABLE;
908                 if (adjusted_mode->clock < 200000)
909                         intel_dp->DP |= DP_PLL_FREQ_160MHZ;
910                 else
911                         intel_dp->DP |= DP_PLL_FREQ_270MHZ;
912         } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
913                 intel_dp->DP |= intel_dp->color_range;
914
915                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
916                         intel_dp->DP |= DP_SYNC_HS_HIGH;
917                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
918                         intel_dp->DP |= DP_SYNC_VS_HIGH;
919                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
920
921                 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
922                         intel_dp->DP |= DP_ENHANCED_FRAMING;
923
924                 if (intel_crtc->pipe == 1)
925                         intel_dp->DP |= DP_PIPEB_SELECT;
926
927                 if (is_cpu_edp(intel_dp)) {
928                         /* don't miss out required setting for eDP */
929                         intel_dp->DP |= DP_PLL_ENABLE;
930                         if (adjusted_mode->clock < 200000)
931                                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
932                         else
933                                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
934                 }
935         } else {
936                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
937         }
938 }
939
940 #define IDLE_ON_MASK            (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
941 #define IDLE_ON_VALUE           (PP_ON | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
942
943 #define IDLE_OFF_MASK           (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
944 #define IDLE_OFF_VALUE          (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
945
946 #define IDLE_CYCLE_MASK         (PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
947 #define IDLE_CYCLE_VALUE        (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
948
949 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
950                                        u32 mask,
951                                        u32 value)
952 {
953         struct drm_device *dev = intel_dp->base.base.dev;
954         struct drm_i915_private *dev_priv = dev->dev_private;
955
956         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
957                       mask, value,
958                       I915_READ(PCH_PP_STATUS),
959                       I915_READ(PCH_PP_CONTROL));
960
961         if (_intel_wait_for(dev,
962             (I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10, "915iwp")) {
963                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
964                           I915_READ(PCH_PP_STATUS),
965                           I915_READ(PCH_PP_CONTROL));
966         }
967 }
968
969 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
970 {
971         DRM_DEBUG_KMS("Wait for panel power on\n");
972         ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
973 }
974
975 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
976 {
977         DRM_DEBUG_KMS("Wait for panel power off time\n");
978         ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
979 }
980
981 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
982 {
983         DRM_DEBUG_KMS("Wait for panel power cycle\n");
984         ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
985 }
986
987
988 /* Read the current pp_control value, unlocking the register if it
989  * is locked
990  */
991
992 static  u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
993 {
994         u32     control = I915_READ(PCH_PP_CONTROL);
995
996         control &= ~PANEL_UNLOCK_MASK;
997         control |= PANEL_UNLOCK_REGS;
998         return control;
999 }
1000
1001 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1002 {
1003         struct drm_device *dev = intel_dp->base.base.dev;
1004         struct drm_i915_private *dev_priv = dev->dev_private;
1005         u32 pp;
1006
1007         if (!is_edp(intel_dp))
1008                 return;
1009         DRM_DEBUG_KMS("Turn eDP VDD on\n");
1010
1011         if (intel_dp->want_panel_vdd)
1012                 printf("eDP VDD already requested on\n");
1013
1014         intel_dp->want_panel_vdd = true;
1015
1016         if (ironlake_edp_have_panel_vdd(intel_dp)) {
1017                 DRM_DEBUG_KMS("eDP VDD already on\n");
1018                 return;
1019         }
1020
1021         if (!ironlake_edp_have_panel_power(intel_dp))
1022                 ironlake_wait_panel_power_cycle(intel_dp);
1023
1024         pp = ironlake_get_pp_control(dev_priv);
1025         pp |= EDP_FORCE_VDD;
1026         I915_WRITE(PCH_PP_CONTROL, pp);
1027         POSTING_READ(PCH_PP_CONTROL);
1028         DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1029                       I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1030
1031         /*
1032          * If the panel wasn't on, delay before accessing aux channel
1033          */
1034         if (!ironlake_edp_have_panel_power(intel_dp)) {
1035                 DRM_DEBUG_KMS("eDP was not running\n");
1036                 drm_msleep(intel_dp->panel_power_up_delay, "915edpon");
1037         }
1038 }
1039
1040 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1041 {
1042         struct drm_device *dev = intel_dp->base.base.dev;
1043         struct drm_i915_private *dev_priv = dev->dev_private;
1044         u32 pp;
1045
1046         if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1047                 pp = ironlake_get_pp_control(dev_priv);
1048                 pp &= ~EDP_FORCE_VDD;
1049                 I915_WRITE(PCH_PP_CONTROL, pp);
1050                 POSTING_READ(PCH_PP_CONTROL);
1051
1052                 /* Make sure sequencer is idle before allowing subsequent activity */
1053                 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1054                               I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1055
1056                 drm_msleep(intel_dp->panel_power_down_delay, "915vddo");
1057         }
1058 }
1059
1060 static void ironlake_panel_vdd_work(void *arg, int pending __unused)
1061 {
1062         struct intel_dp *intel_dp = arg;
1063         struct drm_device *dev = intel_dp->base.base.dev;
1064
1065         sx_xlock(&dev->mode_config.mutex);
1066         ironlake_panel_vdd_off_sync(intel_dp);
1067         sx_xunlock(&dev->mode_config.mutex);
1068 }
1069
1070 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1071 {
1072         if (!is_edp(intel_dp))
1073                 return;
1074
1075         DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1076         if (!intel_dp->want_panel_vdd)
1077                 printf("eDP VDD not forced on\n");
1078
1079         intel_dp->want_panel_vdd = false;
1080
1081         if (sync) {
1082                 ironlake_panel_vdd_off_sync(intel_dp);
1083         } else {
1084                 /*
1085                  * Queue the timer to fire a long
1086                  * time from now (relative to the power down delay)
1087                  * to keep the panel power up across a sequence of operations
1088                  */
1089                 struct drm_i915_private *dev_priv = intel_dp->base.base.dev->dev_private;
1090                 taskqueue_enqueue_timeout(dev_priv->tq,
1091                     &intel_dp->panel_vdd_task,
1092                     msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1093         }
1094 }
1095
1096 static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1097 {
1098         struct drm_device *dev = intel_dp->base.base.dev;
1099         struct drm_i915_private *dev_priv = dev->dev_private;
1100         u32 pp;
1101
1102         if (!is_edp(intel_dp))
1103                 return;
1104
1105         DRM_DEBUG_KMS("Turn eDP power on\n");
1106
1107         if (ironlake_edp_have_panel_power(intel_dp)) {
1108                 DRM_DEBUG_KMS("eDP power already on\n");
1109                 return;
1110         }
1111
1112         ironlake_wait_panel_power_cycle(intel_dp);
1113
1114         pp = ironlake_get_pp_control(dev_priv);
1115         if (IS_GEN5(dev)) {
1116                 /* ILK workaround: disable reset around power sequence */
1117                 pp &= ~PANEL_POWER_RESET;
1118                 I915_WRITE(PCH_PP_CONTROL, pp);
1119                 POSTING_READ(PCH_PP_CONTROL);
1120         }
1121
1122         pp |= POWER_TARGET_ON;
1123         if (!IS_GEN5(dev))
1124                 pp |= PANEL_POWER_RESET;
1125
1126         I915_WRITE(PCH_PP_CONTROL, pp);
1127         POSTING_READ(PCH_PP_CONTROL);
1128
1129         ironlake_wait_panel_on(intel_dp);
1130
1131         if (IS_GEN5(dev)) {
1132                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1133                 I915_WRITE(PCH_PP_CONTROL, pp);
1134                 POSTING_READ(PCH_PP_CONTROL);
1135         }
1136 }
1137
1138 static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1139 {
1140         struct drm_device *dev = intel_dp->base.base.dev;
1141         struct drm_i915_private *dev_priv = dev->dev_private;
1142         u32 pp;
1143
1144         if (!is_edp(intel_dp))
1145                 return;
1146
1147         DRM_DEBUG_KMS("Turn eDP power off\n");
1148
1149         if (intel_dp->want_panel_vdd)
1150                 printf("Cannot turn power off while VDD is on\n");
1151
1152         pp = ironlake_get_pp_control(dev_priv);
1153         pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1154         I915_WRITE(PCH_PP_CONTROL, pp);
1155         POSTING_READ(PCH_PP_CONTROL);
1156
1157         ironlake_wait_panel_off(intel_dp);
1158 }
1159
1160 static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1161 {
1162         struct drm_device *dev = intel_dp->base.base.dev;
1163         struct drm_i915_private *dev_priv = dev->dev_private;
1164         u32 pp;
1165
1166         if (!is_edp(intel_dp))
1167                 return;
1168
1169         DRM_DEBUG_KMS("\n");
1170         /*
1171          * If we enable the backlight right away following a panel power
1172          * on, we may see slight flicker as the panel syncs with the eDP
1173          * link.  So delay a bit to make sure the image is solid before
1174          * allowing it to appear.
1175          */
1176         drm_msleep(intel_dp->backlight_on_delay, "915ebo");
1177         pp = ironlake_get_pp_control(dev_priv);
1178         pp |= EDP_BLC_ENABLE;
1179         I915_WRITE(PCH_PP_CONTROL, pp);
1180         POSTING_READ(PCH_PP_CONTROL);
1181 }
1182
1183 static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1184 {
1185         struct drm_device *dev = intel_dp->base.base.dev;
1186         struct drm_i915_private *dev_priv = dev->dev_private;
1187         u32 pp;
1188
1189         if (!is_edp(intel_dp))
1190                 return;
1191
1192         DRM_DEBUG_KMS("\n");
1193         pp = ironlake_get_pp_control(dev_priv);
1194         pp &= ~EDP_BLC_ENABLE;
1195         I915_WRITE(PCH_PP_CONTROL, pp);
1196         POSTING_READ(PCH_PP_CONTROL);
1197         drm_msleep(intel_dp->backlight_off_delay, "915bo1");
1198 }
1199
1200 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
1201 {
1202         struct drm_device *dev = encoder->dev;
1203         struct drm_i915_private *dev_priv = dev->dev_private;
1204         u32 dpa_ctl;
1205
1206         DRM_DEBUG_KMS("\n");
1207         dpa_ctl = I915_READ(DP_A);
1208         dpa_ctl |= DP_PLL_ENABLE;
1209         I915_WRITE(DP_A, dpa_ctl);
1210         POSTING_READ(DP_A);
1211         DELAY(200);
1212 }
1213
1214 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
1215 {
1216         struct drm_device *dev = encoder->dev;
1217         struct drm_i915_private *dev_priv = dev->dev_private;
1218         u32 dpa_ctl;
1219
1220         dpa_ctl = I915_READ(DP_A);
1221         dpa_ctl &= ~DP_PLL_ENABLE;
1222         I915_WRITE(DP_A, dpa_ctl);
1223         POSTING_READ(DP_A);
1224         DELAY(200);
1225 }
1226
1227 /* If the sink supports it, try to set the power state appropriately */
1228 static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1229 {
1230         int ret, i;
1231
1232         /* Should have a valid DPCD by this point */
1233         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1234                 return;
1235
1236         if (mode != DRM_MODE_DPMS_ON) {
1237                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1238                                                   DP_SET_POWER_D3);
1239                 if (ret != 1)
1240                         DRM_DEBUG("failed to write sink power state\n");
1241         } else {
1242                 /*
1243                  * When turning on, we need to retry for 1ms to give the sink
1244                  * time to wake up.
1245                  */
1246                 for (i = 0; i < 3; i++) {
1247                         ret = intel_dp_aux_native_write_1(intel_dp,
1248                                                           DP_SET_POWER,
1249                                                           DP_SET_POWER_D0);
1250                         if (ret == 1)
1251                                 break;
1252                         drm_msleep(1, "915dps");
1253                 }
1254         }
1255 }
1256
1257 static void intel_dp_prepare(struct drm_encoder *encoder)
1258 {
1259         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1260
1261         ironlake_edp_backlight_off(intel_dp);
1262         ironlake_edp_panel_off(intel_dp);
1263
1264         /* Wake up the sink first */
1265         ironlake_edp_panel_vdd_on(intel_dp);
1266         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1267         intel_dp_link_down(intel_dp);
1268         ironlake_edp_panel_vdd_off(intel_dp, false);
1269
1270         /* Make sure the panel is off before trying to
1271          * change the mode
1272          */
1273 }
1274
1275 static void intel_dp_commit(struct drm_encoder *encoder)
1276 {
1277         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1278         struct drm_device *dev = encoder->dev;
1279         struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1280
1281         ironlake_edp_panel_vdd_on(intel_dp);
1282         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1283         intel_dp_start_link_train(intel_dp);
1284         ironlake_edp_panel_on(intel_dp);
1285         ironlake_edp_panel_vdd_off(intel_dp, true);
1286         intel_dp_complete_link_train(intel_dp);
1287         ironlake_edp_backlight_on(intel_dp);
1288
1289         intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1290
1291         if (HAS_PCH_CPT(dev))
1292                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
1293 }
1294
1295 static void
1296 intel_dp_dpms(struct drm_encoder *encoder, int mode)
1297 {
1298         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1299         struct drm_device *dev = encoder->dev;
1300         struct drm_i915_private *dev_priv = dev->dev_private;
1301         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1302
1303         if (mode != DRM_MODE_DPMS_ON) {
1304                 ironlake_edp_backlight_off(intel_dp);
1305                 ironlake_edp_panel_off(intel_dp);
1306
1307                 ironlake_edp_panel_vdd_on(intel_dp);
1308                 intel_dp_sink_dpms(intel_dp, mode);
1309                 intel_dp_link_down(intel_dp);
1310                 ironlake_edp_panel_vdd_off(intel_dp, false);
1311
1312                 if (is_cpu_edp(intel_dp))
1313                         ironlake_edp_pll_off(encoder);
1314         } else {
1315                 if (is_cpu_edp(intel_dp))
1316                         ironlake_edp_pll_on(encoder);
1317
1318                 ironlake_edp_panel_vdd_on(intel_dp);
1319                 intel_dp_sink_dpms(intel_dp, mode);
1320                 if (!(dp_reg & DP_PORT_EN)) {
1321                         intel_dp_start_link_train(intel_dp);
1322                         ironlake_edp_panel_on(intel_dp);
1323                         ironlake_edp_panel_vdd_off(intel_dp, true);
1324                         intel_dp_complete_link_train(intel_dp);
1325                 } else
1326                         ironlake_edp_panel_vdd_off(intel_dp, false);
1327                 ironlake_edp_backlight_on(intel_dp);
1328         }
1329         intel_dp->dpms_mode = mode;
1330 }
1331 /*
1332  * Native read with retry for link status and receiver capability reads for
1333  * cases where the sink may still be asleep.
1334  */
1335 static bool
1336 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1337                                uint8_t *recv, int recv_bytes)
1338 {
1339         int ret, i;
1340
1341         /*
1342          * Sinks are *supposed* to come up within 1ms from an off state,
1343          * but we're also supposed to retry 3 times per the spec.
1344          */
1345         for (i = 0; i < 3; i++) {
1346                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1347                                                recv_bytes);
1348                 if (ret == recv_bytes)
1349                         return true;
1350                 drm_msleep(1, "915dpl");
1351         }
1352
1353         return false;
1354 }
1355
1356 /*
1357  * Fetch AUX CH registers 0x202 - 0x207 which contain
1358  * link status information
1359  */
1360 static bool
1361 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1362 {
1363         return intel_dp_aux_native_read_retry(intel_dp,
1364                                               DP_LANE0_1_STATUS,
1365                                               link_status,
1366                                               DP_LINK_STATUS_SIZE);
1367 }
1368
1369 static uint8_t
1370 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1371                      int r)
1372 {
1373         return link_status[r - DP_LANE0_1_STATUS];
1374 }
1375
1376 static uint8_t
1377 intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1378                                  int lane)
1379 {
1380         int         s = ((lane & 1) ?
1381                          DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1382                          DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1383         uint8_t l = adjust_request[lane>>1];
1384
1385         return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1386 }
1387
1388 static uint8_t
1389 intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1390                                       int lane)
1391 {
1392         int         s = ((lane & 1) ?
1393                          DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1394                          DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1395         uint8_t l = adjust_request[lane>>1];
1396
1397         return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1398 }
1399
1400
1401 #if 0
1402 static char     *voltage_names[] = {
1403         "0.4V", "0.6V", "0.8V", "1.2V"
1404 };
1405 static char     *pre_emph_names[] = {
1406         "0dB", "3.5dB", "6dB", "9.5dB"
1407 };
1408 static char     *link_train_names[] = {
1409         "pattern 1", "pattern 2", "idle", "off"
1410 };
1411 #endif
1412
1413 /*
1414  * These are source-specific values; current Intel hardware supports
1415  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1416  */
1417
1418 static uint8_t
1419 intel_dp_voltage_max(struct intel_dp *intel_dp)
1420 {
1421         struct drm_device *dev = intel_dp->base.base.dev;
1422
1423         if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1424                 return DP_TRAIN_VOLTAGE_SWING_800;
1425         else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1426                 return DP_TRAIN_VOLTAGE_SWING_1200;
1427         else
1428                 return DP_TRAIN_VOLTAGE_SWING_800;
1429 }
1430
1431 static uint8_t
1432 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1433 {
1434         struct drm_device *dev = intel_dp->base.base.dev;
1435
1436         if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1437                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1438                 case DP_TRAIN_VOLTAGE_SWING_400:
1439                         return DP_TRAIN_PRE_EMPHASIS_6;
1440                 case DP_TRAIN_VOLTAGE_SWING_600:
1441                 case DP_TRAIN_VOLTAGE_SWING_800:
1442                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1443                 default:
1444                         return DP_TRAIN_PRE_EMPHASIS_0;
1445                 }
1446         } else {
1447                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1448                 case DP_TRAIN_VOLTAGE_SWING_400:
1449                         return DP_TRAIN_PRE_EMPHASIS_6;
1450                 case DP_TRAIN_VOLTAGE_SWING_600:
1451                         return DP_TRAIN_PRE_EMPHASIS_6;
1452                 case DP_TRAIN_VOLTAGE_SWING_800:
1453                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1454                 case DP_TRAIN_VOLTAGE_SWING_1200:
1455                 default:
1456                         return DP_TRAIN_PRE_EMPHASIS_0;
1457                 }
1458         }
1459 }
1460
1461 static void
1462 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1463 {
1464         uint8_t v = 0;
1465         uint8_t p = 0;
1466         int lane;
1467         uint8_t *adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1468         uint8_t voltage_max;
1469         uint8_t preemph_max;
1470
1471         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1472                 uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1473                 uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1474
1475                 if (this_v > v)
1476                         v = this_v;
1477                 if (this_p > p)
1478                         p = this_p;
1479         }
1480
1481         voltage_max = intel_dp_voltage_max(intel_dp);
1482         if (v >= voltage_max)
1483                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1484
1485         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1486         if (p >= preemph_max)
1487                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1488
1489         for (lane = 0; lane < 4; lane++)
1490                 intel_dp->train_set[lane] = v | p;
1491 }
1492
1493 static uint32_t
1494 intel_dp_signal_levels(uint8_t train_set)
1495 {
1496         uint32_t        signal_levels = 0;
1497
1498         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1499         case DP_TRAIN_VOLTAGE_SWING_400:
1500         default:
1501                 signal_levels |= DP_VOLTAGE_0_4;
1502                 break;
1503         case DP_TRAIN_VOLTAGE_SWING_600:
1504                 signal_levels |= DP_VOLTAGE_0_6;
1505                 break;
1506         case DP_TRAIN_VOLTAGE_SWING_800:
1507                 signal_levels |= DP_VOLTAGE_0_8;
1508                 break;
1509         case DP_TRAIN_VOLTAGE_SWING_1200:
1510                 signal_levels |= DP_VOLTAGE_1_2;
1511                 break;
1512         }
1513         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1514         case DP_TRAIN_PRE_EMPHASIS_0:
1515         default:
1516                 signal_levels |= DP_PRE_EMPHASIS_0;
1517                 break;
1518         case DP_TRAIN_PRE_EMPHASIS_3_5:
1519                 signal_levels |= DP_PRE_EMPHASIS_3_5;
1520                 break;
1521         case DP_TRAIN_PRE_EMPHASIS_6:
1522                 signal_levels |= DP_PRE_EMPHASIS_6;
1523                 break;
1524         case DP_TRAIN_PRE_EMPHASIS_9_5:
1525                 signal_levels |= DP_PRE_EMPHASIS_9_5;
1526                 break;
1527         }
1528         return signal_levels;
1529 }
1530
1531 /* Gen6's DP voltage swing and pre-emphasis control */
1532 static uint32_t
1533 intel_gen6_edp_signal_levels(uint8_t train_set)
1534 {
1535         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1536                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1537         switch (signal_levels) {
1538         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1539         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1540                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1541         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1542                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1543         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1544         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1545                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1546         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1547         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1548                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1549         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1550         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1551                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1552         default:
1553                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1554                               "0x%x\n", signal_levels);
1555                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1556         }
1557 }
1558
1559 /* Gen7's DP voltage swing and pre-emphasis control */
1560 static uint32_t
1561 intel_gen7_edp_signal_levels(uint8_t train_set)
1562 {
1563         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1564                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1565         switch (signal_levels) {
1566         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1567                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
1568         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1569                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1570         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1571                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
1572
1573         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1574                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
1575         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1576                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1577
1578         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1579                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
1580         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1581                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1582
1583         default:
1584                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1585                               "0x%x\n", signal_levels);
1586                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
1587         }
1588 }
1589
1590 static uint8_t
1591 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1592                       int lane)
1593 {
1594         int s = (lane & 1) * 4;
1595         uint8_t l = link_status[lane>>1];
1596
1597         return (l >> s) & 0xf;
1598 }
1599
1600 /* Check for clock recovery is done on all channels */
1601 static bool
1602 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1603 {
1604         int lane;
1605         uint8_t lane_status;
1606
1607         for (lane = 0; lane < lane_count; lane++) {
1608                 lane_status = intel_get_lane_status(link_status, lane);
1609                 if ((lane_status & DP_LANE_CR_DONE) == 0)
1610                         return false;
1611         }
1612         return true;
1613 }
1614
1615 /* Check to see if channel eq is done on all channels */
1616 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1617                          DP_LANE_CHANNEL_EQ_DONE|\
1618                          DP_LANE_SYMBOL_LOCKED)
1619 static bool
1620 intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1621 {
1622         uint8_t lane_align;
1623         uint8_t lane_status;
1624         int lane;
1625
1626         lane_align = intel_dp_link_status(link_status,
1627                                           DP_LANE_ALIGN_STATUS_UPDATED);
1628         if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1629                 return false;
1630         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1631                 lane_status = intel_get_lane_status(link_status, lane);
1632                 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1633                         return false;
1634         }
1635         return true;
1636 }
1637
1638 static bool
1639 intel_dp_set_link_train(struct intel_dp *intel_dp,
1640                         uint32_t dp_reg_value,
1641                         uint8_t dp_train_pat)
1642 {
1643         struct drm_device *dev = intel_dp->base.base.dev;
1644         struct drm_i915_private *dev_priv = dev->dev_private;
1645         int ret;
1646
1647         I915_WRITE(intel_dp->output_reg, dp_reg_value);
1648         POSTING_READ(intel_dp->output_reg);
1649
1650         intel_dp_aux_native_write_1(intel_dp,
1651                                     DP_TRAINING_PATTERN_SET,
1652                                     dp_train_pat);
1653
1654         ret = intel_dp_aux_native_write(intel_dp,
1655                                         DP_TRAINING_LANE0_SET,
1656                                         intel_dp->train_set,
1657                                         intel_dp->lane_count);
1658         if (ret != intel_dp->lane_count)
1659                 return false;
1660
1661         return true;
1662 }
1663
1664 /* Enable corresponding port and start training pattern 1 */
1665 static void
1666 intel_dp_start_link_train(struct intel_dp *intel_dp)
1667 {
1668         struct drm_device *dev = intel_dp->base.base.dev;
1669         struct drm_i915_private *dev_priv = dev->dev_private;
1670         struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1671         int i;
1672         uint8_t voltage;
1673         bool clock_recovery = false;
1674         int voltage_tries, loop_tries;
1675         u32 reg;
1676         uint32_t DP = intel_dp->DP;
1677
1678         /* Enable output, wait for it to become active */
1679         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1680         POSTING_READ(intel_dp->output_reg);
1681         intel_wait_for_vblank(dev, intel_crtc->pipe);
1682
1683         /* Write the link configuration data */
1684         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1685                                   intel_dp->link_configuration,
1686                                   DP_LINK_CONFIGURATION_SIZE);
1687
1688         DP |= DP_PORT_EN;
1689
1690         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1691                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1692         else
1693                 DP &= ~DP_LINK_TRAIN_MASK;
1694         memset(intel_dp->train_set, 0, 4);
1695         voltage = 0xff;
1696         voltage_tries = 0;
1697         loop_tries = 0;
1698         clock_recovery = false;
1699         for (;;) {
1700                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1701                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
1702                 uint32_t    signal_levels;
1703
1704
1705                 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1706                         signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1707                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1708                 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1709                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1710                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1711                 } else {
1712                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1713                         DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
1714                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1715                 }
1716
1717                 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1718                         reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1719                 else
1720                         reg = DP | DP_LINK_TRAIN_PAT_1;
1721
1722                 if (!intel_dp_set_link_train(intel_dp, reg,
1723                                              DP_TRAINING_PATTERN_1))
1724                         break;
1725                 /* Set training pattern 1 */
1726
1727                 DELAY(100);
1728                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1729                         DRM_ERROR("failed to get link status\n");
1730                         break;
1731                 }
1732
1733                 if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1734                         DRM_DEBUG_KMS("clock recovery OK\n");
1735                         clock_recovery = true;
1736                         break;
1737                 }
1738
1739                 /* Check to see if we've tried the max voltage */
1740                 for (i = 0; i < intel_dp->lane_count; i++)
1741                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1742                                 break;
1743                 if (i == intel_dp->lane_count) {
1744                         ++loop_tries;
1745                         if (loop_tries == 5) {
1746                                 DRM_DEBUG_KMS("too many full retries, give up\n");
1747                                 break;
1748                         }
1749                         memset(intel_dp->train_set, 0, 4);
1750                         voltage_tries = 0;
1751                         continue;
1752                 }
1753
1754                 /* Check to see if we've tried the same voltage 5 times */
1755                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1756                         ++voltage_tries;
1757                         if (voltage_tries == 5) {
1758                                 DRM_DEBUG_KMS("too many voltage retries, give up\n");
1759                                 break;
1760                         }
1761                 } else
1762                         voltage_tries = 0;
1763                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1764
1765                 /* Compute new intel_dp->train_set as requested by target */
1766                 intel_get_adjust_train(intel_dp, link_status);
1767         }
1768
1769         intel_dp->DP = DP;
1770 }
1771
1772 static void
1773 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1774 {
1775         struct drm_device *dev = intel_dp->base.base.dev;
1776         struct drm_i915_private *dev_priv = dev->dev_private;
1777         bool channel_eq = false;
1778         int tries, cr_tries;
1779         u32 reg;
1780         uint32_t DP = intel_dp->DP;
1781
1782         /* channel equalization */
1783         tries = 0;
1784         cr_tries = 0;
1785         channel_eq = false;
1786         for (;;) {
1787                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1788                 uint32_t    signal_levels;
1789                 uint8_t     link_status[DP_LINK_STATUS_SIZE];
1790
1791                 if (cr_tries > 5) {
1792                         DRM_ERROR("failed to train DP, aborting\n");
1793                         intel_dp_link_down(intel_dp);
1794                         break;
1795                 }
1796
1797                 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1798                         signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1799                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1800                 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1801                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1802                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1803                 } else {
1804                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1805                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1806                 }
1807
1808                 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1809                         reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1810                 else
1811                         reg = DP | DP_LINK_TRAIN_PAT_2;
1812
1813                 /* channel eq pattern */
1814                 if (!intel_dp_set_link_train(intel_dp, reg,
1815                                              DP_TRAINING_PATTERN_2))
1816                         break;
1817
1818                 DELAY(400);
1819                 if (!intel_dp_get_link_status(intel_dp, link_status))
1820                         break;
1821
1822                 /* Make sure clock is still ok */
1823                 if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1824                         intel_dp_start_link_train(intel_dp);
1825                         cr_tries++;
1826                         continue;
1827                 }
1828
1829                 if (intel_channel_eq_ok(intel_dp, link_status)) {
1830                         channel_eq = true;
1831                         break;
1832                 }
1833
1834                 /* Try 5 times, then try clock recovery if that fails */
1835                 if (tries > 5) {
1836                         intel_dp_link_down(intel_dp);
1837                         intel_dp_start_link_train(intel_dp);
1838                         tries = 0;
1839                         cr_tries++;
1840                         continue;
1841                 }
1842
1843                 /* Compute new intel_dp->train_set as requested by target */
1844                 intel_get_adjust_train(intel_dp, link_status);
1845                 ++tries;
1846         }
1847
1848         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1849                 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1850         else
1851                 reg = DP | DP_LINK_TRAIN_OFF;
1852
1853         I915_WRITE(intel_dp->output_reg, reg);
1854         POSTING_READ(intel_dp->output_reg);
1855         intel_dp_aux_native_write_1(intel_dp,
1856                                     DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1857 }
1858
1859 static void
1860 intel_dp_link_down(struct intel_dp *intel_dp)
1861 {
1862         struct drm_device *dev = intel_dp->base.base.dev;
1863         struct drm_i915_private *dev_priv = dev->dev_private;
1864         uint32_t DP = intel_dp->DP;
1865
1866         if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1867                 return;
1868
1869         DRM_DEBUG_KMS("\n");
1870
1871         if (is_edp(intel_dp)) {
1872                 DP &= ~DP_PLL_ENABLE;
1873                 I915_WRITE(intel_dp->output_reg, DP);
1874                 POSTING_READ(intel_dp->output_reg);
1875                 DELAY(100);
1876         }
1877
1878         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1879                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1880                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1881         } else {
1882                 DP &= ~DP_LINK_TRAIN_MASK;
1883                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1884         }
1885         POSTING_READ(intel_dp->output_reg);
1886
1887         drm_msleep(17, "915dlo");
1888
1889         if (is_edp(intel_dp)) {
1890                 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1891                         DP |= DP_LINK_TRAIN_OFF_CPT;
1892                 else
1893                         DP |= DP_LINK_TRAIN_OFF;
1894         }
1895
1896
1897         if (!HAS_PCH_CPT(dev) &&
1898             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1899                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1900
1901                 /* Hardware workaround: leaving our transcoder select
1902                  * set to transcoder B while it's off will prevent the
1903                  * corresponding HDMI output on transcoder A.
1904                  *
1905                  * Combine this with another hardware workaround:
1906                  * transcoder select bit can only be cleared while the
1907                  * port is enabled.
1908                  */
1909                 DP &= ~DP_PIPEB_SELECT;
1910                 I915_WRITE(intel_dp->output_reg, DP);
1911
1912                 /* Changes to enable or select take place the vblank
1913                  * after being written.
1914                  */
1915                 if (crtc == NULL) {
1916                         /* We can arrive here never having been attached
1917                          * to a CRTC, for instance, due to inheriting
1918                          * random state from the BIOS.
1919                          *
1920                          * If the pipe is not running, play safe and
1921                          * wait for the clocks to stabilise before
1922                          * continuing.
1923                          */
1924                         POSTING_READ(intel_dp->output_reg);
1925                         drm_msleep(50, "915dla");
1926                 } else
1927                         intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1928         }
1929
1930         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
1931         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1932         POSTING_READ(intel_dp->output_reg);
1933         drm_msleep(intel_dp->panel_power_down_delay, "915ldo");
1934 }
1935
1936 static bool
1937 intel_dp_get_dpcd(struct intel_dp *intel_dp)
1938 {
1939         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1940                                            sizeof(intel_dp->dpcd)) &&
1941             (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1942                 return true;
1943         }
1944
1945         return false;
1946 }
1947
1948 static bool
1949 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
1950 {
1951         int ret;
1952
1953         ret = intel_dp_aux_native_read_retry(intel_dp,
1954                                              DP_DEVICE_SERVICE_IRQ_VECTOR,
1955                                              sink_irq_vector, 1);
1956         if (!ret)
1957                 return false;
1958
1959         return true;
1960 }
1961
1962 static void
1963 intel_dp_handle_test_request(struct intel_dp *intel_dp)
1964 {
1965         /* NAK by default */
1966         intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
1967 }
1968
1969 /*
1970  * According to DP spec
1971  * 5.1.2:
1972  *  1. Read DPCD
1973  *  2. Configure link according to Receiver Capabilities
1974  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
1975  *  4. Check link status on receipt of hot-plug interrupt
1976  */
1977
1978 static void
1979 intel_dp_check_link_status(struct intel_dp *intel_dp)
1980 {
1981         u8 sink_irq_vector;
1982         u8 link_status[DP_LINK_STATUS_SIZE];
1983
1984         if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
1985                 return;
1986
1987         if (!intel_dp->base.base.crtc)
1988                 return;
1989
1990         /* Try to read receiver status if the link appears to be up */
1991         if (!intel_dp_get_link_status(intel_dp, link_status)) {
1992                 intel_dp_link_down(intel_dp);
1993                 return;
1994         }
1995
1996         /* Now read the DPCD to see if it's actually running */
1997         if (!intel_dp_get_dpcd(intel_dp)) {
1998                 intel_dp_link_down(intel_dp);
1999                 return;
2000         }
2001
2002         /* Try to read the source of the interrupt */
2003         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2004             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2005                 /* Clear interrupt source */
2006                 intel_dp_aux_native_write_1(intel_dp,
2007                                             DP_DEVICE_SERVICE_IRQ_VECTOR,
2008                                             sink_irq_vector);
2009
2010                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2011                         intel_dp_handle_test_request(intel_dp);
2012                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2013                         DRM_DEBUG_KMS("CP or sink specific irq unhandled\n");
2014         }
2015
2016         if (!intel_channel_eq_ok(intel_dp, link_status)) {
2017                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2018                               drm_get_encoder_name(&intel_dp->base.base));
2019                 intel_dp_start_link_train(intel_dp);
2020                 intel_dp_complete_link_train(intel_dp);
2021         }
2022 }
2023
2024 static enum drm_connector_status
2025 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2026 {
2027         if (intel_dp_get_dpcd(intel_dp))
2028                 return connector_status_connected;
2029         return connector_status_disconnected;
2030 }
2031
2032 static enum drm_connector_status
2033 ironlake_dp_detect(struct intel_dp *intel_dp)
2034 {
2035         enum drm_connector_status status;
2036
2037         /* Can't disconnect eDP, but you can close the lid... */
2038         if (is_edp(intel_dp)) {
2039                 status = intel_panel_detect(intel_dp->base.base.dev);
2040                 if (status == connector_status_unknown)
2041                         status = connector_status_connected;
2042                 return status;
2043         }
2044
2045         return intel_dp_detect_dpcd(intel_dp);
2046 }
2047
2048 static enum drm_connector_status
2049 g4x_dp_detect(struct intel_dp *intel_dp)
2050 {
2051         struct drm_device *dev = intel_dp->base.base.dev;
2052         struct drm_i915_private *dev_priv = dev->dev_private;
2053         uint32_t temp, bit;
2054
2055         switch (intel_dp->output_reg) {
2056         case DP_B:
2057                 bit = DPB_HOTPLUG_INT_STATUS;
2058                 break;
2059         case DP_C:
2060                 bit = DPC_HOTPLUG_INT_STATUS;
2061                 break;
2062         case DP_D:
2063                 bit = DPD_HOTPLUG_INT_STATUS;
2064                 break;
2065         default:
2066                 return connector_status_unknown;
2067         }
2068
2069         temp = I915_READ(PORT_HOTPLUG_STAT);
2070
2071         if ((temp & bit) == 0)
2072                 return connector_status_disconnected;
2073
2074         return intel_dp_detect_dpcd(intel_dp);
2075 }
2076
2077 static struct edid *
2078 intel_dp_get_edid(struct drm_connector *connector, device_t adapter)
2079 {
2080         struct intel_dp *intel_dp = intel_attached_dp(connector);
2081         struct edid     *edid;
2082
2083         ironlake_edp_panel_vdd_on(intel_dp);
2084         edid = drm_get_edid(connector, adapter);
2085         ironlake_edp_panel_vdd_off(intel_dp, false);
2086         return edid;
2087 }
2088
2089 static int
2090 intel_dp_get_edid_modes(struct drm_connector *connector, device_t adapter)
2091 {
2092         struct intel_dp *intel_dp = intel_attached_dp(connector);
2093         int     ret;
2094
2095         ironlake_edp_panel_vdd_on(intel_dp);
2096         ret = intel_ddc_get_modes(connector, adapter);
2097         ironlake_edp_panel_vdd_off(intel_dp, false);
2098         return ret;
2099 }
2100
2101
2102 /**
2103  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2104  *
2105  * \return true if DP port is connected.
2106  * \return false if DP port is disconnected.
2107  */
2108 static enum drm_connector_status
2109 intel_dp_detect(struct drm_connector *connector, bool force)
2110 {
2111         struct intel_dp *intel_dp = intel_attached_dp(connector);
2112         struct drm_device *dev = intel_dp->base.base.dev;
2113         enum drm_connector_status status;
2114         struct edid *edid = NULL;
2115
2116         intel_dp->has_audio = false;
2117
2118         if (HAS_PCH_SPLIT(dev))
2119                 status = ironlake_dp_detect(intel_dp);
2120         else
2121                 status = g4x_dp_detect(intel_dp);
2122         if (status != connector_status_connected)
2123                 return status;
2124
2125         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2126                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2127         } else {
2128                 edid = intel_dp_get_edid(connector, intel_dp->adapter);
2129                 if (edid) {
2130                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
2131                         connector->display_info.raw_edid = NULL;
2132                         free(edid, DRM_MEM_KMS);
2133                 }
2134         }
2135
2136         return connector_status_connected;
2137 }
2138
2139 static int intel_dp_get_modes(struct drm_connector *connector)
2140 {
2141         struct intel_dp *intel_dp = intel_attached_dp(connector);
2142         struct drm_device *dev = intel_dp->base.base.dev;
2143         struct drm_i915_private *dev_priv = dev->dev_private;
2144         int ret;
2145
2146         /* We should parse the EDID data and find out if it has an audio sink
2147          */
2148
2149         ret = intel_dp_get_edid_modes(connector, intel_dp->adapter);
2150         if (ret) {
2151                 if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2152                         struct drm_display_mode *newmode;
2153                         list_for_each_entry(newmode, &connector->probed_modes,
2154                                             head) {
2155                                 if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2156                                         intel_dp->panel_fixed_mode =
2157                                                 drm_mode_duplicate(dev, newmode);
2158                                         break;
2159                                 }
2160                         }
2161                 }
2162                 return ret;
2163         }
2164
2165         /* if eDP has no EDID, try to use fixed panel mode from VBT */
2166         if (is_edp(intel_dp)) {
2167                 /* initialize panel mode from VBT if available for eDP */
2168                 if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2169                         intel_dp->panel_fixed_mode =
2170                                 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2171                         if (intel_dp->panel_fixed_mode) {
2172                                 intel_dp->panel_fixed_mode->type |=
2173                                         DRM_MODE_TYPE_PREFERRED;
2174                         }
2175                 }
2176                 if (intel_dp->panel_fixed_mode) {
2177                         struct drm_display_mode *mode;
2178                         mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2179                         drm_mode_probed_add(connector, mode);
2180                         return 1;
2181                 }
2182         }
2183         return 0;
2184 }
2185
2186 static bool
2187 intel_dp_detect_audio(struct drm_connector *connector)
2188 {
2189         struct intel_dp *intel_dp = intel_attached_dp(connector);
2190         struct edid *edid;
2191         bool has_audio = false;
2192
2193         edid = intel_dp_get_edid(connector, intel_dp->adapter);
2194         if (edid) {
2195                 has_audio = drm_detect_monitor_audio(edid);
2196
2197                 connector->display_info.raw_edid = NULL;
2198                 free(edid, DRM_MEM_KMS);
2199         }
2200
2201         return has_audio;
2202 }
2203
2204 static int
2205 intel_dp_set_property(struct drm_connector *connector,
2206                       struct drm_property *property,
2207                       uint64_t val)
2208 {
2209         struct drm_i915_private *dev_priv = connector->dev->dev_private;
2210         struct intel_dp *intel_dp = intel_attached_dp(connector);
2211         int ret;
2212
2213         ret = drm_connector_property_set_value(connector, property, val);
2214         if (ret)
2215                 return ret;
2216
2217         if (property == dev_priv->force_audio_property) {
2218                 int i = val;
2219                 bool has_audio;
2220
2221                 if (i == intel_dp->force_audio)
2222                         return 0;
2223
2224                 intel_dp->force_audio = i;
2225
2226                 if (i == HDMI_AUDIO_AUTO)
2227                         has_audio = intel_dp_detect_audio(connector);
2228                 else
2229                         has_audio = (i == HDMI_AUDIO_ON);
2230
2231                 if (has_audio == intel_dp->has_audio)
2232                         return 0;
2233
2234                 intel_dp->has_audio = has_audio;
2235                 goto done;
2236         }
2237
2238         if (property == dev_priv->broadcast_rgb_property) {
2239                 if (val == !!intel_dp->color_range)
2240                         return 0;
2241
2242                 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2243                 goto done;
2244         }
2245
2246         return -EINVAL;
2247
2248 done:
2249         if (intel_dp->base.base.crtc) {
2250                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
2251                 drm_crtc_helper_set_mode(crtc, &crtc->mode,
2252                                          crtc->x, crtc->y,
2253                                          crtc->fb);
2254         }
2255
2256         return 0;
2257 }
2258
2259 static void
2260 intel_dp_destroy(struct drm_connector *connector)
2261 {
2262         struct drm_device *dev = connector->dev;
2263
2264         if (intel_dpd_is_edp(dev))
2265                 intel_panel_destroy_backlight(dev);
2266
2267 #if 0
2268         drm_sysfs_connector_remove(connector);
2269 #endif
2270         drm_connector_cleanup(connector);
2271         free(connector, DRM_MEM_KMS);
2272 }
2273
2274 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2275 {
2276         struct drm_device *dev;
2277         struct intel_dp *intel_dp;
2278
2279         intel_dp = enc_to_intel_dp(encoder);
2280         dev = encoder->dev;
2281
2282         if (intel_dp->dp_iic_bus != NULL) {
2283                 if (intel_dp->adapter != NULL) {
2284                         device_delete_child(intel_dp->dp_iic_bus,
2285                             intel_dp->adapter);
2286                 }
2287                 device_delete_child(dev->device, intel_dp->dp_iic_bus);
2288         }
2289         drm_encoder_cleanup(encoder);
2290         if (is_edp(intel_dp)) {
2291                 struct drm_i915_private *dev_priv = intel_dp->base.base.dev->dev_private;
2292
2293                 taskqueue_cancel_timeout(dev_priv->tq,
2294                     &intel_dp->panel_vdd_task, NULL);
2295                 taskqueue_drain_timeout(dev_priv->tq,
2296                     &intel_dp->panel_vdd_task);
2297                 ironlake_panel_vdd_off_sync(intel_dp);
2298         }
2299         free(intel_dp, DRM_MEM_KMS);
2300 }
2301
2302 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2303         .dpms = intel_dp_dpms,
2304         .mode_fixup = intel_dp_mode_fixup,
2305         .prepare = intel_dp_prepare,
2306         .mode_set = intel_dp_mode_set,
2307         .commit = intel_dp_commit,
2308 };
2309
2310 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2311         .dpms = drm_helper_connector_dpms,
2312         .detect = intel_dp_detect,
2313         .fill_modes = drm_helper_probe_single_connector_modes,
2314         .set_property = intel_dp_set_property,
2315         .destroy = intel_dp_destroy,
2316 };
2317
2318 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2319         .get_modes = intel_dp_get_modes,
2320         .mode_valid = intel_dp_mode_valid,
2321         .best_encoder = intel_best_encoder,
2322 };
2323
2324 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2325         .destroy = intel_dp_encoder_destroy,
2326 };
2327
2328 static void
2329 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2330 {
2331         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2332
2333         intel_dp_check_link_status(intel_dp);
2334 }
2335
2336 /* Return which DP Port should be selected for Transcoder DP control */
2337 int
2338 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2339 {
2340         struct drm_device *dev = crtc->dev;
2341         struct drm_mode_config *mode_config = &dev->mode_config;
2342         struct drm_encoder *encoder;
2343
2344         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
2345                 struct intel_dp *intel_dp;
2346
2347                 if (encoder->crtc != crtc)
2348                         continue;
2349
2350                 intel_dp = enc_to_intel_dp(encoder);
2351                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2352                     intel_dp->base.type == INTEL_OUTPUT_EDP)
2353                         return intel_dp->output_reg;
2354         }
2355
2356         return -1;
2357 }
2358
2359 /* check the VBT to see whether the eDP is on DP-D port */
2360 bool intel_dpd_is_edp(struct drm_device *dev)
2361 {
2362         struct drm_i915_private *dev_priv = dev->dev_private;
2363         struct child_device_config *p_child;
2364         int i;
2365
2366         if (!dev_priv->child_dev_num)
2367                 return false;
2368
2369         for (i = 0; i < dev_priv->child_dev_num; i++) {
2370                 p_child = dev_priv->child_dev + i;
2371
2372                 if (p_child->dvo_port == PORT_IDPD &&
2373                     p_child->device_type == DEVICE_TYPE_eDP)
2374                         return true;
2375         }
2376         return false;
2377 }
2378
2379 static void
2380 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2381 {
2382         intel_attach_force_audio_property(connector);
2383         intel_attach_broadcast_rgb_property(connector);
2384 }
2385
2386 void
2387 intel_dp_init(struct drm_device *dev, int output_reg)
2388 {
2389         struct drm_i915_private *dev_priv = dev->dev_private;
2390         struct drm_connector *connector;
2391         struct intel_dp *intel_dp;
2392         struct intel_encoder *intel_encoder;
2393         struct intel_connector *intel_connector;
2394         const char *name = NULL;
2395         int type;
2396
2397         intel_dp = malloc(sizeof(struct intel_dp), DRM_MEM_KMS,
2398             M_WAITOK | M_ZERO);
2399
2400         intel_dp->output_reg = output_reg;
2401         intel_dp->dpms_mode = -1;
2402
2403         intel_connector = malloc(sizeof(struct intel_connector), DRM_MEM_KMS,
2404             M_WAITOK | M_ZERO);
2405         intel_encoder = &intel_dp->base;
2406
2407         if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2408                 if (intel_dpd_is_edp(dev))
2409                         intel_dp->is_pch_edp = true;
2410
2411         if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2412                 type = DRM_MODE_CONNECTOR_eDP;
2413                 intel_encoder->type = INTEL_OUTPUT_EDP;
2414         } else {
2415                 type = DRM_MODE_CONNECTOR_DisplayPort;
2416                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2417         }
2418
2419         connector = &intel_connector->base;
2420         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2421         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2422
2423         connector->polled = DRM_CONNECTOR_POLL_HPD;
2424
2425         if (output_reg == DP_B || output_reg == PCH_DP_B)
2426                 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
2427         else if (output_reg == DP_C || output_reg == PCH_DP_C)
2428                 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
2429         else if (output_reg == DP_D || output_reg == PCH_DP_D)
2430                 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
2431
2432         if (is_edp(intel_dp)) {
2433                 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
2434                 TIMEOUT_TASK_INIT(dev_priv->tq, &intel_dp->panel_vdd_task, 0,
2435                     ironlake_panel_vdd_work, intel_dp);
2436         }
2437
2438         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2439         connector->interlace_allowed = true;
2440         connector->doublescan_allowed = 0;
2441
2442         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2443                          DRM_MODE_ENCODER_TMDS);
2444         drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2445
2446         intel_connector_attach_encoder(intel_connector, intel_encoder);
2447 #if 0
2448         drm_sysfs_connector_add(connector);
2449 #endif
2450
2451         /* Set up the DDC bus. */
2452         switch (output_reg) {
2453                 case DP_A:
2454                         name = "DPDDC-A";
2455                         break;
2456                 case DP_B:
2457                 case PCH_DP_B:
2458                         dev_priv->hotplug_supported_mask |=
2459                                 HDMIB_HOTPLUG_INT_STATUS;
2460                         name = "DPDDC-B";
2461                         break;
2462                 case DP_C:
2463                 case PCH_DP_C:
2464                         dev_priv->hotplug_supported_mask |=
2465                                 HDMIC_HOTPLUG_INT_STATUS;
2466                         name = "DPDDC-C";
2467                         break;
2468                 case DP_D:
2469                 case PCH_DP_D:
2470                         dev_priv->hotplug_supported_mask |=
2471                                 HDMID_HOTPLUG_INT_STATUS;
2472                         name = "DPDDC-D";
2473                         break;
2474         }
2475
2476         /* Cache some DPCD data in the eDP case */
2477         if (is_edp(intel_dp)) {
2478                 bool ret;
2479                 struct edp_power_seq    cur, vbt;
2480                 u32 pp_on, pp_off, pp_div;
2481
2482                 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2483                 pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2484                 pp_div = I915_READ(PCH_PP_DIVISOR);
2485
2486                 /* Pull timing values out of registers */
2487                 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2488                         PANEL_POWER_UP_DELAY_SHIFT;
2489
2490                 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2491                         PANEL_LIGHT_ON_DELAY_SHIFT;
2492
2493                 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2494                         PANEL_LIGHT_OFF_DELAY_SHIFT;
2495
2496                 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2497                         PANEL_POWER_DOWN_DELAY_SHIFT;
2498
2499                 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2500                                PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2501
2502                 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2503                               cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2504
2505                 vbt = dev_priv->edp.pps;
2506
2507                 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2508                               vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2509
2510 #define get_delay(field)        ((max(cur.field, vbt.field) + 9) / 10)
2511
2512                 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2513                 intel_dp->backlight_on_delay = get_delay(t8);
2514                 intel_dp->backlight_off_delay = get_delay(t9);
2515                 intel_dp->panel_power_down_delay = get_delay(t10);
2516                 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2517
2518                 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2519                               intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2520                               intel_dp->panel_power_cycle_delay);
2521
2522                 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2523                               intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2524
2525                 ironlake_edp_panel_vdd_on(intel_dp);
2526                 ret = intel_dp_get_dpcd(intel_dp);
2527                 ironlake_edp_panel_vdd_off(intel_dp, false);
2528
2529                 if (ret) {
2530                         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2531                                 dev_priv->no_aux_handshake =
2532                                         intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2533                                         DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2534                 } else {
2535                         /* if this fails, presume the device is a ghost */
2536                         DRM_INFO("failed to retrieve link info, disabling eDP\n");
2537                         intel_dp_encoder_destroy(&intel_dp->base.base);
2538                         intel_dp_destroy(&intel_connector->base);
2539                         return;
2540                 }
2541         }
2542
2543         intel_dp_i2c_init(intel_dp, intel_connector, name);
2544
2545         intel_encoder->hot_plug = intel_dp_hot_plug;
2546
2547         if (is_edp(intel_dp)) {
2548                 dev_priv->int_edp_connector = connector;
2549                 intel_panel_setup_backlight(dev);
2550         }
2551
2552         intel_dp_add_properties(intel_dp, connector);
2553
2554         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2555          * 0xd.  Failure to do so will result in spurious interrupts being
2556          * generated on the port when a cable is not attached.
2557          */
2558         if (IS_G4X(dev) && !IS_GM45(dev)) {
2559                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2560                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2561         }
2562 }