ANSIfication (procedure args) cleanup.
[dragonfly.git] / sys / vm / vm_pageout.c
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *      This product includes software developed by the University of
23  *      California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
41  *
42  *
43  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44  * All rights reserved.
45  *
46  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  *
68  * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
69  * $DragonFly: src/sys/vm/vm_pageout.c,v 1.10 2004/03/23 22:54:32 dillon Exp $
70  */
71
72 /*
73  *      The proverbial page-out daemon.
74  */
75
76 #include "opt_vm.h"
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/kthread.h>
82 #include <sys/resourcevar.h>
83 #include <sys/signalvar.h>
84 #include <sys/vnode.h>
85 #include <sys/vmmeter.h>
86 #include <sys/sysctl.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <sys/lock.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_extern.h>
98 #include <vm/vm_page2.h>
99
100 /*
101  * System initialization
102  */
103
104 /* the kernel process "vm_pageout"*/
105 static void vm_pageout (void);
106 static int vm_pageout_clean (vm_page_t);
107 static void vm_pageout_scan (int pass);
108 static int vm_pageout_free_page_calc (vm_size_t count);
109 struct thread *pagethread;
110
111 static struct kproc_desc page_kp = {
112         "pagedaemon",
113         vm_pageout,
114         &pagethread
115 };
116 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
117
118 #if !defined(NO_SWAPPING)
119 /* the kernel process "vm_daemon"*/
120 static void vm_daemon (void);
121 static struct   thread *vmthread;
122
123 static struct kproc_desc vm_kp = {
124         "vmdaemon",
125         vm_daemon,
126         &vmthread
127 };
128 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
129 #endif
130
131
132 int vm_pages_needed=0;          /* Event on which pageout daemon sleeps */
133 int vm_pageout_deficit=0;       /* Estimated number of pages deficit */
134 int vm_pageout_pages_needed=0;  /* flag saying that the pageout daemon needs pages */
135
136 #if !defined(NO_SWAPPING)
137 static int vm_pageout_req_swapout;      /* XXX */
138 static int vm_daemon_needed;
139 #endif
140 extern int vm_swap_size;
141 static int vm_max_launder = 32;
142 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
143 static int vm_pageout_full_stats_interval = 0;
144 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
145 static int defer_swap_pageouts=0;
146 static int disable_swap_pageouts=0;
147
148 #if defined(NO_SWAPPING)
149 static int vm_swap_enabled=0;
150 static int vm_swap_idle_enabled=0;
151 #else
152 static int vm_swap_enabled=1;
153 static int vm_swap_idle_enabled=0;
154 #endif
155
156 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
157         CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
158
159 SYSCTL_INT(_vm, OID_AUTO, max_launder,
160         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
161
162 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
163         CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
164
165 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
166         CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
167
168 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
169         CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
170
171 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
172         CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
173
174 #if defined(NO_SWAPPING)
175 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
176         CTLFLAG_RD, &vm_swap_enabled, 0, "");
177 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
178         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
179 #else
180 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
181         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
182 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
183         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
184 #endif
185
186 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
187         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
188
189 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
190         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
191
192 static int pageout_lock_miss;
193 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
194         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
195
196 #define VM_PAGEOUT_PAGE_COUNT 16
197 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
198
199 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
200
201 #if !defined(NO_SWAPPING)
202 typedef void freeer_fcn_t (vm_map_t, vm_object_t, vm_pindex_t, int);
203 static void vm_pageout_map_deactivate_pages (vm_map_t, vm_pindex_t);
204 static freeer_fcn_t vm_pageout_object_deactivate_pages;
205 static void vm_req_vmdaemon (void);
206 #endif
207 static void vm_pageout_page_stats(void);
208
209 /*
210  * vm_pageout_clean:
211  *
212  * Clean the page and remove it from the laundry.
213  * 
214  * We set the busy bit to cause potential page faults on this page to
215  * block.  Note the careful timing, however, the busy bit isn't set till
216  * late and we cannot do anything that will mess with the page.
217  */
218
219 static int
220 vm_pageout_clean(vm_page_t m)
221 {
222         vm_object_t object;
223         vm_page_t mc[2*vm_pageout_page_count];
224         int pageout_count;
225         int ib, is, page_base;
226         vm_pindex_t pindex = m->pindex;
227
228         object = m->object;
229
230         /*
231          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
232          * with the new swapper, but we could have serious problems paging
233          * out other object types if there is insufficient memory.  
234          *
235          * Unfortunately, checking free memory here is far too late, so the
236          * check has been moved up a procedural level.
237          */
238
239         /*
240          * Don't mess with the page if it's busy, held, or special
241          */
242         if ((m->hold_count != 0) ||
243             ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
244                 return 0;
245         }
246
247         mc[vm_pageout_page_count] = m;
248         pageout_count = 1;
249         page_base = vm_pageout_page_count;
250         ib = 1;
251         is = 1;
252
253         /*
254          * Scan object for clusterable pages.
255          *
256          * We can cluster ONLY if: ->> the page is NOT
257          * clean, wired, busy, held, or mapped into a
258          * buffer, and one of the following:
259          * 1) The page is inactive, or a seldom used
260          *    active page.
261          * -or-
262          * 2) we force the issue.
263          *
264          * During heavy mmap/modification loads the pageout
265          * daemon can really fragment the underlying file
266          * due to flushing pages out of order and not trying
267          * align the clusters (which leave sporatic out-of-order
268          * holes).  To solve this problem we do the reverse scan
269          * first and attempt to align our cluster, then do a 
270          * forward scan if room remains.
271          */
272
273 more:
274         while (ib && pageout_count < vm_pageout_page_count) {
275                 vm_page_t p;
276
277                 if (ib > pindex) {
278                         ib = 0;
279                         break;
280                 }
281
282                 if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
283                         ib = 0;
284                         break;
285                 }
286                 if (((p->queue - p->pc) == PQ_CACHE) ||
287                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
288                         ib = 0;
289                         break;
290                 }
291                 vm_page_test_dirty(p);
292                 if ((p->dirty & p->valid) == 0 ||
293                     p->queue != PQ_INACTIVE ||
294                     p->wire_count != 0 ||       /* may be held by buf cache */
295                     p->hold_count != 0) {       /* may be undergoing I/O */
296                         ib = 0;
297                         break;
298                 }
299                 mc[--page_base] = p;
300                 ++pageout_count;
301                 ++ib;
302                 /*
303                  * alignment boundry, stop here and switch directions.  Do
304                  * not clear ib.
305                  */
306                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
307                         break;
308         }
309
310         while (pageout_count < vm_pageout_page_count && 
311             pindex + is < object->size) {
312                 vm_page_t p;
313
314                 if ((p = vm_page_lookup(object, pindex + is)) == NULL)
315                         break;
316                 if (((p->queue - p->pc) == PQ_CACHE) ||
317                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
318                         break;
319                 }
320                 vm_page_test_dirty(p);
321                 if ((p->dirty & p->valid) == 0 ||
322                     p->queue != PQ_INACTIVE ||
323                     p->wire_count != 0 ||       /* may be held by buf cache */
324                     p->hold_count != 0) {       /* may be undergoing I/O */
325                         break;
326                 }
327                 mc[page_base + pageout_count] = p;
328                 ++pageout_count;
329                 ++is;
330         }
331
332         /*
333          * If we exhausted our forward scan, continue with the reverse scan
334          * when possible, even past a page boundry.  This catches boundry
335          * conditions.
336          */
337         if (ib && pageout_count < vm_pageout_page_count)
338                 goto more;
339
340         /*
341          * we allow reads during pageouts...
342          */
343         return vm_pageout_flush(&mc[page_base], pageout_count, 0);
344 }
345
346 /*
347  * vm_pageout_flush() - launder the given pages
348  *
349  *      The given pages are laundered.  Note that we setup for the start of
350  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
351  *      reference count all in here rather then in the parent.  If we want
352  *      the parent to do more sophisticated things we may have to change
353  *      the ordering.
354  */
355
356 int
357 vm_pageout_flush(vm_page_t *mc, int count, int flags)
358 {
359         vm_object_t object;
360         int pageout_status[count];
361         int numpagedout = 0;
362         int i;
363
364         /*
365          * Initiate I/O.  Bump the vm_page_t->busy counter and
366          * mark the pages read-only.
367          *
368          * We do not have to fixup the clean/dirty bits here... we can
369          * allow the pager to do it after the I/O completes.
370          */
371
372         for (i = 0; i < count; i++) {
373                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
374                 vm_page_io_start(mc[i]);
375                 vm_page_protect(mc[i], VM_PROT_READ);
376         }
377
378         object = mc[0]->object;
379         vm_object_pip_add(object, count);
380
381         vm_pager_put_pages(object, mc, count,
382             (flags | ((object == kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
383             pageout_status);
384
385         for (i = 0; i < count; i++) {
386                 vm_page_t mt = mc[i];
387
388                 switch (pageout_status[i]) {
389                 case VM_PAGER_OK:
390                         numpagedout++;
391                         break;
392                 case VM_PAGER_PEND:
393                         numpagedout++;
394                         break;
395                 case VM_PAGER_BAD:
396                         /*
397                          * Page outside of range of object. Right now we
398                          * essentially lose the changes by pretending it
399                          * worked.
400                          */
401                         pmap_clear_modify(mt);
402                         vm_page_undirty(mt);
403                         break;
404                 case VM_PAGER_ERROR:
405                 case VM_PAGER_FAIL:
406                         /*
407                          * If page couldn't be paged out, then reactivate the
408                          * page so it doesn't clog the inactive list.  (We
409                          * will try paging out it again later).
410                          */
411                         vm_page_activate(mt);
412                         break;
413                 case VM_PAGER_AGAIN:
414                         break;
415                 }
416
417                 /*
418                  * If the operation is still going, leave the page busy to
419                  * block all other accesses. Also, leave the paging in
420                  * progress indicator set so that we don't attempt an object
421                  * collapse.
422                  */
423                 if (pageout_status[i] != VM_PAGER_PEND) {
424                         vm_object_pip_wakeup(object);
425                         vm_page_io_finish(mt);
426                         if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
427                                 vm_page_protect(mt, VM_PROT_READ);
428                 }
429         }
430         return numpagedout;
431 }
432
433 #if !defined(NO_SWAPPING)
434 /*
435  *      vm_pageout_object_deactivate_pages
436  *
437  *      deactivate enough pages to satisfy the inactive target
438  *      requirements or if vm_page_proc_limit is set, then
439  *      deactivate all of the pages in the object and its
440  *      backing_objects.
441  *
442  *      The object and map must be locked.
443  */
444 static void
445 vm_pageout_object_deactivate_pages(vm_map_t map, vm_object_t object,
446     vm_pindex_t desired, int map_remove_only)
447 {
448         vm_page_t p, next;
449         int rcount;
450         int remove_mode;
451         int s;
452
453         if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
454                 return;
455
456         while (object) {
457                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
458                         return;
459                 if (object->paging_in_progress)
460                         return;
461
462                 remove_mode = map_remove_only;
463                 if (object->shadow_count > 1)
464                         remove_mode = 1;
465         /*
466          * scan the objects entire memory queue
467          */
468                 rcount = object->resident_page_count;
469                 p = TAILQ_FIRST(&object->memq);
470                 while (p && (rcount-- > 0)) {
471                         int actcount;
472                         if (pmap_resident_count(vm_map_pmap(map)) <= desired)
473                                 return;
474                         next = TAILQ_NEXT(p, listq);
475                         mycpu->gd_cnt.v_pdpages++;
476                         if (p->wire_count != 0 ||
477                             p->hold_count != 0 ||
478                             p->busy != 0 ||
479                             (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
480                             !pmap_page_exists_quick(vm_map_pmap(map), p)) {
481                                 p = next;
482                                 continue;
483                         }
484
485                         actcount = pmap_ts_referenced(p);
486                         if (actcount) {
487                                 vm_page_flag_set(p, PG_REFERENCED);
488                         } else if (p->flags & PG_REFERENCED) {
489                                 actcount = 1;
490                         }
491
492                         if ((p->queue != PQ_ACTIVE) &&
493                                 (p->flags & PG_REFERENCED)) {
494                                 vm_page_activate(p);
495                                 p->act_count += actcount;
496                                 vm_page_flag_clear(p, PG_REFERENCED);
497                         } else if (p->queue == PQ_ACTIVE) {
498                                 if ((p->flags & PG_REFERENCED) == 0) {
499                                         p->act_count -= min(p->act_count, ACT_DECLINE);
500                                         if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
501                                                 vm_page_protect(p, VM_PROT_NONE);
502                                                 vm_page_deactivate(p);
503                                         } else {
504                                                 s = splvm();
505                                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
506                                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
507                                                 splx(s);
508                                         }
509                                 } else {
510                                         vm_page_activate(p);
511                                         vm_page_flag_clear(p, PG_REFERENCED);
512                                         if (p->act_count < (ACT_MAX - ACT_ADVANCE))
513                                                 p->act_count += ACT_ADVANCE;
514                                         s = splvm();
515                                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
516                                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
517                                         splx(s);
518                                 }
519                         } else if (p->queue == PQ_INACTIVE) {
520                                 vm_page_protect(p, VM_PROT_NONE);
521                         }
522                         p = next;
523                 }
524                 object = object->backing_object;
525         }
526         return;
527 }
528
529 /*
530  * deactivate some number of pages in a map, try to do it fairly, but
531  * that is really hard to do.
532  */
533 static void
534 vm_pageout_map_deactivate_pages(vm_map_t map, vm_pindex_t desired)
535 {
536         vm_map_entry_t tmpe;
537         vm_object_t obj, bigobj;
538         int nothingwired;
539
540         if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, NULL, curthread)) {
541                 return;
542         }
543
544         bigobj = NULL;
545         nothingwired = TRUE;
546
547         /*
548          * first, search out the biggest object, and try to free pages from
549          * that.
550          */
551         tmpe = map->header.next;
552         while (tmpe != &map->header) {
553                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
554                         obj = tmpe->object.vm_object;
555                         if ((obj != NULL) && (obj->shadow_count <= 1) &&
556                                 ((bigobj == NULL) ||
557                                  (bigobj->resident_page_count < obj->resident_page_count))) {
558                                 bigobj = obj;
559                         }
560                 }
561                 if (tmpe->wired_count > 0)
562                         nothingwired = FALSE;
563                 tmpe = tmpe->next;
564         }
565
566         if (bigobj)
567                 vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
568
569         /*
570          * Next, hunt around for other pages to deactivate.  We actually
571          * do this search sort of wrong -- .text first is not the best idea.
572          */
573         tmpe = map->header.next;
574         while (tmpe != &map->header) {
575                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
576                         break;
577                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
578                         obj = tmpe->object.vm_object;
579                         if (obj)
580                                 vm_pageout_object_deactivate_pages(map, obj, desired, 0);
581                 }
582                 tmpe = tmpe->next;
583         };
584
585         /*
586          * Remove all mappings if a process is swapped out, this will free page
587          * table pages.
588          */
589         if (desired == 0 && nothingwired)
590                 pmap_remove(vm_map_pmap(map),
591                         VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS);
592         vm_map_unlock(map);
593         return;
594 }
595 #endif
596
597 /*
598  * Don't try to be fancy - being fancy can lead to VOP_LOCK's and therefore
599  * to vnode deadlocks.  We only do it for OBJT_DEFAULT and OBJT_SWAP objects
600  * which we know can be trivially freed.
601  */
602
603 void
604 vm_pageout_page_free(vm_page_t m) {
605         vm_object_t object = m->object;
606         int type = object->type;
607
608         if (type == OBJT_SWAP || type == OBJT_DEFAULT)
609                 vm_object_reference(object);
610         vm_page_busy(m);
611         vm_page_protect(m, VM_PROT_NONE);
612         vm_page_free(m);
613         if (type == OBJT_SWAP || type == OBJT_DEFAULT)
614                 vm_object_deallocate(object);
615 }
616
617 /*
618  *      vm_pageout_scan does the dirty work for the pageout daemon.
619  */
620 static void
621 vm_pageout_scan(int pass)
622 {
623         vm_page_t m, next;
624         struct vm_page marker;
625         int page_shortage, maxscan, pcount;
626         int addl_page_shortage, addl_page_shortage_init;
627         struct proc *p, *bigproc;
628         vm_offset_t size, bigsize;
629         vm_object_t object;
630         int actcount;
631         int vnodes_skipped = 0;
632         int maxlaunder;
633         int s;
634
635         /*
636          * Do whatever cleanup that the pmap code can.
637          */
638         pmap_collect();
639
640         addl_page_shortage_init = vm_pageout_deficit;
641         vm_pageout_deficit = 0;
642
643         /*
644          * Calculate the number of pages we want to either free or move
645          * to the cache.
646          */
647         page_shortage = vm_paging_target() + addl_page_shortage_init;
648
649         /*
650          * Initialize our marker
651          */
652         bzero(&marker, sizeof(marker));
653         marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
654         marker.queue = PQ_INACTIVE;
655         marker.wire_count = 1;
656
657         /*
658          * Start scanning the inactive queue for pages we can move to the
659          * cache or free.  The scan will stop when the target is reached or
660          * we have scanned the entire inactive queue.  Note that m->act_count
661          * is not used to form decisions for the inactive queue, only for the
662          * active queue.
663          *
664          * maxlaunder limits the number of dirty pages we flush per scan.
665          * For most systems a smaller value (16 or 32) is more robust under
666          * extreme memory and disk pressure because any unnecessary writes
667          * to disk can result in extreme performance degredation.  However,
668          * systems with excessive dirty pages (especially when MAP_NOSYNC is
669          * used) will die horribly with limited laundering.  If the pageout
670          * daemon cannot clean enough pages in the first pass, we let it go
671          * all out in succeeding passes.
672          */
673         if ((maxlaunder = vm_max_launder) <= 1)
674                 maxlaunder = 1;
675         if (pass)
676                 maxlaunder = 10000;
677
678 rescan0:
679         addl_page_shortage = addl_page_shortage_init;
680         maxscan = vmstats.v_inactive_count;
681         for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
682              m != NULL && maxscan-- > 0 && page_shortage > 0;
683              m = next) {
684
685                 mycpu->gd_cnt.v_pdpages++;
686
687                 if (m->queue != PQ_INACTIVE) {
688                         goto rescan0;
689                 }
690
691                 next = TAILQ_NEXT(m, pageq);
692
693                 /*
694                  * skip marker pages
695                  */
696                 if (m->flags & PG_MARKER)
697                         continue;
698
699                 /*
700                  * A held page may be undergoing I/O, so skip it.
701                  */
702                 if (m->hold_count) {
703                         s = splvm();
704                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
705                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
706                         splx(s);
707                         addl_page_shortage++;
708                         continue;
709                 }
710                 /*
711                  * Dont mess with busy pages, keep in the front of the
712                  * queue, most likely are being paged out.
713                  */
714                 if (m->busy || (m->flags & PG_BUSY)) {
715                         addl_page_shortage++;
716                         continue;
717                 }
718
719                 /*
720                  * If the object is not being used, we ignore previous 
721                  * references.
722                  */
723                 if (m->object->ref_count == 0) {
724                         vm_page_flag_clear(m, PG_REFERENCED);
725                         pmap_clear_reference(m);
726
727                 /*
728                  * Otherwise, if the page has been referenced while in the 
729                  * inactive queue, we bump the "activation count" upwards, 
730                  * making it less likely that the page will be added back to 
731                  * the inactive queue prematurely again.  Here we check the 
732                  * page tables (or emulated bits, if any), given the upper 
733                  * level VM system not knowing anything about existing 
734                  * references.
735                  */
736                 } else if (((m->flags & PG_REFERENCED) == 0) &&
737                         (actcount = pmap_ts_referenced(m))) {
738                         vm_page_activate(m);
739                         m->act_count += (actcount + ACT_ADVANCE);
740                         continue;
741                 }
742
743                 /*
744                  * If the upper level VM system knows about any page 
745                  * references, we activate the page.  We also set the 
746                  * "activation count" higher than normal so that we will less 
747                  * likely place pages back onto the inactive queue again.
748                  */
749                 if ((m->flags & PG_REFERENCED) != 0) {
750                         vm_page_flag_clear(m, PG_REFERENCED);
751                         actcount = pmap_ts_referenced(m);
752                         vm_page_activate(m);
753                         m->act_count += (actcount + ACT_ADVANCE + 1);
754                         continue;
755                 }
756
757                 /*
758                  * If the upper level VM system doesn't know anything about 
759                  * the page being dirty, we have to check for it again.  As 
760                  * far as the VM code knows, any partially dirty pages are 
761                  * fully dirty.
762                  *
763                  * Pages marked PG_WRITEABLE may be mapped into the user
764                  * address space of a process running on another cpu.  A
765                  * user process (without holding the MP lock) running on
766                  * another cpu may be able to touch the page while we are
767                  * trying to remove it.  To prevent this from occuring we
768                  * must call pmap_remove_all() or otherwise make the page
769                  * read-only.  If the race occured pmap_remove_all() is
770                  * responsible for setting m->dirty.
771                  */
772                 if (m->dirty == 0) {
773                         vm_page_test_dirty(m);
774 #if 0
775                         if (m->dirty == 0 && (m->flags & PG_WRITEABLE) != 0)
776                                 pmap_remove_all(m);
777 #endif
778                 } else {
779                         vm_page_dirty(m);
780                 }
781
782                 if (m->valid == 0) {
783                         /*
784                          * Invalid pages can be easily freed
785                          */
786                         vm_pageout_page_free(m);
787                         mycpu->gd_cnt.v_dfree++;
788                         --page_shortage;
789                 } else if (m->dirty == 0) {
790                         /*
791                          * Clean pages can be placed onto the cache queue.
792                          * This effectively frees them.
793                          */
794                         vm_page_cache(m);
795                         --page_shortage;
796                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
797                         /*
798                          * Dirty pages need to be paged out, but flushing
799                          * a page is extremely expensive verses freeing
800                          * a clean page.  Rather then artificially limiting
801                          * the number of pages we can flush, we instead give
802                          * dirty pages extra priority on the inactive queue
803                          * by forcing them to be cycled through the queue
804                          * twice before being flushed, after which the 
805                          * (now clean) page will cycle through once more
806                          * before being freed.  This significantly extends
807                          * the thrash point for a heavily loaded machine.
808                          */
809                         s = splvm();
810                         vm_page_flag_set(m, PG_WINATCFLS);
811                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
812                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
813                         splx(s);
814                 } else if (maxlaunder > 0) {
815                         /*
816                          * We always want to try to flush some dirty pages if
817                          * we encounter them, to keep the system stable.
818                          * Normally this number is small, but under extreme
819                          * pressure where there are insufficient clean pages
820                          * on the inactive queue, we may have to go all out.
821                          */
822                         int swap_pageouts_ok;
823                         struct vnode *vp = NULL;
824
825                         object = m->object;
826
827                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
828                                 swap_pageouts_ok = 1;
829                         } else {
830                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
831                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
832                                 vm_page_count_min());
833                                                                                 
834                         }
835
836                         /*
837                          * We don't bother paging objects that are "dead".  
838                          * Those objects are in a "rundown" state.
839                          */
840                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
841                                 s = splvm();
842                                 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
843                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
844                                 splx(s);
845                                 continue;
846                         }
847
848                         /*
849                          * The object is already known NOT to be dead.   It
850                          * is possible for the vget() to block the whole
851                          * pageout daemon, but the new low-memory handling
852                          * code should prevent it.
853                          *
854                          * The previous code skipped locked vnodes and, worse,
855                          * reordered pages in the queue.  This results in
856                          * completely non-deterministic operation because,
857                          * quite often, a vm_fault has initiated an I/O and
858                          * is holding a locked vnode at just the point where
859                          * the pageout daemon is woken up.
860                          *
861                          * We can't wait forever for the vnode lock, we might
862                          * deadlock due to a vn_read() getting stuck in
863                          * vm_wait while holding this vnode.  We skip the 
864                          * vnode if we can't get it in a reasonable amount
865                          * of time.
866                          */
867
868                         if (object->type == OBJT_VNODE) {
869                                 vp = object->handle;
870
871                                 if (vget(vp, NULL, LK_EXCLUSIVE|LK_NOOBJ|LK_TIMELOCK, curthread)) {
872                                         ++pageout_lock_miss;
873                                         if (object->flags & OBJ_MIGHTBEDIRTY)
874                                                     vnodes_skipped++;
875                                         continue;
876                                 }
877
878                                 /*
879                                  * The page might have been moved to another
880                                  * queue during potential blocking in vget()
881                                  * above.  The page might have been freed and
882                                  * reused for another vnode.  The object might
883                                  * have been reused for another vnode.
884                                  */
885                                 if (m->queue != PQ_INACTIVE ||
886                                     m->object != object ||
887                                     object->handle != vp) {
888                                         if (object->flags & OBJ_MIGHTBEDIRTY)
889                                                 vnodes_skipped++;
890                                         vput(vp);
891                                         continue;
892                                 }
893         
894                                 /*
895                                  * The page may have been busied during the
896                                  * blocking in vput();  We don't move the
897                                  * page back onto the end of the queue so that
898                                  * statistics are more correct if we don't.
899                                  */
900                                 if (m->busy || (m->flags & PG_BUSY)) {
901                                         vput(vp);
902                                         continue;
903                                 }
904
905                                 /*
906                                  * If the page has become held it might
907                                  * be undergoing I/O, so skip it
908                                  */
909                                 if (m->hold_count) {
910                                         s = splvm();
911                                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
912                                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
913                                         splx(s);
914                                         if (object->flags & OBJ_MIGHTBEDIRTY)
915                                                 vnodes_skipped++;
916                                         vput(vp);
917                                         continue;
918                                 }
919                         }
920
921                         /*
922                          * If a page is dirty, then it is either being washed
923                          * (but not yet cleaned) or it is still in the
924                          * laundry.  If it is still in the laundry, then we
925                          * start the cleaning operation. 
926                          *
927                          * This operation may cluster, invalidating the 'next'
928                          * pointer.  To prevent an inordinate number of
929                          * restarts we use our marker to remember our place.
930                          *
931                          * decrement page_shortage on success to account for
932                          * the (future) cleaned page.  Otherwise we could wind
933                          * up laundering or cleaning too many pages.
934                          */
935                         s = splvm();
936                         TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
937                         splx(s);
938                         if (vm_pageout_clean(m) != 0) {
939                                 --page_shortage;
940                                 --maxlaunder;
941                         } 
942                         s = splvm();
943                         next = TAILQ_NEXT(&marker, pageq);
944                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
945                         splx(s);
946                         if (vp != NULL)
947                                 vput(vp);
948                 }
949         }
950
951         /*
952          * Compute the number of pages we want to try to move from the
953          * active queue to the inactive queue.
954          */
955         page_shortage = vm_paging_target() +
956             vmstats.v_inactive_target - vmstats.v_inactive_count;
957         page_shortage += addl_page_shortage;
958
959         /*
960          * Scan the active queue for things we can deactivate. We nominally
961          * track the per-page activity counter and use it to locate 
962          * deactivation candidates.
963          */
964
965         pcount = vmstats.v_active_count;
966         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
967
968         while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
969
970                 /*
971                  * This is a consistency check, and should likely be a panic
972                  * or warning.
973                  */
974                 if (m->queue != PQ_ACTIVE) {
975                         break;
976                 }
977
978                 next = TAILQ_NEXT(m, pageq);
979                 /*
980                  * Don't deactivate pages that are busy.
981                  */
982                 if ((m->busy != 0) ||
983                     (m->flags & PG_BUSY) ||
984                     (m->hold_count != 0)) {
985                         s = splvm();
986                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
987                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
988                         splx(s);
989                         m = next;
990                         continue;
991                 }
992
993                 /*
994                  * The count for pagedaemon pages is done after checking the
995                  * page for eligibility...
996                  */
997                 mycpu->gd_cnt.v_pdpages++;
998
999                 /*
1000                  * Check to see "how much" the page has been used.
1001                  */
1002                 actcount = 0;
1003                 if (m->object->ref_count != 0) {
1004                         if (m->flags & PG_REFERENCED) {
1005                                 actcount += 1;
1006                         }
1007                         actcount += pmap_ts_referenced(m);
1008                         if (actcount) {
1009                                 m->act_count += ACT_ADVANCE + actcount;
1010                                 if (m->act_count > ACT_MAX)
1011                                         m->act_count = ACT_MAX;
1012                         }
1013                 }
1014
1015                 /*
1016                  * Since we have "tested" this bit, we need to clear it now.
1017                  */
1018                 vm_page_flag_clear(m, PG_REFERENCED);
1019
1020                 /*
1021                  * Only if an object is currently being used, do we use the
1022                  * page activation count stats.
1023                  */
1024                 if (actcount && (m->object->ref_count != 0)) {
1025                         s = splvm();
1026                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1027                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1028                         splx(s);
1029                 } else {
1030                         m->act_count -= min(m->act_count, ACT_DECLINE);
1031                         if (vm_pageout_algorithm ||
1032                             m->object->ref_count == 0 ||
1033                             m->act_count == 0) {
1034                                 page_shortage--;
1035                                 if (m->object->ref_count == 0) {
1036                                         vm_page_protect(m, VM_PROT_NONE);
1037                                         if (m->dirty == 0)
1038                                                 vm_page_cache(m);
1039                                         else
1040                                                 vm_page_deactivate(m);
1041                                 } else {
1042                                         vm_page_deactivate(m);
1043                                 }
1044                         } else {
1045                                 s = splvm();
1046                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1047                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1048                                 splx(s);
1049                         }
1050                 }
1051                 m = next;
1052         }
1053
1054         s = splvm();
1055
1056         /*
1057          * We try to maintain some *really* free pages, this allows interrupt
1058          * code to be guaranteed space.  Since both cache and free queues 
1059          * are considered basically 'free', moving pages from cache to free
1060          * does not effect other calculations.
1061          */
1062
1063         while (vmstats.v_free_count < vmstats.v_free_reserved) {
1064                 static int cache_rover = 0;
1065                 m = vm_page_list_find(PQ_CACHE, cache_rover, FALSE);
1066                 if (!m)
1067                         break;
1068                 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || 
1069                     m->busy || 
1070                     m->hold_count || 
1071                     m->wire_count) {
1072 #ifdef INVARIANTS
1073                         printf("Warning: busy page %p found in cache\n", m);
1074 #endif
1075                         vm_page_deactivate(m);
1076                         continue;
1077                 }
1078                 cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1079                 vm_pageout_page_free(m);
1080                 mycpu->gd_cnt.v_dfree++;
1081         }
1082         splx(s);
1083
1084 #if !defined(NO_SWAPPING)
1085         /*
1086          * Idle process swapout -- run once per second.
1087          */
1088         if (vm_swap_idle_enabled) {
1089                 static long lsec;
1090                 if (time_second != lsec) {
1091                         vm_pageout_req_swapout |= VM_SWAP_IDLE;
1092                         vm_req_vmdaemon();
1093                         lsec = time_second;
1094                 }
1095         }
1096 #endif
1097                 
1098         /*
1099          * If we didn't get enough free pages, and we have skipped a vnode
1100          * in a writeable object, wakeup the sync daemon.  And kick swapout
1101          * if we did not get enough free pages.
1102          */
1103         if (vm_paging_target() > 0) {
1104                 if (vnodes_skipped && vm_page_count_min())
1105                         (void) speedup_syncer();
1106 #if !defined(NO_SWAPPING)
1107                 if (vm_swap_enabled && vm_page_count_target()) {
1108                         vm_req_vmdaemon();
1109                         vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1110                 }
1111 #endif
1112         }
1113
1114         /*
1115          * If we are out of swap and were not able to reach our paging
1116          * target, kill the largest process.
1117          */
1118         if ((vm_swap_size < 64 && vm_page_count_min()) ||
1119             (swap_pager_full && vm_paging_target() > 0)) {
1120 #if 0
1121         if ((vm_swap_size < 64 || swap_pager_full) && vm_page_count_min()) {
1122 #endif
1123                 bigproc = NULL;
1124                 bigsize = 0;
1125                 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1126                         /*
1127                          * if this is a system process, skip it
1128                          */
1129                         if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1130                             ((p->p_pid < 48) && (vm_swap_size != 0))) {
1131                                 continue;
1132                         }
1133                         /*
1134                          * if the process is in a non-running type state,
1135                          * don't touch it.
1136                          */
1137                         if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1138                                 continue;
1139                         }
1140                         /*
1141                          * get the process size
1142                          */
1143                         size = vmspace_resident_count(p->p_vmspace) +
1144                                 vmspace_swap_count(p->p_vmspace);
1145                         /*
1146                          * if the this process is bigger than the biggest one
1147                          * remember it.
1148                          */
1149                         if (size > bigsize) {
1150                                 bigproc = p;
1151                                 bigsize = size;
1152                         }
1153                 }
1154                 if (bigproc != NULL) {
1155                         killproc(bigproc, "out of swap space");
1156                         bigproc->p_estcpu = 0;
1157                         bigproc->p_nice = PRIO_MIN;
1158                         resetpriority(bigproc);
1159                         wakeup(&vmstats.v_free_count);
1160                 }
1161         }
1162 }
1163
1164 /*
1165  * This routine tries to maintain the pseudo LRU active queue,
1166  * so that during long periods of time where there is no paging,
1167  * that some statistic accumulation still occurs.  This code
1168  * helps the situation where paging just starts to occur.
1169  */
1170 static void
1171 vm_pageout_page_stats(void)
1172 {
1173         int s;
1174         vm_page_t m,next;
1175         int pcount,tpcount;             /* Number of pages to check */
1176         static int fullintervalcount = 0;
1177         int page_shortage;
1178         int s0;
1179
1180         page_shortage = 
1181             (vmstats.v_inactive_target + vmstats.v_cache_max + vmstats.v_free_min) -
1182             (vmstats.v_free_count + vmstats.v_inactive_count + vmstats.v_cache_count);
1183
1184         if (page_shortage <= 0)
1185                 return;
1186
1187         s0 = splvm();
1188
1189         pcount = vmstats.v_active_count;
1190         fullintervalcount += vm_pageout_stats_interval;
1191         if (fullintervalcount < vm_pageout_full_stats_interval) {
1192                 tpcount = (vm_pageout_stats_max * vmstats.v_active_count) / vmstats.v_page_count;
1193                 if (pcount > tpcount)
1194                         pcount = tpcount;
1195         } else {
1196                 fullintervalcount = 0;
1197         }
1198
1199         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1200         while ((m != NULL) && (pcount-- > 0)) {
1201                 int actcount;
1202
1203                 if (m->queue != PQ_ACTIVE) {
1204                         break;
1205                 }
1206
1207                 next = TAILQ_NEXT(m, pageq);
1208                 /*
1209                  * Don't deactivate pages that are busy.
1210                  */
1211                 if ((m->busy != 0) ||
1212                     (m->flags & PG_BUSY) ||
1213                     (m->hold_count != 0)) {
1214                         s = splvm();
1215                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1216                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1217                         splx(s);
1218                         m = next;
1219                         continue;
1220                 }
1221
1222                 actcount = 0;
1223                 if (m->flags & PG_REFERENCED) {
1224                         vm_page_flag_clear(m, PG_REFERENCED);
1225                         actcount += 1;
1226                 }
1227
1228                 actcount += pmap_ts_referenced(m);
1229                 if (actcount) {
1230                         m->act_count += ACT_ADVANCE + actcount;
1231                         if (m->act_count > ACT_MAX)
1232                                 m->act_count = ACT_MAX;
1233                         s = splvm();
1234                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1235                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1236                         splx(s);
1237                 } else {
1238                         if (m->act_count == 0) {
1239                                 /*
1240                                  * We turn off page access, so that we have
1241                                  * more accurate RSS stats.  We don't do this
1242                                  * in the normal page deactivation when the
1243                                  * system is loaded VM wise, because the
1244                                  * cost of the large number of page protect
1245                                  * operations would be higher than the value
1246                                  * of doing the operation.
1247                                  */
1248                                 vm_page_protect(m, VM_PROT_NONE);
1249                                 vm_page_deactivate(m);
1250                         } else {
1251                                 m->act_count -= min(m->act_count, ACT_DECLINE);
1252                                 s = splvm();
1253                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1254                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1255                                 splx(s);
1256                         }
1257                 }
1258
1259                 m = next;
1260         }
1261         splx(s0);
1262 }
1263
1264 static int
1265 vm_pageout_free_page_calc(vm_size_t count)
1266 {
1267         if (count < vmstats.v_page_count)
1268                  return 0;
1269         /*
1270          * free_reserved needs to include enough for the largest swap pager
1271          * structures plus enough for any pv_entry structs when paging.
1272          */
1273         if (vmstats.v_page_count > 1024)
1274                 vmstats.v_free_min = 4 + (vmstats.v_page_count - 1024) / 200;
1275         else
1276                 vmstats.v_free_min = 4;
1277         vmstats.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1278                 vmstats.v_interrupt_free_min;
1279         vmstats.v_free_reserved = vm_pageout_page_count +
1280                 vmstats.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1281         vmstats.v_free_severe = vmstats.v_free_min / 2;
1282         vmstats.v_free_min += vmstats.v_free_reserved;
1283         vmstats.v_free_severe += vmstats.v_free_reserved;
1284         return 1;
1285 }
1286
1287
1288 /*
1289  *      vm_pageout is the high level pageout daemon.
1290  */
1291 static void
1292 vm_pageout(void)
1293 {
1294         int pass;
1295
1296         /*
1297          * Initialize some paging parameters.
1298          */
1299
1300         vmstats.v_interrupt_free_min = 2;
1301         if (vmstats.v_page_count < 2000)
1302                 vm_pageout_page_count = 8;
1303
1304         vm_pageout_free_page_calc(vmstats.v_page_count);
1305         /*
1306          * v_free_target and v_cache_min control pageout hysteresis.  Note
1307          * that these are more a measure of the VM cache queue hysteresis
1308          * then the VM free queue.  Specifically, v_free_target is the
1309          * high water mark (free+cache pages).
1310          *
1311          * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1312          * low water mark, while v_free_min is the stop.  v_cache_min must
1313          * be big enough to handle memory needs while the pageout daemon
1314          * is signalled and run to free more pages.
1315          */
1316         if (vmstats.v_free_count > 6144)
1317                 vmstats.v_free_target = 4 * vmstats.v_free_min + vmstats.v_free_reserved;
1318         else
1319                 vmstats.v_free_target = 2 * vmstats.v_free_min + vmstats.v_free_reserved;
1320
1321         if (vmstats.v_free_count > 2048) {
1322                 vmstats.v_cache_min = vmstats.v_free_target;
1323                 vmstats.v_cache_max = 2 * vmstats.v_cache_min;
1324                 vmstats.v_inactive_target = (3 * vmstats.v_free_target) / 2;
1325         } else {
1326                 vmstats.v_cache_min = 0;
1327                 vmstats.v_cache_max = 0;
1328                 vmstats.v_inactive_target = vmstats.v_free_count / 4;
1329         }
1330         if (vmstats.v_inactive_target > vmstats.v_free_count / 3)
1331                 vmstats.v_inactive_target = vmstats.v_free_count / 3;
1332
1333         /* XXX does not really belong here */
1334         if (vm_page_max_wired == 0)
1335                 vm_page_max_wired = vmstats.v_free_count / 3;
1336
1337         if (vm_pageout_stats_max == 0)
1338                 vm_pageout_stats_max = vmstats.v_free_target;
1339
1340         /*
1341          * Set interval in seconds for stats scan.
1342          */
1343         if (vm_pageout_stats_interval == 0)
1344                 vm_pageout_stats_interval = 5;
1345         if (vm_pageout_full_stats_interval == 0)
1346                 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1347         
1348
1349         /*
1350          * Set maximum free per pass
1351          */
1352         if (vm_pageout_stats_free_max == 0)
1353                 vm_pageout_stats_free_max = 5;
1354
1355         swap_pager_swap_init();
1356         pass = 0;
1357         /*
1358          * The pageout daemon is never done, so loop forever.
1359          */
1360         while (TRUE) {
1361                 int error;
1362                 int s = splvm();
1363
1364                 /*
1365                  * If we have enough free memory, wakeup waiters.  Do
1366                  * not clear vm_pages_needed until we reach our target,
1367                  * otherwise we may be woken up over and over again and
1368                  * waste a lot of cpu.
1369                  */
1370                 if (vm_pages_needed && !vm_page_count_min()) {
1371                         if (vm_paging_needed() <= 0)
1372                                 vm_pages_needed = 0;
1373                         wakeup(&vmstats.v_free_count);
1374                 }
1375                 if (vm_pages_needed) {
1376                         /*
1377                          * Still not done, take a second pass without waiting
1378                          * (unlimited dirty cleaning), otherwise sleep a bit
1379                          * and try again.
1380                          */
1381                         ++pass;
1382                         if (pass > 1)
1383                                 tsleep(&vm_pages_needed, 0, "psleep", hz/2);
1384                 } else {
1385                         /*
1386                          * Good enough, sleep & handle stats.  Prime the pass
1387                          * for the next run.
1388                          */
1389                         if (pass > 1)
1390                                 pass = 1;
1391                         else
1392                                 pass = 0;
1393                         error = tsleep(&vm_pages_needed,
1394                                 0, "psleep", vm_pageout_stats_interval * hz);
1395                         if (error && !vm_pages_needed) {
1396                                 splx(s);
1397                                 pass = 0;
1398                                 vm_pageout_page_stats();
1399                                 continue;
1400                         }
1401                 }
1402
1403                 if (vm_pages_needed)
1404                         mycpu->gd_cnt.v_pdwakeups++;
1405                 splx(s);
1406                 vm_pageout_scan(pass);
1407                 vm_pageout_deficit = 0;
1408         }
1409 }
1410
1411 void
1412 pagedaemon_wakeup(void)
1413 {
1414         if (!vm_pages_needed && curthread != pagethread) {
1415                 vm_pages_needed++;
1416                 wakeup(&vm_pages_needed);
1417         }
1418 }
1419
1420 #if !defined(NO_SWAPPING)
1421 static void
1422 vm_req_vmdaemon(void)
1423 {
1424         static int lastrun = 0;
1425
1426         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1427                 wakeup(&vm_daemon_needed);
1428                 lastrun = ticks;
1429         }
1430 }
1431
1432 static void
1433 vm_daemon(void)
1434 {
1435         struct proc *p;
1436
1437         while (TRUE) {
1438                 tsleep(&vm_daemon_needed, 0, "psleep", 0);
1439                 if (vm_pageout_req_swapout) {
1440                         swapout_procs(vm_pageout_req_swapout);
1441                         vm_pageout_req_swapout = 0;
1442                 }
1443                 /*
1444                  * scan the processes for exceeding their rlimits or if
1445                  * process is swapped out -- deactivate pages
1446                  */
1447
1448                 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1449                         vm_pindex_t limit, size;
1450
1451                         /*
1452                          * if this is a system process or if we have already
1453                          * looked at this process, skip it.
1454                          */
1455                         if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1456                                 continue;
1457                         }
1458                         /*
1459                          * if the process is in a non-running type state,
1460                          * don't touch it.
1461                          */
1462                         if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1463                                 continue;
1464                         }
1465                         /*
1466                          * get a limit
1467                          */
1468                         limit = OFF_TO_IDX(
1469                             qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1470                                 p->p_rlimit[RLIMIT_RSS].rlim_max));
1471
1472                         /*
1473                          * let processes that are swapped out really be
1474                          * swapped out set the limit to nothing (will force a
1475                          * swap-out.)
1476                          */
1477                         if ((p->p_flag & P_INMEM) == 0)
1478                                 limit = 0;      /* XXX */
1479
1480                         size = vmspace_resident_count(p->p_vmspace);
1481                         if (limit >= 0 && size >= limit) {
1482                                 vm_pageout_map_deactivate_pages(
1483                                     &p->p_vmspace->vm_map, limit);
1484                         }
1485                 }
1486         }
1487 }
1488 #endif