Merge branch 'vendor/LIBEDIT'
[dragonfly.git] / sys / vm / vm_fault.c
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
40  *
41  *
42  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
43  * All rights reserved.
44  *
45  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
46  *
47  * Permission to use, copy, modify and distribute this software and
48  * its documentation is hereby granted, provided that both the copyright
49  * notice and this permission notice appear in all copies of the
50  * software, derivative works or modified versions, and any portions
51  * thereof, and that both notices appear in supporting documentation.
52  *
53  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
54  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
55  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
56  *
57  * Carnegie Mellon requests users of this software to return to
58  *
59  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
60  *  School of Computer Science
61  *  Carnegie Mellon University
62  *  Pittsburgh PA 15213-3890
63  *
64  * any improvements or extensions that they make and grant Carnegie the
65  * rights to redistribute these changes.
66  *
67  * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
68  * $DragonFly: src/sys/vm/vm_fault.c,v 1.47 2008/07/01 02:02:56 dillon Exp $
69  */
70
71 /*
72  *      Page fault handling module.
73  */
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/kernel.h>
78 #include <sys/proc.h>
79 #include <sys/vnode.h>
80 #include <sys/resourcevar.h>
81 #include <sys/vmmeter.h>
82 #include <sys/vkernel.h>
83 #include <sys/lock.h>
84 #include <sys/sysctl.h>
85
86 #include <cpu/lwbuf.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/vm_extern.h>
99
100 #include <sys/thread2.h>
101 #include <vm/vm_page2.h>
102
103 struct faultstate {
104         vm_page_t m;
105         vm_object_t object;
106         vm_pindex_t pindex;
107         vm_prot_t prot;
108         vm_page_t first_m;
109         vm_object_t first_object;
110         vm_prot_t first_prot;
111         vm_map_t map;
112         vm_map_entry_t entry;
113         int lookup_still_valid;
114         int hardfault;
115         int fault_flags;
116         int map_generation;
117         int shared;
118         boolean_t wired;
119         struct vnode *vp;
120 };
121
122 static int debug_cluster = 0;
123 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
124 int vm_shared_fault = 1;
125 SYSCTL_INT(_vm, OID_AUTO, shared_fault, CTLFLAG_RW, &vm_shared_fault, 0,
126            "Allow shared token on vm_object");
127 static long vm_shared_hit = 0;
128 SYSCTL_LONG(_vm, OID_AUTO, shared_hit, CTLFLAG_RW, &vm_shared_hit, 0,
129            "Successful shared faults");
130 static long vm_shared_miss = 0;
131 SYSCTL_LONG(_vm, OID_AUTO, shared_miss, CTLFLAG_RW, &vm_shared_miss, 0,
132            "Unsuccessful shared faults");
133
134 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t);
135 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *, vpte_t, int);
136 #if 0
137 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
138 #endif
139 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry);
140 static void vm_prefault(pmap_t pmap, vm_offset_t addra,
141                         vm_map_entry_t entry, int prot, int fault_flags);
142 static void vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
143                         vm_map_entry_t entry, int prot, int fault_flags);
144
145 static __inline void
146 release_page(struct faultstate *fs)
147 {
148         vm_page_deactivate(fs->m);
149         vm_page_wakeup(fs->m);
150         fs->m = NULL;
151 }
152
153 /*
154  * NOTE: Once unlocked any cached fs->entry becomes invalid, any reuse
155  *       requires relocking and then checking the timestamp.
156  *
157  * NOTE: vm_map_lock_read() does not bump fs->map->timestamp so we do
158  *       not have to update fs->map_generation here.
159  *
160  * NOTE: This function can fail due to a deadlock against the caller's
161  *       holding of a vm_page BUSY.
162  */
163 static __inline int
164 relock_map(struct faultstate *fs)
165 {
166         int error;
167
168         if (fs->lookup_still_valid == FALSE && fs->map) {
169                 error = vm_map_lock_read_to(fs->map);
170                 if (error == 0)
171                         fs->lookup_still_valid = TRUE;
172         } else {
173                 error = 0;
174         }
175         return error;
176 }
177
178 static __inline void
179 unlock_map(struct faultstate *fs)
180 {
181         if (fs->lookup_still_valid && fs->map) {
182                 vm_map_lookup_done(fs->map, fs->entry, 0);
183                 fs->lookup_still_valid = FALSE;
184         }
185 }
186
187 /*
188  * Clean up after a successful call to vm_fault_object() so another call
189  * to vm_fault_object() can be made.
190  */
191 static void
192 _cleanup_successful_fault(struct faultstate *fs, int relock)
193 {
194         if (fs->object != fs->first_object) {
195                 vm_page_free(fs->first_m);
196                 vm_object_pip_wakeup(fs->object);
197                 fs->first_m = NULL;
198         }
199         fs->object = fs->first_object;
200         if (relock && fs->lookup_still_valid == FALSE) {
201                 if (fs->map)
202                         vm_map_lock_read(fs->map);
203                 fs->lookup_still_valid = TRUE;
204         }
205 }
206
207 static void
208 _unlock_things(struct faultstate *fs, int dealloc)
209 {
210         _cleanup_successful_fault(fs, 0);
211         if (dealloc) {
212                 /*vm_object_deallocate(fs->first_object);*/
213                 /*fs->first_object = NULL; drop used later on */
214         }
215         unlock_map(fs); 
216         if (fs->vp != NULL) { 
217                 vput(fs->vp);
218                 fs->vp = NULL;
219         }
220 }
221
222 #define unlock_things(fs) _unlock_things(fs, 0)
223 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
224 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
225
226 /*
227  * TRYPAGER 
228  *
229  * Determine if the pager for the current object *might* contain the page.
230  *
231  * We only need to try the pager if this is not a default object (default
232  * objects are zero-fill and have no real pager), and if we are not taking
233  * a wiring fault or if the FS entry is wired.
234  */
235 #define TRYPAGER(fs)    \
236                 (fs->object->type != OBJT_DEFAULT && \
237                 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
238
239 /*
240  * vm_fault:
241  *
242  * Handle a page fault occuring at the given address, requiring the given
243  * permissions, in the map specified.  If successful, the page is inserted
244  * into the associated physical map.
245  *
246  * NOTE: The given address should be truncated to the proper page address.
247  *
248  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
249  * a standard error specifying why the fault is fatal is returned.
250  *
251  * The map in question must be referenced, and remains so.
252  * The caller may hold no locks.
253  * No other requirements.
254  */
255 int
256 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
257 {
258         int result;
259         vm_pindex_t first_pindex;
260         struct faultstate fs;
261         struct lwp *lp;
262         int growstack;
263
264         vm_page_pcpu_cache();
265         fs.hardfault = 0;
266         fs.fault_flags = fault_flags;
267         fs.vp = NULL;
268         growstack = 1;
269
270         if ((lp = curthread->td_lwp) != NULL)
271                 lp->lwp_flags |= LWP_PAGING;
272
273         lwkt_gettoken(&map->token);
274
275 RetryFault:
276         /*
277          * Find the vm_map_entry representing the backing store and resolve
278          * the top level object and page index.  This may have the side
279          * effect of executing a copy-on-write on the map entry and/or
280          * creating a shadow object, but will not COW any actual VM pages.
281          *
282          * On success fs.map is left read-locked and various other fields 
283          * are initialized but not otherwise referenced or locked.
284          *
285          * NOTE!  vm_map_lookup will try to upgrade the fault_type to
286          * VM_FAULT_WRITE if the map entry is a virtual page table and also
287          * writable, so we can set the 'A'accessed bit in the virtual page
288          * table entry.
289          */
290         fs.map = map;
291         result = vm_map_lookup(&fs.map, vaddr, fault_type,
292                                &fs.entry, &fs.first_object,
293                                &first_pindex, &fs.first_prot, &fs.wired);
294
295         /*
296          * If the lookup failed or the map protections are incompatible,
297          * the fault generally fails.  However, if the caller is trying
298          * to do a user wiring we have more work to do.
299          */
300         if (result != KERN_SUCCESS) {
301                 if (result != KERN_PROTECTION_FAILURE ||
302                     (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
303                 {
304                         if (result == KERN_INVALID_ADDRESS && growstack &&
305                             map != &kernel_map && curproc != NULL) {
306                                 result = vm_map_growstack(curproc, vaddr);
307                                 if (result == KERN_SUCCESS) {
308                                         growstack = 0;
309                                         goto RetryFault;
310                                 }
311                                 result = KERN_FAILURE;
312                         }
313                         goto done;
314                 }
315
316                 /*
317                  * If we are user-wiring a r/w segment, and it is COW, then
318                  * we need to do the COW operation.  Note that we don't
319                  * currently COW RO sections now, because it is NOT desirable
320                  * to COW .text.  We simply keep .text from ever being COW'ed
321                  * and take the heat that one cannot debug wired .text sections.
322                  */
323                 result = vm_map_lookup(&fs.map, vaddr,
324                                        VM_PROT_READ|VM_PROT_WRITE|
325                                         VM_PROT_OVERRIDE_WRITE,
326                                        &fs.entry, &fs.first_object,
327                                        &first_pindex, &fs.first_prot,
328                                        &fs.wired);
329                 if (result != KERN_SUCCESS) {
330                         result = KERN_FAILURE;
331                         goto done;
332                 }
333
334                 /*
335                  * If we don't COW now, on a user wire, the user will never
336                  * be able to write to the mapping.  If we don't make this
337                  * restriction, the bookkeeping would be nearly impossible.
338                  *
339                  * XXX We have a shared lock, this will have a MP race but
340                  * I don't see how it can hurt anything.
341                  */
342                 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
343                         fs.entry->max_protection &= ~VM_PROT_WRITE;
344         }
345
346         /*
347          * fs.map is read-locked
348          *
349          * Misc checks.  Save the map generation number to detect races.
350          */
351         fs.map_generation = fs.map->timestamp;
352         fs.lookup_still_valid = TRUE;
353         fs.first_m = NULL;
354         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
355         fs.shared = 0;
356         fs.vp = NULL;
357
358         if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) {
359                 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
360                         panic("vm_fault: fault on nofault entry, addr: %p",
361                               (void *)vaddr);
362                 }
363                 if ((fs.entry->eflags & MAP_ENTRY_KSTACK) &&
364                     vaddr >= fs.entry->start &&
365                     vaddr < fs.entry->start + PAGE_SIZE) {
366                         panic("vm_fault: fault on stack guard, addr: %p",
367                               (void *)vaddr);
368                 }
369         }
370
371         /*
372          * A system map entry may return a NULL object.  No object means
373          * no pager means an unrecoverable kernel fault.
374          */
375         if (fs.first_object == NULL) {
376                 panic("vm_fault: unrecoverable fault at %p in entry %p",
377                         (void *)vaddr, fs.entry);
378         }
379
380         /*
381          * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
382          * is set.
383          */
384         if ((curthread->td_flags & TDF_NOFAULT) &&
385             (fs.first_object->type == OBJT_VNODE ||
386              fs.first_object->backing_object)) {
387                 result = KERN_FAILURE;
388                 unlock_things(&fs);
389                 goto done2;
390         }
391
392         /*
393          * Attempt to shortcut the fault if the lookup returns a
394          * terminal object and the page is present.  This allows us
395          * to obtain a shared token on the object instead of an exclusive
396          * token, which theoretically should allow concurrent faults.
397          *
398          * We cannot acquire a shared token on kernel_map, at least not
399          * on i386, because the i386 pmap code uses the kernel_object for
400          * its page table page management, resulting in a shared->exclusive
401          * sequence which will deadlock.  This will not happen normally
402          * anyway, except on well cached pageable kmem (like pipe buffers),
403          * so it should not impact performance.
404          */
405         if (vm_shared_fault &&
406             fs.first_object->backing_object == NULL &&
407             fs.entry->maptype == VM_MAPTYPE_NORMAL &&
408             fs.map != &kernel_map) {
409                 int error;
410                 vm_object_hold_shared(fs.first_object);
411                 /*fs.vp = vnode_pager_lock(fs.first_object);*/
412                 fs.m = vm_page_lookup_busy_try(fs.first_object,
413                                                 first_pindex,
414                                                 TRUE, &error);
415                 if (error == 0 && fs.m) {
416                         /*
417                          * Activate the page and figure out if we can
418                          * short-cut a quick mapping.
419                          *
420                          * WARNING!  We cannot call swap_pager_unswapped()
421                          *           with a shared token!  Note that we
422                          *           have to test fs.first_prot here.
423                          */
424                         vm_page_activate(fs.m);
425                         if (fs.m->valid == VM_PAGE_BITS_ALL &&
426                             ((fs.m->flags & PG_SWAPPED) == 0 ||
427                              (fs.first_prot & VM_PROT_WRITE) == 0 ||
428                              (fs.fault_flags & VM_FAULT_DIRTY) == 0)) {
429                                 fs.lookup_still_valid = TRUE;
430                                 fs.first_m = NULL;
431                                 fs.object = fs.first_object;
432                                 fs.prot = fs.first_prot;
433                                 if (fs.wired)
434                                         fault_type = fs.first_prot;
435                                 if (fs.prot & VM_PROT_WRITE) {
436                                         vm_object_set_writeable_dirty(
437                                                         fs.m->object);
438                                         vm_set_nosync(fs.m, fs.entry);
439                                         if (fs.fault_flags & VM_FAULT_DIRTY) {
440                                                 vm_page_dirty(fs.m);
441                                                 /*XXX*/
442                                                 swap_pager_unswapped(fs.m);
443                                         }
444                                 }
445                                 result = KERN_SUCCESS;
446                                 fault_flags |= VM_FAULT_BURST_QUICK;
447                                 fault_flags &= ~VM_FAULT_BURST;
448                                 ++vm_shared_hit;
449                                 goto quick;
450                         }
451                         vm_page_wakeup(fs.m);
452                         fs.m = NULL;
453                 }
454                 vm_object_drop(fs.first_object); /* XXX drop on shared tok?*/
455         }
456         ++vm_shared_miss;
457
458         /*
459          * Bump the paging-in-progress count to prevent size changes (e.g.
460          * truncation operations) during I/O.  This must be done after
461          * obtaining the vnode lock in order to avoid possible deadlocks.
462          */
463         vm_object_hold(fs.first_object);
464         if (fs.vp == NULL)
465                 fs.vp = vnode_pager_lock(fs.first_object);
466
467 #if 0
468         fs.lookup_still_valid = TRUE;
469         fs.first_m = NULL;
470         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
471         fs.shared = 0;
472 #endif
473
474         /*
475          * If the entry is wired we cannot change the page protection.
476          */
477         if (fs.wired)
478                 fault_type = fs.first_prot;
479
480         /*
481          * The page we want is at (first_object, first_pindex), but if the
482          * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
483          * page table to figure out the actual pindex.
484          *
485          * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
486          * ONLY
487          */
488         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
489                 result = vm_fault_vpagetable(&fs, &first_pindex,
490                                              fs.entry->aux.master_pde,
491                                              fault_type);
492                 if (result == KERN_TRY_AGAIN) {
493                         vm_object_drop(fs.first_object);
494                         goto RetryFault;
495                 }
496                 if (result != KERN_SUCCESS)
497                         goto done;
498         }
499
500         /*
501          * Now we have the actual (object, pindex), fault in the page.  If
502          * vm_fault_object() fails it will unlock and deallocate the FS
503          * data.   If it succeeds everything remains locked and fs->object
504          * will have an additional PIP count if it is not equal to
505          * fs->first_object
506          *
507          * vm_fault_object will set fs->prot for the pmap operation.  It is
508          * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
509          * page can be safely written.  However, it will force a read-only
510          * mapping for a read fault if the memory is managed by a virtual
511          * page table.
512          *
513          * If the fault code uses the shared object lock shortcut
514          * we must not try to burst (we can't allocate VM pages).
515          */
516         result = vm_fault_object(&fs, first_pindex, fault_type);
517         if (fs.shared)
518                 fault_flags &= ~VM_FAULT_BURST;
519
520         if (result == KERN_TRY_AGAIN) {
521                 vm_object_drop(fs.first_object);
522                 goto RetryFault;
523         }
524         if (result != KERN_SUCCESS)
525                 goto done;
526
527 quick:
528         /*
529          * On success vm_fault_object() does not unlock or deallocate, and fs.m
530          * will contain a busied page.
531          *
532          * Enter the page into the pmap and do pmap-related adjustments.
533          */
534         vm_page_flag_set(fs.m, PG_REFERENCED);
535         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired, fs.entry);
536         mycpu->gd_cnt.v_vm_faults++;
537         if (curthread->td_lwp)
538                 ++curthread->td_lwp->lwp_ru.ru_minflt;
539
540         /*KKASSERT(fs.m->queue == PQ_NONE); page-in op may deactivate page */
541         KKASSERT(fs.m->flags & PG_BUSY);
542
543         /*
544          * If the page is not wired down, then put it where the pageout daemon
545          * can find it.
546          */
547         if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
548                 if (fs.wired)
549                         vm_page_wire(fs.m);
550                 else
551                         vm_page_unwire(fs.m, 1);
552         } else {
553                 vm_page_activate(fs.m);
554         }
555         vm_page_wakeup(fs.m);
556
557         /*
558          * Burst in a few more pages if possible.  The fs.map should still
559          * be locked.  To avoid interlocking against a vnode->getblk
560          * operation we had to be sure to unbusy our primary vm_page above
561          * first.
562          */
563         if (fault_flags & VM_FAULT_BURST) {
564                 if ((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0
565                     && fs.wired == 0) {
566                         vm_prefault(fs.map->pmap, vaddr,
567                                     fs.entry, fs.prot, fault_flags);
568                 }
569         }
570         if (fault_flags & VM_FAULT_BURST_QUICK) {
571                 if ((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0
572                     && fs.wired == 0) {
573                         vm_prefault_quick(fs.map->pmap, vaddr,
574                                           fs.entry, fs.prot, fault_flags);
575                 }
576         }
577
578         /*
579          * Unlock everything, and return
580          */
581         unlock_things(&fs);
582
583         if (curthread->td_lwp) {
584                 if (fs.hardfault) {
585                         curthread->td_lwp->lwp_ru.ru_majflt++;
586                 } else {
587                         curthread->td_lwp->lwp_ru.ru_minflt++;
588                 }
589         }
590
591         /*vm_object_deallocate(fs.first_object);*/
592         /*fs.m = NULL; */
593         /*fs.first_object = NULL; must still drop later */
594
595         result = KERN_SUCCESS;
596 done:
597         if (fs.first_object)
598                 vm_object_drop(fs.first_object);
599 done2:
600         lwkt_reltoken(&map->token);
601         if (lp)
602                 lp->lwp_flags &= ~LWP_PAGING;
603         return (result);
604 }
605
606 /*
607  * Fault in the specified virtual address in the current process map, 
608  * returning a held VM page or NULL.  See vm_fault_page() for more 
609  * information.
610  *
611  * No requirements.
612  */
613 vm_page_t
614 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
615 {
616         struct lwp *lp = curthread->td_lwp;
617         vm_page_t m;
618
619         m = vm_fault_page(&lp->lwp_vmspace->vm_map, va, 
620                           fault_type, VM_FAULT_NORMAL, errorp);
621         return(m);
622 }
623
624 /*
625  * Fault in the specified virtual address in the specified map, doing all
626  * necessary manipulation of the object store and all necessary I/O.  Return
627  * a held VM page or NULL, and set *errorp.  The related pmap is not
628  * updated.
629  *
630  * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
631  * and marked PG_REFERENCED as well.
632  *
633  * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
634  * error will be returned.
635  *
636  * No requirements.
637  */
638 vm_page_t
639 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
640               int fault_flags, int *errorp)
641 {
642         vm_pindex_t first_pindex;
643         struct faultstate fs;
644         int result;
645         vm_prot_t orig_fault_type = fault_type;
646
647         fs.hardfault = 0;
648         fs.fault_flags = fault_flags;
649         KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
650
651         lwkt_gettoken(&map->token);
652
653 RetryFault:
654         /*
655          * Find the vm_map_entry representing the backing store and resolve
656          * the top level object and page index.  This may have the side
657          * effect of executing a copy-on-write on the map entry and/or
658          * creating a shadow object, but will not COW any actual VM pages.
659          *
660          * On success fs.map is left read-locked and various other fields 
661          * are initialized but not otherwise referenced or locked.
662          *
663          * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
664          * if the map entry is a virtual page table and also writable,
665          * so we can set the 'A'accessed bit in the virtual page table entry.
666          */
667         fs.map = map;
668         result = vm_map_lookup(&fs.map, vaddr, fault_type,
669                                &fs.entry, &fs.first_object,
670                                &first_pindex, &fs.first_prot, &fs.wired);
671
672         if (result != KERN_SUCCESS) {
673                 *errorp = result;
674                 fs.m = NULL;
675                 goto done;
676         }
677
678         /*
679          * fs.map is read-locked
680          *
681          * Misc checks.  Save the map generation number to detect races.
682          */
683         fs.map_generation = fs.map->timestamp;
684         fs.lookup_still_valid = TRUE;
685         fs.first_m = NULL;
686         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
687         fs.shared = 0;
688         fs.vp = NULL;
689
690         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
691                 panic("vm_fault: fault on nofault entry, addr: %lx",
692                     (u_long)vaddr);
693         }
694
695         /*
696          * A system map entry may return a NULL object.  No object means
697          * no pager means an unrecoverable kernel fault.
698          */
699         if (fs.first_object == NULL) {
700                 panic("vm_fault: unrecoverable fault at %p in entry %p",
701                         (void *)vaddr, fs.entry);
702         }
703
704         /*
705          * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
706          * is set.
707          */
708         if ((curthread->td_flags & TDF_NOFAULT) &&
709             (fs.first_object->type == OBJT_VNODE ||
710              fs.first_object->backing_object)) {
711                 *errorp = KERN_FAILURE;
712                 unlock_things(&fs);
713                 goto done2;
714         }
715
716         /*
717          * Make a reference to this object to prevent its disposal while we
718          * are messing with it.  Once we have the reference, the map is free
719          * to be diddled.  Since objects reference their shadows (and copies),
720          * they will stay around as well.
721          *
722          * The reference should also prevent an unexpected collapse of the
723          * parent that might move pages from the current object into the
724          * parent unexpectedly, resulting in corruption.
725          *
726          * Bump the paging-in-progress count to prevent size changes (e.g.
727          * truncation operations) during I/O.  This must be done after
728          * obtaining the vnode lock in order to avoid possible deadlocks.
729          */
730         vm_object_hold(fs.first_object);
731         fs.vp = vnode_pager_lock(fs.first_object);
732
733 #if 0
734         fs.lookup_still_valid = TRUE;
735         fs.first_m = NULL;
736         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
737         fs.shared = 0;
738 #endif
739
740         /*
741          * If the entry is wired we cannot change the page protection.
742          */
743         if (fs.wired)
744                 fault_type = fs.first_prot;
745
746         /*
747          * The page we want is at (first_object, first_pindex), but if the
748          * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
749          * page table to figure out the actual pindex.
750          *
751          * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
752          * ONLY
753          */
754         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
755                 result = vm_fault_vpagetable(&fs, &first_pindex,
756                                              fs.entry->aux.master_pde,
757                                              fault_type);
758                 if (result == KERN_TRY_AGAIN) {
759                         vm_object_drop(fs.first_object);
760                         goto RetryFault;
761                 }
762                 if (result != KERN_SUCCESS) {
763                         *errorp = result;
764                         fs.m = NULL;
765                         goto done;
766                 }
767         }
768
769         /*
770          * Now we have the actual (object, pindex), fault in the page.  If
771          * vm_fault_object() fails it will unlock and deallocate the FS
772          * data.   If it succeeds everything remains locked and fs->object
773          * will have an additinal PIP count if it is not equal to
774          * fs->first_object
775          */
776         fs.m = NULL;
777         result = vm_fault_object(&fs, first_pindex, fault_type);
778
779         if (result == KERN_TRY_AGAIN) {
780                 vm_object_drop(fs.first_object);
781                 goto RetryFault;
782         }
783         if (result != KERN_SUCCESS) {
784                 *errorp = result;
785                 fs.m = NULL;
786                 goto done;
787         }
788
789         if ((orig_fault_type & VM_PROT_WRITE) &&
790             (fs.prot & VM_PROT_WRITE) == 0) {
791                 *errorp = KERN_PROTECTION_FAILURE;
792                 unlock_and_deallocate(&fs);
793                 fs.m = NULL;
794                 goto done;
795         }
796
797         /*
798          * DO NOT UPDATE THE PMAP!!!  This function may be called for
799          * a pmap unrelated to the current process pmap, in which case
800          * the current cpu core will not be listed in the pmap's pm_active
801          * mask.  Thus invalidation interlocks will fail to work properly.
802          *
803          * (for example, 'ps' uses procfs to read program arguments from
804          * each process's stack).
805          *
806          * In addition to the above this function will be called to acquire
807          * a page that might already be faulted in, re-faulting it
808          * continuously is a waste of time.
809          *
810          * XXX could this have been the cause of our random seg-fault
811          *     issues?  procfs accesses user stacks.
812          */
813         vm_page_flag_set(fs.m, PG_REFERENCED);
814 #if 0
815         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired, NULL);
816         mycpu->gd_cnt.v_vm_faults++;
817         if (curthread->td_lwp)
818                 ++curthread->td_lwp->lwp_ru.ru_minflt;
819 #endif
820
821         /*
822          * On success vm_fault_object() does not unlock or deallocate, and fs.m
823          * will contain a busied page.  So we must unlock here after having
824          * messed with the pmap.
825          */
826         unlock_things(&fs);
827
828         /*
829          * Return a held page.  We are not doing any pmap manipulation so do
830          * not set PG_MAPPED.  However, adjust the page flags according to
831          * the fault type because the caller may not use a managed pmapping
832          * (so we don't want to lose the fact that the page will be dirtied
833          * if a write fault was specified).
834          */
835         vm_page_hold(fs.m);
836         vm_page_activate(fs.m);
837         if (fault_type & VM_PROT_WRITE)
838                 vm_page_dirty(fs.m);
839
840         if (curthread->td_lwp) {
841                 if (fs.hardfault) {
842                         curthread->td_lwp->lwp_ru.ru_majflt++;
843                 } else {
844                         curthread->td_lwp->lwp_ru.ru_minflt++;
845                 }
846         }
847
848         /*
849          * Unlock everything, and return the held page.
850          */
851         vm_page_wakeup(fs.m);
852         /*vm_object_deallocate(fs.first_object);*/
853         /*fs.first_object = NULL; */
854         *errorp = 0;
855
856 done:
857         if (fs.first_object)
858                 vm_object_drop(fs.first_object);
859 done2:
860         lwkt_reltoken(&map->token);
861         return(fs.m);
862 }
863
864 /*
865  * Fault in the specified (object,offset), dirty the returned page as
866  * needed.  If the requested fault_type cannot be done NULL and an
867  * error is returned.
868  *
869  * A held (but not busied) page is returned.
870  *
871  * No requirements.
872  */
873 vm_page_t
874 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
875                      vm_prot_t fault_type, int fault_flags,
876                      int shared, int *errorp)
877 {
878         int result;
879         vm_pindex_t first_pindex;
880         struct faultstate fs;
881         struct vm_map_entry entry;
882
883         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
884         bzero(&entry, sizeof(entry));
885         entry.object.vm_object = object;
886         entry.maptype = VM_MAPTYPE_NORMAL;
887         entry.protection = entry.max_protection = fault_type;
888
889         fs.hardfault = 0;
890         fs.fault_flags = fault_flags;
891         fs.map = NULL;
892         KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
893
894 RetryFault:
895         
896         fs.first_object = object;
897         first_pindex = OFF_TO_IDX(offset);
898         fs.entry = &entry;
899         fs.first_prot = fault_type;
900         fs.wired = 0;
901         fs.shared = shared;
902         /*fs.map_generation = 0; unused */
903
904         /*
905          * Make a reference to this object to prevent its disposal while we
906          * are messing with it.  Once we have the reference, the map is free
907          * to be diddled.  Since objects reference their shadows (and copies),
908          * they will stay around as well.
909          *
910          * The reference should also prevent an unexpected collapse of the
911          * parent that might move pages from the current object into the
912          * parent unexpectedly, resulting in corruption.
913          *
914          * Bump the paging-in-progress count to prevent size changes (e.g.
915          * truncation operations) during I/O.  This must be done after
916          * obtaining the vnode lock in order to avoid possible deadlocks.
917          */
918         fs.vp = vnode_pager_lock(fs.first_object);
919
920         fs.lookup_still_valid = TRUE;
921         fs.first_m = NULL;
922         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
923
924 #if 0
925         /* XXX future - ability to operate on VM object using vpagetable */
926         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
927                 result = vm_fault_vpagetable(&fs, &first_pindex,
928                                              fs.entry->aux.master_pde,
929                                              fault_type);
930                 if (result == KERN_TRY_AGAIN)
931                         goto RetryFault;
932                 if (result != KERN_SUCCESS) {
933                         *errorp = result;
934                         return (NULL);
935                 }
936         }
937 #endif
938
939         /*
940          * Now we have the actual (object, pindex), fault in the page.  If
941          * vm_fault_object() fails it will unlock and deallocate the FS
942          * data.   If it succeeds everything remains locked and fs->object
943          * will have an additinal PIP count if it is not equal to
944          * fs->first_object
945          */
946         result = vm_fault_object(&fs, first_pindex, fault_type);
947
948         if (result == KERN_TRY_AGAIN)
949                 goto RetryFault;
950         if (result != KERN_SUCCESS) {
951                 *errorp = result;
952                 return(NULL);
953         }
954
955         if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
956                 *errorp = KERN_PROTECTION_FAILURE;
957                 unlock_and_deallocate(&fs);
958                 return(NULL);
959         }
960
961         /*
962          * On success vm_fault_object() does not unlock or deallocate, so we
963          * do it here.  Note that the returned fs.m will be busied.
964          */
965         unlock_things(&fs);
966
967         /*
968          * Return a held page.  We are not doing any pmap manipulation so do
969          * not set PG_MAPPED.  However, adjust the page flags according to
970          * the fault type because the caller may not use a managed pmapping
971          * (so we don't want to lose the fact that the page will be dirtied
972          * if a write fault was specified).
973          */
974         vm_page_hold(fs.m);
975         vm_page_activate(fs.m);
976         if ((fault_type & VM_PROT_WRITE) || (fault_flags & VM_FAULT_DIRTY))
977                 vm_page_dirty(fs.m);
978         if (fault_flags & VM_FAULT_UNSWAP)
979                 swap_pager_unswapped(fs.m);
980
981         /*
982          * Indicate that the page was accessed.
983          */
984         vm_page_flag_set(fs.m, PG_REFERENCED);
985
986         if (curthread->td_lwp) {
987                 if (fs.hardfault) {
988                         curthread->td_lwp->lwp_ru.ru_majflt++;
989                 } else {
990                         curthread->td_lwp->lwp_ru.ru_minflt++;
991                 }
992         }
993
994         /*
995          * Unlock everything, and return the held page.
996          */
997         vm_page_wakeup(fs.m);
998         /*vm_object_deallocate(fs.first_object);*/
999         /*fs.first_object = NULL; */
1000
1001         *errorp = 0;
1002         return(fs.m);
1003 }
1004
1005 /*
1006  * Translate the virtual page number (first_pindex) that is relative
1007  * to the address space into a logical page number that is relative to the
1008  * backing object.  Use the virtual page table pointed to by (vpte).
1009  *
1010  * This implements an N-level page table.  Any level can terminate the
1011  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
1012  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
1013  */
1014 static
1015 int
1016 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
1017                     vpte_t vpte, int fault_type)
1018 {
1019         struct lwbuf *lwb;
1020         struct lwbuf lwb_cache;
1021         int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
1022         int result = KERN_SUCCESS;
1023         vpte_t *ptep;
1024
1025         ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1026         for (;;) {
1027                 /*
1028                  * We cannot proceed if the vpte is not valid, not readable
1029                  * for a read fault, or not writable for a write fault.
1030                  */
1031                 if ((vpte & VPTE_V) == 0) {
1032                         unlock_and_deallocate(fs);
1033                         return (KERN_FAILURE);
1034                 }
1035                 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_R) == 0) {
1036                         unlock_and_deallocate(fs);
1037                         return (KERN_FAILURE);
1038                 }
1039                 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_W) == 0) {
1040                         unlock_and_deallocate(fs);
1041                         return (KERN_FAILURE);
1042                 }
1043                 if ((vpte & VPTE_PS) || vshift == 0)
1044                         break;
1045                 KKASSERT(vshift >= VPTE_PAGE_BITS);
1046
1047                 /*
1048                  * Get the page table page.  Nominally we only read the page
1049                  * table, but since we are actively setting VPTE_M and VPTE_A,
1050                  * tell vm_fault_object() that we are writing it. 
1051                  *
1052                  * There is currently no real need to optimize this.
1053                  */
1054                 result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
1055                                          VM_PROT_READ|VM_PROT_WRITE);
1056                 if (result != KERN_SUCCESS)
1057                         return (result);
1058
1059                 /*
1060                  * Process the returned fs.m and look up the page table
1061                  * entry in the page table page.
1062                  */
1063                 vshift -= VPTE_PAGE_BITS;
1064                 lwb = lwbuf_alloc(fs->m, &lwb_cache);
1065                 ptep = ((vpte_t *)lwbuf_kva(lwb) +
1066                         ((*pindex >> vshift) & VPTE_PAGE_MASK));
1067                 vpte = *ptep;
1068
1069                 /*
1070                  * Page table write-back.  If the vpte is valid for the
1071                  * requested operation, do a write-back to the page table.
1072                  *
1073                  * XXX VPTE_M is not set properly for page directory pages.
1074                  * It doesn't get set in the page directory if the page table
1075                  * is modified during a read access.
1076                  */
1077                 vm_page_activate(fs->m);
1078                 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
1079                     (vpte & VPTE_W)) {
1080                         if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
1081                                 atomic_set_long(ptep, VPTE_M | VPTE_A);
1082                                 vm_page_dirty(fs->m);
1083                         }
1084                 }
1085                 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V) &&
1086                     (vpte & VPTE_R)) {
1087                         if ((vpte & VPTE_A) == 0) {
1088                                 atomic_set_long(ptep, VPTE_A);
1089                                 vm_page_dirty(fs->m);
1090                         }
1091                 }
1092                 lwbuf_free(lwb);
1093                 vm_page_flag_set(fs->m, PG_REFERENCED);
1094                 vm_page_wakeup(fs->m);
1095                 fs->m = NULL;
1096                 cleanup_successful_fault(fs);
1097         }
1098         /*
1099          * Combine remaining address bits with the vpte.
1100          */
1101         /* JG how many bits from each? */
1102         *pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
1103                   (*pindex & ((1L << vshift) - 1));
1104         return (KERN_SUCCESS);
1105 }
1106
1107
1108 /*
1109  * This is the core of the vm_fault code.
1110  *
1111  * Do all operations required to fault-in (fs.first_object, pindex).  Run
1112  * through the shadow chain as necessary and do required COW or virtual
1113  * copy operations.  The caller has already fully resolved the vm_map_entry
1114  * and, if appropriate, has created a copy-on-write layer.  All we need to
1115  * do is iterate the object chain.
1116  *
1117  * On failure (fs) is unlocked and deallocated and the caller may return or
1118  * retry depending on the failure code.  On success (fs) is NOT unlocked or
1119  * deallocated, fs.m will contained a resolved, busied page, and fs.object
1120  * will have an additional PIP count if it is not equal to fs.first_object.
1121  *
1122  * fs->first_object must be held on call.
1123  */
1124 static
1125 int
1126 vm_fault_object(struct faultstate *fs,
1127                 vm_pindex_t first_pindex, vm_prot_t fault_type)
1128 {
1129         vm_object_t next_object;
1130         vm_pindex_t pindex;
1131         int error;
1132
1133         ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1134         fs->prot = fs->first_prot;
1135         fs->object = fs->first_object;
1136         pindex = first_pindex;
1137
1138         vm_object_chain_acquire(fs->first_object);
1139         vm_object_pip_add(fs->first_object, 1);
1140
1141         /* 
1142          * If a read fault occurs we try to make the page writable if
1143          * possible.  There are three cases where we cannot make the
1144          * page mapping writable:
1145          *
1146          * (1) The mapping is read-only or the VM object is read-only,
1147          *     fs->prot above will simply not have VM_PROT_WRITE set.
1148          *
1149          * (2) If the mapping is a virtual page table we need to be able
1150          *     to detect writes so we can set VPTE_M in the virtual page
1151          *     table.
1152          *
1153          * (3) If the VM page is read-only or copy-on-write, upgrading would
1154          *     just result in an unnecessary COW fault.
1155          *
1156          * VM_PROT_VPAGED is set if faulting via a virtual page table and
1157          * causes adjustments to the 'M'odify bit to also turn off write
1158          * access to force a re-fault.
1159          */
1160         if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1161                 if ((fault_type & VM_PROT_WRITE) == 0)
1162                         fs->prot &= ~VM_PROT_WRITE;
1163         }
1164
1165         /* vm_object_hold(fs->object); implied b/c object == first_object */
1166
1167         for (;;) {
1168                 /*
1169                  * The entire backing chain from first_object to object
1170                  * inclusive is chainlocked.
1171                  *
1172                  * If the object is dead, we stop here
1173                  *
1174                  * vm_shared_fault (fs->shared != 0) case: nothing special.
1175                  */
1176                 if (fs->object->flags & OBJ_DEAD) {
1177                         vm_object_pip_wakeup(fs->first_object);
1178                         vm_object_chain_release_all(fs->first_object,
1179                                                     fs->object);
1180                         if (fs->object != fs->first_object)
1181                                 vm_object_drop(fs->object);
1182                         unlock_and_deallocate(fs);
1183                         return (KERN_PROTECTION_FAILURE);
1184                 }
1185
1186                 /*
1187                  * See if the page is resident.  Wait/Retry if the page is
1188                  * busy (lots of stuff may have changed so we can't continue
1189                  * in that case).
1190                  *
1191                  * We can theoretically allow the soft-busy case on a read
1192                  * fault if the page is marked valid, but since such
1193                  * pages are typically already pmap'd, putting that
1194                  * special case in might be more effort then it is
1195                  * worth.  We cannot under any circumstances mess
1196                  * around with a vm_page_t->busy page except, perhaps,
1197                  * to pmap it.
1198                  *
1199                  * vm_shared_fault (fs->shared != 0) case:
1200                  *      error           nothing special
1201                  *      fs->m           relock excl if I/O needed
1202                  *      NULL            relock excl
1203                  */
1204                 fs->m = vm_page_lookup_busy_try(fs->object, pindex,
1205                                                 TRUE, &error);
1206                 if (error) {
1207                         vm_object_pip_wakeup(fs->first_object);
1208                         vm_object_chain_release_all(fs->first_object,
1209                                                     fs->object);
1210                         if (fs->object != fs->first_object)
1211                                 vm_object_drop(fs->object);
1212                         unlock_things(fs);
1213                         vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1214                         mycpu->gd_cnt.v_intrans++;
1215                         /*vm_object_deallocate(fs->first_object);*/
1216                         /*fs->first_object = NULL;*/
1217                         fs->m = NULL;
1218                         return (KERN_TRY_AGAIN);
1219                 }
1220                 if (fs->m) {
1221                         /*
1222                          * The page is busied for us.
1223                          *
1224                          * If reactivating a page from PQ_CACHE we may have
1225                          * to rate-limit.
1226                          */
1227                         int queue = fs->m->queue;
1228                         vm_page_unqueue_nowakeup(fs->m);
1229
1230                         if ((queue - fs->m->pc) == PQ_CACHE && 
1231                             vm_page_count_severe()) {
1232                                 vm_page_activate(fs->m);
1233                                 vm_page_wakeup(fs->m);
1234                                 fs->m = NULL;
1235                                 vm_object_pip_wakeup(fs->first_object);
1236                                 vm_object_chain_release_all(fs->first_object,
1237                                                             fs->object);
1238                                 if (fs->object != fs->first_object)
1239                                         vm_object_drop(fs->object);
1240                                 unlock_and_deallocate(fs);
1241                                 vm_wait_pfault();
1242                                 return (KERN_TRY_AGAIN);
1243                         }
1244
1245                         /*
1246                          * If it still isn't completely valid (readable),
1247                          * or if a read-ahead-mark is set on the VM page,
1248                          * jump to readrest, else we found the page and
1249                          * can return.
1250                          *
1251                          * We can release the spl once we have marked the
1252                          * page busy.
1253                          */
1254                         if (fs->m->object != &kernel_object) {
1255                                 if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1256                                     VM_PAGE_BITS_ALL) {
1257                                         if (fs->shared) {
1258                                                 vm_object_drop(fs->object);
1259                                                 vm_object_hold(fs->object);
1260                                                 fs->shared = 0;
1261                                         }
1262                                         goto readrest;
1263                                 }
1264                                 if (fs->m->flags & PG_RAM) {
1265                                         if (debug_cluster)
1266                                                 kprintf("R");
1267                                         vm_page_flag_clear(fs->m, PG_RAM);
1268                                         if (fs->shared) {
1269                                                 vm_object_drop(fs->object);
1270                                                 vm_object_hold(fs->object);
1271                                                 fs->shared = 0;
1272                                         }
1273                                         goto readrest;
1274                                 }
1275                         }
1276                         break; /* break to PAGE HAS BEEN FOUND */
1277                 }
1278
1279                 if (fs->shared) {
1280                         vm_object_drop(fs->object);
1281                         vm_object_hold(fs->object);
1282                         fs->shared = 0;
1283                 }
1284
1285                 /*
1286                  * Page is not resident, If this is the search termination
1287                  * or the pager might contain the page, allocate a new page.
1288                  */
1289                 if (TRYPAGER(fs) || fs->object == fs->first_object) {
1290                         /*
1291                          * If the page is beyond the object size we fail
1292                          */
1293                         if (pindex >= fs->object->size) {
1294                                 vm_object_pip_wakeup(fs->first_object);
1295                                 vm_object_chain_release_all(fs->first_object,
1296                                                             fs->object);
1297                                 if (fs->object != fs->first_object)
1298                                         vm_object_drop(fs->object);
1299                                 unlock_and_deallocate(fs);
1300                                 return (KERN_PROTECTION_FAILURE);
1301                         }
1302
1303                         /*
1304                          * Allocate a new page for this object/offset pair.
1305                          *
1306                          * It is possible for the allocation to race, so
1307                          * handle the case.
1308                          */
1309                         fs->m = NULL;
1310                         if (!vm_page_count_severe()) {
1311                                 fs->m = vm_page_alloc(fs->object, pindex,
1312                                     ((fs->vp || fs->object->backing_object) ?
1313                                         VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL :
1314                                         VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1315                                         VM_ALLOC_USE_GD | VM_ALLOC_ZERO));
1316                         }
1317                         if (fs->m == NULL) {
1318                                 vm_object_pip_wakeup(fs->first_object);
1319                                 vm_object_chain_release_all(fs->first_object,
1320                                                             fs->object);
1321                                 if (fs->object != fs->first_object)
1322                                         vm_object_drop(fs->object);
1323                                 unlock_and_deallocate(fs);
1324                                 vm_wait_pfault();
1325                                 return (KERN_TRY_AGAIN);
1326                         }
1327
1328                         /*
1329                          * Fall through to readrest.  We have a new page which
1330                          * will have to be paged (since m->valid will be 0).
1331                          */
1332                 }
1333
1334 readrest:
1335                 /*
1336                  * We have found an invalid or partially valid page, a
1337                  * page with a read-ahead mark which might be partially or
1338                  * fully valid (and maybe dirty too), or we have allocated
1339                  * a new page.
1340                  *
1341                  * Attempt to fault-in the page if there is a chance that the
1342                  * pager has it, and potentially fault in additional pages
1343                  * at the same time.
1344                  *
1345                  * If TRYPAGER is true then fs.m will be non-NULL and busied
1346                  * for us.
1347                  */
1348                 if (TRYPAGER(fs)) {
1349                         int rv;
1350                         int seqaccess;
1351                         u_char behavior = vm_map_entry_behavior(fs->entry);
1352
1353                         if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1354                                 seqaccess = 0;
1355                         else
1356                                 seqaccess = -1;
1357
1358 #if 0
1359                         /*
1360                          * If sequential access is detected then attempt
1361                          * to deactivate/cache pages behind the scan to
1362                          * prevent resource hogging.
1363                          *
1364                          * Use of PG_RAM to detect sequential access
1365                          * also simulates multi-zone sequential access
1366                          * detection for free.
1367                          *
1368                          * NOTE: Partially valid dirty pages cannot be
1369                          *       deactivated without causing NFS picemeal
1370                          *       writes to barf.
1371                          */
1372                         if ((fs->first_object->type != OBJT_DEVICE) &&
1373                             (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
1374                                 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
1375                                  (fs->m->flags & PG_RAM)))
1376                         ) {
1377                                 vm_pindex_t scan_pindex;
1378                                 int scan_count = 16;
1379
1380                                 if (first_pindex < 16) {
1381                                         scan_pindex = 0;
1382                                         scan_count = 0;
1383                                 } else {
1384                                         scan_pindex = first_pindex - 16;
1385                                         if (scan_pindex < 16)
1386                                                 scan_count = scan_pindex;
1387                                         else
1388                                                 scan_count = 16;
1389                                 }
1390
1391                                 while (scan_count) {
1392                                         vm_page_t mt;
1393
1394                                         mt = vm_page_lookup(fs->first_object,
1395                                                             scan_pindex);
1396                                         if (mt == NULL)
1397                                                 break;
1398                                         if (vm_page_busy_try(mt, TRUE))
1399                                                 goto skip;
1400
1401                                         if (mt->valid != VM_PAGE_BITS_ALL) {
1402                                                 vm_page_wakeup(mt);
1403                                                 break;
1404                                         }
1405                                         if ((mt->flags &
1406                                              (PG_FICTITIOUS | PG_UNMANAGED |
1407                                               PG_NEED_COMMIT)) ||
1408                                             mt->hold_count ||
1409                                             mt->wire_count)  {
1410                                                 vm_page_wakeup(mt);
1411                                                 goto skip;
1412                                         }
1413                                         if (mt->dirty == 0)
1414                                                 vm_page_test_dirty(mt);
1415                                         if (mt->dirty) {
1416                                                 vm_page_protect(mt,
1417                                                                 VM_PROT_NONE);
1418                                                 vm_page_deactivate(mt);
1419                                                 vm_page_wakeup(mt);
1420                                         } else {
1421                                                 vm_page_cache(mt);
1422                                         }
1423 skip:
1424                                         --scan_count;
1425                                         --scan_pindex;
1426                                 }
1427
1428                                 seqaccess = 1;
1429                         }
1430 #endif
1431
1432                         /*
1433                          * Avoid deadlocking against the map when doing I/O.
1434                          * fs.object and the page is PG_BUSY'd.
1435                          *
1436                          * NOTE: Once unlocked, fs->entry can become stale
1437                          *       so this will NULL it out.
1438                          *
1439                          * NOTE: fs->entry is invalid until we relock the
1440                          *       map and verify that the timestamp has not
1441                          *       changed.
1442                          */
1443                         unlock_map(fs);
1444
1445                         /*
1446                          * Acquire the page data.  We still hold a ref on
1447                          * fs.object and the page has been PG_BUSY's.
1448                          *
1449                          * The pager may replace the page (for example, in
1450                          * order to enter a fictitious page into the
1451                          * object).  If it does so it is responsible for
1452                          * cleaning up the passed page and properly setting
1453                          * the new page PG_BUSY.
1454                          *
1455                          * If we got here through a PG_RAM read-ahead
1456                          * mark the page may be partially dirty and thus
1457                          * not freeable.  Don't bother checking to see
1458                          * if the pager has the page because we can't free
1459                          * it anyway.  We have to depend on the get_page
1460                          * operation filling in any gaps whether there is
1461                          * backing store or not.
1462                          */
1463                         rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1464
1465                         if (rv == VM_PAGER_OK) {
1466                                 /*
1467                                  * Relookup in case pager changed page. Pager
1468                                  * is responsible for disposition of old page
1469                                  * if moved.
1470                                  *
1471                                  * XXX other code segments do relookups too.
1472                                  * It's a bad abstraction that needs to be
1473                                  * fixed/removed.
1474                                  */
1475                                 fs->m = vm_page_lookup(fs->object, pindex);
1476                                 if (fs->m == NULL) {
1477                                         vm_object_pip_wakeup(fs->first_object);
1478                                         vm_object_chain_release_all(
1479                                                 fs->first_object, fs->object);
1480                                         if (fs->object != fs->first_object)
1481                                                 vm_object_drop(fs->object);
1482                                         unlock_and_deallocate(fs);
1483                                         return (KERN_TRY_AGAIN);
1484                                 }
1485
1486                                 ++fs->hardfault;
1487                                 break; /* break to PAGE HAS BEEN FOUND */
1488                         }
1489
1490                         /*
1491                          * Remove the bogus page (which does not exist at this
1492                          * object/offset); before doing so, we must get back
1493                          * our object lock to preserve our invariant.
1494                          *
1495                          * Also wake up any other process that may want to bring
1496                          * in this page.
1497                          *
1498                          * If this is the top-level object, we must leave the
1499                          * busy page to prevent another process from rushing
1500                          * past us, and inserting the page in that object at
1501                          * the same time that we are.
1502                          */
1503                         if (rv == VM_PAGER_ERROR) {
1504                                 if (curproc) {
1505                                         kprintf("vm_fault: pager read error, "
1506                                                 "pid %d (%s)\n",
1507                                                 curproc->p_pid,
1508                                                 curproc->p_comm);
1509                                 } else {
1510                                         kprintf("vm_fault: pager read error, "
1511                                                 "thread %p (%s)\n",
1512                                                 curthread,
1513                                                 curproc->p_comm);
1514                                 }
1515                         }
1516
1517                         /*
1518                          * Data outside the range of the pager or an I/O error
1519                          *
1520                          * The page may have been wired during the pagein,
1521                          * e.g. by the buffer cache, and cannot simply be
1522                          * freed.  Call vnode_pager_freepage() to deal with it.
1523                          */
1524                         /*
1525                          * XXX - the check for kernel_map is a kludge to work
1526                          * around having the machine panic on a kernel space
1527                          * fault w/ I/O error.
1528                          */
1529                         if (((fs->map != &kernel_map) &&
1530                             (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1531                                 vnode_pager_freepage(fs->m);
1532                                 fs->m = NULL;
1533                                 vm_object_pip_wakeup(fs->first_object);
1534                                 vm_object_chain_release_all(fs->first_object,
1535                                                             fs->object);
1536                                 if (fs->object != fs->first_object)
1537                                         vm_object_drop(fs->object);
1538                                 unlock_and_deallocate(fs);
1539                                 if (rv == VM_PAGER_ERROR)
1540                                         return (KERN_FAILURE);
1541                                 else
1542                                         return (KERN_PROTECTION_FAILURE);
1543                                 /* NOT REACHED */
1544                         }
1545                         if (fs->object != fs->first_object) {
1546                                 vnode_pager_freepage(fs->m);
1547                                 fs->m = NULL;
1548                                 /*
1549                                  * XXX - we cannot just fall out at this
1550                                  * point, m has been freed and is invalid!
1551                                  */
1552                         }
1553                 }
1554
1555                 /*
1556                  * We get here if the object has a default pager (or unwiring) 
1557                  * or the pager doesn't have the page.
1558                  */
1559                 if (fs->object == fs->first_object)
1560                         fs->first_m = fs->m;
1561
1562                 /*
1563                  * Move on to the next object.  The chain lock should prevent
1564                  * the backing_object from getting ripped out from under us.
1565                  *
1566                  * vm_shared_fault case:
1567                  *
1568                  *      If the next object is the last object and
1569                  *      vnode-backed (thus possibly shared), we can try a
1570                  *      shared object lock.  There is no 'chain' for this
1571                  *      last object if vnode-backed (otherwise we would
1572                  *      need an exclusive lock).
1573                  *
1574                  *      fs->shared mode is very fragile and only works
1575                  *      under certain specific conditions, and is only
1576                  *      handled for those conditions in our loop.  Essentially
1577                  *      it is designed only to be able to 'dip into' the
1578                  *      vnode's object and extract an already-cached page.
1579                  */
1580                 fs->shared = 0;
1581                 if ((next_object = fs->object->backing_object) != NULL) {
1582                         fs->shared = vm_object_hold_maybe_shared(next_object);
1583                         vm_object_chain_acquire(next_object);
1584                         KKASSERT(next_object == fs->object->backing_object);
1585                         pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1586                 }
1587
1588                 if (next_object == NULL) {
1589                         /*
1590                          * If there's no object left, fill the page in the top
1591                          * object with zeros.
1592                          */
1593                         if (fs->object != fs->first_object) {
1594                                 if (fs->first_object->backing_object !=
1595                                     fs->object) {
1596                                         vm_object_hold(fs->first_object->backing_object);
1597                                 }
1598                                 vm_object_chain_release_all(
1599                                         fs->first_object->backing_object,
1600                                         fs->object);
1601                                 if (fs->first_object->backing_object !=
1602                                     fs->object) {
1603                                         vm_object_drop(fs->first_object->backing_object);
1604                                 }
1605                                 vm_object_pip_wakeup(fs->object);
1606                                 vm_object_drop(fs->object);
1607                                 fs->object = fs->first_object;
1608                                 pindex = first_pindex;
1609                                 fs->m = fs->first_m;
1610                         }
1611                         fs->first_m = NULL;
1612
1613                         /*
1614                          * Zero the page if necessary and mark it valid.
1615                          */
1616                         if ((fs->m->flags & PG_ZERO) == 0) {
1617                                 vm_page_zero_fill(fs->m);
1618                         } else {
1619 #ifdef PMAP_DEBUG
1620                                 pmap_page_assertzero(VM_PAGE_TO_PHYS(fs->m));
1621 #endif
1622                                 vm_page_flag_clear(fs->m, PG_ZERO);
1623                                 mycpu->gd_cnt.v_ozfod++;
1624                         }
1625                         mycpu->gd_cnt.v_zfod++;
1626                         fs->m->valid = VM_PAGE_BITS_ALL;
1627                         break;  /* break to PAGE HAS BEEN FOUND */
1628                 }
1629                 if (fs->object != fs->first_object) {
1630                         vm_object_pip_wakeup(fs->object);
1631                         vm_object_lock_swap();
1632                         vm_object_drop(fs->object);
1633                 }
1634                 KASSERT(fs->object != next_object,
1635                         ("object loop %p", next_object));
1636                 fs->object = next_object;
1637                 vm_object_pip_add(fs->object, 1);
1638         }
1639
1640         /*
1641          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1642          * is held.]
1643          *
1644          * object still held.
1645          *
1646          * If the page is being written, but isn't already owned by the
1647          * top-level object, we have to copy it into a new page owned by the
1648          * top-level object.
1649          */
1650         KASSERT((fs->m->flags & PG_BUSY) != 0,
1651                 ("vm_fault: not busy after main loop"));
1652
1653         if (fs->object != fs->first_object) {
1654                 /*
1655                  * We only really need to copy if we want to write it.
1656                  */
1657                 if (fault_type & VM_PROT_WRITE) {
1658                         /*
1659                          * This allows pages to be virtually copied from a 
1660                          * backing_object into the first_object, where the 
1661                          * backing object has no other refs to it, and cannot
1662                          * gain any more refs.  Instead of a bcopy, we just 
1663                          * move the page from the backing object to the 
1664                          * first object.  Note that we must mark the page 
1665                          * dirty in the first object so that it will go out 
1666                          * to swap when needed.
1667                          */
1668                         if (
1669                                 /*
1670                                  * Map, if present, has not changed
1671                                  */
1672                                 (fs->map == NULL ||
1673                                 fs->map_generation == fs->map->timestamp) &&
1674                                 /*
1675                                  * Only one shadow object
1676                                  */
1677                                 (fs->object->shadow_count == 1) &&
1678                                 /*
1679                                  * No COW refs, except us
1680                                  */
1681                                 (fs->object->ref_count == 1) &&
1682                                 /*
1683                                  * No one else can look this object up
1684                                  */
1685                                 (fs->object->handle == NULL) &&
1686                                 /*
1687                                  * No other ways to look the object up
1688                                  */
1689                                 ((fs->object->type == OBJT_DEFAULT) ||
1690                                  (fs->object->type == OBJT_SWAP)) &&
1691                                 /*
1692                                  * We don't chase down the shadow chain
1693                                  */
1694                                 (fs->object == fs->first_object->backing_object) &&
1695
1696                                 /*
1697                                  * grab the lock if we need to
1698                                  */
1699                                 (fs->lookup_still_valid ||
1700                                  fs->map == NULL ||
1701                                  lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1702                             ) {
1703                                 /*
1704                                  * (first_m) and (m) are both busied.  We have
1705                                  * move (m) into (first_m)'s object/pindex
1706                                  * in an atomic fashion, then free (first_m).
1707                                  *
1708                                  * first_object is held so second remove
1709                                  * followed by the rename should wind
1710                                  * up being atomic.  vm_page_free() might
1711                                  * block so we don't do it until after the
1712                                  * rename.
1713                                  */
1714                                 fs->lookup_still_valid = 1;
1715                                 vm_page_protect(fs->first_m, VM_PROT_NONE);
1716                                 vm_page_remove(fs->first_m);
1717                                 vm_page_rename(fs->m, fs->first_object,
1718                                                first_pindex);
1719                                 vm_page_free(fs->first_m);
1720                                 fs->first_m = fs->m;
1721                                 fs->m = NULL;
1722                                 mycpu->gd_cnt.v_cow_optim++;
1723                         } else {
1724                                 /*
1725                                  * Oh, well, lets copy it.
1726                                  *
1727                                  * Why are we unmapping the original page
1728                                  * here?  Well, in short, not all accessors
1729                                  * of user memory go through the pmap.  The
1730                                  * procfs code doesn't have access user memory
1731                                  * via a local pmap, so vm_fault_page*()
1732                                  * can't call pmap_enter().  And the umtx*()
1733                                  * code may modify the COW'd page via a DMAP
1734                                  * or kernel mapping and not via the pmap,
1735                                  * leaving the original page still mapped
1736                                  * read-only into the pmap.
1737                                  *
1738                                  * So we have to remove the page from at
1739                                  * least the current pmap if it is in it.
1740                                  * Just remove it from all pmaps.
1741                                  */
1742                                 vm_page_copy(fs->m, fs->first_m);
1743                                 vm_page_protect(fs->m, VM_PROT_NONE);
1744                                 vm_page_event(fs->m, VMEVENT_COW);
1745                         }
1746
1747                         if (fs->m) {
1748                                 /*
1749                                  * We no longer need the old page or object.
1750                                  */
1751                                 release_page(fs);
1752                         }
1753
1754                         /*
1755                          * We intend to revert to first_object, undo the
1756                          * chain lock through to that.
1757                          */
1758                         if (fs->first_object->backing_object != fs->object)
1759                                 vm_object_hold(fs->first_object->backing_object);
1760                         vm_object_chain_release_all(
1761                                         fs->first_object->backing_object,
1762                                         fs->object);
1763                         if (fs->first_object->backing_object != fs->object)
1764                                 vm_object_drop(fs->first_object->backing_object);
1765
1766                         /*
1767                          * fs->object != fs->first_object due to above 
1768                          * conditional
1769                          */
1770                         vm_object_pip_wakeup(fs->object);
1771                         vm_object_drop(fs->object);
1772
1773                         /*
1774                          * Only use the new page below...
1775                          */
1776
1777                         mycpu->gd_cnt.v_cow_faults++;
1778                         fs->m = fs->first_m;
1779                         fs->object = fs->first_object;
1780                         pindex = first_pindex;
1781                 } else {
1782                         /*
1783                          * If it wasn't a write fault avoid having to copy
1784                          * the page by mapping it read-only.
1785                          */
1786                         fs->prot &= ~VM_PROT_WRITE;
1787                 }
1788         }
1789
1790         /*
1791          * Relock the map if necessary, then check the generation count.
1792          * relock_map() will update fs->timestamp to account for the
1793          * relocking if necessary.
1794          *
1795          * If the count has changed after relocking then all sorts of
1796          * crap may have happened and we have to retry.
1797          *
1798          * NOTE: The relock_map() can fail due to a deadlock against
1799          *       the vm_page we are holding BUSY.
1800          */
1801         if (fs->lookup_still_valid == FALSE && fs->map) {
1802                 if (relock_map(fs) ||
1803                     fs->map->timestamp != fs->map_generation) {
1804                         release_page(fs);
1805                         vm_object_pip_wakeup(fs->first_object);
1806                         vm_object_chain_release_all(fs->first_object,
1807                                                     fs->object);
1808                         if (fs->object != fs->first_object)
1809                                 vm_object_drop(fs->object);
1810                         unlock_and_deallocate(fs);
1811                         return (KERN_TRY_AGAIN);
1812                 }
1813         }
1814
1815         /*
1816          * If the fault is a write, we know that this page is being
1817          * written NOW so dirty it explicitly to save on pmap_is_modified()
1818          * calls later.
1819          *
1820          * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1821          * if the page is already dirty to prevent data written with
1822          * the expectation of being synced from not being synced.
1823          * Likewise if this entry does not request NOSYNC then make
1824          * sure the page isn't marked NOSYNC.  Applications sharing
1825          * data should use the same flags to avoid ping ponging.
1826          *
1827          * Also tell the backing pager, if any, that it should remove
1828          * any swap backing since the page is now dirty.
1829          */
1830         vm_page_activate(fs->m);
1831         if (fs->prot & VM_PROT_WRITE) {
1832                 vm_object_set_writeable_dirty(fs->m->object);
1833                 vm_set_nosync(fs->m, fs->entry);
1834                 if (fs->fault_flags & VM_FAULT_DIRTY) {
1835                         vm_page_dirty(fs->m);
1836                         swap_pager_unswapped(fs->m);
1837                 }
1838         }
1839
1840         vm_object_pip_wakeup(fs->first_object);
1841         vm_object_chain_release_all(fs->first_object, fs->object);
1842         if (fs->object != fs->first_object)
1843                 vm_object_drop(fs->object);
1844
1845         /*
1846          * Page had better still be busy.  We are still locked up and 
1847          * fs->object will have another PIP reference if it is not equal
1848          * to fs->first_object.
1849          */
1850         KASSERT(fs->m->flags & PG_BUSY,
1851                 ("vm_fault: page %p not busy!", fs->m));
1852
1853         /*
1854          * Sanity check: page must be completely valid or it is not fit to
1855          * map into user space.  vm_pager_get_pages() ensures this.
1856          */
1857         if (fs->m->valid != VM_PAGE_BITS_ALL) {
1858                 vm_page_zero_invalid(fs->m, TRUE);
1859                 kprintf("Warning: page %p partially invalid on fault\n", fs->m);
1860         }
1861         vm_page_flag_clear(fs->m, PG_ZERO);
1862
1863         return (KERN_SUCCESS);
1864 }
1865
1866 /*
1867  * Wire down a range of virtual addresses in a map.  The entry in question
1868  * should be marked in-transition and the map must be locked.  We must
1869  * release the map temporarily while faulting-in the page to avoid a
1870  * deadlock.  Note that the entry may be clipped while we are blocked but
1871  * will never be freed.
1872  *
1873  * No requirements.
1874  */
1875 int
1876 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire)
1877 {
1878         boolean_t fictitious;
1879         vm_offset_t start;
1880         vm_offset_t end;
1881         vm_offset_t va;
1882         vm_paddr_t pa;
1883         vm_page_t m;
1884         pmap_t pmap;
1885         int rv;
1886
1887         lwkt_gettoken(&map->token);
1888
1889         pmap = vm_map_pmap(map);
1890         start = entry->start;
1891         end = entry->end;
1892         fictitious = entry->object.vm_object &&
1893                         (entry->object.vm_object->type == OBJT_DEVICE);
1894         if (entry->eflags & MAP_ENTRY_KSTACK)
1895                 start += PAGE_SIZE;
1896         map->timestamp++;
1897         vm_map_unlock(map);
1898
1899         /*
1900          * We simulate a fault to get the page and enter it in the physical
1901          * map.
1902          */
1903         for (va = start; va < end; va += PAGE_SIZE) {
1904                 if (user_wire) {
1905                         rv = vm_fault(map, va, VM_PROT_READ, 
1906                                         VM_FAULT_USER_WIRE);
1907                 } else {
1908                         rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
1909                                         VM_FAULT_CHANGE_WIRING);
1910                 }
1911                 if (rv) {
1912                         while (va > start) {
1913                                 va -= PAGE_SIZE;
1914                                 if ((pa = pmap_extract(pmap, va)) == 0)
1915                                         continue;
1916                                 pmap_change_wiring(pmap, va, FALSE, entry);
1917                                 if (!fictitious) {
1918                                         m = PHYS_TO_VM_PAGE(pa);
1919                                         vm_page_busy_wait(m, FALSE, "vmwrpg");
1920                                         vm_page_unwire(m, 1);
1921                                         vm_page_wakeup(m);
1922                                 }
1923                         }
1924                         goto done;
1925                 }
1926         }
1927         rv = KERN_SUCCESS;
1928 done:
1929         vm_map_lock(map);
1930         lwkt_reltoken(&map->token);
1931         return (rv);
1932 }
1933
1934 /*
1935  * Unwire a range of virtual addresses in a map.  The map should be
1936  * locked.
1937  */
1938 void
1939 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
1940 {
1941         boolean_t fictitious;
1942         vm_offset_t start;
1943         vm_offset_t end;
1944         vm_offset_t va;
1945         vm_paddr_t pa;
1946         vm_page_t m;
1947         pmap_t pmap;
1948
1949         lwkt_gettoken(&map->token);
1950
1951         pmap = vm_map_pmap(map);
1952         start = entry->start;
1953         end = entry->end;
1954         fictitious = entry->object.vm_object &&
1955                         (entry->object.vm_object->type == OBJT_DEVICE);
1956         if (entry->eflags & MAP_ENTRY_KSTACK)
1957                 start += PAGE_SIZE;
1958
1959         /*
1960          * Since the pages are wired down, we must be able to get their
1961          * mappings from the physical map system.
1962          */
1963         for (va = start; va < end; va += PAGE_SIZE) {
1964                 pa = pmap_extract(pmap, va);
1965                 if (pa != 0) {
1966                         pmap_change_wiring(pmap, va, FALSE, entry);
1967                         if (!fictitious) {
1968                                 m = PHYS_TO_VM_PAGE(pa);
1969                                 vm_page_busy_wait(m, FALSE, "vmwupg");
1970                                 vm_page_unwire(m, 1);
1971                                 vm_page_wakeup(m);
1972                         }
1973                 }
1974         }
1975         lwkt_reltoken(&map->token);
1976 }
1977
1978 /*
1979  * Copy all of the pages from a wired-down map entry to another.
1980  *
1981  * The source and destination maps must be locked for write.
1982  * The source and destination maps token must be held
1983  * The source map entry must be wired down (or be a sharing map
1984  * entry corresponding to a main map entry that is wired down).
1985  *
1986  * No other requirements.
1987  *
1988  * XXX do segment optimization
1989  */
1990 void
1991 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1992                     vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
1993 {
1994         vm_object_t dst_object;
1995         vm_object_t src_object;
1996         vm_ooffset_t dst_offset;
1997         vm_ooffset_t src_offset;
1998         vm_prot_t prot;
1999         vm_offset_t vaddr;
2000         vm_page_t dst_m;
2001         vm_page_t src_m;
2002
2003         src_object = src_entry->object.vm_object;
2004         src_offset = src_entry->offset;
2005
2006         /*
2007          * Create the top-level object for the destination entry. (Doesn't
2008          * actually shadow anything - we copy the pages directly.)
2009          */
2010         vm_map_entry_allocate_object(dst_entry);
2011         dst_object = dst_entry->object.vm_object;
2012
2013         prot = dst_entry->max_protection;
2014
2015         /*
2016          * Loop through all of the pages in the entry's range, copying each
2017          * one from the source object (it should be there) to the destination
2018          * object.
2019          */
2020         vm_object_hold(src_object);
2021         vm_object_hold(dst_object);
2022         for (vaddr = dst_entry->start, dst_offset = 0;
2023             vaddr < dst_entry->end;
2024             vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
2025
2026                 /*
2027                  * Allocate a page in the destination object
2028                  */
2029                 do {
2030                         dst_m = vm_page_alloc(dst_object,
2031                                               OFF_TO_IDX(dst_offset),
2032                                               VM_ALLOC_NORMAL);
2033                         if (dst_m == NULL) {
2034                                 vm_wait(0);
2035                         }
2036                 } while (dst_m == NULL);
2037
2038                 /*
2039                  * Find the page in the source object, and copy it in.
2040                  * (Because the source is wired down, the page will be in
2041                  * memory.)
2042                  */
2043                 src_m = vm_page_lookup(src_object,
2044                                        OFF_TO_IDX(dst_offset + src_offset));
2045                 if (src_m == NULL)
2046                         panic("vm_fault_copy_wired: page missing");
2047
2048                 vm_page_copy(src_m, dst_m);
2049                 vm_page_event(src_m, VMEVENT_COW);
2050
2051                 /*
2052                  * Enter it in the pmap...
2053                  */
2054
2055                 vm_page_flag_clear(dst_m, PG_ZERO);
2056                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE, dst_entry);
2057
2058                 /*
2059                  * Mark it no longer busy, and put it on the active list.
2060                  */
2061                 vm_page_activate(dst_m);
2062                 vm_page_wakeup(dst_m);
2063         }
2064         vm_object_drop(dst_object);
2065         vm_object_drop(src_object);
2066 }
2067
2068 #if 0
2069
2070 /*
2071  * This routine checks around the requested page for other pages that
2072  * might be able to be faulted in.  This routine brackets the viable
2073  * pages for the pages to be paged in.
2074  *
2075  * Inputs:
2076  *      m, rbehind, rahead
2077  *
2078  * Outputs:
2079  *  marray (array of vm_page_t), reqpage (index of requested page)
2080  *
2081  * Return value:
2082  *  number of pages in marray
2083  */
2084 static int
2085 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
2086                           vm_page_t *marray, int *reqpage)
2087 {
2088         int i,j;
2089         vm_object_t object;
2090         vm_pindex_t pindex, startpindex, endpindex, tpindex;
2091         vm_page_t rtm;
2092         int cbehind, cahead;
2093
2094         object = m->object;
2095         pindex = m->pindex;
2096
2097         /*
2098          * we don't fault-ahead for device pager
2099          */
2100         if (object->type == OBJT_DEVICE) {
2101                 *reqpage = 0;
2102                 marray[0] = m;
2103                 return 1;
2104         }
2105
2106         /*
2107          * if the requested page is not available, then give up now
2108          */
2109         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
2110                 *reqpage = 0;   /* not used by caller, fix compiler warn */
2111                 return 0;
2112         }
2113
2114         if ((cbehind == 0) && (cahead == 0)) {
2115                 *reqpage = 0;
2116                 marray[0] = m;
2117                 return 1;
2118         }
2119
2120         if (rahead > cahead) {
2121                 rahead = cahead;
2122         }
2123
2124         if (rbehind > cbehind) {
2125                 rbehind = cbehind;
2126         }
2127
2128         /*
2129          * Do not do any readahead if we have insufficient free memory.
2130          *
2131          * XXX code was broken disabled before and has instability
2132          * with this conditonal fixed, so shortcut for now.
2133          */
2134         if (burst_fault == 0 || vm_page_count_severe()) {
2135                 marray[0] = m;
2136                 *reqpage = 0;
2137                 return 1;
2138         }
2139
2140         /*
2141          * scan backward for the read behind pages -- in memory 
2142          *
2143          * Assume that if the page is not found an interrupt will not
2144          * create it.  Theoretically interrupts can only remove (busy)
2145          * pages, not create new associations.
2146          */
2147         if (pindex > 0) {
2148                 if (rbehind > pindex) {
2149                         rbehind = pindex;
2150                         startpindex = 0;
2151                 } else {
2152                         startpindex = pindex - rbehind;
2153                 }
2154
2155                 vm_object_hold(object);
2156                 for (tpindex = pindex; tpindex > startpindex; --tpindex) {
2157                         if (vm_page_lookup(object, tpindex - 1))
2158                                 break;
2159                 }
2160
2161                 i = 0;
2162                 while (tpindex < pindex) {
2163                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2164                                                              VM_ALLOC_NULL_OK);
2165                         if (rtm == NULL) {
2166                                 for (j = 0; j < i; j++) {
2167                                         vm_page_free(marray[j]);
2168                                 }
2169                                 vm_object_drop(object);
2170                                 marray[0] = m;
2171                                 *reqpage = 0;
2172                                 return 1;
2173                         }
2174                         marray[i] = rtm;
2175                         ++i;
2176                         ++tpindex;
2177                 }
2178                 vm_object_drop(object);
2179         } else {
2180                 i = 0;
2181         }
2182
2183         /*
2184          * Assign requested page
2185          */
2186         marray[i] = m;
2187         *reqpage = i;
2188         ++i;
2189
2190         /*
2191          * Scan forwards for read-ahead pages
2192          */
2193         tpindex = pindex + 1;
2194         endpindex = tpindex + rahead;
2195         if (endpindex > object->size)
2196                 endpindex = object->size;
2197
2198         vm_object_hold(object);
2199         while (tpindex < endpindex) {
2200                 if (vm_page_lookup(object, tpindex))
2201                         break;
2202                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2203                                                      VM_ALLOC_NULL_OK);
2204                 if (rtm == NULL)
2205                         break;
2206                 marray[i] = rtm;
2207                 ++i;
2208                 ++tpindex;
2209         }
2210         vm_object_drop(object);
2211
2212         return (i);
2213 }
2214
2215 #endif
2216
2217 /*
2218  * vm_prefault() provides a quick way of clustering pagefaults into a
2219  * processes address space.  It is a "cousin" of pmap_object_init_pt,
2220  * except it runs at page fault time instead of mmap time.
2221  *
2222  * vm.fast_fault        Enables pre-faulting zero-fill pages
2223  *
2224  * vm.prefault_pages    Number of pages (1/2 negative, 1/2 positive) to
2225  *                      prefault.  Scan stops in either direction when
2226  *                      a page is found to already exist.
2227  *
2228  * This code used to be per-platform pmap_prefault().  It is now
2229  * machine-independent and enhanced to also pre-fault zero-fill pages
2230  * (see vm.fast_fault) as well as make them writable, which greatly
2231  * reduces the number of page faults programs incur.
2232  *
2233  * Application performance when pre-faulting zero-fill pages is heavily
2234  * dependent on the application.  Very tiny applications like /bin/echo
2235  * lose a little performance while applications of any appreciable size
2236  * gain performance.  Prefaulting multiple pages also reduces SMP
2237  * congestion and can improve SMP performance significantly.
2238  *
2239  * NOTE!  prot may allow writing but this only applies to the top level
2240  *        object.  If we wind up mapping a page extracted from a backing
2241  *        object we have to make sure it is read-only.
2242  *
2243  * NOTE!  The caller has already handled any COW operations on the
2244  *        vm_map_entry via the normal fault code.  Do NOT call this
2245  *        shortcut unless the normal fault code has run on this entry.
2246  *
2247  * The related map must be locked.
2248  * No other requirements.
2249  */
2250 static int vm_prefault_pages = 8;
2251 SYSCTL_INT(_vm, OID_AUTO, prefault_pages, CTLFLAG_RW, &vm_prefault_pages, 0,
2252            "Maximum number of pages to pre-fault");
2253 static int vm_fast_fault = 1;
2254 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0,
2255            "Burst fault zero-fill regions");
2256
2257 /*
2258  * Set PG_NOSYNC if the map entry indicates so, but only if the page
2259  * is not already dirty by other means.  This will prevent passive
2260  * filesystem syncing as well as 'sync' from writing out the page.
2261  */
2262 static void
2263 vm_set_nosync(vm_page_t m, vm_map_entry_t entry)
2264 {
2265         if (entry->eflags & MAP_ENTRY_NOSYNC) {
2266                 if (m->dirty == 0)
2267                         vm_page_flag_set(m, PG_NOSYNC);
2268         } else {
2269                 vm_page_flag_clear(m, PG_NOSYNC);
2270         }
2271 }
2272
2273 static void
2274 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot,
2275             int fault_flags)
2276 {
2277         struct lwp *lp;
2278         vm_page_t m;
2279         vm_offset_t addr;
2280         vm_pindex_t index;
2281         vm_pindex_t pindex;
2282         vm_object_t object;
2283         int pprot;
2284         int i;
2285         int noneg;
2286         int nopos;
2287         int maxpages;
2288
2289         /*
2290          * Get stable max count value, disabled if set to 0
2291          */
2292         maxpages = vm_prefault_pages;
2293         cpu_ccfence();
2294         if (maxpages <= 0)
2295                 return;
2296
2297         /*
2298          * We do not currently prefault mappings that use virtual page
2299          * tables.  We do not prefault foreign pmaps.
2300          */
2301         if (entry->maptype == VM_MAPTYPE_VPAGETABLE)
2302                 return;
2303         lp = curthread->td_lwp;
2304         if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2305                 return;
2306
2307         /*
2308          * Limit pre-fault count to 1024 pages.
2309          */
2310         if (maxpages > 1024)
2311                 maxpages = 1024;
2312
2313         object = entry->object.vm_object;
2314         KKASSERT(object != NULL);
2315         KKASSERT(object == entry->object.vm_object);
2316         vm_object_hold(object);
2317         vm_object_chain_acquire(object);
2318
2319         noneg = 0;
2320         nopos = 0;
2321         for (i = 0; i < maxpages; ++i) {
2322                 vm_object_t lobject;
2323                 vm_object_t nobject;
2324                 int allocated = 0;
2325                 int error;
2326
2327                 /*
2328                  * This can eat a lot of time on a heavily contended
2329                  * machine so yield on the tick if needed.
2330                  */
2331                 if ((i & 7) == 7)
2332                         lwkt_yield();
2333
2334                 /*
2335                  * Calculate the page to pre-fault, stopping the scan in
2336                  * each direction separately if the limit is reached.
2337                  */
2338                 if (i & 1) {
2339                         if (noneg)
2340                                 continue;
2341                         addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2342                 } else {
2343                         if (nopos)
2344                                 continue;
2345                         addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2346                 }
2347                 if (addr < entry->start) {
2348                         noneg = 1;
2349                         if (noneg && nopos)
2350                                 break;
2351                         continue;
2352                 }
2353                 if (addr >= entry->end) {
2354                         nopos = 1;
2355                         if (noneg && nopos)
2356                                 break;
2357                         continue;
2358                 }
2359
2360                 /*
2361                  * Skip pages already mapped, and stop scanning in that
2362                  * direction.  When the scan terminates in both directions
2363                  * we are done.
2364                  */
2365                 if (pmap_prefault_ok(pmap, addr) == 0) {
2366                         if (i & 1)
2367                                 noneg = 1;
2368                         else
2369                                 nopos = 1;
2370                         if (noneg && nopos)
2371                                 break;
2372                         continue;
2373                 }
2374
2375                 /*
2376                  * Follow the VM object chain to obtain the page to be mapped
2377                  * into the pmap.
2378                  *
2379                  * If we reach the terminal object without finding a page
2380                  * and we determine it would be advantageous, then allocate
2381                  * a zero-fill page for the base object.  The base object
2382                  * is guaranteed to be OBJT_DEFAULT for this case.
2383                  *
2384                  * In order to not have to check the pager via *haspage*()
2385                  * we stop if any non-default object is encountered.  e.g.
2386                  * a vnode or swap object would stop the loop.
2387                  */
2388                 index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2389                 lobject = object;
2390                 pindex = index;
2391                 pprot = prot;
2392
2393                 KKASSERT(lobject == entry->object.vm_object);
2394                 /*vm_object_hold(lobject); implied */
2395
2396                 while ((m = vm_page_lookup_busy_try(lobject, pindex,
2397                                                     TRUE, &error)) == NULL) {
2398                         if (lobject->type != OBJT_DEFAULT)
2399                                 break;
2400                         if (lobject->backing_object == NULL) {
2401                                 if (vm_fast_fault == 0)
2402                                         break;
2403                                 if ((prot & VM_PROT_WRITE) == 0 ||
2404                                     vm_page_count_min(0)) {
2405                                         break;
2406                                 }
2407
2408                                 /*
2409                                  * NOTE: Allocated from base object
2410                                  */
2411                                 m = vm_page_alloc(object, index,
2412                                                   VM_ALLOC_NORMAL |
2413                                                   VM_ALLOC_ZERO |
2414                                                   VM_ALLOC_USE_GD |
2415                                                   VM_ALLOC_NULL_OK);
2416                                 if (m == NULL)
2417                                         break;
2418                                 allocated = 1;
2419                                 pprot = prot;
2420                                 /* lobject = object .. not needed */
2421                                 break;
2422                         }
2423                         if (lobject->backing_object_offset & PAGE_MASK)
2424                                 break;
2425                         nobject = lobject->backing_object;
2426                         vm_object_hold(nobject);
2427                         KKASSERT(nobject == lobject->backing_object);
2428                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2429                         if (lobject != object) {
2430                                 vm_object_lock_swap();
2431                                 vm_object_drop(lobject);
2432                         }
2433                         lobject = nobject;
2434                         pprot &= ~VM_PROT_WRITE;
2435                         vm_object_chain_acquire(lobject);
2436                 }
2437
2438                 /*
2439                  * NOTE: A non-NULL (m) will be associated with lobject if
2440                  *       it was found there, otherwise it is probably a
2441                  *       zero-fill page associated with the base object.
2442                  *
2443                  * Give-up if no page is available.
2444                  */
2445                 if (m == NULL) {
2446                         if (lobject != object) {
2447                                 if (object->backing_object != lobject)
2448                                         vm_object_hold(object->backing_object);
2449                                 vm_object_chain_release_all(
2450                                         object->backing_object, lobject);
2451                                 if (object->backing_object != lobject)
2452                                         vm_object_drop(object->backing_object);
2453                                 vm_object_drop(lobject);
2454                         }
2455                         break;
2456                 }
2457
2458                 /*
2459                  * The object must be marked dirty if we are mapping a
2460                  * writable page.  m->object is either lobject or object,
2461                  * both of which are still held.  Do this before we
2462                  * potentially drop the object.
2463                  */
2464                 if (pprot & VM_PROT_WRITE)
2465                         vm_object_set_writeable_dirty(m->object);
2466
2467                 /*
2468                  * Do not conditionalize on PG_RAM.  If pages are present in
2469                  * the VM system we assume optimal caching.  If caching is
2470                  * not optimal the I/O gravy train will be restarted when we
2471                  * hit an unavailable page.  We do not want to try to restart
2472                  * the gravy train now because we really don't know how much
2473                  * of the object has been cached.  The cost for restarting
2474                  * the gravy train should be low (since accesses will likely
2475                  * be I/O bound anyway).
2476                  */
2477                 if (lobject != object) {
2478                         if (object->backing_object != lobject)
2479                                 vm_object_hold(object->backing_object);
2480                         vm_object_chain_release_all(object->backing_object,
2481                                                     lobject);
2482                         if (object->backing_object != lobject)
2483                                 vm_object_drop(object->backing_object);
2484                         vm_object_drop(lobject);
2485                 }
2486
2487                 /*
2488                  * Enter the page into the pmap if appropriate.  If we had
2489                  * allocated the page we have to place it on a queue.  If not
2490                  * we just have to make sure it isn't on the cache queue
2491                  * (pages on the cache queue are not allowed to be mapped).
2492                  */
2493                 if (allocated) {
2494                         /*
2495                          * Page must be zerod.
2496                          */
2497                         if ((m->flags & PG_ZERO) == 0) {
2498                                 vm_page_zero_fill(m);
2499                         } else {
2500 #ifdef PMAP_DEBUG
2501                                 pmap_page_assertzero(
2502                                                 VM_PAGE_TO_PHYS(m));
2503 #endif
2504                                 vm_page_flag_clear(m, PG_ZERO);
2505                                 mycpu->gd_cnt.v_ozfod++;
2506                         }
2507                         mycpu->gd_cnt.v_zfod++;
2508                         m->valid = VM_PAGE_BITS_ALL;
2509
2510                         /*
2511                          * Handle dirty page case
2512                          */
2513                         if (pprot & VM_PROT_WRITE)
2514                                 vm_set_nosync(m, entry);
2515                         pmap_enter(pmap, addr, m, pprot, 0, entry);
2516                         mycpu->gd_cnt.v_vm_faults++;
2517                         if (curthread->td_lwp)
2518                                 ++curthread->td_lwp->lwp_ru.ru_minflt;
2519                         vm_page_deactivate(m);
2520                         if (pprot & VM_PROT_WRITE) {
2521                                 /*vm_object_set_writeable_dirty(m->object);*/
2522                                 vm_set_nosync(m, entry);
2523                                 if (fault_flags & VM_FAULT_DIRTY) {
2524                                         vm_page_dirty(m);
2525                                         /*XXX*/
2526                                         swap_pager_unswapped(m);
2527                                 }
2528                         }
2529                         vm_page_wakeup(m);
2530                 } else if (error) {
2531                         /* couldn't busy page, no wakeup */
2532                 } else if (
2533                     ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2534                     (m->flags & PG_FICTITIOUS) == 0) {
2535                         /*
2536                          * A fully valid page not undergoing soft I/O can
2537                          * be immediately entered into the pmap.
2538                          */
2539                         if ((m->queue - m->pc) == PQ_CACHE)
2540                                 vm_page_deactivate(m);
2541                         if (pprot & VM_PROT_WRITE) {
2542                                 /*vm_object_set_writeable_dirty(m->object);*/
2543                                 vm_set_nosync(m, entry);
2544                                 if (fault_flags & VM_FAULT_DIRTY) {
2545                                         vm_page_dirty(m);
2546                                         /*XXX*/
2547                                         swap_pager_unswapped(m);
2548                                 }
2549                         }
2550                         if (pprot & VM_PROT_WRITE)
2551                                 vm_set_nosync(m, entry);
2552                         pmap_enter(pmap, addr, m, pprot, 0, entry);
2553                         mycpu->gd_cnt.v_vm_faults++;
2554                         if (curthread->td_lwp)
2555                                 ++curthread->td_lwp->lwp_ru.ru_minflt;
2556                         vm_page_wakeup(m);
2557                 } else {
2558                         vm_page_wakeup(m);
2559                 }
2560         }
2561         vm_object_chain_release(object);
2562         vm_object_drop(object);
2563 }
2564
2565 static void
2566 vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
2567                   vm_map_entry_t entry, int prot, int fault_flags)
2568 {
2569         struct lwp *lp;
2570         vm_page_t m;
2571         vm_offset_t addr;
2572         vm_pindex_t pindex;
2573         vm_object_t object;
2574         int i;
2575         int noneg;
2576         int nopos;
2577         int maxpages;
2578
2579         /*
2580          * Get stable max count value, disabled if set to 0
2581          */
2582         maxpages = vm_prefault_pages;
2583         cpu_ccfence();
2584         if (maxpages <= 0)
2585                 return;
2586
2587         /*
2588          * We do not currently prefault mappings that use virtual page
2589          * tables.  We do not prefault foreign pmaps.
2590          */
2591         if (entry->maptype == VM_MAPTYPE_VPAGETABLE)
2592                 return;
2593         lp = curthread->td_lwp;
2594         if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2595                 return;
2596
2597         /*
2598          * Limit pre-fault count to 1024 pages.
2599          */
2600         if (maxpages > 1024)
2601                 maxpages = 1024;
2602
2603         object = entry->object.vm_object;
2604         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2605         KKASSERT(object->backing_object == NULL);
2606
2607         noneg = 0;
2608         nopos = 0;
2609         for (i = 0; i < maxpages; ++i) {
2610                 int error;
2611
2612                 /*
2613                  * Calculate the page to pre-fault, stopping the scan in
2614                  * each direction separately if the limit is reached.
2615                  */
2616                 if (i & 1) {
2617                         if (noneg)
2618                                 continue;
2619                         addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2620                 } else {
2621                         if (nopos)
2622                                 continue;
2623                         addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2624                 }
2625                 if (addr < entry->start) {
2626                         noneg = 1;
2627                         if (noneg && nopos)
2628                                 break;
2629                         continue;
2630                 }
2631                 if (addr >= entry->end) {
2632                         nopos = 1;
2633                         if (noneg && nopos)
2634                                 break;
2635                         continue;
2636                 }
2637
2638                 /*
2639                  * Skip pages already mapped, and stop scanning in that
2640                  * direction.  When the scan terminates in both directions
2641                  * we are done.
2642                  */
2643                 if (pmap_prefault_ok(pmap, addr) == 0) {
2644                         if (i & 1)
2645                                 noneg = 1;
2646                         else
2647                                 nopos = 1;
2648                         if (noneg && nopos)
2649                                 break;
2650                         continue;
2651                 }
2652
2653                 /*
2654                  * Follow the VM object chain to obtain the page to be mapped
2655                  * into the pmap.  This version of the prefault code only
2656                  * works with terminal objects.
2657                  *
2658                  * WARNING!  We cannot call swap_pager_unswapped() with a
2659                  *           shared token.
2660                  */
2661                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2662
2663                 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2664                 if (m == NULL || error)
2665                         continue;
2666
2667                 if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2668                     (m->flags & PG_FICTITIOUS) == 0 &&
2669                     ((m->flags & PG_SWAPPED) == 0 ||
2670                      (prot & VM_PROT_WRITE) == 0 ||
2671                      (fault_flags & VM_FAULT_DIRTY) == 0)) {
2672                         /*
2673                          * A fully valid page not undergoing soft I/O can
2674                          * be immediately entered into the pmap.
2675                          */
2676                         if ((m->queue - m->pc) == PQ_CACHE)
2677                                 vm_page_deactivate(m);
2678                         if (prot & VM_PROT_WRITE) {
2679                                 vm_object_set_writeable_dirty(m->object);
2680                                 vm_set_nosync(m, entry);
2681                                 if (fault_flags & VM_FAULT_DIRTY) {
2682                                         vm_page_dirty(m);
2683                                         /*XXX*/
2684                                         swap_pager_unswapped(m);
2685                                 }
2686                         }
2687                         pmap_enter(pmap, addr, m, prot, 0, entry);
2688                         mycpu->gd_cnt.v_vm_faults++;
2689                         if (curthread->td_lwp)
2690                                 ++curthread->td_lwp->lwp_ru.ru_minflt;
2691                 }
2692                 vm_page_wakeup(m);
2693         }
2694 }