Merge branch 'vendor/GREP'
[dragonfly.git] / sys / kern / imgact_elf.c
1 /*-
2  * Copyright (c) 2000 David O'Brien
3  * Copyright (c) 1995-1996 Søren Schmidt
4  * Copyright (c) 1996 Peter Wemm
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer
12  *    in this position and unchanged.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  *
30  * $FreeBSD: src/sys/kern/imgact_elf.c,v 1.73.2.13 2002/12/28 19:49:41 dillon Exp $
31  */
32
33 #include <sys/param.h>
34 #include <sys/exec.h>
35 #include <sys/fcntl.h>
36 #include <sys/file.h>
37 #include <sys/imgact.h>
38 #include <sys/imgact_elf.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mman.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/nlookup.h>
45 #include <sys/pioctl.h>
46 #include <sys/procfs.h>
47 #include <sys/resourcevar.h>
48 #include <sys/signalvar.h>
49 #include <sys/stat.h>
50 #include <sys/syscall.h>
51 #include <sys/sysctl.h>
52 #include <sys/sysent.h>
53 #include <sys/vnode.h>
54 #include <sys/eventhandler.h>
55
56 #include <cpu/lwbuf.h>
57
58 #include <vm/vm.h>
59 #include <vm/vm_kern.h>
60 #include <vm/vm_param.h>
61 #include <vm/pmap.h>
62 #include <sys/lock.h>
63 #include <vm/vm_map.h>
64 #include <vm/vm_object.h>
65 #include <vm/vm_extern.h>
66
67 #include <machine/elf.h>
68 #include <machine/md_var.h>
69 #include <sys/mount.h>
70 #include <sys/ckpt.h>
71
72 #define OLD_EI_BRAND    8
73 #define truncps(va,ps)  ((va) & ~(ps - 1))
74 #define aligned(a,t)    (truncps((u_long)(a), sizeof(t)) == (u_long)(a))
75
76 static int __elfN(check_header)(const Elf_Ehdr *hdr);
77 static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp,
78     const char *interp, int32_t *osrel);
79 static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
80     u_long *entry);
81 static int __elfN(load_section)(struct proc *p,
82     struct vmspace *vmspace, struct vnode *vp,
83     vm_offset_t offset, caddr_t vmaddr, size_t memsz, size_t filsz,
84     vm_prot_t prot);
85 static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp);
86 static boolean_t __elfN(bsd_trans_osrel)(const Elf_Note *note,
87     int32_t *osrel);
88 static boolean_t __elfN(check_note)(struct image_params *imgp,
89     Elf_Brandnote *checknote, int32_t *osrel);
90 static vm_prot_t __elfN(trans_prot)(Elf_Word);
91 static Elf_Word __elfN(untrans_prot)(vm_prot_t);
92 static boolean_t check_PT_NOTE(struct image_params *imgp,
93     Elf_Brandnote *checknote, int32_t *osrel, const Elf_Phdr * pnote);
94 static boolean_t extract_interpreter(struct image_params *imgp,
95     const Elf_Phdr *pinterpreter, char *data);
96
97 static int elf_legacy_coredump = 0;
98 static int __elfN(fallback_brand) = -1;
99 #if defined(__x86_64__)
100 SYSCTL_NODE(_kern, OID_AUTO, elf64, CTLFLAG_RW, 0, "");
101 SYSCTL_INT(_debug, OID_AUTO, elf64_legacy_coredump, CTLFLAG_RW,
102     &elf_legacy_coredump, 0, "legacy coredump mode");
103 SYSCTL_INT(_kern_elf64, OID_AUTO, fallback_brand, CTLFLAG_RW,
104     &elf64_fallback_brand, 0, "ELF64 brand of last resort");
105 TUNABLE_INT("kern.elf64.fallback_brand", &elf64_fallback_brand);
106 #else /* i386 assumed */
107 SYSCTL_NODE(_kern, OID_AUTO, elf32, CTLFLAG_RW, 0, "");
108 SYSCTL_INT(_debug, OID_AUTO, elf32_legacy_coredump, CTLFLAG_RW,
109     &elf_legacy_coredump, 0, "legacy coredump mode");
110 SYSCTL_INT(_kern_elf32, OID_AUTO, fallback_brand, CTLFLAG_RW,
111     &elf32_fallback_brand, 0, "ELF32 brand of last resort");
112 TUNABLE_INT("kern.elf32.fallback_brand", &elf32_fallback_brand);
113 #endif
114
115 static Elf_Brandinfo *elf_brand_list[MAX_BRANDS];
116
117 static const char DRAGONFLY_ABI_VENDOR[] = "DragonFly";
118 static const char FREEBSD_ABI_VENDOR[]   = "FreeBSD";
119
120 Elf_Brandnote __elfN(dragonfly_brandnote) = {
121         .hdr.n_namesz   = sizeof(DRAGONFLY_ABI_VENDOR),
122         .hdr.n_descsz   = sizeof(int32_t),
123         .hdr.n_type     = 1,
124         .vendor         = DRAGONFLY_ABI_VENDOR,
125         .flags          = BN_TRANSLATE_OSREL,
126         .trans_osrel    = __elfN(bsd_trans_osrel),
127 };
128
129 Elf_Brandnote __elfN(freebsd_brandnote) = {
130         .hdr.n_namesz   = sizeof(FREEBSD_ABI_VENDOR),
131         .hdr.n_descsz   = sizeof(int32_t),
132         .hdr.n_type     = 1,
133         .vendor         = FREEBSD_ABI_VENDOR,
134         .flags          = BN_TRANSLATE_OSREL,
135         .trans_osrel    = __elfN(bsd_trans_osrel),
136 };
137
138 int
139 __elfN(insert_brand_entry)(Elf_Brandinfo *entry)
140 {
141         int i;
142
143         for (i = 0; i < MAX_BRANDS; i++) {
144                 if (elf_brand_list[i] == NULL) {
145                         elf_brand_list[i] = entry;
146                         break;
147                 }
148         }
149         if (i == MAX_BRANDS) {
150                 uprintf("WARNING: %s: could not insert brandinfo entry: %p\n",
151                         __func__, entry);
152                 return (-1);
153         }
154         return (0);
155 }
156
157 int
158 __elfN(remove_brand_entry)(Elf_Brandinfo *entry)
159 {
160         int i;
161
162         for (i = 0; i < MAX_BRANDS; i++) {
163                 if (elf_brand_list[i] == entry) {
164                         elf_brand_list[i] = NULL;
165                         break;
166                 }
167         }
168         if (i == MAX_BRANDS)
169                 return (-1);
170         return (0);
171 }
172
173 /*
174  * Check if an elf brand is being used anywhere in the system.
175  *
176  * Used by the linux emulation module unloader.  This isn't safe from
177  * races.
178  */
179 struct elf_brand_inuse_info {
180         int rval;
181         Elf_Brandinfo *entry;
182 };
183
184 static int elf_brand_inuse_callback(struct proc *p, void *data);
185
186 int
187 __elfN(brand_inuse)(Elf_Brandinfo *entry)
188 {
189         struct elf_brand_inuse_info info;
190
191         info.rval = FALSE;
192         info.entry = entry;
193         allproc_scan(elf_brand_inuse_callback, &info);
194         return (info.rval);
195 }
196
197 static
198 int
199 elf_brand_inuse_callback(struct proc *p, void *data)
200 {
201         struct elf_brand_inuse_info *info = data;
202
203         if (p->p_sysent == info->entry->sysvec) {
204                 info->rval = TRUE;
205                 return (-1);
206         }
207         return (0);
208 }
209
210 static int
211 __elfN(check_header)(const Elf_Ehdr *hdr)
212 {
213         Elf_Brandinfo *bi;
214         int i;
215
216         if (!IS_ELF(*hdr) ||
217             hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
218             hdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
219             hdr->e_ident[EI_VERSION] != EV_CURRENT ||
220             hdr->e_phentsize != sizeof(Elf_Phdr) ||
221             hdr->e_ehsize != sizeof(Elf_Ehdr) ||
222             hdr->e_version != ELF_TARG_VER)
223                 return (ENOEXEC);
224
225         /*
226          * Make sure we have at least one brand for this machine.
227          */
228
229         for (i = 0; i < MAX_BRANDS; i++) {
230                 bi = elf_brand_list[i];
231                 if (bi != NULL && bi->machine == hdr->e_machine)
232                         break;
233         }
234         if (i == MAX_BRANDS)
235                 return (ENOEXEC);
236
237         return (0);
238 }
239
240 static int
241 __elfN(load_section)(struct proc *p, struct vmspace *vmspace, struct vnode *vp,
242                  vm_offset_t offset, caddr_t vmaddr, size_t memsz,
243                  size_t filsz, vm_prot_t prot)
244 {
245         size_t map_len;
246         vm_offset_t map_addr;
247         int error, rv, cow;
248         int count;
249         int shared;
250         size_t copy_len;
251         vm_object_t object;
252         vm_offset_t file_addr;
253
254         object = vp->v_object;
255         error = 0;
256
257         /*
258          * In most cases we will be able to use a shared lock on the
259          * object we are inserting into the map.  The lock will be
260          * upgraded in situations where new VM pages must be allocated.
261          */
262         vm_object_hold_shared(object);
263         shared = 1;
264
265         /*
266          * It's necessary to fail if the filsz + offset taken from the
267          * header is greater than the actual file pager object's size.
268          * If we were to allow this, then the vm_map_find() below would
269          * walk right off the end of the file object and into the ether.
270          *
271          * While I'm here, might as well check for something else that
272          * is invalid: filsz cannot be greater than memsz.
273          */
274         if ((off_t)filsz + offset > vp->v_filesize || filsz > memsz) {
275                 uprintf("elf_load_section: truncated ELF file\n");
276                 vm_object_drop(object);
277                 return (ENOEXEC);
278         }
279
280         map_addr = trunc_page((vm_offset_t)vmaddr);
281         file_addr = trunc_page(offset);
282
283         /*
284          * We have two choices.  We can either clear the data in the last page
285          * of an oversized mapping, or we can start the anon mapping a page
286          * early and copy the initialized data into that first page.  We
287          * choose the second..
288          */
289         if (memsz > filsz)
290                 map_len = trunc_page(offset+filsz) - file_addr;
291         else
292                 map_len = round_page(offset+filsz) - file_addr;
293
294         if (map_len != 0) {
295                 vm_object_reference_locked(object);
296
297                 /* cow flags: don't dump readonly sections in core */
298                 cow = MAP_COPY_ON_WRITE | MAP_PREFAULT;
299                 if ((prot & VM_PROT_WRITE) == 0)
300                         cow |= MAP_DISABLE_COREDUMP;
301                 if (shared == 0)
302                         cow |= MAP_PREFAULT_RELOCK;
303
304                 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
305                 vm_map_lock(&vmspace->vm_map);
306                 rv = vm_map_insert(&vmspace->vm_map, &count,
307                                       object,
308                                       file_addr,        /* file offset */
309                                       map_addr,         /* virtual start */
310                                       map_addr + map_len,/* virtual end */
311                                       VM_MAPTYPE_NORMAL,
312                                       prot, VM_PROT_ALL,
313                                       cow);
314                 vm_map_unlock(&vmspace->vm_map);
315                 vm_map_entry_release(count);
316
317                 /*
318                  * NOTE: Object must have a hold ref when calling
319                  * vm_object_deallocate().
320                  */
321                 if (rv != KERN_SUCCESS) {
322                         vm_object_drop(object);
323                         vm_object_deallocate(object);
324                         return (EINVAL);
325                 }
326
327                 /* we can stop now if we've covered it all */
328                 if (memsz == filsz) {
329                         vm_object_drop(object);
330                         return (0);
331                 }
332         }
333
334         /*
335          * We have to get the remaining bit of the file into the first part
336          * of the oversized map segment.  This is normally because the .data
337          * segment in the file is extended to provide bss.  It's a neat idea
338          * to try and save a page, but it's a pain in the behind to implement.
339          */
340         copy_len = (offset + filsz) - trunc_page(offset + filsz);
341         map_addr = trunc_page((vm_offset_t)vmaddr + filsz);
342         map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr;
343
344         /* This had damn well better be true! */
345         if (map_len != 0) {
346                 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
347                 vm_map_lock(&vmspace->vm_map);
348                 rv = vm_map_insert(&vmspace->vm_map, &count,
349                                         NULL, 0,
350                                         map_addr, map_addr + map_len,
351                                         VM_MAPTYPE_NORMAL,
352                                         VM_PROT_ALL, VM_PROT_ALL,
353                                         0);
354                 vm_map_unlock(&vmspace->vm_map);
355                 vm_map_entry_release(count);
356                 if (rv != KERN_SUCCESS) {
357                         vm_object_drop(object);
358                         return (EINVAL);
359                 }
360         }
361
362         if (copy_len != 0) {
363                 struct lwbuf *lwb;
364                 struct lwbuf lwb_cache;
365                 vm_page_t m;
366
367                 m = vm_fault_object_page(object, trunc_page(offset + filsz),
368                                          VM_PROT_READ, 0, &shared, &error);
369                 vm_object_drop(object);
370                 if (m) {
371                         lwb = lwbuf_alloc(m, &lwb_cache);
372                         error = copyout((caddr_t)lwbuf_kva(lwb),
373                                         (caddr_t)map_addr, copy_len);
374                         lwbuf_free(lwb);
375                         vm_page_unhold(m);
376                 }
377         } else {
378                 vm_object_drop(object);
379         }
380
381         /*
382          * set it to the specified protection
383          */
384         if (error == 0) {
385                 vm_map_protect(&vmspace->vm_map,
386                                map_addr, map_addr + map_len,
387                                prot, FALSE);
388         }
389         return (error);
390 }
391
392 /*
393  * Load the file "file" into memory.  It may be either a shared object
394  * or an executable.
395  *
396  * The "addr" reference parameter is in/out.  On entry, it specifies
397  * the address where a shared object should be loaded.  If the file is
398  * an executable, this value is ignored.  On exit, "addr" specifies
399  * where the file was actually loaded.
400  *
401  * The "entry" reference parameter is out only.  On exit, it specifies
402  * the entry point for the loaded file.
403  */
404 static int
405 __elfN(load_file)(struct proc *p, const char *file, u_long *addr, u_long *entry)
406 {
407         struct {
408                 struct nlookupdata nd;
409                 struct vattr attr;
410                 struct image_params image_params;
411         } *tempdata;
412         const Elf_Ehdr *hdr = NULL;
413         const Elf_Phdr *phdr = NULL;
414         struct nlookupdata *nd;
415         struct vmspace *vmspace = p->p_vmspace;
416         struct vattr *attr;
417         struct image_params *imgp;
418         struct mount *topmnt;
419         vm_prot_t prot;
420         u_long rbase;
421         u_long base_addr = 0;
422         int error, i, numsegs;
423
424         tempdata = kmalloc(sizeof(*tempdata), M_TEMP, M_WAITOK);
425         nd = &tempdata->nd;
426         attr = &tempdata->attr;
427         imgp = &tempdata->image_params;
428
429         /*
430          * Initialize part of the common data
431          */
432         imgp->proc = p;
433         imgp->attr = attr;
434         imgp->firstpage = NULL;
435         imgp->image_header = NULL;
436         imgp->vp = NULL;
437
438         error = nlookup_init(nd, file, UIO_SYSSPACE, NLC_FOLLOW);
439         if (error == 0)
440                 error = nlookup(nd);
441         if (error == 0)
442                 error = cache_vget(&nd->nl_nch, nd->nl_cred,
443                                    LK_SHARED, &imgp->vp);
444         topmnt = nd->nl_nch.mount;
445         nlookup_done(nd);
446         if (error)
447                 goto fail;
448
449         /*
450          * Check permissions, modes, uid, etc on the file, and "open" it.
451          */
452         error = exec_check_permissions(imgp, topmnt);
453         if (error) {
454                 vn_unlock(imgp->vp);
455                 goto fail;
456         }
457
458         error = exec_map_first_page(imgp);
459         /*
460          * Also make certain that the interpreter stays the same, so set
461          * its VTEXT flag, too.
462          */
463         if (error == 0)
464                 vsetflags(imgp->vp, VTEXT);
465         vn_unlock(imgp->vp);
466         if (error)
467                 goto fail;
468
469         hdr = (const Elf_Ehdr *)imgp->image_header;
470         if ((error = __elfN(check_header)(hdr)) != 0)
471                 goto fail;
472         if (hdr->e_type == ET_DYN)
473                 rbase = *addr;
474         else if (hdr->e_type == ET_EXEC)
475                 rbase = 0;
476         else {
477                 error = ENOEXEC;
478                 goto fail;
479         }
480
481         /* Only support headers that fit within first page for now      */
482         /*    (multiplication of two Elf_Half fields will not overflow) */
483         if ((hdr->e_phoff > PAGE_SIZE) ||
484             (hdr->e_phentsize * hdr->e_phnum) > PAGE_SIZE - hdr->e_phoff) {
485                 error = ENOEXEC;
486                 goto fail;
487         }
488
489         phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
490         if (!aligned(phdr, Elf_Addr)) {
491                 error = ENOEXEC;
492                 goto fail;
493         }
494
495         for (i = 0, numsegs = 0; i < hdr->e_phnum; i++) {
496                 if (phdr[i].p_type == PT_LOAD && phdr[i].p_memsz != 0) {
497                         /* Loadable segment */
498                         prot = __elfN(trans_prot)(phdr[i].p_flags);
499                         error = __elfN(load_section)(
500                                     p, vmspace, imgp->vp,
501                                     phdr[i].p_offset,
502                                     (caddr_t)phdr[i].p_vaddr +
503                                     rbase,
504                                     phdr[i].p_memsz,
505                                     phdr[i].p_filesz, prot);
506                         if (error != 0)
507                                 goto fail;
508                         /*
509                          * Establish the base address if this is the
510                          * first segment.
511                          */
512                         if (numsegs == 0)
513                                 base_addr = trunc_page(phdr[i].p_vaddr + rbase);
514                         numsegs++;
515                 }
516         }
517         *addr = base_addr;
518         *entry = (unsigned long)hdr->e_entry + rbase;
519
520 fail:
521         if (imgp->firstpage)
522                 exec_unmap_first_page(imgp);
523         if (imgp->vp) {
524                 vrele(imgp->vp);
525                 imgp->vp = NULL;
526         }
527         kfree(tempdata, M_TEMP);
528
529         return (error);
530 }
531
532 static Elf_Brandinfo *
533 __elfN(get_brandinfo)(struct image_params *imgp, const char *interp,
534     int32_t *osrel)
535 {
536         const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header;
537         Elf_Brandinfo *bi;
538         boolean_t ret;
539         int i;
540
541         /* We support four types of branding -- (1) the ELF EI_OSABI field
542          * that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string
543          * branding within the ELF header, (3) path of the `interp_path' field,
544          * and (4) the ".note.ABI-tag" ELF section.
545          */
546
547         /* Look for an ".note.ABI-tag" ELF section */
548         for (i = 0; i < MAX_BRANDS; i++) {
549                 bi = elf_brand_list[i];
550
551                 if (bi == NULL)
552                         continue;
553                 if (hdr->e_machine == bi->machine && (bi->flags &
554                     (BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) {
555                         ret = __elfN(check_note)(imgp, bi->brand_note, osrel);
556                         if (ret)
557                                 return (bi);
558                 }
559         }
560
561         /* If the executable has a brand, search for it in the brand list. */
562         for (i = 0;  i < MAX_BRANDS;  i++) {
563                 bi = elf_brand_list[i];
564
565                 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY)
566                         continue;
567                 if (hdr->e_machine == bi->machine &&
568                     (hdr->e_ident[EI_OSABI] == bi->brand ||
569                     strncmp((const char *)&hdr->e_ident[OLD_EI_BRAND],
570                     bi->compat_3_brand, strlen(bi->compat_3_brand)) == 0))
571                         return (bi);
572         }
573
574         /* Lacking a known brand, search for a recognized interpreter. */
575         if (interp != NULL) {
576                 for (i = 0;  i < MAX_BRANDS;  i++) {
577                         bi = elf_brand_list[i];
578
579                         if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY)
580                                 continue;
581                         if (hdr->e_machine == bi->machine &&
582                             strcmp(interp, bi->interp_path) == 0)
583                                 return (bi);
584                 }
585         }
586
587         /* Lacking a recognized interpreter, try the default brand */
588         for (i = 0; i < MAX_BRANDS; i++) {
589                 bi = elf_brand_list[i];
590
591                 if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY)
592                         continue;
593                 if (hdr->e_machine == bi->machine &&
594                     __elfN(fallback_brand) == bi->brand)
595                         return (bi);
596         }
597         return (NULL);
598 }
599
600 static int
601 __CONCAT(exec_,__elfN(imgact))(struct image_params *imgp)
602 {
603         const Elf_Ehdr *hdr = (const Elf_Ehdr *) imgp->image_header;
604         const Elf_Phdr *phdr;
605         Elf_Auxargs *elf_auxargs;
606         struct vmspace *vmspace;
607         vm_prot_t prot;
608         u_long text_size = 0, data_size = 0, total_size = 0;
609         u_long text_addr = 0, data_addr = 0;
610         u_long seg_size, seg_addr;
611         u_long addr, baddr, et_dyn_addr, entry = 0, proghdr = 0;
612         int32_t osrel = 0;
613         int error = 0, i, n;
614         boolean_t failure;
615         char *interp = NULL;
616         const char *newinterp = NULL;
617         Elf_Brandinfo *brand_info;
618         char *path;
619
620         /*
621          * Do we have a valid ELF header ?
622          *
623          * Only allow ET_EXEC & ET_DYN here, reject ET_DYN later if a particular
624          * brand doesn't support it.  Both DragonFly platforms do by default.
625          */
626         if (__elfN(check_header)(hdr) != 0 ||
627             (hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN))
628                 return (-1);
629
630         /*
631          * From here on down, we return an errno, not -1, as we've
632          * detected an ELF file.
633          */
634
635         if ((hdr->e_phoff > PAGE_SIZE) ||
636             (hdr->e_phoff + hdr->e_phentsize * hdr->e_phnum) > PAGE_SIZE) {
637                 /* Only support headers in first page for now */
638                 return (ENOEXEC);
639         }
640         phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
641         if (!aligned(phdr, Elf_Addr))
642                 return (ENOEXEC);
643         n = 0;
644         baddr = 0;
645         for (i = 0; i < hdr->e_phnum; i++) {
646                 if (phdr[i].p_type == PT_LOAD) {
647                         if (n == 0)
648                                 baddr = phdr[i].p_vaddr;
649                         n++;
650                         continue;
651                 }
652                 if (phdr[i].p_type == PT_INTERP) {
653                         /*
654                          * If interp is already defined there are more than
655                          * one PT_INTERP program headers present.  Take only
656                          * the first one and ignore the rest.
657                          */
658                         if (interp != NULL)
659                                 continue;
660
661                         if (phdr[i].p_filesz == 0 ||
662                             phdr[i].p_filesz > PAGE_SIZE ||
663                             phdr[i].p_filesz > MAXPATHLEN)
664                                 return (ENOEXEC);
665
666                         interp = kmalloc(phdr[i].p_filesz, M_TEMP, M_WAITOK);
667                         failure = extract_interpreter(imgp, &phdr[i], interp);
668                         if (failure) {
669                                 kfree(interp, M_TEMP);
670                                 return (ENOEXEC);
671                         }
672                         continue;
673                 }
674         }
675         
676         brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel);
677         if (brand_info == NULL) {
678                 uprintf("ELF binary type \"%u\" not known.\n",
679                     hdr->e_ident[EI_OSABI]);
680                 if (interp != NULL)
681                         kfree(interp, M_TEMP);
682                 return (ENOEXEC);
683         }
684         if (hdr->e_type == ET_DYN) {
685                 if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) {
686                         if (interp != NULL)
687                                 kfree(interp, M_TEMP);
688                         return (ENOEXEC);
689                 }
690                 /*
691                  * Honour the base load address from the dso if it is
692                  * non-zero for some reason.
693                  */
694                 if (baddr == 0)
695                         et_dyn_addr = ET_DYN_LOAD_ADDR;
696                 else
697                         et_dyn_addr = 0;
698         } else
699                 et_dyn_addr = 0;
700
701         if (interp != NULL && brand_info->interp_newpath != NULL)
702                 newinterp = brand_info->interp_newpath;
703
704         exec_new_vmspace(imgp, NULL);
705
706         /*
707          * Yeah, I'm paranoid.  There is every reason in the world to get
708          * VTEXT now since from here on out, there are places we can have
709          * a context switch.  Better safe than sorry; I really don't want
710          * the file to change while it's being loaded.
711          */
712         vsetflags(imgp->vp, VTEXT);
713
714         vmspace = imgp->proc->p_vmspace;
715
716         for (i = 0; i < hdr->e_phnum; i++) {
717                 switch (phdr[i].p_type) {
718                 case PT_LOAD:   /* Loadable segment */
719                         if (phdr[i].p_memsz == 0)
720                                 break;
721                         prot = __elfN(trans_prot)(phdr[i].p_flags);
722
723                         if ((error = __elfN(load_section)(
724                                         imgp->proc,
725                                         vmspace,
726                                         imgp->vp,
727                                         phdr[i].p_offset,
728                                         (caddr_t)phdr[i].p_vaddr + et_dyn_addr,
729                                         phdr[i].p_memsz,
730                                         phdr[i].p_filesz,
731                                         prot)) != 0) {
732                                 if (interp != NULL)
733                                         kfree (interp, M_TEMP);
734                                 return (error);
735                         }
736
737                         /*
738                          * If this segment contains the program headers,
739                          * remember their virtual address for the AT_PHDR
740                          * aux entry. Static binaries don't usually include
741                          * a PT_PHDR entry.
742                          */
743                         if (phdr[i].p_offset == 0 &&
744                             hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize
745                                 <= phdr[i].p_filesz)
746                                 proghdr = phdr[i].p_vaddr + hdr->e_phoff +
747                                     et_dyn_addr;
748
749                         seg_addr = trunc_page(phdr[i].p_vaddr + et_dyn_addr);
750                         seg_size = round_page(phdr[i].p_memsz +
751                             phdr[i].p_vaddr + et_dyn_addr - seg_addr);
752
753                         /*
754                          * Is this .text or .data?  We can't use
755                          * VM_PROT_WRITE or VM_PROT_EXEC, it breaks the
756                          * alpha terribly and possibly does other bad
757                          * things so we stick to the old way of figuring
758                          * it out:  If the segment contains the program
759                          * entry point, it's a text segment, otherwise it
760                          * is a data segment.
761                          *
762                          * Note that obreak() assumes that data_addr + 
763                          * data_size == end of data load area, and the ELF
764                          * file format expects segments to be sorted by
765                          * address.  If multiple data segments exist, the
766                          * last one will be used.
767                          */
768                         if (hdr->e_entry >= phdr[i].p_vaddr &&
769                             hdr->e_entry < (phdr[i].p_vaddr +
770                             phdr[i].p_memsz)) {
771                                 text_size = seg_size;
772                                 text_addr = seg_addr;
773                                 entry = (u_long)hdr->e_entry + et_dyn_addr;
774                         } else {
775                                 data_size = seg_size;
776                                 data_addr = seg_addr;
777                         }
778                         total_size += seg_size;
779
780                         /*
781                          * Check limits.  It should be safe to check the
782                          * limits after loading the segment since we do
783                          * not actually fault in all the segment's pages.
784                          */
785                         if (data_size >
786                             imgp->proc->p_rlimit[RLIMIT_DATA].rlim_cur ||
787                             text_size > maxtsiz ||
788                             total_size >
789                             imgp->proc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
790                                 if (interp != NULL)
791                                         kfree(interp, M_TEMP);
792                                 error = ENOMEM;
793                                 return (error);
794                         }
795                         break;
796                 case PT_PHDR:   /* Program header table info */
797                         proghdr = phdr[i].p_vaddr + et_dyn_addr;
798                         break;
799                 default:
800                         break;
801                 }
802         }
803
804         vmspace->vm_tsize = text_size >> PAGE_SHIFT;
805         vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr;
806         vmspace->vm_dsize = data_size >> PAGE_SHIFT;
807         vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr;
808
809         addr = ELF_RTLD_ADDR(vmspace);
810
811         imgp->entry_addr = entry;
812
813         imgp->proc->p_sysent = brand_info->sysvec;
814         EVENTHANDLER_INVOKE(process_exec, imgp);
815
816         if (interp != NULL) {
817                 int have_interp = FALSE;
818                 if (brand_info->emul_path != NULL &&
819                     brand_info->emul_path[0] != '\0') {
820                         path = kmalloc(MAXPATHLEN, M_TEMP, M_WAITOK);
821                         ksnprintf(path, MAXPATHLEN, "%s%s",
822                             brand_info->emul_path, interp);
823                         error = __elfN(load_file)(imgp->proc, path, &addr,
824                             &imgp->entry_addr);
825                         kfree(path, M_TEMP);
826                         if (error == 0)
827                                 have_interp = TRUE;
828                 }
829                 if (!have_interp && newinterp != NULL) {
830                         error = __elfN(load_file)(imgp->proc, newinterp,
831                             &addr, &imgp->entry_addr);
832                         if (error == 0)
833                                 have_interp = TRUE;
834                 }
835                 if (!have_interp) {
836                         error = __elfN(load_file)(imgp->proc, interp, &addr,
837                             &imgp->entry_addr);
838                 }
839                 if (error != 0) {
840                         uprintf("ELF interpreter %s not found\n", interp);
841                         kfree(interp, M_TEMP);
842                         return (error);
843                 }
844                 kfree(interp, M_TEMP);
845         } else
846                 addr = et_dyn_addr;
847
848         /*
849          * Construct auxargs table (used by the fixup routine)
850          */
851         elf_auxargs = kmalloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK);
852         elf_auxargs->execfd = -1;
853         elf_auxargs->phdr = proghdr;
854         elf_auxargs->phent = hdr->e_phentsize;
855         elf_auxargs->phnum = hdr->e_phnum;
856         elf_auxargs->pagesz = PAGE_SIZE;
857         elf_auxargs->base = addr;
858         elf_auxargs->flags = 0;
859         elf_auxargs->entry = entry;
860
861         imgp->auxargs = elf_auxargs;
862         imgp->interpreted = 0;
863         imgp->proc->p_osrel = osrel;
864
865         return (error);
866 }
867
868 int
869 __elfN(dragonfly_fixup)(register_t **stack_base, struct image_params *imgp)
870 {
871         Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs;
872         Elf_Addr *base;
873         Elf_Addr *pos;
874
875         base = (Elf_Addr *)*stack_base;
876         pos = base + (imgp->args->argc + imgp->args->envc + 2);
877
878         if (args->execfd != -1)
879                 AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd);
880         AUXARGS_ENTRY(pos, AT_PHDR, args->phdr);
881         AUXARGS_ENTRY(pos, AT_PHENT, args->phent);
882         AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum);
883         AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz);
884         AUXARGS_ENTRY(pos, AT_FLAGS, args->flags);
885         AUXARGS_ENTRY(pos, AT_ENTRY, args->entry);
886         AUXARGS_ENTRY(pos, AT_BASE, args->base);
887         if (imgp->execpathp != 0)
888                 AUXARGS_ENTRY(pos, AT_EXECPATH, imgp->execpathp);
889         AUXARGS_ENTRY(pos, AT_OSRELDATE, osreldate);
890         AUXARGS_ENTRY(pos, AT_NULL, 0);
891
892         kfree(imgp->auxargs, M_TEMP);
893         imgp->auxargs = NULL;
894
895         base--;
896         suword(base, (long)imgp->args->argc);
897         *stack_base = (register_t *)base;
898         return (0);
899 }
900
901 /*
902  * Code for generating ELF core dumps.
903  */
904
905 typedef int (*segment_callback)(vm_map_entry_t, void *);
906
907 /* Closure for cb_put_phdr(). */
908 struct phdr_closure {
909         Elf_Phdr *phdr;         /* Program header to fill in (incremented) */
910         Elf_Phdr *phdr_max;     /* Pointer bound for error check */
911         Elf_Off offset;         /* Offset of segment in core file */
912 };
913
914 /* Closure for cb_size_segment(). */
915 struct sseg_closure {
916         int count;              /* Count of writable segments. */
917         size_t vsize;           /* Total size of all writable segments. */
918 };
919
920 /* Closure for cb_put_fp(). */
921 struct fp_closure {
922         struct vn_hdr *vnh;
923         struct vn_hdr *vnh_max;
924         int count;
925         struct stat *sb;
926 };
927
928 typedef struct elf_buf {
929         char    *buf;
930         size_t  off;
931         size_t  off_max;
932 } *elf_buf_t;
933
934 static void *target_reserve(elf_buf_t target, size_t bytes, int *error);
935
936 static int cb_put_phdr (vm_map_entry_t, void *);
937 static int cb_size_segment (vm_map_entry_t, void *);
938 static int cb_fpcount_segment(vm_map_entry_t, void *);
939 static int cb_put_fp(vm_map_entry_t, void *);
940
941
942 static int each_segment (struct proc *, segment_callback, void *, int);
943 static int __elfN(corehdr)(struct lwp *, int, struct file *, struct ucred *,
944                         int, elf_buf_t);
945 enum putmode { WRITE, DRYRUN };
946 static int __elfN(puthdr)(struct lwp *, elf_buf_t, int sig, enum putmode,
947                         int, struct file *);
948 static int elf_putallnotes(struct lwp *, elf_buf_t, int, enum putmode);
949 static int __elfN(putnote)(elf_buf_t, const char *, int, const void *, size_t);
950
951 static int elf_putsigs(struct lwp *, elf_buf_t);
952 static int elf_puttextvp(struct proc *, elf_buf_t);
953 static int elf_putfiles(struct proc *, elf_buf_t, struct file *);
954
955 int
956 __elfN(coredump)(struct lwp *lp, int sig, struct vnode *vp, off_t limit)
957 {
958         struct file *fp; 
959         int error;
960
961         if ((error = falloc(NULL, &fp, NULL)) != 0)
962                 return (error);
963         fsetcred(fp, lp->lwp_proc->p_ucred);
964
965         /*
966          * XXX fixme.
967          */
968         fp->f_type = DTYPE_VNODE;
969         fp->f_flag = O_CREAT|O_WRONLY|O_NOFOLLOW;
970         fp->f_ops = &vnode_fileops;
971         fp->f_data = vp;
972         
973         error = generic_elf_coredump(lp, sig, fp, limit);
974
975         fp->f_type = 0;
976         fp->f_flag = 0;
977         fp->f_ops = &badfileops;
978         fp->f_data = NULL;
979         fdrop(fp);
980         return (error);
981 }
982
983 int
984 generic_elf_coredump(struct lwp *lp, int sig, struct file *fp, off_t limit)
985 {
986         struct proc *p = lp->lwp_proc;
987         struct ucred *cred = p->p_ucred;
988         int error = 0;
989         struct sseg_closure seginfo;
990         struct elf_buf target;
991
992         if (!fp)
993                 kprintf("can't dump core - null fp\n");
994
995         /*
996          * Size the program segments
997          */
998         seginfo.count = 0;
999         seginfo.vsize = 0;
1000         each_segment(p, cb_size_segment, &seginfo, 1);
1001
1002         /*
1003          * Calculate the size of the core file header area by making
1004          * a dry run of generating it.  Nothing is written, but the
1005          * size is calculated.
1006          */
1007         bzero(&target, sizeof(target));
1008         __elfN(puthdr)(lp, &target, sig, DRYRUN, seginfo.count, fp);
1009
1010         if (target.off + seginfo.vsize >= limit)
1011                 return (EFAULT);
1012
1013         /*
1014          * Allocate memory for building the header, fill it up,
1015          * and write it out.
1016          */
1017         target.off_max = target.off;
1018         target.off = 0;
1019         target.buf = kmalloc(target.off_max, M_TEMP, M_WAITOK|M_ZERO);
1020
1021         error = __elfN(corehdr)(lp, sig, fp, cred, seginfo.count, &target);
1022
1023         /* Write the contents of all of the writable segments. */
1024         if (error == 0) {
1025                 Elf_Phdr *php;
1026                 int i;
1027                 ssize_t nbytes;
1028
1029                 php = (Elf_Phdr *)(target.buf + sizeof(Elf_Ehdr)) + 1;
1030                 for (i = 0; i < seginfo.count; i++) {
1031                         error = fp_write(fp, (caddr_t)php->p_vaddr,
1032                                         php->p_filesz, &nbytes, UIO_USERSPACE);
1033                         if (error != 0)
1034                                 break;
1035                         php++;
1036                 }
1037         }
1038         kfree(target.buf, M_TEMP);
1039         
1040         return (error);
1041 }
1042
1043 /*
1044  * A callback for each_segment() to write out the segment's
1045  * program header entry.
1046  */
1047 static int
1048 cb_put_phdr(vm_map_entry_t entry, void *closure)
1049 {
1050         struct phdr_closure *phc = closure;
1051         Elf_Phdr *phdr = phc->phdr;
1052
1053         if (phc->phdr == phc->phdr_max)
1054                 return (EINVAL);
1055
1056         phc->offset = round_page(phc->offset);
1057
1058         phdr->p_type = PT_LOAD;
1059         phdr->p_offset = phc->offset;
1060         phdr->p_vaddr = entry->start;
1061         phdr->p_paddr = 0;
1062         phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
1063         phdr->p_align = PAGE_SIZE;
1064         phdr->p_flags = __elfN(untrans_prot)(entry->protection);
1065
1066         phc->offset += phdr->p_filesz;
1067         ++phc->phdr;
1068         return (0);
1069 }
1070
1071 /*
1072  * A callback for each_writable_segment() to gather information about
1073  * the number of segments and their total size.
1074  */
1075 static int
1076 cb_size_segment(vm_map_entry_t entry, void *closure)
1077 {
1078         struct sseg_closure *ssc = closure;
1079
1080         ++ssc->count;
1081         ssc->vsize += entry->end - entry->start;
1082         return (0);
1083 }
1084
1085 /*
1086  * A callback for each_segment() to gather information about
1087  * the number of text segments.
1088  */
1089 static int
1090 cb_fpcount_segment(vm_map_entry_t entry, void *closure)
1091 {
1092         int *count = closure;
1093         struct vnode *vp;
1094
1095         if (entry->object.vm_object->type == OBJT_VNODE) {
1096                 vp = (struct vnode *)entry->object.vm_object->handle;
1097                 if ((vp->v_flag & VCKPT) && curproc->p_textvp == vp)
1098                         return (0);
1099                 ++*count;
1100         }
1101         return (0);
1102 }
1103
1104 static int
1105 cb_put_fp(vm_map_entry_t entry, void *closure) 
1106 {
1107         struct fp_closure *fpc = closure;
1108         struct vn_hdr *vnh = fpc->vnh;
1109         Elf_Phdr *phdr = &vnh->vnh_phdr;
1110         struct vnode *vp;
1111         int error;
1112
1113         /*
1114          * If an entry represents a vnode then write out a file handle.
1115          *
1116          * If we are checkpointing a checkpoint-restored program we do
1117          * NOT record the filehandle for the old checkpoint vnode (which
1118          * is mapped all over the place).  Instead we rely on the fact
1119          * that a checkpoint-restored program does not mmap() the checkpt
1120          * vnode NOCORE, so its contents will be written out to the
1121          * new checkpoint file.  This is necessary because the 'old'
1122          * checkpoint file is typically destroyed when a new one is created
1123          * and thus cannot be used to restore the new checkpoint.
1124          *
1125          * Theoretically we could create a chain of checkpoint files and
1126          * operate the checkpointing operation kinda like an incremental
1127          * checkpoint, but a checkpoint restore would then likely wind up
1128          * referencing many prior checkpoint files and that is a bit over
1129          * the top for the purpose of the checkpoint API.
1130          */
1131         if (entry->object.vm_object->type == OBJT_VNODE) {
1132                 vp = (struct vnode *)entry->object.vm_object->handle;
1133                 if ((vp->v_flag & VCKPT) && curproc->p_textvp == vp)
1134                         return (0);
1135                 if (vnh == fpc->vnh_max)
1136                         return (EINVAL);
1137
1138                 if (vp->v_mount)
1139                         vnh->vnh_fh.fh_fsid = vp->v_mount->mnt_stat.f_fsid;
1140                 error = VFS_VPTOFH(vp, &vnh->vnh_fh.fh_fid);
1141                 if (error) {
1142                         char *freepath, *fullpath;
1143
1144                         if (vn_fullpath(curproc, vp, &fullpath, &freepath, 0)) {
1145                                 kprintf("Warning: coredump, error %d: cannot store file handle for vnode %p\n", error, vp);
1146                         } else {
1147                                 kprintf("Warning: coredump, error %d: cannot store file handle for %s\n", error, fullpath);
1148                                 kfree(freepath, M_TEMP);
1149                         }
1150                         error = 0;
1151                 }
1152
1153                 phdr->p_type = PT_LOAD;
1154                 phdr->p_offset = 0;        /* not written to core */
1155                 phdr->p_vaddr = entry->start;
1156                 phdr->p_paddr = 0;
1157                 phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
1158                 phdr->p_align = PAGE_SIZE;
1159                 phdr->p_flags = 0;
1160                 if (entry->protection & VM_PROT_READ)
1161                         phdr->p_flags |= PF_R;
1162                 if (entry->protection & VM_PROT_WRITE)
1163                         phdr->p_flags |= PF_W;
1164                 if (entry->protection & VM_PROT_EXECUTE)
1165                         phdr->p_flags |= PF_X;
1166                 ++fpc->vnh;
1167                 ++fpc->count;
1168         }
1169         return (0);
1170 }
1171
1172 /*
1173  * For each writable segment in the process's memory map, call the given
1174  * function with a pointer to the map entry and some arbitrary
1175  * caller-supplied data.
1176  */
1177 static int
1178 each_segment(struct proc *p, segment_callback func, void *closure, int writable)
1179 {
1180         int error = 0;
1181         vm_map_t map = &p->p_vmspace->vm_map;
1182         vm_map_entry_t entry;
1183
1184         for (entry = map->header.next; error == 0 && entry != &map->header;
1185             entry = entry->next) {
1186                 vm_object_t obj;
1187                 vm_object_t lobj;
1188                 vm_object_t tobj;
1189
1190                 /*
1191                  * Don't dump inaccessible mappings, deal with legacy
1192                  * coredump mode.
1193                  *
1194                  * Note that read-only segments related to the elf binary
1195                  * are marked MAP_ENTRY_NOCOREDUMP now so we no longer
1196                  * need to arbitrarily ignore such segments.
1197                  */
1198                 if (elf_legacy_coredump) {
1199                         if (writable && (entry->protection & VM_PROT_RW) != VM_PROT_RW)
1200                                 continue;
1201                 } else {
1202                         if (writable && (entry->protection & VM_PROT_ALL) == 0)
1203                                 continue;
1204                 }
1205
1206                 /*
1207                  * Dont include memory segment in the coredump if
1208                  * MAP_NOCORE is set in mmap(2) or MADV_NOCORE in
1209                  * madvise(2).
1210                  *
1211                  * Currently we only dump normal VM object maps.  We do
1212                  * not dump submaps or virtual page tables.
1213                  */
1214                 if (writable && (entry->eflags & MAP_ENTRY_NOCOREDUMP))
1215                         continue;
1216                 if (entry->maptype != VM_MAPTYPE_NORMAL)
1217                         continue;
1218                 if ((obj = entry->object.vm_object) == NULL)
1219                         continue;
1220
1221                 /*
1222                  * Find the bottom-most object, leaving the base object
1223                  * and the bottom-most object held (but only one hold
1224                  * if they happen to be the same).
1225                  */
1226                 vm_object_hold_shared(obj);
1227
1228                 lobj = obj;
1229                 while (lobj && (tobj = lobj->backing_object) != NULL) {
1230                         KKASSERT(tobj != obj);
1231                         vm_object_hold_shared(tobj);
1232                         if (tobj == lobj->backing_object) {
1233                                 if (lobj != obj) {
1234                                         vm_object_lock_swap();
1235                                         vm_object_drop(lobj);
1236                                 }
1237                                 lobj = tobj;
1238                         } else {
1239                                 vm_object_drop(tobj);
1240                         }
1241                 }
1242
1243                 /*
1244                  * The callback only applies to default, swap, or vnode
1245                  * objects.  Other types of objects such as memory-mapped
1246                  * devices are ignored.
1247                  */
1248                 if (lobj->type == OBJT_DEFAULT || lobj->type == OBJT_SWAP ||
1249                     lobj->type == OBJT_VNODE) {
1250                         error = (*func)(entry, closure);
1251                 }
1252                 if (lobj != obj)
1253                         vm_object_drop(lobj);
1254                 vm_object_drop(obj);
1255         }
1256         return (error);
1257 }
1258
1259 static
1260 void *
1261 target_reserve(elf_buf_t target, size_t bytes, int *error)
1262 {
1263     void *res = NULL;
1264
1265     if (target->buf) {
1266             if (target->off + bytes > target->off_max)
1267                     *error = EINVAL;
1268             else
1269                     res = target->buf + target->off;
1270     }
1271     target->off += bytes;
1272     return (res);
1273 }
1274
1275 /*
1276  * Write the core file header to the file, including padding up to
1277  * the page boundary.
1278  */
1279 static int
1280 __elfN(corehdr)(struct lwp *lp, int sig, struct file *fp, struct ucred *cred,
1281             int numsegs, elf_buf_t target)
1282 {
1283         int error;
1284         ssize_t nbytes;
1285
1286         /*
1287          * Fill in the header.  The fp is passed so we can detect and flag
1288          * a checkpoint file pointer within the core file itself, because
1289          * it may not be restored from the same file handle.
1290          */
1291         error = __elfN(puthdr)(lp, target, sig, WRITE, numsegs, fp);
1292
1293         /* Write it to the core file. */
1294         if (error == 0) {
1295                 error = fp_write(fp, target->buf, target->off, &nbytes,
1296                                  UIO_SYSSPACE);
1297         }
1298         return (error);
1299 }
1300
1301 static int
1302 __elfN(puthdr)(struct lwp *lp, elf_buf_t target, int sig, enum putmode mode,
1303     int numsegs, struct file *fp)
1304 {
1305         struct proc *p = lp->lwp_proc;
1306         int error = 0;
1307         size_t phoff;
1308         size_t noteoff;
1309         size_t notesz;
1310         Elf_Ehdr *ehdr;
1311         Elf_Phdr *phdr;
1312
1313         ehdr = target_reserve(target, sizeof(Elf_Ehdr), &error);
1314
1315         phoff = target->off;
1316         phdr = target_reserve(target, (numsegs + 1) * sizeof(Elf_Phdr), &error);
1317
1318         noteoff = target->off;
1319         if (error == 0)
1320                 elf_putallnotes(lp, target, sig, mode);
1321         notesz = target->off - noteoff;
1322
1323         /*
1324          * put extra cruft for dumping process state here 
1325          *  - we really want it be before all the program 
1326          *    mappings
1327          *  - we just need to update the offset accordingly
1328          *    and GDB will be none the wiser.
1329          */
1330         if (error == 0)
1331                 error = elf_puttextvp(p, target);
1332         if (error == 0)
1333                 error = elf_putsigs(lp, target);
1334         if (error == 0)
1335                 error = elf_putfiles(p, target, fp);
1336
1337         /*
1338          * Align up to a page boundary for the program segments.  The
1339          * actual data will be written to the outptu file, not to elf_buf_t,
1340          * so we do not have to do any further bounds checking.
1341          */
1342         target->off = round_page(target->off);
1343         if (error == 0 && ehdr != NULL) {
1344                 /*
1345                  * Fill in the ELF header.
1346                  */
1347                 ehdr->e_ident[EI_MAG0] = ELFMAG0;
1348                 ehdr->e_ident[EI_MAG1] = ELFMAG1;
1349                 ehdr->e_ident[EI_MAG2] = ELFMAG2;
1350                 ehdr->e_ident[EI_MAG3] = ELFMAG3;
1351                 ehdr->e_ident[EI_CLASS] = ELF_CLASS;
1352                 ehdr->e_ident[EI_DATA] = ELF_DATA;
1353                 ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1354                 ehdr->e_ident[EI_OSABI] = ELFOSABI_NONE;
1355                 ehdr->e_ident[EI_ABIVERSION] = 0;
1356                 ehdr->e_ident[EI_PAD] = 0;
1357                 ehdr->e_type = ET_CORE;
1358                 ehdr->e_machine = ELF_ARCH;
1359                 ehdr->e_version = EV_CURRENT;
1360                 ehdr->e_entry = 0;
1361                 ehdr->e_phoff = phoff;
1362                 ehdr->e_flags = 0;
1363                 ehdr->e_ehsize = sizeof(Elf_Ehdr);
1364                 ehdr->e_phentsize = sizeof(Elf_Phdr);
1365                 ehdr->e_phnum = numsegs + 1;
1366                 ehdr->e_shentsize = sizeof(Elf_Shdr);
1367                 ehdr->e_shnum = 0;
1368                 ehdr->e_shstrndx = SHN_UNDEF;
1369         }
1370         if (error == 0 && phdr != NULL) {
1371                 /*
1372                  * Fill in the program header entries.
1373                  */
1374                 struct phdr_closure phc;
1375
1376                 /* The note segement. */
1377                 phdr->p_type = PT_NOTE;
1378                 phdr->p_offset = noteoff;
1379                 phdr->p_vaddr = 0;
1380                 phdr->p_paddr = 0;
1381                 phdr->p_filesz = notesz;
1382                 phdr->p_memsz = 0;
1383                 phdr->p_flags = 0;
1384                 phdr->p_align = 0;
1385                 ++phdr;
1386
1387                 /* All the writable segments from the program. */
1388                 phc.phdr = phdr;
1389                 phc.phdr_max = phdr + numsegs;
1390                 phc.offset = target->off;
1391                 each_segment(p, cb_put_phdr, &phc, 1);
1392         }
1393         return (error);
1394 }
1395
1396 /*
1397  * Append core dump notes to target ELF buffer or simply update target size
1398  * if dryrun selected.
1399  */
1400 static int
1401 elf_putallnotes(struct lwp *corelp, elf_buf_t target, int sig,
1402     enum putmode mode)
1403 {
1404         struct proc *p = corelp->lwp_proc;
1405         int error;
1406         struct {
1407                 prstatus_t status;
1408                 prfpregset_t fpregs;
1409                 prpsinfo_t psinfo;
1410         } *tmpdata;
1411         prstatus_t *status;
1412         prfpregset_t *fpregs;
1413         prpsinfo_t *psinfo;
1414         struct lwp *lp;
1415
1416         /*
1417          * Allocate temporary storage for notes on heap to avoid stack overflow.
1418          */
1419         if (mode != DRYRUN) {
1420                 tmpdata = kmalloc(sizeof(*tmpdata), M_TEMP, M_ZERO | M_WAITOK);
1421                 status = &tmpdata->status;
1422                 fpregs = &tmpdata->fpregs;
1423                 psinfo = &tmpdata->psinfo;
1424         } else {
1425                 tmpdata = NULL;
1426                 status = NULL;
1427                 fpregs = NULL;
1428                 psinfo = NULL;
1429         }
1430
1431         /*
1432          * Append LWP-agnostic note.
1433          */
1434         if (mode != DRYRUN) {
1435                 psinfo->pr_version = PRPSINFO_VERSION;
1436                 psinfo->pr_psinfosz = sizeof(prpsinfo_t);
1437                 strlcpy(psinfo->pr_fname, p->p_comm,
1438                         sizeof(psinfo->pr_fname));
1439                 /*
1440                  * XXX - We don't fill in the command line arguments
1441                  * properly yet.
1442                  */
1443                 strlcpy(psinfo->pr_psargs, p->p_comm,
1444                         sizeof(psinfo->pr_psargs));
1445         }
1446         error =
1447             __elfN(putnote)(target, "CORE", NT_PRPSINFO, psinfo, sizeof *psinfo);
1448         if (error)
1449                 goto exit;
1450
1451         /*
1452          * Append first note for LWP that triggered core so that it is
1453          * the selected one when the debugger starts.
1454          */
1455         if (mode != DRYRUN) {
1456                 status->pr_version = PRSTATUS_VERSION;
1457                 status->pr_statussz = sizeof(prstatus_t);
1458                 status->pr_gregsetsz = sizeof(gregset_t);
1459                 status->pr_fpregsetsz = sizeof(fpregset_t);
1460                 status->pr_osreldate = osreldate;
1461                 status->pr_cursig = sig;
1462                 /*
1463                  * XXX GDB needs unique pr_pid for each LWP and does not
1464                  * not support pr_pid==0 but lwp_tid can be 0, so hack unique
1465                  * value.
1466                  */
1467                 status->pr_pid = corelp->lwp_tid;
1468                 fill_regs(corelp, &status->pr_reg);
1469                 fill_fpregs(corelp, fpregs);
1470         }
1471         error =
1472             __elfN(putnote)(target, "CORE", NT_PRSTATUS, status, sizeof *status);
1473         if (error)
1474                 goto exit;
1475         error =
1476             __elfN(putnote)(target, "CORE", NT_FPREGSET, fpregs, sizeof *fpregs);
1477         if (error)
1478                 goto exit;
1479
1480         /*
1481          * Then append notes for other LWPs.
1482          */
1483         FOREACH_LWP_IN_PROC(lp, p) {
1484                 if (lp == corelp)
1485                         continue;
1486                 /* skip lwps being created */
1487                 if (lp->lwp_thread == NULL)
1488                         continue;
1489                 if (mode != DRYRUN) {
1490                         status->pr_pid = lp->lwp_tid;
1491                         fill_regs(lp, &status->pr_reg);
1492                         fill_fpregs(lp, fpregs);
1493                 }
1494                 error = __elfN(putnote)(target, "CORE", NT_PRSTATUS,
1495                                         status, sizeof *status);
1496                 if (error)
1497                         goto exit;
1498                 error = __elfN(putnote)(target, "CORE", NT_FPREGSET,
1499                                         fpregs, sizeof *fpregs);
1500                 if (error)
1501                         goto exit;
1502         }
1503
1504 exit:
1505         if (tmpdata != NULL)
1506                 kfree(tmpdata, M_TEMP);
1507         return (error);
1508 }
1509
1510 /*
1511  * Generate a note sub-structure.
1512  *
1513  * NOTE: 4-byte alignment.
1514  */
1515 static int
1516 __elfN(putnote)(elf_buf_t target, const char *name, int type,
1517             const void *desc, size_t descsz)
1518 {
1519         int error = 0;
1520         char *dst;
1521         Elf_Note note;
1522
1523         note.n_namesz = strlen(name) + 1;
1524         note.n_descsz = descsz;
1525         note.n_type = type;
1526         dst = target_reserve(target, sizeof(note), &error);
1527         if (dst != NULL)
1528                 bcopy(&note, dst, sizeof note);
1529         dst = target_reserve(target, note.n_namesz, &error);
1530         if (dst != NULL)
1531                 bcopy(name, dst, note.n_namesz);
1532         target->off = roundup2(target->off, sizeof(Elf_Word));
1533         dst = target_reserve(target, note.n_descsz, &error);
1534         if (dst != NULL)
1535                 bcopy(desc, dst, note.n_descsz);
1536         target->off = roundup2(target->off, sizeof(Elf_Word));
1537         return (error);
1538 }
1539
1540
1541 static int
1542 elf_putsigs(struct lwp *lp, elf_buf_t target)
1543 {
1544         /* XXX lwp handle more than one lwp */
1545         struct proc *p = lp->lwp_proc;
1546         int error = 0;
1547         struct ckpt_siginfo *csi;
1548
1549         csi = target_reserve(target, sizeof(struct ckpt_siginfo), &error);
1550         if (csi) {
1551                 csi->csi_ckptpisz = sizeof(struct ckpt_siginfo);
1552                 bcopy(p->p_sigacts, &csi->csi_sigacts, sizeof(*p->p_sigacts));
1553                 bcopy(&p->p_realtimer, &csi->csi_itimerval, sizeof(struct itimerval));
1554                 bcopy(&lp->lwp_sigmask, &csi->csi_sigmask,
1555                         sizeof(sigset_t));
1556                 csi->csi_sigparent = p->p_sigparent;
1557         }
1558         return (error);
1559 }
1560
1561 static int
1562 elf_putfiles(struct proc *p, elf_buf_t target, struct file *ckfp)
1563 {
1564         int error = 0;
1565         int i;
1566         struct ckpt_filehdr *cfh = NULL;
1567         struct ckpt_fileinfo *cfi;
1568         struct file *fp;        
1569         struct vnode *vp;
1570         /*
1571          * the duplicated loop is gross, but it was the only way
1572          * to eliminate uninitialized variable warnings 
1573          */
1574         cfh = target_reserve(target, sizeof(struct ckpt_filehdr), &error);
1575         if (cfh) {
1576                 cfh->cfh_nfiles = 0;            
1577         }
1578
1579         /*
1580          * ignore STDIN/STDERR/STDOUT.
1581          */
1582         for (i = 3; error == 0 && i < p->p_fd->fd_nfiles; i++) {
1583                 fp = holdfp(p->p_fd, i, -1);
1584                 if (fp == NULL)
1585                         continue;
1586                 /* 
1587                  * XXX Only checkpoint vnodes for now.
1588                  */
1589                 if (fp->f_type != DTYPE_VNODE) {
1590                         fdrop(fp);
1591                         continue;
1592                 }
1593                 cfi = target_reserve(target, sizeof(struct ckpt_fileinfo),
1594                                         &error);
1595                 if (cfi == NULL) {
1596                         fdrop(fp);
1597                         continue;
1598                 }
1599                 cfi->cfi_index = -1;
1600                 cfi->cfi_type = fp->f_type;
1601                 cfi->cfi_flags = fp->f_flag;
1602                 cfi->cfi_offset = fp->f_offset;
1603                 cfi->cfi_ckflags = 0;
1604
1605                 if (fp == ckfp)
1606                         cfi->cfi_ckflags |= CKFIF_ISCKPTFD;
1607                 /* f_count and f_msgcount should not be saved/restored */
1608                 /* XXX save cred info */
1609
1610                 switch(fp->f_type) {
1611                 case DTYPE_VNODE:
1612                         vp = (struct vnode *)fp->f_data;
1613                         /*
1614                          * it looks like a bug in ptrace is marking 
1615                          * a non-vnode as a vnode - until we find the 
1616                          * root cause this will at least prevent
1617                          * further panics from truss
1618                          */
1619                         if (vp == NULL || vp->v_mount == NULL)
1620                                 break;
1621                         cfh->cfh_nfiles++;
1622                         cfi->cfi_index = i;
1623                         cfi->cfi_fh.fh_fsid = vp->v_mount->mnt_stat.f_fsid;
1624                         error = VFS_VPTOFH(vp, &cfi->cfi_fh.fh_fid);
1625                         break;
1626                 default:
1627                         break;
1628                 }
1629                 fdrop(fp);
1630         }
1631         return (error);
1632 }
1633
1634 static int
1635 elf_puttextvp(struct proc *p, elf_buf_t target)
1636 {
1637         int error = 0;
1638         int *vn_count;
1639         struct fp_closure fpc;
1640         struct ckpt_vminfo *vminfo;
1641
1642         vminfo = target_reserve(target, sizeof(struct ckpt_vminfo), &error);
1643         if (vminfo != NULL) {
1644                 vminfo->cvm_dsize = p->p_vmspace->vm_dsize;
1645                 vminfo->cvm_tsize = p->p_vmspace->vm_tsize;
1646                 vminfo->cvm_daddr = p->p_vmspace->vm_daddr;
1647                 vminfo->cvm_taddr = p->p_vmspace->vm_taddr;
1648         }
1649
1650         fpc.count = 0;
1651         vn_count = target_reserve(target, sizeof(int), &error);
1652         if (target->buf != NULL) {
1653                 fpc.vnh = (struct vn_hdr *)(target->buf + target->off);
1654                 fpc.vnh_max = fpc.vnh + 
1655                         (target->off_max - target->off) / sizeof(struct vn_hdr);
1656                 error = each_segment(p, cb_put_fp, &fpc, 0);
1657                 if (vn_count)
1658                         *vn_count = fpc.count;
1659         } else {
1660                 error = each_segment(p, cb_fpcount_segment, &fpc.count, 0);
1661         }
1662         target->off += fpc.count * sizeof(struct vn_hdr);
1663         return (error);
1664 }
1665
1666 /*
1667  * Try to find the appropriate ABI-note section for checknote,
1668  * The entire image is searched if necessary, not only the first page.
1669  */
1670 static boolean_t
1671 __elfN(check_note)(struct image_params *imgp, Elf_Brandnote *checknote,
1672     int32_t *osrel)
1673 {
1674         boolean_t valid_note_found;
1675         const Elf_Phdr *phdr, *pnote;
1676         const Elf_Ehdr *hdr;
1677         int i;
1678
1679         valid_note_found = FALSE;
1680         hdr = (const Elf_Ehdr *)imgp->image_header;
1681         phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
1682
1683         for (i = 0; i < hdr->e_phnum; i++) {
1684                 if (phdr[i].p_type == PT_NOTE) {
1685                         pnote = &phdr[i];
1686                         valid_note_found = check_PT_NOTE (imgp, checknote,
1687                                 osrel, pnote);
1688                         if (valid_note_found)
1689                                 break;
1690                 }
1691         }
1692         return valid_note_found;
1693 }
1694
1695 /*
1696  * Be careful not to create new overflow conditions when checking
1697  * for overflow.
1698  */
1699 static boolean_t
1700 note_overflow(const Elf_Note *note, size_t maxsize)
1701 {
1702         if (sizeof(*note) > maxsize)
1703                 return TRUE;
1704         if (note->n_namesz > maxsize - sizeof(*note))
1705                 return TRUE;
1706         return FALSE;
1707 }
1708
1709 static boolean_t
1710 hdr_overflow(__ElfN(Off) off_beg, __ElfN(Size) size)
1711 {
1712         __ElfN(Off) off_end;
1713
1714         off_end = off_beg + size;
1715         if (off_end < off_beg)
1716                 return TRUE;
1717         return FALSE;
1718 }
1719
1720 static boolean_t
1721 check_PT_NOTE(struct image_params *imgp, Elf_Brandnote *checknote,
1722               int32_t *osrel, const Elf_Phdr * pnote)
1723 {
1724         boolean_t limited_to_first_page;
1725         boolean_t found = FALSE;
1726         const Elf_Note *note, *note0, *note_end;
1727         const char *note_name;
1728         __ElfN(Off) noteloc, firstloc;
1729         __ElfN(Size) notesz, firstlen, endbyte;
1730         struct lwbuf *lwb;
1731         struct lwbuf lwb_cache;
1732         const char *page;
1733         char *data = NULL;
1734         int n;
1735
1736         if (hdr_overflow(pnote->p_offset, pnote->p_filesz))
1737                 return (FALSE);
1738         notesz = pnote->p_filesz;
1739         noteloc = pnote->p_offset;
1740         endbyte = noteloc + notesz;
1741         limited_to_first_page = noteloc < PAGE_SIZE && endbyte < PAGE_SIZE;
1742
1743         if (limited_to_first_page) {
1744                 note = (const Elf_Note *)(imgp->image_header + noteloc);
1745                 note_end = (const Elf_Note *)(imgp->image_header + endbyte);
1746                 note0 = note;
1747         } else {
1748                 firstloc = noteloc & PAGE_MASK;
1749                 firstlen = PAGE_SIZE - firstloc;
1750                 if (notesz < sizeof(Elf_Note) || notesz > PAGE_SIZE)
1751                         return (FALSE);
1752
1753                 lwb = &lwb_cache;
1754                 if (exec_map_page(imgp, noteloc >> PAGE_SHIFT, &lwb, &page))
1755                         return (FALSE);
1756                 if (firstlen < notesz) {         /* crosses page boundary */
1757                         data = kmalloc(notesz, M_TEMP, M_WAITOK);
1758                         bcopy(page + firstloc, data, firstlen);
1759
1760                         exec_unmap_page(lwb);
1761                         lwb = &lwb_cache;
1762                         if (exec_map_page(imgp, (noteloc >> PAGE_SHIFT) + 1,
1763                                 &lwb, &page)) {
1764                                 kfree(data, M_TEMP);
1765                                 return (FALSE);
1766                         }
1767                         bcopy(page, data + firstlen, notesz - firstlen);
1768                         note = note0 = (const Elf_Note *)(data);
1769                         note_end = (const Elf_Note *)(data + notesz);
1770                 } else {
1771                         note = note0 = (const Elf_Note *)(page + firstloc);
1772                         note_end = (const Elf_Note *)(page + firstloc +
1773                                 firstlen);
1774                 }
1775         }
1776
1777         for (n = 0; n < 100 && note >= note0 && note < note_end; n++) {
1778                 if (!aligned(note, Elf32_Addr))
1779                         break;
1780                 if (note_overflow(note, (const char *)note_end -
1781                                         (const char *)note)) {
1782                         break;
1783                 }
1784                 note_name = (const char *)(note + 1);
1785
1786                 if (note->n_namesz == checknote->hdr.n_namesz
1787                     && note->n_descsz == checknote->hdr.n_descsz
1788                     && note->n_type == checknote->hdr.n_type
1789                     && (strncmp(checknote->vendor, note_name,
1790                         checknote->hdr.n_namesz) == 0)) {
1791                         /* Fetch osreldata from ABI.note-tag */
1792                         if ((checknote->flags & BN_TRANSLATE_OSREL) != 0 &&
1793                             checknote->trans_osrel != NULL)
1794                                 checknote->trans_osrel(note, osrel);
1795                         found = TRUE;
1796                         break;
1797                 }
1798                 note = (const Elf_Note *)((const char *)(note + 1) +
1799                     roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1800                     roundup2(note->n_descsz, sizeof(Elf32_Addr)));
1801         }
1802
1803         if (!limited_to_first_page) {
1804                 if (data != NULL)
1805                         kfree(data, M_TEMP);
1806                 exec_unmap_page(lwb);
1807         }
1808         return (found);
1809 }
1810
1811 /*
1812  * The interpreter program header may be located beyond the first page, so
1813  * regardless of its location, a copy of the interpreter path is created so
1814  * that it may be safely referenced by the calling function in all case.  The
1815  * memory is allocated by calling function, and the copying is done here.
1816  */
1817 static boolean_t
1818 extract_interpreter(struct image_params *imgp, const Elf_Phdr *pinterpreter,
1819                     char *data)
1820 {
1821         boolean_t limited_to_first_page;
1822         const boolean_t result_success = FALSE;
1823         const boolean_t result_failure = TRUE;
1824         __ElfN(Off) pathloc, firstloc;
1825         __ElfN(Size) pathsz, firstlen, endbyte;
1826         struct lwbuf *lwb;
1827         struct lwbuf lwb_cache;
1828         const char *page;
1829
1830         if (hdr_overflow(pinterpreter->p_offset, pinterpreter->p_filesz))
1831                 return (result_failure);
1832         pathsz  = pinterpreter->p_filesz;
1833         pathloc = pinterpreter->p_offset;
1834         endbyte = pathloc + pathsz;
1835
1836         limited_to_first_page = pathloc < PAGE_SIZE && endbyte < PAGE_SIZE;
1837         if (limited_to_first_page) {
1838                 bcopy(imgp->image_header + pathloc, data, pathsz);
1839                 return (result_success);
1840         }
1841
1842         firstloc = pathloc & PAGE_MASK;
1843         firstlen = PAGE_SIZE - firstloc;
1844
1845         lwb = &lwb_cache;
1846         if (exec_map_page(imgp, pathloc >> PAGE_SHIFT, &lwb, &page))
1847                 return (result_failure);
1848
1849         if (firstlen < pathsz) {         /* crosses page boundary */
1850                 bcopy(page + firstloc, data, firstlen);
1851
1852                 exec_unmap_page(lwb);
1853                 lwb = &lwb_cache;
1854                 if (exec_map_page(imgp, (pathloc >> PAGE_SHIFT) + 1, &lwb,
1855                         &page))
1856                         return (result_failure);
1857                 bcopy(page, data + firstlen, pathsz - firstlen);
1858         } else
1859                 bcopy(page + firstloc, data, pathsz);
1860
1861         exec_unmap_page(lwb);
1862         return (result_success);
1863 }
1864
1865 static boolean_t
1866 __elfN(bsd_trans_osrel)(const Elf_Note *note, int32_t *osrel)
1867 {
1868         uintptr_t p;
1869
1870         p = (uintptr_t)(note + 1);
1871         p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1872         *osrel = *(const int32_t *)(p);
1873
1874         return (TRUE);
1875 }
1876
1877 /*
1878  * Tell kern_execve.c about it, with a little help from the linker.
1879  */
1880 #if defined(__x86_64__)
1881 static struct execsw elf_execsw = {exec_elf64_imgact, "ELF64"};
1882 EXEC_SET_ORDERED(elf64, elf_execsw, SI_ORDER_FIRST);
1883 #else /* i386 assumed */
1884 static struct execsw elf_execsw = {exec_elf32_imgact, "ELF32"};
1885 EXEC_SET_ORDERED(elf32, elf_execsw, SI_ORDER_FIRST);
1886 #endif
1887
1888 static vm_prot_t
1889 __elfN(trans_prot)(Elf_Word flags)
1890 {
1891         vm_prot_t prot;
1892
1893         prot = 0;
1894         if (flags & PF_X)
1895                 prot |= VM_PROT_EXECUTE;
1896         if (flags & PF_W)
1897                 prot |= VM_PROT_WRITE;
1898         if (flags & PF_R)
1899                 prot |= VM_PROT_READ;
1900         return (prot);
1901 }
1902
1903 static Elf_Word
1904 __elfN(untrans_prot)(vm_prot_t prot)
1905 {
1906         Elf_Word flags;
1907
1908         flags = 0;
1909         if (prot & VM_PROT_EXECUTE)
1910                 flags |= PF_X;
1911         if (prot & VM_PROT_READ)
1912                 flags |= PF_R;
1913         if (prot & VM_PROT_WRITE)
1914                 flags |= PF_W;
1915         return (flags);
1916 }