Merge branch 'vendor/GREP'
[dragonfly.git] / sys / vm / vm_map.c
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  *
62  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
63  */
64
65 /*
66  *      Virtual memory mapping module.
67  */
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/proc.h>
73 #include <sys/serialize.h>
74 #include <sys/lock.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/resourcevar.h>
79 #include <sys/shm.h>
80 #include <sys/tree.h>
81 #include <sys/malloc.h>
82 #include <sys/objcache.h>
83
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_zone.h>
95
96 #include <sys/thread2.h>
97 #include <sys/random.h>
98 #include <sys/sysctl.h>
99
100 /*
101  * Virtual memory maps provide for the mapping, protection, and sharing
102  * of virtual memory objects.  In addition, this module provides for an
103  * efficient virtual copy of memory from one map to another.
104  *
105  * Synchronization is required prior to most operations.
106  *
107  * Maps consist of an ordered doubly-linked list of simple entries.
108  * A hint and a RB tree is used to speed-up lookups.
109  *
110  * Callers looking to modify maps specify start/end addresses which cause
111  * the related map entry to be clipped if necessary, and then later
112  * recombined if the pieces remained compatible.
113  *
114  * Virtual copy operations are performed by copying VM object references
115  * from one map to another, and then marking both regions as copy-on-write.
116  */
117 static __boolean_t vmspace_ctor(void *obj, void *privdata, int ocflags);
118 static void vmspace_dtor(void *obj, void *privdata);
119 static void vmspace_terminate(struct vmspace *vm, int final);
120
121 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
122 static struct objcache *vmspace_cache;
123
124 /*
125  * per-cpu page table cross mappings are initialized in early boot
126  * and might require a considerable number of vm_map_entry structures.
127  */
128 #define MAPENTRYBSP_CACHE       (MAXCPU+1)
129 #define MAPENTRYAP_CACHE        8
130
131 static struct vm_zone mapentzone_store, mapzone_store;
132 static vm_zone_t mapentzone, mapzone;
133 static struct vm_object mapentobj, mapobj;
134
135 static struct vm_map_entry map_entry_init[MAX_MAPENT];
136 static struct vm_map_entry cpu_map_entry_init_bsp[MAPENTRYBSP_CACHE];
137 static struct vm_map_entry cpu_map_entry_init_ap[MAXCPU][MAPENTRYAP_CACHE];
138 static struct vm_map map_init[MAX_KMAP];
139
140 static int randomize_mmap;
141 SYSCTL_INT(_vm, OID_AUTO, randomize_mmap, CTLFLAG_RW, &randomize_mmap, 0,
142     "Randomize mmap offsets");
143 static int vm_map_relock_enable = 1;
144 SYSCTL_INT(_vm, OID_AUTO, map_relock_enable, CTLFLAG_RW,
145            &vm_map_relock_enable, 0, "Randomize mmap offsets");
146
147 static void vm_map_entry_shadow(vm_map_entry_t entry, int addref);
148 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
149 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
150 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
151 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
152 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
153 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
154 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
155                 vm_map_entry_t);
156 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
157
158 /*
159  * Initialize the vm_map module.  Must be called before any other vm_map
160  * routines.
161  *
162  * Map and entry structures are allocated from the general purpose
163  * memory pool with some exceptions:
164  *
165  *      - The kernel map is allocated statically.
166  *      - Initial kernel map entries are allocated out of a static pool.
167  *      - We must set ZONE_SPECIAL here or the early boot code can get
168  *        stuck if there are >63 cores.
169  *
170  *      These restrictions are necessary since malloc() uses the
171  *      maps and requires map entries.
172  *
173  * Called from the low level boot code only.
174  */
175 void
176 vm_map_startup(void)
177 {
178         mapzone = &mapzone_store;
179         zbootinit(mapzone, "MAP", sizeof (struct vm_map),
180                 map_init, MAX_KMAP);
181         mapentzone = &mapentzone_store;
182         zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
183                   map_entry_init, MAX_MAPENT);
184         mapentzone_store.zflags |= ZONE_SPECIAL;
185 }
186
187 /*
188  * Called prior to any vmspace allocations.
189  *
190  * Called from the low level boot code only.
191  */
192 void
193 vm_init2(void) 
194 {
195         vmspace_cache = objcache_create_mbacked(M_VMSPACE,
196                                                 sizeof(struct vmspace),
197                                                 0, ncpus * 4,
198                                                 vmspace_ctor, vmspace_dtor,
199                                                 NULL);
200         zinitna(mapentzone, &mapentobj, NULL, 0, 0, 
201                 ZONE_USE_RESERVE | ZONE_SPECIAL, 1);
202         zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
203         pmap_init2();
204         vm_object_init2();
205 }
206
207 /*
208  * objcache support.  We leave the pmap root cached as long as possible
209  * for performance reasons.
210  */
211 static
212 __boolean_t
213 vmspace_ctor(void *obj, void *privdata, int ocflags)
214 {
215         struct vmspace *vm = obj;
216
217         bzero(vm, sizeof(*vm));
218         vm->vm_refcnt = (u_int)-1;
219
220         return 1;
221 }
222
223 static
224 void
225 vmspace_dtor(void *obj, void *privdata)
226 {
227         struct vmspace *vm = obj;
228
229         KKASSERT(vm->vm_refcnt == (u_int)-1);
230         pmap_puninit(vmspace_pmap(vm));
231 }
232
233 /*
234  * Red black tree functions
235  *
236  * The caller must hold the related map lock.
237  */
238 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
239 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
240
241 /* a->start is address, and the only field has to be initialized */
242 static int
243 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
244 {
245         if (a->start < b->start)
246                 return(-1);
247         else if (a->start > b->start)
248                 return(1);
249         return(0);
250 }
251
252 /*
253  * Initialize vmspace ref/hold counts vmspace0.  There is a holdcnt for
254  * every refcnt.
255  */
256 void
257 vmspace_initrefs(struct vmspace *vm)
258 {
259         vm->vm_refcnt = 1;
260         vm->vm_holdcnt = 1;
261 }
262
263 /*
264  * Allocate a vmspace structure, including a vm_map and pmap.
265  * Initialize numerous fields.  While the initial allocation is zerod,
266  * subsequence reuse from the objcache leaves elements of the structure
267  * intact (particularly the pmap), so portions must be zerod.
268  *
269  * Returns a referenced vmspace.
270  *
271  * No requirements.
272  */
273 struct vmspace *
274 vmspace_alloc(vm_offset_t min, vm_offset_t max)
275 {
276         struct vmspace *vm;
277
278         vm = objcache_get(vmspace_cache, M_WAITOK);
279
280         bzero(&vm->vm_startcopy,
281               (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
282         vm_map_init(&vm->vm_map, min, max, NULL);       /* initializes token */
283
284         /*
285          * NOTE: hold to acquires token for safety.
286          *
287          * On return vmspace is referenced (refs=1, hold=1).  That is,
288          * each refcnt also has a holdcnt.  There can be additional holds
289          * (holdcnt) above and beyond the refcnt.  Finalization is handled in
290          * two stages, one on refs 1->0, and the the second on hold 1->0.
291          */
292         KKASSERT(vm->vm_holdcnt == 0);
293         KKASSERT(vm->vm_refcnt == (u_int)-1);
294         vmspace_initrefs(vm);
295         vmspace_hold(vm);
296         pmap_pinit(vmspace_pmap(vm));           /* (some fields reused) */
297         vm->vm_map.pmap = vmspace_pmap(vm);     /* XXX */
298         vm->vm_shm = NULL;
299         vm->vm_flags = 0;
300         cpu_vmspace_alloc(vm);
301         vmspace_drop(vm);
302
303         return (vm);
304 }
305
306 /*
307  * NOTE: Can return -1 if the vmspace is exiting.
308  */
309 int
310 vmspace_getrefs(struct vmspace *vm)
311 {
312         return ((int)vm->vm_refcnt);
313 }
314
315 /*
316  * A vmspace object must already have a non-zero hold to be able to gain
317  * further holds on it.
318  */
319 static void
320 vmspace_hold_notoken(struct vmspace *vm)
321 {
322         KKASSERT(vm->vm_holdcnt != 0);
323         refcount_acquire(&vm->vm_holdcnt);
324 }
325
326 static void
327 vmspace_drop_notoken(struct vmspace *vm)
328 {
329         if (refcount_release(&vm->vm_holdcnt)) {
330                 if (vm->vm_refcnt == (u_int)-1) {
331                         vmspace_terminate(vm, 1);
332                 }
333         }
334 }
335
336 void
337 vmspace_hold(struct vmspace *vm)
338 {
339         vmspace_hold_notoken(vm);
340         lwkt_gettoken(&vm->vm_map.token);
341 }
342
343 void
344 vmspace_drop(struct vmspace *vm)
345 {
346         lwkt_reltoken(&vm->vm_map.token);
347         vmspace_drop_notoken(vm);
348 }
349
350 /*
351  * A vmspace object must not be in a terminated state to be able to obtain
352  * additional refs on it.
353  *
354  * Ref'ing a vmspace object also increments its hold count.
355  */
356 void
357 vmspace_ref(struct vmspace *vm)
358 {
359         KKASSERT((int)vm->vm_refcnt >= 0);
360         vmspace_hold_notoken(vm);
361         refcount_acquire(&vm->vm_refcnt);
362 }
363
364 /*
365  * Release a ref on the vmspace.  On the 1->0 transition we do stage-1
366  * termination of the vmspace.  Then, on the final drop of the hold we
367  * will do stage-2 final termination.
368  */
369 void
370 vmspace_rel(struct vmspace *vm)
371 {
372         if (refcount_release(&vm->vm_refcnt)) {
373                 vm->vm_refcnt = (u_int)-1;      /* no other refs possible */
374                 vmspace_terminate(vm, 0);
375         }
376         vmspace_drop_notoken(vm);
377 }
378
379 /*
380  * This is called during exit indicating that the vmspace is no
381  * longer in used by an exiting process, but the process has not yet
382  * been reaped.
383  *
384  * We release the refcnt but not the associated holdcnt.
385  *
386  * No requirements.
387  */
388 void
389 vmspace_relexit(struct vmspace *vm)
390 {
391         if (refcount_release(&vm->vm_refcnt)) {
392                 vm->vm_refcnt = (u_int)-1;      /* no other refs possible */
393                 vmspace_terminate(vm, 0);
394         }
395 }
396
397 /*
398  * Called during reap to disconnect the remainder of the vmspace from
399  * the process.  On the hold drop the vmspace termination is finalized.
400  *
401  * No requirements.
402  */
403 void
404 vmspace_exitfree(struct proc *p)
405 {
406         struct vmspace *vm;
407
408         vm = p->p_vmspace;
409         p->p_vmspace = NULL;
410         vmspace_drop_notoken(vm);
411 }
412
413 /*
414  * Called in two cases:
415  *
416  * (1) When the last refcnt is dropped and the vmspace becomes inactive,
417  *     called with final == 0.  refcnt will be (u_int)-1 at this point,
418  *     and holdcnt will still be non-zero.
419  *
420  * (2) When holdcnt becomes 0, called with final == 1.  There should no
421  *     longer be anyone with access to the vmspace.
422  *
423  * VMSPACE_EXIT1 flags the primary deactivation
424  * VMSPACE_EXIT2 flags the last reap
425  */
426 static void
427 vmspace_terminate(struct vmspace *vm, int final)
428 {
429         int count;
430
431         lwkt_gettoken(&vm->vm_map.token);
432         if (final == 0) {
433                 KKASSERT((vm->vm_flags & VMSPACE_EXIT1) == 0);
434
435                 /*
436                  * Get rid of most of the resources.  Leave the kernel pmap
437                  * intact.
438                  */
439                 vm->vm_flags |= VMSPACE_EXIT1;
440                 shmexit(vm);
441                 pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
442                                   VM_MAX_USER_ADDRESS);
443                 vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
444                               VM_MAX_USER_ADDRESS);
445                 lwkt_reltoken(&vm->vm_map.token);
446         } else {
447                 KKASSERT((vm->vm_flags & VMSPACE_EXIT1) != 0);
448                 KKASSERT((vm->vm_flags & VMSPACE_EXIT2) == 0);
449
450                 /*
451                  * Get rid of remaining basic resources.
452                  */
453                 vm->vm_flags |= VMSPACE_EXIT2;
454                 cpu_vmspace_free(vm);
455                 shmexit(vm);
456
457                 /*
458                  * Lock the map, to wait out all other references to it.
459                  * Delete all of the mappings and pages they hold, then call
460                  * the pmap module to reclaim anything left.
461                  */
462                 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
463                 vm_map_lock(&vm->vm_map);
464                 vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
465                               vm->vm_map.max_offset, &count);
466                 vm_map_unlock(&vm->vm_map);
467                 vm_map_entry_release(count);
468
469                 lwkt_gettoken(&vmspace_pmap(vm)->pm_token);
470                 pmap_release(vmspace_pmap(vm));
471                 lwkt_reltoken(&vmspace_pmap(vm)->pm_token);
472                 lwkt_reltoken(&vm->vm_map.token);
473                 objcache_put(vmspace_cache, vm);
474         }
475 }
476
477 /*
478  * Swap useage is determined by taking the proportional swap used by
479  * VM objects backing the VM map.  To make up for fractional losses,
480  * if the VM object has any swap use at all the associated map entries
481  * count for at least 1 swap page.
482  *
483  * No requirements.
484  */
485 int
486 vmspace_swap_count(struct vmspace *vm)
487 {
488         vm_map_t map = &vm->vm_map;
489         vm_map_entry_t cur;
490         vm_object_t object;
491         int count = 0;
492         int n;
493
494         vmspace_hold(vm);
495         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
496                 switch(cur->maptype) {
497                 case VM_MAPTYPE_NORMAL:
498                 case VM_MAPTYPE_VPAGETABLE:
499                         if ((object = cur->object.vm_object) == NULL)
500                                 break;
501                         if (object->swblock_count) {
502                                 n = (cur->end - cur->start) / PAGE_SIZE;
503                                 count += object->swblock_count *
504                                     SWAP_META_PAGES * n / object->size + 1;
505                         }
506                         break;
507                 default:
508                         break;
509                 }
510         }
511         vmspace_drop(vm);
512
513         return(count);
514 }
515
516 /*
517  * Calculate the approximate number of anonymous pages in use by
518  * this vmspace.  To make up for fractional losses, we count each
519  * VM object as having at least 1 anonymous page.
520  *
521  * No requirements.
522  */
523 int
524 vmspace_anonymous_count(struct vmspace *vm)
525 {
526         vm_map_t map = &vm->vm_map;
527         vm_map_entry_t cur;
528         vm_object_t object;
529         int count = 0;
530
531         vmspace_hold(vm);
532         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
533                 switch(cur->maptype) {
534                 case VM_MAPTYPE_NORMAL:
535                 case VM_MAPTYPE_VPAGETABLE:
536                         if ((object = cur->object.vm_object) == NULL)
537                                 break;
538                         if (object->type != OBJT_DEFAULT &&
539                             object->type != OBJT_SWAP) {
540                                 break;
541                         }
542                         count += object->resident_page_count;
543                         break;
544                 default:
545                         break;
546                 }
547         }
548         vmspace_drop(vm);
549
550         return(count);
551 }
552
553 /*
554  * Creates and returns a new empty VM map with the given physical map
555  * structure, and having the given lower and upper address bounds.
556  *
557  * No requirements.
558  */
559 vm_map_t
560 vm_map_create(vm_map_t result, pmap_t pmap, vm_offset_t min, vm_offset_t max)
561 {
562         if (result == NULL)
563                 result = zalloc(mapzone);
564         vm_map_init(result, min, max, pmap);
565         return (result);
566 }
567
568 /*
569  * Initialize an existing vm_map structure such as that in the vmspace
570  * structure.  The pmap is initialized elsewhere.
571  *
572  * No requirements.
573  */
574 void
575 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap)
576 {
577         map->header.next = map->header.prev = &map->header;
578         RB_INIT(&map->rb_root);
579         map->nentries = 0;
580         map->size = 0;
581         map->system_map = 0;
582         map->min_offset = min;
583         map->max_offset = max;
584         map->pmap = pmap;
585         map->first_free = &map->header;
586         map->hint = &map->header;
587         map->timestamp = 0;
588         map->flags = 0;
589         lwkt_token_init(&map->token, "vm_map");
590         lockinit(&map->lock, "vm_maplk", (hz + 9) / 10, 0);
591 }
592
593 /*
594  * Shadow the vm_map_entry's object.  This typically needs to be done when
595  * a write fault is taken on an entry which had previously been cloned by
596  * fork().  The shared object (which might be NULL) must become private so
597  * we add a shadow layer above it.
598  *
599  * Object allocation for anonymous mappings is defered as long as possible.
600  * When creating a shadow, however, the underlying object must be instantiated
601  * so it can be shared.
602  *
603  * If the map segment is governed by a virtual page table then it is
604  * possible to address offsets beyond the mapped area.  Just allocate
605  * a maximally sized object for this case.
606  *
607  * The vm_map must be exclusively locked.
608  * No other requirements.
609  */
610 static
611 void
612 vm_map_entry_shadow(vm_map_entry_t entry, int addref)
613 {
614         if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
615                 vm_object_shadow(&entry->object.vm_object, &entry->offset,
616                                  0x7FFFFFFF, addref);   /* XXX */
617         } else {
618                 vm_object_shadow(&entry->object.vm_object, &entry->offset,
619                                  atop(entry->end - entry->start), addref);
620         }
621         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
622 }
623
624 /*
625  * Allocate an object for a vm_map_entry.
626  *
627  * Object allocation for anonymous mappings is defered as long as possible.
628  * This function is called when we can defer no longer, generally when a map
629  * entry might be split or forked or takes a page fault.
630  *
631  * If the map segment is governed by a virtual page table then it is
632  * possible to address offsets beyond the mapped area.  Just allocate
633  * a maximally sized object for this case.
634  *
635  * The vm_map must be exclusively locked.
636  * No other requirements.
637  */
638 void 
639 vm_map_entry_allocate_object(vm_map_entry_t entry)
640 {
641         vm_object_t obj;
642
643         if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
644                 obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
645         } else {
646                 obj = vm_object_allocate(OBJT_DEFAULT,
647                                          atop(entry->end - entry->start));
648         }
649         entry->object.vm_object = obj;
650         entry->offset = 0;
651 }
652
653 /*
654  * Set an initial negative count so the first attempt to reserve
655  * space preloads a bunch of vm_map_entry's for this cpu.  Also
656  * pre-allocate 2 vm_map_entries which will be needed by zalloc() to
657  * map a new page for vm_map_entry structures.  SMP systems are
658  * particularly sensitive.
659  *
660  * This routine is called in early boot so we cannot just call
661  * vm_map_entry_reserve().
662  *
663  * Called from the low level boot code only (for each cpu)
664  *
665  * WARNING! Take care not to have too-big a static/BSS structure here
666  *          as MAXCPU can be 256+, otherwise the loader's 64MB heap
667  *          can get blown out by the kernel plus the initrd image.
668  */
669 void
670 vm_map_entry_reserve_cpu_init(globaldata_t gd)
671 {
672         vm_map_entry_t entry;
673         int count;
674         int i;
675
676         gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
677         if (gd->gd_cpuid == 0) {
678                 entry = &cpu_map_entry_init_bsp[0];
679                 count = MAPENTRYBSP_CACHE;
680         } else {
681                 entry = &cpu_map_entry_init_ap[gd->gd_cpuid][0];
682                 count = MAPENTRYAP_CACHE;
683         }
684         for (i = 0; i < count; ++i, ++entry) {
685                 entry->next = gd->gd_vme_base;
686                 gd->gd_vme_base = entry;
687         }
688 }
689
690 /*
691  * Reserves vm_map_entry structures so code later on can manipulate
692  * map_entry structures within a locked map without blocking trying
693  * to allocate a new vm_map_entry.
694  *
695  * No requirements.
696  */
697 int
698 vm_map_entry_reserve(int count)
699 {
700         struct globaldata *gd = mycpu;
701         vm_map_entry_t entry;
702
703         /*
704          * Make sure we have enough structures in gd_vme_base to handle
705          * the reservation request.
706          *
707          * The critical section protects access to the per-cpu gd.
708          */
709         crit_enter();
710         while (gd->gd_vme_avail < count) {
711                 entry = zalloc(mapentzone);
712                 entry->next = gd->gd_vme_base;
713                 gd->gd_vme_base = entry;
714                 ++gd->gd_vme_avail;
715         }
716         gd->gd_vme_avail -= count;
717         crit_exit();
718
719         return(count);
720 }
721
722 /*
723  * Releases previously reserved vm_map_entry structures that were not
724  * used.  If we have too much junk in our per-cpu cache clean some of
725  * it out.
726  *
727  * No requirements.
728  */
729 void
730 vm_map_entry_release(int count)
731 {
732         struct globaldata *gd = mycpu;
733         vm_map_entry_t entry;
734
735         crit_enter();
736         gd->gd_vme_avail += count;
737         while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
738                 entry = gd->gd_vme_base;
739                 KKASSERT(entry != NULL);
740                 gd->gd_vme_base = entry->next;
741                 --gd->gd_vme_avail;
742                 crit_exit();
743                 zfree(mapentzone, entry);
744                 crit_enter();
745         }
746         crit_exit();
747 }
748
749 /*
750  * Reserve map entry structures for use in kernel_map itself.  These
751  * entries have *ALREADY* been reserved on a per-cpu basis when the map
752  * was inited.  This function is used by zalloc() to avoid a recursion
753  * when zalloc() itself needs to allocate additional kernel memory.
754  *
755  * This function works like the normal reserve but does not load the
756  * vm_map_entry cache (because that would result in an infinite
757  * recursion).  Note that gd_vme_avail may go negative.  This is expected.
758  *
759  * Any caller of this function must be sure to renormalize after
760  * potentially eating entries to ensure that the reserve supply
761  * remains intact.
762  *
763  * No requirements.
764  */
765 int
766 vm_map_entry_kreserve(int count)
767 {
768         struct globaldata *gd = mycpu;
769
770         crit_enter();
771         gd->gd_vme_avail -= count;
772         crit_exit();
773         KASSERT(gd->gd_vme_base != NULL,
774                 ("no reserved entries left, gd_vme_avail = %d",
775                 gd->gd_vme_avail));
776         return(count);
777 }
778
779 /*
780  * Release previously reserved map entries for kernel_map.  We do not
781  * attempt to clean up like the normal release function as this would
782  * cause an unnecessary (but probably not fatal) deep procedure call.
783  *
784  * No requirements.
785  */
786 void
787 vm_map_entry_krelease(int count)
788 {
789         struct globaldata *gd = mycpu;
790
791         crit_enter();
792         gd->gd_vme_avail += count;
793         crit_exit();
794 }
795
796 /*
797  * Allocates a VM map entry for insertion.  No entry fields are filled in.
798  *
799  * The entries should have previously been reserved.  The reservation count
800  * is tracked in (*countp).
801  *
802  * No requirements.
803  */
804 static vm_map_entry_t
805 vm_map_entry_create(vm_map_t map, int *countp)
806 {
807         struct globaldata *gd = mycpu;
808         vm_map_entry_t entry;
809
810         KKASSERT(*countp > 0);
811         --*countp;
812         crit_enter();
813         entry = gd->gd_vme_base;
814         KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
815         gd->gd_vme_base = entry->next;
816         crit_exit();
817
818         return(entry);
819 }
820
821 /*
822  * Dispose of a vm_map_entry that is no longer being referenced.
823  *
824  * No requirements.
825  */
826 static void
827 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
828 {
829         struct globaldata *gd = mycpu;
830
831         KKASSERT(map->hint != entry);
832         KKASSERT(map->first_free != entry);
833
834         ++*countp;
835         crit_enter();
836         entry->next = gd->gd_vme_base;
837         gd->gd_vme_base = entry;
838         crit_exit();
839 }
840
841
842 /*
843  * Insert/remove entries from maps.
844  *
845  * The related map must be exclusively locked.
846  * The caller must hold map->token
847  * No other requirements.
848  */
849 static __inline void
850 vm_map_entry_link(vm_map_t map,
851                   vm_map_entry_t after_where,
852                   vm_map_entry_t entry)
853 {
854         ASSERT_VM_MAP_LOCKED(map);
855
856         map->nentries++;
857         entry->prev = after_where;
858         entry->next = after_where->next;
859         entry->next->prev = entry;
860         after_where->next = entry;
861         if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
862                 panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
863 }
864
865 static __inline void
866 vm_map_entry_unlink(vm_map_t map,
867                     vm_map_entry_t entry)
868 {
869         vm_map_entry_t prev;
870         vm_map_entry_t next;
871
872         ASSERT_VM_MAP_LOCKED(map);
873
874         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
875                 panic("vm_map_entry_unlink: attempt to mess with "
876                       "locked entry! %p", entry);
877         }
878         prev = entry->prev;
879         next = entry->next;
880         next->prev = prev;
881         prev->next = next;
882         vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
883         map->nentries--;
884 }
885
886 /*
887  * Finds the map entry containing (or immediately preceding) the specified
888  * address in the given map.  The entry is returned in (*entry).
889  *
890  * The boolean result indicates whether the address is actually contained
891  * in the map.
892  *
893  * The related map must be locked.
894  * No other requirements.
895  */
896 boolean_t
897 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry)
898 {
899         vm_map_entry_t tmp;
900         vm_map_entry_t last;
901
902         ASSERT_VM_MAP_LOCKED(map);
903 #if 0
904         /*
905          * XXX TEMPORARILY DISABLED.  For some reason our attempt to revive
906          * the hint code with the red-black lookup meets with system crashes
907          * and lockups.  We do not yet know why.
908          *
909          * It is possible that the problem is related to the setting
910          * of the hint during map_entry deletion, in the code specified
911          * at the GGG comment later on in this file.
912          *
913          * YYY More likely it's because this function can be called with
914          * a shared lock on the map, resulting in map->hint updates possibly
915          * racing.  Fixed now but untested.
916          */
917         /*
918          * Quickly check the cached hint, there's a good chance of a match.
919          */
920         tmp = map->hint;
921         cpu_ccfence();
922         if (tmp != &map->header) {
923                 if (address >= tmp->start && address < tmp->end) {
924                         *entry = tmp;
925                         return(TRUE);
926                 }
927         }
928 #endif
929
930         /*
931          * Locate the record from the top of the tree.  'last' tracks the
932          * closest prior record and is returned if no match is found, which
933          * in binary tree terms means tracking the most recent right-branch
934          * taken.  If there is no prior record, &map->header is returned.
935          */
936         last = &map->header;
937         tmp = RB_ROOT(&map->rb_root);
938
939         while (tmp) {
940                 if (address >= tmp->start) {
941                         if (address < tmp->end) {
942                                 *entry = tmp;
943                                 map->hint = tmp;
944                                 return(TRUE);
945                         }
946                         last = tmp;
947                         tmp = RB_RIGHT(tmp, rb_entry);
948                 } else {
949                         tmp = RB_LEFT(tmp, rb_entry);
950                 }
951         }
952         *entry = last;
953         return (FALSE);
954 }
955
956 /*
957  * Inserts the given whole VM object into the target map at the specified
958  * address range.  The object's size should match that of the address range.
959  *
960  * The map must be exclusively locked.
961  * The object must be held.
962  * The caller must have reserved sufficient vm_map_entry structures.
963  *
964  * If object is non-NULL, ref count must be bumped by caller prior to
965  * making call to account for the new entry.
966  */
967 int
968 vm_map_insert(vm_map_t map, int *countp,
969               vm_object_t object, vm_ooffset_t offset,
970               vm_offset_t start, vm_offset_t end,
971               vm_maptype_t maptype,
972               vm_prot_t prot, vm_prot_t max,
973               int cow)
974 {
975         vm_map_entry_t new_entry;
976         vm_map_entry_t prev_entry;
977         vm_map_entry_t temp_entry;
978         vm_eflags_t protoeflags;
979         int must_drop = 0;
980
981         ASSERT_VM_MAP_LOCKED(map);
982         if (object)
983                 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
984
985         /*
986          * Check that the start and end points are not bogus.
987          */
988         if ((start < map->min_offset) || (end > map->max_offset) ||
989             (start >= end))
990                 return (KERN_INVALID_ADDRESS);
991
992         /*
993          * Find the entry prior to the proposed starting address; if it's part
994          * of an existing entry, this range is bogus.
995          */
996         if (vm_map_lookup_entry(map, start, &temp_entry))
997                 return (KERN_NO_SPACE);
998
999         prev_entry = temp_entry;
1000
1001         /*
1002          * Assert that the next entry doesn't overlap the end point.
1003          */
1004
1005         if ((prev_entry->next != &map->header) &&
1006             (prev_entry->next->start < end))
1007                 return (KERN_NO_SPACE);
1008
1009         protoeflags = 0;
1010
1011         if (cow & MAP_COPY_ON_WRITE)
1012                 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1013
1014         if (cow & MAP_NOFAULT) {
1015                 protoeflags |= MAP_ENTRY_NOFAULT;
1016
1017                 KASSERT(object == NULL,
1018                         ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1019         }
1020         if (cow & MAP_DISABLE_SYNCER)
1021                 protoeflags |= MAP_ENTRY_NOSYNC;
1022         if (cow & MAP_DISABLE_COREDUMP)
1023                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1024         if (cow & MAP_IS_STACK)
1025                 protoeflags |= MAP_ENTRY_STACK;
1026         if (cow & MAP_IS_KSTACK)
1027                 protoeflags |= MAP_ENTRY_KSTACK;
1028
1029         lwkt_gettoken(&map->token);
1030
1031         if (object) {
1032                 /*
1033                  * When object is non-NULL, it could be shared with another
1034                  * process.  We have to set or clear OBJ_ONEMAPPING 
1035                  * appropriately.
1036                  *
1037                  * NOTE: This flag is only applicable to DEFAULT and SWAP
1038                  *       objects and will already be clear in other types
1039                  *       of objects, so a shared object lock is ok for
1040                  *       VNODE objects.
1041                  */
1042                 if ((object->ref_count > 1) || (object->shadow_count != 0)) {
1043                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
1044                 }
1045         }
1046         else if ((prev_entry != &map->header) &&
1047                  (prev_entry->eflags == protoeflags) &&
1048                  (prev_entry->end == start) &&
1049                  (prev_entry->wired_count == 0) &&
1050                  prev_entry->maptype == maptype &&
1051                  ((prev_entry->object.vm_object == NULL) ||
1052                   vm_object_coalesce(prev_entry->object.vm_object,
1053                                      OFF_TO_IDX(prev_entry->offset),
1054                                      (vm_size_t)(prev_entry->end - prev_entry->start),
1055                                      (vm_size_t)(end - prev_entry->end)))) {
1056                 /*
1057                  * We were able to extend the object.  Determine if we
1058                  * can extend the previous map entry to include the 
1059                  * new range as well.
1060                  */
1061                 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
1062                     (prev_entry->protection == prot) &&
1063                     (prev_entry->max_protection == max)) {
1064                         map->size += (end - prev_entry->end);
1065                         prev_entry->end = end;
1066                         vm_map_simplify_entry(map, prev_entry, countp);
1067                         lwkt_reltoken(&map->token);
1068                         return (KERN_SUCCESS);
1069                 }
1070
1071                 /*
1072                  * If we can extend the object but cannot extend the
1073                  * map entry, we have to create a new map entry.  We
1074                  * must bump the ref count on the extended object to
1075                  * account for it.  object may be NULL.
1076                  */
1077                 object = prev_entry->object.vm_object;
1078                 offset = prev_entry->offset +
1079                         (prev_entry->end - prev_entry->start);
1080                 if (object) {
1081                         vm_object_hold(object);
1082                         vm_object_chain_wait(object, 0);
1083                         vm_object_reference_locked(object);
1084                         must_drop = 1;
1085                 }
1086         }
1087
1088         /*
1089          * NOTE: if conditionals fail, object can be NULL here.  This occurs
1090          * in things like the buffer map where we manage kva but do not manage
1091          * backing objects.
1092          */
1093
1094         /*
1095          * Create a new entry
1096          */
1097
1098         new_entry = vm_map_entry_create(map, countp);
1099         new_entry->start = start;
1100         new_entry->end = end;
1101
1102         new_entry->maptype = maptype;
1103         new_entry->eflags = protoeflags;
1104         new_entry->object.vm_object = object;
1105         new_entry->offset = offset;
1106         new_entry->aux.master_pde = 0;
1107
1108         new_entry->inheritance = VM_INHERIT_DEFAULT;
1109         new_entry->protection = prot;
1110         new_entry->max_protection = max;
1111         new_entry->wired_count = 0;
1112
1113         /*
1114          * Insert the new entry into the list
1115          */
1116
1117         vm_map_entry_link(map, prev_entry, new_entry);
1118         map->size += new_entry->end - new_entry->start;
1119
1120         /*
1121          * Update the free space hint.  Entries cannot overlap.
1122          * An exact comparison is needed to avoid matching
1123          * against the map->header.
1124          */
1125         if ((map->first_free == prev_entry) &&
1126             (prev_entry->end == new_entry->start)) {
1127                 map->first_free = new_entry;
1128         }
1129
1130 #if 0
1131         /*
1132          * Temporarily removed to avoid MAP_STACK panic, due to
1133          * MAP_STACK being a huge hack.  Will be added back in
1134          * when MAP_STACK (and the user stack mapping) is fixed.
1135          */
1136         /*
1137          * It may be possible to simplify the entry
1138          */
1139         vm_map_simplify_entry(map, new_entry, countp);
1140 #endif
1141
1142         /*
1143          * Try to pre-populate the page table.  Mappings governed by virtual
1144          * page tables cannot be prepopulated without a lot of work, so
1145          * don't try.
1146          */
1147         if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
1148             maptype != VM_MAPTYPE_VPAGETABLE) {
1149                 int dorelock = 0;
1150                 if (vm_map_relock_enable && (cow & MAP_PREFAULT_RELOCK)) {
1151                         dorelock = 1;
1152                         vm_object_lock_swap();
1153                         vm_object_drop(object);
1154                 }
1155                 pmap_object_init_pt(map->pmap, start, prot,
1156                                     object, OFF_TO_IDX(offset), end - start,
1157                                     cow & MAP_PREFAULT_PARTIAL);
1158                 if (dorelock) {
1159                         vm_object_hold(object);
1160                         vm_object_lock_swap();
1161                 }
1162         }
1163         if (must_drop)
1164                 vm_object_drop(object);
1165
1166         lwkt_reltoken(&map->token);
1167         return (KERN_SUCCESS);
1168 }
1169
1170 /*
1171  * Find sufficient space for `length' bytes in the given map, starting at
1172  * `start'.  Returns 0 on success, 1 on no space.
1173  *
1174  * This function will returned an arbitrarily aligned pointer.  If no
1175  * particular alignment is required you should pass align as 1.  Note that
1176  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
1177  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
1178  * argument.
1179  *
1180  * 'align' should be a power of 2 but is not required to be.
1181  *
1182  * The map must be exclusively locked.
1183  * No other requirements.
1184  */
1185 int
1186 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1187                  vm_size_t align, int flags, vm_offset_t *addr)
1188 {
1189         vm_map_entry_t entry, next;
1190         vm_offset_t end;
1191         vm_offset_t align_mask;
1192
1193         if (start < map->min_offset)
1194                 start = map->min_offset;
1195         if (start > map->max_offset)
1196                 return (1);
1197
1198         /*
1199          * If the alignment is not a power of 2 we will have to use
1200          * a mod/division, set align_mask to a special value.
1201          */
1202         if ((align | (align - 1)) + 1 != (align << 1))
1203                 align_mask = (vm_offset_t)-1;
1204         else
1205                 align_mask = align - 1;
1206
1207         /*
1208          * Look for the first possible address; if there's already something
1209          * at this address, we have to start after it.
1210          */
1211         if (start == map->min_offset) {
1212                 if ((entry = map->first_free) != &map->header)
1213                         start = entry->end;
1214         } else {
1215                 vm_map_entry_t tmp;
1216
1217                 if (vm_map_lookup_entry(map, start, &tmp))
1218                         start = tmp->end;
1219                 entry = tmp;
1220         }
1221
1222         /*
1223          * Look through the rest of the map, trying to fit a new region in the
1224          * gap between existing regions, or after the very last region.
1225          */
1226         for (;; start = (entry = next)->end) {
1227                 /*
1228                  * Adjust the proposed start by the requested alignment,
1229                  * be sure that we didn't wrap the address.
1230                  */
1231                 if (align_mask == (vm_offset_t)-1)
1232                         end = ((start + align - 1) / align) * align;
1233                 else
1234                         end = (start + align_mask) & ~align_mask;
1235                 if (end < start)
1236                         return (1);
1237                 start = end;
1238                 /*
1239                  * Find the end of the proposed new region.  Be sure we didn't
1240                  * go beyond the end of the map, or wrap around the address.
1241                  * Then check to see if this is the last entry or if the 
1242                  * proposed end fits in the gap between this and the next
1243                  * entry.
1244                  */
1245                 end = start + length;
1246                 if (end > map->max_offset || end < start)
1247                         return (1);
1248                 next = entry->next;
1249
1250                 /*
1251                  * If the next entry's start address is beyond the desired
1252                  * end address we may have found a good entry.
1253                  *
1254                  * If the next entry is a stack mapping we do not map into
1255                  * the stack's reserved space.
1256                  *
1257                  * XXX continue to allow mapping into the stack's reserved
1258                  * space if doing a MAP_STACK mapping inside a MAP_STACK
1259                  * mapping, for backwards compatibility.  But the caller
1260                  * really should use MAP_STACK | MAP_TRYFIXED if they
1261                  * want to do that.
1262                  */
1263                 if (next == &map->header)
1264                         break;
1265                 if (next->start >= end) {
1266                         if ((next->eflags & MAP_ENTRY_STACK) == 0)
1267                                 break;
1268                         if (flags & MAP_STACK)
1269                                 break;
1270                         if (next->start - next->aux.avail_ssize >= end)
1271                                 break;
1272                 }
1273         }
1274         map->hint = entry;
1275
1276         /*
1277          * Grow the kernel_map if necessary.  pmap_growkernel() will panic
1278          * if it fails.  The kernel_map is locked and nothing can steal
1279          * our address space if pmap_growkernel() blocks.
1280          *
1281          * NOTE: This may be unconditionally called for kldload areas on
1282          *       x86_64 because these do not bump kernel_vm_end (which would
1283          *       fill 128G worth of page tables!).  Therefore we must not
1284          *       retry.
1285          */
1286         if (map == &kernel_map) {
1287                 vm_offset_t kstop;
1288
1289                 kstop = round_page(start + length);
1290                 if (kstop > kernel_vm_end)
1291                         pmap_growkernel(start, kstop);
1292         }
1293         *addr = start;
1294         return (0);
1295 }
1296
1297 /*
1298  * vm_map_find finds an unallocated region in the target address map with
1299  * the given length and allocates it.  The search is defined to be first-fit
1300  * from the specified address; the region found is returned in the same
1301  * parameter.
1302  *
1303  * If object is non-NULL, ref count must be bumped by caller
1304  * prior to making call to account for the new entry.
1305  *
1306  * No requirements.  This function will lock the map temporarily.
1307  */
1308 int
1309 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1310             vm_offset_t *addr,  vm_size_t length, vm_size_t align,
1311             boolean_t fitit,
1312             vm_maptype_t maptype,
1313             vm_prot_t prot, vm_prot_t max,
1314             int cow)
1315 {
1316         vm_offset_t start;
1317         int result;
1318         int count;
1319
1320         start = *addr;
1321
1322         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1323         vm_map_lock(map);
1324         if (object)
1325                 vm_object_hold_shared(object);
1326         if (fitit) {
1327                 if (vm_map_findspace(map, start, length, align, 0, addr)) {
1328                         if (object)
1329                                 vm_object_drop(object);
1330                         vm_map_unlock(map);
1331                         vm_map_entry_release(count);
1332                         return (KERN_NO_SPACE);
1333                 }
1334                 start = *addr;
1335         }
1336         result = vm_map_insert(map, &count, object, offset,
1337                                start, start + length,
1338                                maptype,
1339                                prot, max,
1340                                cow);
1341         if (object)
1342                 vm_object_drop(object);
1343         vm_map_unlock(map);
1344         vm_map_entry_release(count);
1345
1346         return (result);
1347 }
1348
1349 /*
1350  * Simplify the given map entry by merging with either neighbor.  This
1351  * routine also has the ability to merge with both neighbors.
1352  *
1353  * This routine guarentees that the passed entry remains valid (though
1354  * possibly extended).  When merging, this routine may delete one or
1355  * both neighbors.  No action is taken on entries which have their
1356  * in-transition flag set.
1357  *
1358  * The map must be exclusively locked.
1359  */
1360 void
1361 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1362 {
1363         vm_map_entry_t next, prev;
1364         vm_size_t prevsize, esize;
1365
1366         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1367                 ++mycpu->gd_cnt.v_intrans_coll;
1368                 return;
1369         }
1370
1371         if (entry->maptype == VM_MAPTYPE_SUBMAP)
1372                 return;
1373
1374         prev = entry->prev;
1375         if (prev != &map->header) {
1376                 prevsize = prev->end - prev->start;
1377                 if ( (prev->end == entry->start) &&
1378                      (prev->maptype == entry->maptype) &&
1379                      (prev->object.vm_object == entry->object.vm_object) &&
1380                      (!prev->object.vm_object ||
1381                         (prev->offset + prevsize == entry->offset)) &&
1382                      (prev->eflags == entry->eflags) &&
1383                      (prev->protection == entry->protection) &&
1384                      (prev->max_protection == entry->max_protection) &&
1385                      (prev->inheritance == entry->inheritance) &&
1386                      (prev->wired_count == entry->wired_count)) {
1387                         if (map->first_free == prev)
1388                                 map->first_free = entry;
1389                         if (map->hint == prev)
1390                                 map->hint = entry;
1391                         vm_map_entry_unlink(map, prev);
1392                         entry->start = prev->start;
1393                         entry->offset = prev->offset;
1394                         if (prev->object.vm_object)
1395                                 vm_object_deallocate(prev->object.vm_object);
1396                         vm_map_entry_dispose(map, prev, countp);
1397                 }
1398         }
1399
1400         next = entry->next;
1401         if (next != &map->header) {
1402                 esize = entry->end - entry->start;
1403                 if ((entry->end == next->start) &&
1404                     (next->maptype == entry->maptype) &&
1405                     (next->object.vm_object == entry->object.vm_object) &&
1406                      (!entry->object.vm_object ||
1407                         (entry->offset + esize == next->offset)) &&
1408                     (next->eflags == entry->eflags) &&
1409                     (next->protection == entry->protection) &&
1410                     (next->max_protection == entry->max_protection) &&
1411                     (next->inheritance == entry->inheritance) &&
1412                     (next->wired_count == entry->wired_count)) {
1413                         if (map->first_free == next)
1414                                 map->first_free = entry;
1415                         if (map->hint == next)
1416                                 map->hint = entry;
1417                         vm_map_entry_unlink(map, next);
1418                         entry->end = next->end;
1419                         if (next->object.vm_object)
1420                                 vm_object_deallocate(next->object.vm_object);
1421                         vm_map_entry_dispose(map, next, countp);
1422                 }
1423         }
1424 }
1425
1426 /*
1427  * Asserts that the given entry begins at or after the specified address.
1428  * If necessary, it splits the entry into two.
1429  */
1430 #define vm_map_clip_start(map, entry, startaddr, countp)                \
1431 {                                                                       \
1432         if (startaddr > entry->start)                                   \
1433                 _vm_map_clip_start(map, entry, startaddr, countp);      \
1434 }
1435
1436 /*
1437  * This routine is called only when it is known that the entry must be split.
1438  *
1439  * The map must be exclusively locked.
1440  */
1441 static void
1442 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start,
1443                    int *countp)
1444 {
1445         vm_map_entry_t new_entry;
1446
1447         /*
1448          * Split off the front portion -- note that we must insert the new
1449          * entry BEFORE this one, so that this entry has the specified
1450          * starting address.
1451          */
1452
1453         vm_map_simplify_entry(map, entry, countp);
1454
1455         /*
1456          * If there is no object backing this entry, we might as well create
1457          * one now.  If we defer it, an object can get created after the map
1458          * is clipped, and individual objects will be created for the split-up
1459          * map.  This is a bit of a hack, but is also about the best place to
1460          * put this improvement.
1461          */
1462         if (entry->object.vm_object == NULL && !map->system_map) {
1463                 vm_map_entry_allocate_object(entry);
1464         }
1465
1466         new_entry = vm_map_entry_create(map, countp);
1467         *new_entry = *entry;
1468
1469         new_entry->end = start;
1470         entry->offset += (start - entry->start);
1471         entry->start = start;
1472
1473         vm_map_entry_link(map, entry->prev, new_entry);
1474
1475         switch(entry->maptype) {
1476         case VM_MAPTYPE_NORMAL:
1477         case VM_MAPTYPE_VPAGETABLE:
1478                 if (new_entry->object.vm_object) {
1479                         vm_object_hold(new_entry->object.vm_object);
1480                         vm_object_chain_wait(new_entry->object.vm_object, 0);
1481                         vm_object_reference_locked(new_entry->object.vm_object);
1482                         vm_object_drop(new_entry->object.vm_object);
1483                 }
1484                 break;
1485         default:
1486                 break;
1487         }
1488 }
1489
1490 /*
1491  * Asserts that the given entry ends at or before the specified address.
1492  * If necessary, it splits the entry into two.
1493  *
1494  * The map must be exclusively locked.
1495  */
1496 #define vm_map_clip_end(map, entry, endaddr, countp)            \
1497 {                                                               \
1498         if (endaddr < entry->end)                               \
1499                 _vm_map_clip_end(map, entry, endaddr, countp);  \
1500 }
1501
1502 /*
1503  * This routine is called only when it is known that the entry must be split.
1504  *
1505  * The map must be exclusively locked.
1506  */
1507 static void
1508 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end,
1509                  int *countp)
1510 {
1511         vm_map_entry_t new_entry;
1512
1513         /*
1514          * If there is no object backing this entry, we might as well create
1515          * one now.  If we defer it, an object can get created after the map
1516          * is clipped, and individual objects will be created for the split-up
1517          * map.  This is a bit of a hack, but is also about the best place to
1518          * put this improvement.
1519          */
1520
1521         if (entry->object.vm_object == NULL && !map->system_map) {
1522                 vm_map_entry_allocate_object(entry);
1523         }
1524
1525         /*
1526          * Create a new entry and insert it AFTER the specified entry
1527          */
1528
1529         new_entry = vm_map_entry_create(map, countp);
1530         *new_entry = *entry;
1531
1532         new_entry->start = entry->end = end;
1533         new_entry->offset += (end - entry->start);
1534
1535         vm_map_entry_link(map, entry, new_entry);
1536
1537         switch(entry->maptype) {
1538         case VM_MAPTYPE_NORMAL:
1539         case VM_MAPTYPE_VPAGETABLE:
1540                 if (new_entry->object.vm_object) {
1541                         vm_object_hold(new_entry->object.vm_object);
1542                         vm_object_chain_wait(new_entry->object.vm_object, 0);
1543                         vm_object_reference_locked(new_entry->object.vm_object);
1544                         vm_object_drop(new_entry->object.vm_object);
1545                 }
1546                 break;
1547         default:
1548                 break;
1549         }
1550 }
1551
1552 /*
1553  * Asserts that the starting and ending region addresses fall within the
1554  * valid range for the map.
1555  */
1556 #define VM_MAP_RANGE_CHECK(map, start, end)     \
1557 {                                               \
1558         if (start < vm_map_min(map))            \
1559                 start = vm_map_min(map);        \
1560         if (end > vm_map_max(map))              \
1561                 end = vm_map_max(map);          \
1562         if (start > end)                        \
1563                 start = end;                    \
1564 }
1565
1566 /*
1567  * Used to block when an in-transition collison occurs.  The map
1568  * is unlocked for the sleep and relocked before the return.
1569  */
1570 void
1571 vm_map_transition_wait(vm_map_t map)
1572 {
1573         tsleep_interlock(map, 0);
1574         vm_map_unlock(map);
1575         tsleep(map, PINTERLOCKED, "vment", 0);
1576         vm_map_lock(map);
1577 }
1578
1579 /*
1580  * When we do blocking operations with the map lock held it is
1581  * possible that a clip might have occured on our in-transit entry,
1582  * requiring an adjustment to the entry in our loop.  These macros
1583  * help the pageable and clip_range code deal with the case.  The
1584  * conditional costs virtually nothing if no clipping has occured.
1585  */
1586
1587 #define CLIP_CHECK_BACK(entry, save_start)              \
1588     do {                                                \
1589             while (entry->start != save_start) {        \
1590                     entry = entry->prev;                \
1591                     KASSERT(entry != &map->header, ("bad entry clip")); \
1592             }                                           \
1593     } while(0)
1594
1595 #define CLIP_CHECK_FWD(entry, save_end)                 \
1596     do {                                                \
1597             while (entry->end != save_end) {            \
1598                     entry = entry->next;                \
1599                     KASSERT(entry != &map->header, ("bad entry clip")); \
1600             }                                           \
1601     } while(0)
1602
1603
1604 /*
1605  * Clip the specified range and return the base entry.  The
1606  * range may cover several entries starting at the returned base
1607  * and the first and last entry in the covering sequence will be
1608  * properly clipped to the requested start and end address.
1609  *
1610  * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1611  * flag.
1612  *
1613  * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1614  * covered by the requested range.
1615  *
1616  * The map must be exclusively locked on entry and will remain locked
1617  * on return. If no range exists or the range contains holes and you
1618  * specified that no holes were allowed, NULL will be returned.  This
1619  * routine may temporarily unlock the map in order avoid a deadlock when
1620  * sleeping.
1621  */
1622 static
1623 vm_map_entry_t
1624 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end, 
1625                   int *countp, int flags)
1626 {
1627         vm_map_entry_t start_entry;
1628         vm_map_entry_t entry;
1629
1630         /*
1631          * Locate the entry and effect initial clipping.  The in-transition
1632          * case does not occur very often so do not try to optimize it.
1633          */
1634 again:
1635         if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1636                 return (NULL);
1637         entry = start_entry;
1638         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1639                 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1640                 ++mycpu->gd_cnt.v_intrans_coll;
1641                 ++mycpu->gd_cnt.v_intrans_wait;
1642                 vm_map_transition_wait(map);
1643                 /*
1644                  * entry and/or start_entry may have been clipped while
1645                  * we slept, or may have gone away entirely.  We have
1646                  * to restart from the lookup.
1647                  */
1648                 goto again;
1649         }
1650
1651         /*
1652          * Since we hold an exclusive map lock we do not have to restart
1653          * after clipping, even though clipping may block in zalloc.
1654          */
1655         vm_map_clip_start(map, entry, start, countp);
1656         vm_map_clip_end(map, entry, end, countp);
1657         entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1658
1659         /*
1660          * Scan entries covered by the range.  When working on the next
1661          * entry a restart need only re-loop on the current entry which
1662          * we have already locked, since 'next' may have changed.  Also,
1663          * even though entry is safe, it may have been clipped so we
1664          * have to iterate forwards through the clip after sleeping.
1665          */
1666         while (entry->next != &map->header && entry->next->start < end) {
1667                 vm_map_entry_t next = entry->next;
1668
1669                 if (flags & MAP_CLIP_NO_HOLES) {
1670                         if (next->start > entry->end) {
1671                                 vm_map_unclip_range(map, start_entry,
1672                                         start, entry->end, countp, flags);
1673                                 return(NULL);
1674                         }
1675                 }
1676
1677                 if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1678                         vm_offset_t save_end = entry->end;
1679                         next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1680                         ++mycpu->gd_cnt.v_intrans_coll;
1681                         ++mycpu->gd_cnt.v_intrans_wait;
1682                         vm_map_transition_wait(map);
1683
1684                         /*
1685                          * clips might have occured while we blocked.
1686                          */
1687                         CLIP_CHECK_FWD(entry, save_end);
1688                         CLIP_CHECK_BACK(start_entry, start);
1689                         continue;
1690                 }
1691                 /*
1692                  * No restart necessary even though clip_end may block, we
1693                  * are holding the map lock.
1694                  */
1695                 vm_map_clip_end(map, next, end, countp);
1696                 next->eflags |= MAP_ENTRY_IN_TRANSITION;
1697                 entry = next;
1698         }
1699         if (flags & MAP_CLIP_NO_HOLES) {
1700                 if (entry->end != end) {
1701                         vm_map_unclip_range(map, start_entry,
1702                                 start, entry->end, countp, flags);
1703                         return(NULL);
1704                 }
1705         }
1706         return(start_entry);
1707 }
1708
1709 /*
1710  * Undo the effect of vm_map_clip_range().  You should pass the same
1711  * flags and the same range that you passed to vm_map_clip_range().
1712  * This code will clear the in-transition flag on the entries and
1713  * wake up anyone waiting.  This code will also simplify the sequence
1714  * and attempt to merge it with entries before and after the sequence.
1715  *
1716  * The map must be locked on entry and will remain locked on return.
1717  *
1718  * Note that you should also pass the start_entry returned by
1719  * vm_map_clip_range().  However, if you block between the two calls
1720  * with the map unlocked please be aware that the start_entry may
1721  * have been clipped and you may need to scan it backwards to find
1722  * the entry corresponding with the original start address.  You are
1723  * responsible for this, vm_map_unclip_range() expects the correct
1724  * start_entry to be passed to it and will KASSERT otherwise.
1725  */
1726 static
1727 void
1728 vm_map_unclip_range(vm_map_t map, vm_map_entry_t start_entry,
1729                     vm_offset_t start, vm_offset_t end,
1730                     int *countp, int flags)
1731 {
1732         vm_map_entry_t entry;
1733
1734         entry = start_entry;
1735
1736         KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1737         while (entry != &map->header && entry->start < end) {
1738                 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1739                         ("in-transition flag not set during unclip on: %p",
1740                         entry));
1741                 KASSERT(entry->end <= end,
1742                         ("unclip_range: tail wasn't clipped"));
1743                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1744                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1745                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1746                         wakeup(map);
1747                 }
1748                 entry = entry->next;
1749         }
1750
1751         /*
1752          * Simplification does not block so there is no restart case.
1753          */
1754         entry = start_entry;
1755         while (entry != &map->header && entry->start < end) {
1756                 vm_map_simplify_entry(map, entry, countp);
1757                 entry = entry->next;
1758         }
1759 }
1760
1761 /*
1762  * Mark the given range as handled by a subordinate map.
1763  *
1764  * This range must have been created with vm_map_find(), and no other
1765  * operations may have been performed on this range prior to calling
1766  * vm_map_submap().
1767  *
1768  * Submappings cannot be removed.
1769  *
1770  * No requirements.
1771  */
1772 int
1773 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1774 {
1775         vm_map_entry_t entry;
1776         int result = KERN_INVALID_ARGUMENT;
1777         int count;
1778
1779         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1780         vm_map_lock(map);
1781
1782         VM_MAP_RANGE_CHECK(map, start, end);
1783
1784         if (vm_map_lookup_entry(map, start, &entry)) {
1785                 vm_map_clip_start(map, entry, start, &count);
1786         } else {
1787                 entry = entry->next;
1788         }
1789
1790         vm_map_clip_end(map, entry, end, &count);
1791
1792         if ((entry->start == start) && (entry->end == end) &&
1793             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1794             (entry->object.vm_object == NULL)) {
1795                 entry->object.sub_map = submap;
1796                 entry->maptype = VM_MAPTYPE_SUBMAP;
1797                 result = KERN_SUCCESS;
1798         }
1799         vm_map_unlock(map);
1800         vm_map_entry_release(count);
1801
1802         return (result);
1803 }
1804
1805 /*
1806  * Sets the protection of the specified address region in the target map. 
1807  * If "set_max" is specified, the maximum protection is to be set;
1808  * otherwise, only the current protection is affected.
1809  *
1810  * The protection is not applicable to submaps, but is applicable to normal
1811  * maps and maps governed by virtual page tables.  For example, when operating
1812  * on a virtual page table our protection basically controls how COW occurs
1813  * on the backing object, whereas the virtual page table abstraction itself
1814  * is an abstraction for userland.
1815  *
1816  * No requirements.
1817  */
1818 int
1819 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1820                vm_prot_t new_prot, boolean_t set_max)
1821 {
1822         vm_map_entry_t current;
1823         vm_map_entry_t entry;
1824         int count;
1825
1826         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1827         vm_map_lock(map);
1828
1829         VM_MAP_RANGE_CHECK(map, start, end);
1830
1831         if (vm_map_lookup_entry(map, start, &entry)) {
1832                 vm_map_clip_start(map, entry, start, &count);
1833         } else {
1834                 entry = entry->next;
1835         }
1836
1837         /*
1838          * Make a first pass to check for protection violations.
1839          */
1840         current = entry;
1841         while ((current != &map->header) && (current->start < end)) {
1842                 if (current->maptype == VM_MAPTYPE_SUBMAP) {
1843                         vm_map_unlock(map);
1844                         vm_map_entry_release(count);
1845                         return (KERN_INVALID_ARGUMENT);
1846                 }
1847                 if ((new_prot & current->max_protection) != new_prot) {
1848                         vm_map_unlock(map);
1849                         vm_map_entry_release(count);
1850                         return (KERN_PROTECTION_FAILURE);
1851                 }
1852                 current = current->next;
1853         }
1854
1855         /*
1856          * Go back and fix up protections. [Note that clipping is not
1857          * necessary the second time.]
1858          */
1859         current = entry;
1860
1861         while ((current != &map->header) && (current->start < end)) {
1862                 vm_prot_t old_prot;
1863
1864                 vm_map_clip_end(map, current, end, &count);
1865
1866                 old_prot = current->protection;
1867                 if (set_max) {
1868                         current->protection =
1869                             (current->max_protection = new_prot) &
1870                             old_prot;
1871                 } else {
1872                         current->protection = new_prot;
1873                 }
1874
1875                 /*
1876                  * Update physical map if necessary. Worry about copy-on-write
1877                  * here -- CHECK THIS XXX
1878                  */
1879
1880                 if (current->protection != old_prot) {
1881 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1882                                                         VM_PROT_ALL)
1883
1884                         pmap_protect(map->pmap, current->start,
1885                             current->end,
1886                             current->protection & MASK(current));
1887 #undef  MASK
1888                 }
1889
1890                 vm_map_simplify_entry(map, current, &count);
1891
1892                 current = current->next;
1893         }
1894
1895         vm_map_unlock(map);
1896         vm_map_entry_release(count);
1897         return (KERN_SUCCESS);
1898 }
1899
1900 /*
1901  * This routine traverses a processes map handling the madvise
1902  * system call.  Advisories are classified as either those effecting
1903  * the vm_map_entry structure, or those effecting the underlying
1904  * objects.
1905  *
1906  * The <value> argument is used for extended madvise calls.
1907  *
1908  * No requirements.
1909  */
1910 int
1911 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
1912                int behav, off_t value)
1913 {
1914         vm_map_entry_t current, entry;
1915         int modify_map = 0;
1916         int error = 0;
1917         int count;
1918
1919         /*
1920          * Some madvise calls directly modify the vm_map_entry, in which case
1921          * we need to use an exclusive lock on the map and we need to perform 
1922          * various clipping operations.  Otherwise we only need a read-lock
1923          * on the map.
1924          */
1925
1926         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1927
1928         switch(behav) {
1929         case MADV_NORMAL:
1930         case MADV_SEQUENTIAL:
1931         case MADV_RANDOM:
1932         case MADV_NOSYNC:
1933         case MADV_AUTOSYNC:
1934         case MADV_NOCORE:
1935         case MADV_CORE:
1936         case MADV_SETMAP:
1937         case MADV_INVAL:
1938                 modify_map = 1;
1939                 vm_map_lock(map);
1940                 break;
1941         case MADV_WILLNEED:
1942         case MADV_DONTNEED:
1943         case MADV_FREE:
1944                 vm_map_lock_read(map);
1945                 break;
1946         default:
1947                 vm_map_entry_release(count);
1948                 return (EINVAL);
1949         }
1950
1951         /*
1952          * Locate starting entry and clip if necessary.
1953          */
1954
1955         VM_MAP_RANGE_CHECK(map, start, end);
1956
1957         if (vm_map_lookup_entry(map, start, &entry)) {
1958                 if (modify_map)
1959                         vm_map_clip_start(map, entry, start, &count);
1960         } else {
1961                 entry = entry->next;
1962         }
1963
1964         if (modify_map) {
1965                 /*
1966                  * madvise behaviors that are implemented in the vm_map_entry.
1967                  *
1968                  * We clip the vm_map_entry so that behavioral changes are
1969                  * limited to the specified address range.
1970                  */
1971                 for (current = entry;
1972                      (current != &map->header) && (current->start < end);
1973                      current = current->next
1974                 ) {
1975                         if (current->maptype == VM_MAPTYPE_SUBMAP)
1976                                 continue;
1977
1978                         vm_map_clip_end(map, current, end, &count);
1979
1980                         switch (behav) {
1981                         case MADV_NORMAL:
1982                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1983                                 break;
1984                         case MADV_SEQUENTIAL:
1985                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1986                                 break;
1987                         case MADV_RANDOM:
1988                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1989                                 break;
1990                         case MADV_NOSYNC:
1991                                 current->eflags |= MAP_ENTRY_NOSYNC;
1992                                 break;
1993                         case MADV_AUTOSYNC:
1994                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
1995                                 break;
1996                         case MADV_NOCORE:
1997                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
1998                                 break;
1999                         case MADV_CORE:
2000                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2001                                 break;
2002                         case MADV_INVAL:
2003                                 /*
2004                                  * Invalidate the related pmap entries, used
2005                                  * to flush portions of the real kernel's
2006                                  * pmap when the caller has removed or
2007                                  * modified existing mappings in a virtual
2008                                  * page table.
2009                                  */
2010                                 pmap_remove(map->pmap,
2011                                             current->start, current->end);
2012                                 break;
2013                         case MADV_SETMAP:
2014                                 /*
2015                                  * Set the page directory page for a map
2016                                  * governed by a virtual page table.  Mark
2017                                  * the entry as being governed by a virtual
2018                                  * page table if it is not.
2019                                  *
2020                                  * XXX the page directory page is stored
2021                                  * in the avail_ssize field if the map_entry.
2022                                  *
2023                                  * XXX the map simplification code does not
2024                                  * compare this field so weird things may
2025                                  * happen if you do not apply this function
2026                                  * to the entire mapping governed by the
2027                                  * virtual page table.
2028                                  */
2029                                 if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
2030                                         error = EINVAL;
2031                                         break;
2032                                 }
2033                                 current->aux.master_pde = value;
2034                                 pmap_remove(map->pmap,
2035                                             current->start, current->end);
2036                                 break;
2037                         default:
2038                                 error = EINVAL;
2039                                 break;
2040                         }
2041                         vm_map_simplify_entry(map, current, &count);
2042                 }
2043                 vm_map_unlock(map);
2044         } else {
2045                 vm_pindex_t pindex;
2046                 int count;
2047
2048                 /*
2049                  * madvise behaviors that are implemented in the underlying
2050                  * vm_object.
2051                  *
2052                  * Since we don't clip the vm_map_entry, we have to clip
2053                  * the vm_object pindex and count.
2054                  *
2055                  * NOTE!  We currently do not support these functions on
2056                  * virtual page tables.
2057                  */
2058                 for (current = entry;
2059                      (current != &map->header) && (current->start < end);
2060                      current = current->next
2061                 ) {
2062                         vm_offset_t useStart;
2063
2064                         if (current->maptype != VM_MAPTYPE_NORMAL)
2065                                 continue;
2066
2067                         pindex = OFF_TO_IDX(current->offset);
2068                         count = atop(current->end - current->start);
2069                         useStart = current->start;
2070
2071                         if (current->start < start) {
2072                                 pindex += atop(start - current->start);
2073                                 count -= atop(start - current->start);
2074                                 useStart = start;
2075                         }
2076                         if (current->end > end)
2077                                 count -= atop(current->end - end);
2078
2079                         if (count <= 0)
2080                                 continue;
2081
2082                         vm_object_madvise(current->object.vm_object,
2083                                           pindex, count, behav);
2084
2085                         /*
2086                          * Try to populate the page table.  Mappings governed
2087                          * by virtual page tables cannot be pre-populated
2088                          * without a lot of work so don't try.
2089                          */
2090                         if (behav == MADV_WILLNEED &&
2091                             current->maptype != VM_MAPTYPE_VPAGETABLE) {
2092                                 pmap_object_init_pt(
2093                                     map->pmap, 
2094                                     useStart,
2095                                     current->protection,
2096                                     current->object.vm_object,
2097                                     pindex, 
2098                                     (count << PAGE_SHIFT),
2099                                     MAP_PREFAULT_MADVISE
2100                                 );
2101                         }
2102                 }
2103                 vm_map_unlock_read(map);
2104         }
2105         vm_map_entry_release(count);
2106         return(error);
2107 }       
2108
2109
2110 /*
2111  * Sets the inheritance of the specified address range in the target map.
2112  * Inheritance affects how the map will be shared with child maps at the
2113  * time of vm_map_fork.
2114  */
2115 int
2116 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2117                vm_inherit_t new_inheritance)
2118 {
2119         vm_map_entry_t entry;
2120         vm_map_entry_t temp_entry;
2121         int count;
2122
2123         switch (new_inheritance) {
2124         case VM_INHERIT_NONE:
2125         case VM_INHERIT_COPY:
2126         case VM_INHERIT_SHARE:
2127                 break;
2128         default:
2129                 return (KERN_INVALID_ARGUMENT);
2130         }
2131
2132         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2133         vm_map_lock(map);
2134
2135         VM_MAP_RANGE_CHECK(map, start, end);
2136
2137         if (vm_map_lookup_entry(map, start, &temp_entry)) {
2138                 entry = temp_entry;
2139                 vm_map_clip_start(map, entry, start, &count);
2140         } else
2141                 entry = temp_entry->next;
2142
2143         while ((entry != &map->header) && (entry->start < end)) {
2144                 vm_map_clip_end(map, entry, end, &count);
2145
2146                 entry->inheritance = new_inheritance;
2147
2148                 vm_map_simplify_entry(map, entry, &count);
2149
2150                 entry = entry->next;
2151         }
2152         vm_map_unlock(map);
2153         vm_map_entry_release(count);
2154         return (KERN_SUCCESS);
2155 }
2156
2157 /*
2158  * Implement the semantics of mlock
2159  */
2160 int
2161 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
2162               boolean_t new_pageable)
2163 {
2164         vm_map_entry_t entry;
2165         vm_map_entry_t start_entry;
2166         vm_offset_t end;
2167         int rv = KERN_SUCCESS;
2168         int count;
2169
2170         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2171         vm_map_lock(map);
2172         VM_MAP_RANGE_CHECK(map, start, real_end);
2173         end = real_end;
2174
2175         start_entry = vm_map_clip_range(map, start, end, &count,
2176                                         MAP_CLIP_NO_HOLES);
2177         if (start_entry == NULL) {
2178                 vm_map_unlock(map);
2179                 vm_map_entry_release(count);
2180                 return (KERN_INVALID_ADDRESS);
2181         }
2182
2183         if (new_pageable == 0) {
2184                 entry = start_entry;
2185                 while ((entry != &map->header) && (entry->start < end)) {
2186                         vm_offset_t save_start;
2187                         vm_offset_t save_end;
2188
2189                         /*
2190                          * Already user wired or hard wired (trivial cases)
2191                          */
2192                         if (entry->eflags & MAP_ENTRY_USER_WIRED) {
2193                                 entry = entry->next;
2194                                 continue;
2195                         }
2196                         if (entry->wired_count != 0) {
2197                                 entry->wired_count++;
2198                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
2199                                 entry = entry->next;
2200                                 continue;
2201                         }
2202
2203                         /*
2204                          * A new wiring requires instantiation of appropriate
2205                          * management structures and the faulting in of the
2206                          * page.
2207                          */
2208                         if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2209                                 int copyflag = entry->eflags &
2210                                                MAP_ENTRY_NEEDS_COPY;
2211                                 if (copyflag && ((entry->protection &
2212                                                   VM_PROT_WRITE) != 0)) {
2213                                         vm_map_entry_shadow(entry, 0);
2214                                 } else if (entry->object.vm_object == NULL &&
2215                                            !map->system_map) {
2216                                         vm_map_entry_allocate_object(entry);
2217                                 }
2218                         }
2219                         entry->wired_count++;
2220                         entry->eflags |= MAP_ENTRY_USER_WIRED;
2221
2222                         /*
2223                          * Now fault in the area.  Note that vm_fault_wire()
2224                          * may release the map lock temporarily, it will be
2225                          * relocked on return.  The in-transition
2226                          * flag protects the entries. 
2227                          */
2228                         save_start = entry->start;
2229                         save_end = entry->end;
2230                         rv = vm_fault_wire(map, entry, TRUE, 0);
2231                         if (rv) {
2232                                 CLIP_CHECK_BACK(entry, save_start);
2233                                 for (;;) {
2234                                         KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
2235                                         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2236                                         entry->wired_count = 0;
2237                                         if (entry->end == save_end)
2238                                                 break;
2239                                         entry = entry->next;
2240                                         KASSERT(entry != &map->header, ("bad entry clip during backout"));
2241                                 }
2242                                 end = save_start;       /* unwire the rest */
2243                                 break;
2244                         }
2245                         /*
2246                          * note that even though the entry might have been
2247                          * clipped, the USER_WIRED flag we set prevents
2248                          * duplication so we do not have to do a 
2249                          * clip check.
2250                          */
2251                         entry = entry->next;
2252                 }
2253
2254                 /*
2255                  * If we failed fall through to the unwiring section to
2256                  * unwire what we had wired so far.  'end' has already
2257                  * been adjusted.
2258                  */
2259                 if (rv)
2260                         new_pageable = 1;
2261
2262                 /*
2263                  * start_entry might have been clipped if we unlocked the
2264                  * map and blocked.  No matter how clipped it has gotten
2265                  * there should be a fragment that is on our start boundary.
2266                  */
2267                 CLIP_CHECK_BACK(start_entry, start);
2268         }
2269
2270         /*
2271          * Deal with the unwiring case.
2272          */
2273         if (new_pageable) {
2274                 /*
2275                  * This is the unwiring case.  We must first ensure that the
2276                  * range to be unwired is really wired down.  We know there
2277                  * are no holes.
2278                  */
2279                 entry = start_entry;
2280                 while ((entry != &map->header) && (entry->start < end)) {
2281                         if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2282                                 rv = KERN_INVALID_ARGUMENT;
2283                                 goto done;
2284                         }
2285                         KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
2286                         entry = entry->next;
2287                 }
2288
2289                 /*
2290                  * Now decrement the wiring count for each region. If a region
2291                  * becomes completely unwired, unwire its physical pages and
2292                  * mappings.
2293                  */
2294                 /*
2295                  * The map entries are processed in a loop, checking to
2296                  * make sure the entry is wired and asserting it has a wired
2297                  * count. However, another loop was inserted more-or-less in
2298                  * the middle of the unwiring path. This loop picks up the
2299                  * "entry" loop variable from the first loop without first
2300                  * setting it to start_entry. Naturally, the secound loop
2301                  * is never entered and the pages backing the entries are
2302                  * never unwired. This can lead to a leak of wired pages.
2303                  */
2304                 entry = start_entry;
2305                 while ((entry != &map->header) && (entry->start < end)) {
2306                         KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2307                                 ("expected USER_WIRED on entry %p", entry));
2308                         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2309                         entry->wired_count--;
2310                         if (entry->wired_count == 0)
2311                                 vm_fault_unwire(map, entry);
2312                         entry = entry->next;
2313                 }
2314         }
2315 done:
2316         vm_map_unclip_range(map, start_entry, start, real_end, &count,
2317                 MAP_CLIP_NO_HOLES);
2318         map->timestamp++;
2319         vm_map_unlock(map);
2320         vm_map_entry_release(count);
2321         return (rv);
2322 }
2323
2324 /*
2325  * Sets the pageability of the specified address range in the target map.
2326  * Regions specified as not pageable require locked-down physical
2327  * memory and physical page maps.
2328  *
2329  * The map must not be locked, but a reference must remain to the map
2330  * throughout the call.
2331  *
2332  * This function may be called via the zalloc path and must properly
2333  * reserve map entries for kernel_map.
2334  *
2335  * No requirements.
2336  */
2337 int
2338 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2339 {
2340         vm_map_entry_t entry;
2341         vm_map_entry_t start_entry;
2342         vm_offset_t end;
2343         int rv = KERN_SUCCESS;
2344         int count;
2345
2346         if (kmflags & KM_KRESERVE)
2347                 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2348         else
2349                 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2350         vm_map_lock(map);
2351         VM_MAP_RANGE_CHECK(map, start, real_end);
2352         end = real_end;
2353
2354         start_entry = vm_map_clip_range(map, start, end, &count,
2355                                         MAP_CLIP_NO_HOLES);
2356         if (start_entry == NULL) {
2357                 vm_map_unlock(map);
2358                 rv = KERN_INVALID_ADDRESS;
2359                 goto failure;
2360         }
2361         if ((kmflags & KM_PAGEABLE) == 0) {
2362                 /*
2363                  * Wiring.  
2364                  *
2365                  * 1.  Holding the write lock, we create any shadow or zero-fill
2366                  * objects that need to be created. Then we clip each map
2367                  * entry to the region to be wired and increment its wiring
2368                  * count.  We create objects before clipping the map entries
2369                  * to avoid object proliferation.
2370                  *
2371                  * 2.  We downgrade to a read lock, and call vm_fault_wire to
2372                  * fault in the pages for any newly wired area (wired_count is
2373                  * 1).
2374                  *
2375                  * Downgrading to a read lock for vm_fault_wire avoids a 
2376                  * possible deadlock with another process that may have faulted
2377                  * on one of the pages to be wired (it would mark the page busy,
2378                  * blocking us, then in turn block on the map lock that we
2379                  * hold).  Because of problems in the recursive lock package,
2380                  * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
2381                  * any actions that require the write lock must be done
2382                  * beforehand.  Because we keep the read lock on the map, the
2383                  * copy-on-write status of the entries we modify here cannot
2384                  * change.
2385                  */
2386                 entry = start_entry;
2387                 while ((entry != &map->header) && (entry->start < end)) {
2388                         /*
2389                          * Trivial case if the entry is already wired
2390                          */
2391                         if (entry->wired_count) {
2392                                 entry->wired_count++;
2393                                 entry = entry->next;
2394                                 continue;
2395                         }
2396
2397                         /*
2398                          * The entry is being newly wired, we have to setup
2399                          * appropriate management structures.  A shadow 
2400                          * object is required for a copy-on-write region,
2401                          * or a normal object for a zero-fill region.  We
2402                          * do not have to do this for entries that point to sub
2403                          * maps because we won't hold the lock on the sub map.
2404                          */
2405                         if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2406                                 int copyflag = entry->eflags &
2407                                                MAP_ENTRY_NEEDS_COPY;
2408                                 if (copyflag && ((entry->protection &
2409                                                   VM_PROT_WRITE) != 0)) {
2410                                         vm_map_entry_shadow(entry, 0);
2411                                 } else if (entry->object.vm_object == NULL &&
2412                                            !map->system_map) {
2413                                         vm_map_entry_allocate_object(entry);
2414                                 }
2415                         }
2416
2417                         entry->wired_count++;
2418                         entry = entry->next;
2419                 }
2420
2421                 /*
2422                  * Pass 2.
2423                  */
2424
2425                 /*
2426                  * HACK HACK HACK HACK
2427                  *
2428                  * vm_fault_wire() temporarily unlocks the map to avoid
2429                  * deadlocks.  The in-transition flag from vm_map_clip_range
2430                  * call should protect us from changes while the map is
2431                  * unlocked.  T
2432                  *
2433                  * NOTE: Previously this comment stated that clipping might
2434                  *       still occur while the entry is unlocked, but from
2435                  *       what I can tell it actually cannot.
2436                  *
2437                  *       It is unclear whether the CLIP_CHECK_*() calls
2438                  *       are still needed but we keep them in anyway.
2439                  *
2440                  * HACK HACK HACK HACK
2441                  */
2442
2443                 entry = start_entry;
2444                 while (entry != &map->header && entry->start < end) {
2445                         /*
2446                          * If vm_fault_wire fails for any page we need to undo
2447                          * what has been done.  We decrement the wiring count
2448                          * for those pages which have not yet been wired (now)
2449                          * and unwire those that have (later).
2450                          */
2451                         vm_offset_t save_start = entry->start;
2452                         vm_offset_t save_end = entry->end;
2453
2454                         if (entry->wired_count == 1)
2455                                 rv = vm_fault_wire(map, entry, FALSE, kmflags);
2456                         if (rv) {
2457                                 CLIP_CHECK_BACK(entry, save_start);
2458                                 for (;;) {
2459                                         KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2460                                         entry->wired_count = 0;
2461                                         if (entry->end == save_end)
2462                                                 break;
2463                                         entry = entry->next;
2464                                         KASSERT(entry != &map->header, ("bad entry clip during backout"));
2465                                 }
2466                                 end = save_start;
2467                                 break;
2468                         }
2469                         CLIP_CHECK_FWD(entry, save_end);
2470                         entry = entry->next;
2471                 }
2472
2473                 /*
2474                  * If a failure occured undo everything by falling through
2475                  * to the unwiring code.  'end' has already been adjusted
2476                  * appropriately.
2477                  */
2478                 if (rv)
2479                         kmflags |= KM_PAGEABLE;
2480
2481                 /*
2482                  * start_entry is still IN_TRANSITION but may have been 
2483                  * clipped since vm_fault_wire() unlocks and relocks the
2484                  * map.  No matter how clipped it has gotten there should
2485                  * be a fragment that is on our start boundary.
2486                  */
2487                 CLIP_CHECK_BACK(start_entry, start);
2488         }
2489
2490         if (kmflags & KM_PAGEABLE) {
2491                 /*
2492                  * This is the unwiring case.  We must first ensure that the
2493                  * range to be unwired is really wired down.  We know there
2494                  * are no holes.
2495                  */
2496                 entry = start_entry;
2497                 while ((entry != &map->header) && (entry->start < end)) {
2498                         if (entry->wired_count == 0) {
2499                                 rv = KERN_INVALID_ARGUMENT;
2500                                 goto done;
2501                         }
2502                         entry = entry->next;
2503                 }
2504
2505                 /*
2506                  * Now decrement the wiring count for each region. If a region
2507                  * becomes completely unwired, unwire its physical pages and
2508                  * mappings.
2509                  */
2510                 entry = start_entry;
2511                 while ((entry != &map->header) && (entry->start < end)) {
2512                         entry->wired_count--;
2513                         if (entry->wired_count == 0)
2514                                 vm_fault_unwire(map, entry);
2515                         entry = entry->next;
2516                 }
2517         }
2518 done:
2519         vm_map_unclip_range(map, start_entry, start, real_end,
2520                             &count, MAP_CLIP_NO_HOLES);
2521         map->timestamp++;
2522         vm_map_unlock(map);
2523 failure:
2524         if (kmflags & KM_KRESERVE)
2525                 vm_map_entry_krelease(count);
2526         else
2527                 vm_map_entry_release(count);
2528         return (rv);
2529 }
2530
2531 /*
2532  * Mark a newly allocated address range as wired but do not fault in
2533  * the pages.  The caller is expected to load the pages into the object.
2534  *
2535  * The map must be locked on entry and will remain locked on return.
2536  * No other requirements.
2537  */
2538 void
2539 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size,
2540                        int *countp)
2541 {
2542         vm_map_entry_t scan;
2543         vm_map_entry_t entry;
2544
2545         entry = vm_map_clip_range(map, addr, addr + size,
2546                                   countp, MAP_CLIP_NO_HOLES);
2547         for (scan = entry;
2548              scan != &map->header && scan->start < addr + size;
2549              scan = scan->next) {
2550             KKASSERT(scan->wired_count == 0);
2551             scan->wired_count = 1;
2552         }
2553         vm_map_unclip_range(map, entry, addr, addr + size,
2554                             countp, MAP_CLIP_NO_HOLES);
2555 }
2556
2557 /*
2558  * Push any dirty cached pages in the address range to their pager.
2559  * If syncio is TRUE, dirty pages are written synchronously.
2560  * If invalidate is TRUE, any cached pages are freed as well.
2561  *
2562  * This routine is called by sys_msync()
2563  *
2564  * Returns an error if any part of the specified range is not mapped.
2565  *
2566  * No requirements.
2567  */
2568 int
2569 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end,
2570              boolean_t syncio, boolean_t invalidate)
2571 {
2572         vm_map_entry_t current;
2573         vm_map_entry_t entry;
2574         vm_size_t size;
2575         vm_object_t object;
2576         vm_object_t tobj;
2577         vm_ooffset_t offset;
2578
2579         vm_map_lock_read(map);
2580         VM_MAP_RANGE_CHECK(map, start, end);
2581         if (!vm_map_lookup_entry(map, start, &entry)) {
2582                 vm_map_unlock_read(map);
2583                 return (KERN_INVALID_ADDRESS);
2584         }
2585         lwkt_gettoken(&map->token);
2586
2587         /*
2588          * Make a first pass to check for holes.
2589          */
2590         for (current = entry; current->start < end; current = current->next) {
2591                 if (current->maptype == VM_MAPTYPE_SUBMAP) {
2592                         lwkt_reltoken(&map->token);
2593                         vm_map_unlock_read(map);
2594                         return (KERN_INVALID_ARGUMENT);
2595                 }
2596                 if (end > current->end &&
2597                     (current->next == &map->header ||
2598                         current->end != current->next->start)) {
2599                         lwkt_reltoken(&map->token);
2600                         vm_map_unlock_read(map);
2601                         return (KERN_INVALID_ADDRESS);
2602                 }
2603         }
2604
2605         if (invalidate)
2606                 pmap_remove(vm_map_pmap(map), start, end);
2607
2608         /*
2609          * Make a second pass, cleaning/uncaching pages from the indicated
2610          * objects as we go.
2611          */
2612         for (current = entry; current->start < end; current = current->next) {
2613                 offset = current->offset + (start - current->start);
2614                 size = (end <= current->end ? end : current->end) - start;
2615                 if (current->maptype == VM_MAPTYPE_SUBMAP) {
2616                         vm_map_t smap;
2617                         vm_map_entry_t tentry;
2618                         vm_size_t tsize;
2619
2620                         smap = current->object.sub_map;
2621                         vm_map_lock_read(smap);
2622                         vm_map_lookup_entry(smap, offset, &tentry);
2623                         tsize = tentry->end - offset;
2624                         if (tsize < size)
2625                                 size = tsize;
2626                         object = tentry->object.vm_object;
2627                         offset = tentry->offset + (offset - tentry->start);
2628                         vm_map_unlock_read(smap);
2629                 } else {
2630                         object = current->object.vm_object;
2631                 }
2632
2633                 if (object)
2634                         vm_object_hold(object);
2635
2636                 /*
2637                  * Note that there is absolutely no sense in writing out
2638                  * anonymous objects, so we track down the vnode object
2639                  * to write out.
2640                  * We invalidate (remove) all pages from the address space
2641                  * anyway, for semantic correctness.
2642                  *
2643                  * note: certain anonymous maps, such as MAP_NOSYNC maps,
2644                  * may start out with a NULL object.
2645                  */
2646                 while (object && (tobj = object->backing_object) != NULL) {
2647                         vm_object_hold(tobj);
2648                         if (tobj == object->backing_object) {
2649                                 vm_object_lock_swap();
2650                                 offset += object->backing_object_offset;
2651                                 vm_object_drop(object);
2652                                 object = tobj;
2653                                 if (object->size < OFF_TO_IDX(offset + size))
2654                                         size = IDX_TO_OFF(object->size) -
2655                                                offset;
2656                                 break;
2657                         }
2658                         vm_object_drop(tobj);
2659                 }
2660                 if (object && (object->type == OBJT_VNODE) && 
2661                     (current->protection & VM_PROT_WRITE) &&
2662                     (object->flags & OBJ_NOMSYNC) == 0) {
2663                         /*
2664                          * Flush pages if writing is allowed, invalidate them
2665                          * if invalidation requested.  Pages undergoing I/O
2666                          * will be ignored by vm_object_page_remove().
2667                          *
2668                          * We cannot lock the vnode and then wait for paging
2669                          * to complete without deadlocking against vm_fault.
2670                          * Instead we simply call vm_object_page_remove() and
2671                          * allow it to block internally on a page-by-page 
2672                          * basis when it encounters pages undergoing async 
2673                          * I/O.
2674                          */
2675                         int flags;
2676
2677                         /* no chain wait needed for vnode objects */
2678                         vm_object_reference_locked(object);
2679                         vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2680                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2681                         flags |= invalidate ? OBJPC_INVAL : 0;
2682
2683                         /*
2684                          * When operating on a virtual page table just
2685                          * flush the whole object.  XXX we probably ought
2686                          * to 
2687                          */
2688                         switch(current->maptype) {
2689                         case VM_MAPTYPE_NORMAL:
2690                                 vm_object_page_clean(object,
2691                                     OFF_TO_IDX(offset),
2692                                     OFF_TO_IDX(offset + size + PAGE_MASK),
2693                                     flags);
2694                                 break;
2695                         case VM_MAPTYPE_VPAGETABLE:
2696                                 vm_object_page_clean(object, 0, 0, flags);
2697                                 break;
2698                         }
2699                         vn_unlock(((struct vnode *)object->handle));
2700                         vm_object_deallocate_locked(object);
2701                 }
2702                 if (object && invalidate &&
2703                    ((object->type == OBJT_VNODE) ||
2704                     (object->type == OBJT_DEVICE) ||
2705                     (object->type == OBJT_MGTDEVICE))) {
2706                         int clean_only = 
2707                                 ((object->type == OBJT_DEVICE) ||
2708                                 (object->type == OBJT_MGTDEVICE)) ? FALSE : TRUE;
2709                         /* no chain wait needed for vnode/device objects */
2710                         vm_object_reference_locked(object);
2711                         switch(current->maptype) {
2712                         case VM_MAPTYPE_NORMAL:
2713                                 vm_object_page_remove(object,
2714                                     OFF_TO_IDX(offset),
2715                                     OFF_TO_IDX(offset + size + PAGE_MASK),
2716                                     clean_only);
2717                                 break;
2718                         case VM_MAPTYPE_VPAGETABLE:
2719                                 vm_object_page_remove(object, 0, 0, clean_only);
2720                                 break;
2721                         }
2722                         vm_object_deallocate_locked(object);
2723                 }
2724                 start += size;
2725                 if (object)
2726                         vm_object_drop(object);
2727         }
2728
2729         lwkt_reltoken(&map->token);
2730         vm_map_unlock_read(map);
2731
2732         return (KERN_SUCCESS);
2733 }
2734
2735 /*
2736  * Make the region specified by this entry pageable.
2737  *
2738  * The vm_map must be exclusively locked.
2739  */
2740 static void 
2741 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2742 {
2743         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2744         entry->wired_count = 0;
2745         vm_fault_unwire(map, entry);
2746 }
2747
2748 /*
2749  * Deallocate the given entry from the target map.
2750  *
2751  * The vm_map must be exclusively locked.
2752  */
2753 static void
2754 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2755 {
2756         vm_map_entry_unlink(map, entry);
2757         map->size -= entry->end - entry->start;
2758
2759         switch(entry->maptype) {
2760         case VM_MAPTYPE_NORMAL:
2761         case VM_MAPTYPE_VPAGETABLE:
2762                 vm_object_deallocate(entry->object.vm_object);
2763                 break;
2764         default:
2765                 break;
2766         }
2767
2768         vm_map_entry_dispose(map, entry, countp);
2769 }
2770
2771 /*
2772  * Deallocates the given address range from the target map.
2773  *
2774  * The vm_map must be exclusively locked.
2775  */
2776 int
2777 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2778 {
2779         vm_object_t object;
2780         vm_map_entry_t entry;
2781         vm_map_entry_t first_entry;
2782
2783         ASSERT_VM_MAP_LOCKED(map);
2784         lwkt_gettoken(&map->token);
2785 again:
2786         /*
2787          * Find the start of the region, and clip it.  Set entry to point
2788          * at the first record containing the requested address or, if no
2789          * such record exists, the next record with a greater address.  The
2790          * loop will run from this point until a record beyond the termination
2791          * address is encountered.
2792          *
2793          * map->hint must be adjusted to not point to anything we delete,
2794          * so set it to the entry prior to the one being deleted.
2795          *
2796          * GGG see other GGG comment.
2797          */
2798         if (vm_map_lookup_entry(map, start, &first_entry)) {
2799                 entry = first_entry;
2800                 vm_map_clip_start(map, entry, start, countp);
2801                 map->hint = entry->prev;        /* possible problem XXX */
2802         } else {
2803                 map->hint = first_entry;        /* possible problem XXX */
2804                 entry = first_entry->next;
2805         }
2806
2807         /*
2808          * If a hole opens up prior to the current first_free then
2809          * adjust first_free.  As with map->hint, map->first_free
2810          * cannot be left set to anything we might delete.
2811          */
2812         if (entry == &map->header) {
2813                 map->first_free = &map->header;
2814         } else if (map->first_free->start >= start) {
2815                 map->first_free = entry->prev;
2816         }
2817
2818         /*
2819          * Step through all entries in this region
2820          */
2821         while ((entry != &map->header) && (entry->start < end)) {
2822                 vm_map_entry_t next;
2823                 vm_offset_t s, e;
2824                 vm_pindex_t offidxstart, offidxend, count;
2825
2826                 /*
2827                  * If we hit an in-transition entry we have to sleep and
2828                  * retry.  It's easier (and not really slower) to just retry
2829                  * since this case occurs so rarely and the hint is already
2830                  * pointing at the right place.  We have to reset the
2831                  * start offset so as not to accidently delete an entry
2832                  * another process just created in vacated space.
2833                  */
2834                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2835                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2836                         start = entry->start;
2837                         ++mycpu->gd_cnt.v_intrans_coll;
2838                         ++mycpu->gd_cnt.v_intrans_wait;
2839                         vm_map_transition_wait(map);
2840                         goto again;
2841                 }
2842                 vm_map_clip_end(map, entry, end, countp);
2843
2844                 s = entry->start;
2845                 e = entry->end;
2846                 next = entry->next;
2847
2848                 offidxstart = OFF_TO_IDX(entry->offset);
2849                 count = OFF_TO_IDX(e - s);
2850                 object = entry->object.vm_object;
2851
2852                 /*
2853                  * Unwire before removing addresses from the pmap; otherwise,
2854                  * unwiring will put the entries back in the pmap.
2855                  */
2856                 if (entry->wired_count != 0)
2857                         vm_map_entry_unwire(map, entry);
2858
2859                 offidxend = offidxstart + count;
2860
2861                 if (object == &kernel_object) {
2862                         vm_object_hold(object);
2863                         vm_object_page_remove(object, offidxstart,
2864                                               offidxend, FALSE);
2865                         vm_object_drop(object);
2866                 } else if (object && object->type != OBJT_DEFAULT &&
2867                            object->type != OBJT_SWAP) {
2868                         /*
2869                          * vnode object routines cannot be chain-locked,
2870                          * but since we aren't removing pages from the
2871                          * object here we can use a shared hold.
2872                          */
2873                         vm_object_hold_shared(object);
2874                         pmap_remove(map->pmap, s, e);
2875                         vm_object_drop(object);
2876                 } else if (object) {
2877                         vm_object_hold(object);
2878                         vm_object_chain_acquire(object, 0);
2879                         pmap_remove(map->pmap, s, e);
2880
2881                         if (object != NULL &&
2882                             object->ref_count != 1 &&
2883                             (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) ==
2884                              OBJ_ONEMAPPING &&
2885                             (object->type == OBJT_DEFAULT ||
2886                              object->type == OBJT_SWAP)) {
2887                                 vm_object_collapse(object, NULL);
2888                                 vm_object_page_remove(object, offidxstart,
2889                                                       offidxend, FALSE);
2890                                 if (object->type == OBJT_SWAP) {
2891                                         swap_pager_freespace(object,
2892                                                              offidxstart,
2893                                                              count);
2894                                 }
2895                                 if (offidxend >= object->size &&
2896                                     offidxstart < object->size) {
2897                                         object->size = offidxstart;
2898                                 }
2899                         }
2900                         vm_object_chain_release(object);
2901                         vm_object_drop(object);
2902                 }
2903
2904                 /*
2905                  * Delete the entry (which may delete the object) only after
2906                  * removing all pmap entries pointing to its pages.
2907                  * (Otherwise, its page frames may be reallocated, and any
2908                  * modify bits will be set in the wrong object!)
2909                  */
2910                 vm_map_entry_delete(map, entry, countp);
2911                 entry = next;
2912         }
2913         lwkt_reltoken(&map->token);
2914         return (KERN_SUCCESS);
2915 }
2916
2917 /*
2918  * Remove the given address range from the target map.
2919  * This is the exported form of vm_map_delete.
2920  *
2921  * No requirements.
2922  */
2923 int
2924 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2925 {
2926         int result;
2927         int count;
2928
2929         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2930         vm_map_lock(map);
2931         VM_MAP_RANGE_CHECK(map, start, end);
2932         result = vm_map_delete(map, start, end, &count);
2933         vm_map_unlock(map);
2934         vm_map_entry_release(count);
2935
2936         return (result);
2937 }
2938
2939 /*
2940  * Assert that the target map allows the specified privilege on the
2941  * entire address region given.  The entire region must be allocated.
2942  *
2943  * The caller must specify whether the vm_map is already locked or not.
2944  */
2945 boolean_t
2946 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2947                         vm_prot_t protection, boolean_t have_lock)
2948 {
2949         vm_map_entry_t entry;
2950         vm_map_entry_t tmp_entry;
2951         boolean_t result;
2952
2953         if (have_lock == FALSE)
2954                 vm_map_lock_read(map);
2955
2956         if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2957                 if (have_lock == FALSE)
2958                         vm_map_unlock_read(map);
2959                 return (FALSE);
2960         }
2961         entry = tmp_entry;
2962
2963         result = TRUE;
2964         while (start < end) {
2965                 if (entry == &map->header) {
2966                         result = FALSE;
2967                         break;
2968                 }
2969                 /*
2970                  * No holes allowed!
2971                  */
2972
2973                 if (start < entry->start) {
2974                         result = FALSE;
2975                         break;
2976                 }
2977                 /*
2978                  * Check protection associated with entry.
2979                  */
2980
2981                 if ((entry->protection & protection) != protection) {
2982                         result = FALSE;
2983                         break;
2984                 }
2985                 /* go to next entry */
2986
2987                 start = entry->end;
2988                 entry = entry->next;
2989         }
2990         if (have_lock == FALSE)
2991                 vm_map_unlock_read(map);
2992         return (result);
2993 }
2994
2995 /*
2996  * If appropriate this function shadows the original object with a new object
2997  * and moves the VM pages from the original object to the new object.
2998  * The original object will also be collapsed, if possible.
2999  *
3000  * We can only do this for normal memory objects with a single mapping, and
3001  * it only makes sense to do it if there are 2 or more refs on the original
3002  * object.  i.e. typically a memory object that has been extended into
3003  * multiple vm_map_entry's with non-overlapping ranges.
3004  *
3005  * This makes it easier to remove unused pages and keeps object inheritance
3006  * from being a negative impact on memory usage.
3007  *
3008  * On return the (possibly new) entry->object.vm_object will have an
3009  * additional ref on it for the caller to dispose of (usually by cloning
3010  * the vm_map_entry).  The additional ref had to be done in this routine
3011  * to avoid racing a collapse.  The object's ONEMAPPING flag will also be
3012  * cleared.
3013  *
3014  * The vm_map must be locked and its token held.
3015  */
3016 static void
3017 vm_map_split(vm_map_entry_t entry)
3018 {
3019         /* OPTIMIZED */
3020         vm_object_t oobject, nobject, bobject;
3021         vm_offset_t s, e;
3022         vm_page_t m;
3023         vm_pindex_t offidxstart, offidxend, idx;
3024         vm_size_t size;
3025         vm_ooffset_t offset;
3026         int useshadowlist;
3027
3028         /*
3029          * Optimize away object locks for vnode objects.  Important exit/exec
3030          * critical path.
3031          *
3032          * OBJ_ONEMAPPING doesn't apply to vnode objects but clear the flag
3033          * anyway.
3034          */
3035         oobject = entry->object.vm_object;
3036         if (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) {
3037                 vm_object_reference_quick(oobject);
3038                 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3039                 return;
3040         }
3041
3042         /*
3043          * Setup.  Chain lock the original object throughout the entire
3044          * routine to prevent new page faults from occuring.
3045          *
3046          * XXX can madvise WILLNEED interfere with us too?
3047          */
3048         vm_object_hold(oobject);
3049         vm_object_chain_acquire(oobject, 0);
3050
3051         /*
3052          * Original object cannot be split?  Might have also changed state.
3053          */
3054         if (oobject->handle == NULL || (oobject->type != OBJT_DEFAULT &&
3055                                         oobject->type != OBJT_SWAP)) {
3056                 vm_object_chain_release(oobject);
3057                 vm_object_reference_locked(oobject);
3058                 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3059                 vm_object_drop(oobject);
3060                 return;
3061         }
3062
3063         /*
3064          * Collapse original object with its backing store as an
3065          * optimization to reduce chain lengths when possible.
3066          *
3067          * If ref_count <= 1 there aren't other non-overlapping vm_map_entry's
3068          * for oobject, so there's no point collapsing it.
3069          *
3070          * Then re-check whether the object can be split.
3071          */
3072         vm_object_collapse(oobject, NULL);
3073
3074         if (oobject->ref_count <= 1 ||
3075             (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) ||
3076             (oobject->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) != OBJ_ONEMAPPING) {
3077                 vm_object_chain_release(oobject);
3078                 vm_object_reference_locked(oobject);
3079                 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3080                 vm_object_drop(oobject);
3081                 return;
3082         }
3083
3084         /*
3085          * Acquire the chain lock on the backing object.
3086          *
3087          * Give bobject an additional ref count for when it will be shadowed
3088          * by nobject.
3089          */
3090         useshadowlist = 0;
3091         if ((bobject = oobject->backing_object) != NULL) {
3092                 if (bobject->type != OBJT_VNODE) {
3093                         useshadowlist = 1;
3094                         vm_object_hold(bobject);
3095                         vm_object_chain_wait(bobject, 0);
3096                         vm_object_reference_locked(bobject);
3097                         vm_object_chain_acquire(bobject, 0);
3098                         KKASSERT(bobject->backing_object == bobject);
3099                         KKASSERT((bobject->flags & OBJ_DEAD) == 0);
3100                 } else {
3101                         vm_object_reference_quick(bobject);
3102                 }
3103         }
3104
3105         /*
3106          * Calculate the object page range and allocate the new object.
3107          */
3108         offset = entry->offset;
3109         s = entry->start;
3110         e = entry->end;
3111
3112         offidxstart = OFF_TO_IDX(offset);
3113         offidxend = offidxstart + OFF_TO_IDX(e - s);
3114         size = offidxend - offidxstart;
3115
3116         switch(oobject->type) {
3117         case OBJT_DEFAULT:
3118                 nobject = default_pager_alloc(NULL, IDX_TO_OFF(size),
3119                                               VM_PROT_ALL, 0);
3120                 break;
3121         case OBJT_SWAP:
3122                 nobject = swap_pager_alloc(NULL, IDX_TO_OFF(size),
3123                                            VM_PROT_ALL, 0);
3124                 break;
3125         default:
3126                 /* not reached */
3127                 nobject = NULL;
3128                 KKASSERT(0);
3129         }
3130
3131         if (nobject == NULL) {
3132                 if (bobject) {
3133                         if (useshadowlist) {
3134                                 vm_object_chain_release(bobject);
3135                                 vm_object_deallocate(bobject);
3136                                 vm_object_drop(bobject);
3137                         } else {
3138                                 vm_object_deallocate(bobject);
3139                         }
3140                 }
3141                 vm_object_chain_release(oobject);
3142                 vm_object_reference_locked(oobject);
3143                 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3144                 vm_object_drop(oobject);
3145                 return;
3146         }
3147
3148         /*
3149          * The new object will replace entry->object.vm_object so it needs
3150          * a second reference (the caller expects an additional ref).
3151          */
3152         vm_object_hold(nobject);
3153         vm_object_reference_locked(nobject);
3154         vm_object_chain_acquire(nobject, 0);
3155
3156         /*
3157          * nobject shadows bobject (oobject already shadows bobject).
3158          */
3159         if (bobject) {
3160                 nobject->backing_object_offset =
3161                     oobject->backing_object_offset + IDX_TO_OFF(offidxstart);
3162                 nobject->backing_object = bobject;
3163                 if (useshadowlist) {
3164                         bobject->shadow_count++;
3165                         bobject->generation++;
3166                         LIST_INSERT_HEAD(&bobject->shadow_head,
3167                                          nobject, shadow_list);
3168                         vm_object_clear_flag(bobject, OBJ_ONEMAPPING); /*XXX*/
3169                         vm_object_chain_release(bobject);
3170                         vm_object_drop(bobject);
3171                         vm_object_set_flag(nobject, OBJ_ONSHADOW);
3172                 }
3173         }
3174
3175         /*
3176          * Move the VM pages from oobject to nobject
3177          */
3178         for (idx = 0; idx < size; idx++) {
3179                 vm_page_t m;
3180
3181                 m = vm_page_lookup_busy_wait(oobject, offidxstart + idx,
3182                                              TRUE, "vmpg");
3183                 if (m == NULL)
3184                         continue;
3185
3186                 /*
3187                  * We must wait for pending I/O to complete before we can
3188                  * rename the page.
3189                  *
3190                  * We do not have to VM_PROT_NONE the page as mappings should
3191                  * not be changed by this operation.
3192                  *
3193                  * NOTE: The act of renaming a page updates chaingen for both
3194                  *       objects.
3195                  */
3196                 vm_page_rename(m, nobject, idx);
3197                 /* page automatically made dirty by rename and cache handled */
3198                 /* page remains busy */
3199         }
3200
3201         if (oobject->type == OBJT_SWAP) {
3202                 vm_object_pip_add(oobject, 1);
3203                 /*
3204                  * copy oobject pages into nobject and destroy unneeded
3205                  * pages in shadow object.
3206                  */
3207                 swap_pager_copy(oobject, nobject, offidxstart, 0);
3208                 vm_object_pip_wakeup(oobject);
3209         }
3210
3211         /*
3212          * Wakeup the pages we played with.  No spl protection is needed
3213          * for a simple wakeup.
3214          */
3215         for (idx = 0; idx < size; idx++) {
3216                 m = vm_page_lookup(nobject, idx);
3217                 if (m) {
3218                         KKASSERT(m->flags & PG_BUSY);
3219                         vm_page_wakeup(m);
3220                 }
3221         }
3222         entry->object.vm_object = nobject;
3223         entry->offset = 0LL;
3224
3225         /*
3226          * Cleanup
3227          *
3228          * NOTE: There is no need to remove OBJ_ONEMAPPING from oobject, the
3229          *       related pages were moved and are no longer applicable to the
3230          *       original object.
3231          *
3232          * NOTE: Deallocate oobject (due to its entry->object.vm_object being
3233          *       replaced by nobject).
3234          */
3235         vm_object_chain_release(nobject);
3236         vm_object_drop(nobject);
3237         if (bobject && useshadowlist) {
3238                 vm_object_chain_release(bobject);
3239                 vm_object_drop(bobject);
3240         }
3241         vm_object_chain_release(oobject);
3242         /*vm_object_clear_flag(oobject, OBJ_ONEMAPPING);*/
3243         vm_object_deallocate_locked(oobject);
3244         vm_object_drop(oobject);
3245 }
3246
3247 /*
3248  * Copies the contents of the source entry to the destination
3249  * entry.  The entries *must* be aligned properly.
3250  *
3251  * The vm_maps must be exclusively locked.
3252  * The vm_map's token must be held.
3253  *
3254  * Because the maps are locked no faults can be in progress during the
3255  * operation.
3256  */
3257 static void
3258 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
3259                   vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
3260 {
3261         vm_object_t src_object;
3262
3263         if (dst_entry->maptype == VM_MAPTYPE_SUBMAP)
3264                 return;
3265         if (src_entry->maptype == VM_MAPTYPE_SUBMAP)
3266                 return;
3267
3268         if (src_entry->wired_count == 0) {
3269                 /*
3270                  * If the source entry is marked needs_copy, it is already
3271                  * write-protected.
3272                  */
3273                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
3274                         pmap_protect(src_map->pmap,
3275                             src_entry->start,
3276                             src_entry->end,
3277                             src_entry->protection & ~VM_PROT_WRITE);
3278                 }
3279
3280                 /*
3281                  * Make a copy of the object.
3282                  *
3283                  * The object must be locked prior to checking the object type
3284                  * and for the call to vm_object_collapse() and vm_map_split().
3285                  * We cannot use *_hold() here because the split code will
3286                  * probably try to destroy the object.  The lock is a pool
3287                  * token and doesn't care.
3288                  *
3289                  * We must bump src_map->timestamp when setting
3290                  * MAP_ENTRY_NEEDS_COPY to force any concurrent fault
3291                  * to retry, otherwise the concurrent fault might improperly
3292                  * install a RW pte when its supposed to be a RO(COW) pte.
3293                  * This race can occur because a vnode-backed fault may have
3294                  * to temporarily release the map lock.
3295                  */
3296                 if (src_entry->object.vm_object != NULL) {
3297                         vm_map_split(src_entry);
3298                         src_object = src_entry->object.vm_object;
3299                         dst_entry->object.vm_object = src_object;
3300                         src_entry->eflags |= (MAP_ENTRY_COW |
3301                                               MAP_ENTRY_NEEDS_COPY);
3302                         dst_entry->eflags |= (MAP_ENTRY_COW |
3303                                               MAP_ENTRY_NEEDS_COPY);
3304                         dst_entry->offset = src_entry->offset;
3305                         ++src_map->timestamp;
3306                 } else {
3307                         dst_entry->object.vm_object = NULL;
3308                         dst_entry->offset = 0;
3309                 }
3310
3311                 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3312                     dst_entry->end - dst_entry->start, src_entry->start);
3313         } else {
3314                 /*
3315                  * Of course, wired down pages can't be set copy-on-write.
3316                  * Cause wired pages to be copied into the new map by
3317                  * simulating faults (the new pages are pageable)
3318                  */
3319                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
3320         }
3321 }
3322
3323 /*
3324  * vmspace_fork:
3325  * Create a new process vmspace structure and vm_map
3326  * based on those of an existing process.  The new map
3327  * is based on the old map, according to the inheritance
3328  * values on the regions in that map.
3329  *
3330  * The source map must not be locked.
3331  * No requirements.
3332  */
3333 struct vmspace *
3334 vmspace_fork(struct vmspace *vm1)
3335 {
3336         struct vmspace *vm2;
3337         vm_map_t old_map = &vm1->vm_map;
3338         vm_map_t new_map;
3339         vm_map_entry_t old_entry;
3340         vm_map_entry_t new_entry;
3341         vm_object_t object;
3342         int count;
3343
3344         lwkt_gettoken(&vm1->vm_map.token);
3345         vm_map_lock(old_map);
3346
3347         vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3348         lwkt_gettoken(&vm2->vm_map.token);
3349         bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
3350             (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
3351         new_map = &vm2->vm_map; /* XXX */
3352         new_map->timestamp = 1;
3353
3354         vm_map_lock(new_map);
3355
3356         count = 0;
3357         old_entry = old_map->header.next;
3358         while (old_entry != &old_map->header) {
3359                 ++count;
3360                 old_entry = old_entry->next;
3361         }
3362
3363         count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
3364
3365         old_entry = old_map->header.next;
3366         while (old_entry != &old_map->header) {
3367                 if (old_entry->maptype == VM_MAPTYPE_SUBMAP)
3368                         panic("vm_map_fork: encountered a submap");
3369
3370                 switch (old_entry->inheritance) {
3371                 case VM_INHERIT_NONE:
3372                         break;
3373                 case VM_INHERIT_SHARE:
3374                         /*
3375                          * Clone the entry, creating the shared object if
3376                          * necessary.
3377                          */
3378                         if (old_entry->object.vm_object == NULL)
3379                                 vm_map_entry_allocate_object(old_entry);
3380
3381                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3382                                 /*
3383                                  * Shadow a map_entry which needs a copy,
3384                                  * replacing its object with a new object
3385                                  * that points to the old one.  Ask the
3386                                  * shadow code to automatically add an
3387                                  * additional ref.  We can't do it afterwords
3388                                  * because we might race a collapse.  The call
3389                                  * to vm_map_entry_shadow() will also clear
3390                                  * OBJ_ONEMAPPING.
3391                                  */
3392                                 vm_map_entry_shadow(old_entry, 1);
3393                         } else if (old_entry->object.vm_object) {
3394                                 /*
3395                                  * We will make a shared copy of the object,
3396                                  * and must clear OBJ_ONEMAPPING.
3397                                  *
3398                                  * Optimize vnode objects.  OBJ_ONEMAPPING
3399                                  * is non-applicable but clear it anyway,
3400                                  * and its terminal so we don'th ave to deal
3401                                  * with chains.  Reduces SMP conflicts.
3402                                  *
3403                                  * XXX assert that object.vm_object != NULL
3404                                  *     since we allocate it above.
3405                                  */
3406                                 object = old_entry->object.vm_object;
3407                                 if (object->type == OBJT_VNODE) {
3408                                         vm_object_reference_quick(object);
3409                                         vm_object_clear_flag(object,
3410                                                              OBJ_ONEMAPPING);
3411                                 } else {
3412                                         vm_object_hold(object);
3413                                         vm_object_chain_wait(object, 0);
3414                                         vm_object_reference_locked(object);
3415                                         vm_object_clear_flag(object,
3416                                                              OBJ_ONEMAPPING);
3417                                         vm_object_drop(object);
3418                                 }
3419                         }
3420
3421                         /*
3422                          * Clone the entry.  We've already bumped the ref on
3423                          * any vm_object.
3424                          */
3425                         new_entry = vm_map_entry_create(new_map, &count);
3426                         *new_entry = *old_entry;
3427                         new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3428                         new_entry->wired_count = 0;
3429
3430                         /*
3431                          * Insert the entry into the new map -- we know we're
3432                          * inserting at the end of the new map.
3433                          */
3434
3435                         vm_map_entry_link(new_map, new_map->header.prev,
3436                                           new_entry);
3437
3438                         /*
3439                          * Update the physical map
3440                          */
3441                         pmap_copy(new_map->pmap, old_map->pmap,
3442                                   new_entry->start,
3443                                   (old_entry->end - old_entry->start),
3444                                   old_entry->start);
3445                         break;
3446                 case VM_INHERIT_COPY:
3447                         /*
3448                          * Clone the entry and link into the map.
3449                          */
3450                         new_entry = vm_map_entry_create(new_map, &count);
3451                         *new_entry = *old_entry;
3452                         new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3453                         new_entry->wired_count = 0;
3454                         new_entry->object.vm_object = NULL;
3455                         vm_map_entry_link(new_map, new_map->header.prev,
3456                                           new_entry);
3457                         vm_map_copy_entry(old_map, new_map, old_entry,
3458                                           new_entry);
3459                         break;
3460                 }
3461                 old_entry = old_entry->next;
3462         }
3463
3464         new_map->size = old_map->size;
3465         vm_map_unlock(old_map);
3466         vm_map_unlock(new_map);
3467         vm_map_entry_release(count);
3468
3469         lwkt_reltoken(&vm2->vm_map.token);
3470         lwkt_reltoken(&vm1->vm_map.token);
3471
3472         return (vm2);
3473 }
3474
3475 /*
3476  * Create an auto-grow stack entry
3477  *
3478  * No requirements.
3479  */
3480 int
3481 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3482               int flags, vm_prot_t prot, vm_prot_t max, int cow)
3483 {
3484         vm_map_entry_t  prev_entry;
3485         vm_map_entry_t  new_stack_entry;
3486         vm_size_t       init_ssize;
3487         int             rv;
3488         int             count;
3489         vm_offset_t     tmpaddr;
3490
3491         cow |= MAP_IS_STACK;
3492
3493         if (max_ssize < sgrowsiz)
3494                 init_ssize = max_ssize;
3495         else
3496                 init_ssize = sgrowsiz;
3497
3498         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3499         vm_map_lock(map);
3500
3501         /*
3502          * Find space for the mapping
3503          */
3504         if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) {
3505                 if (vm_map_findspace(map, addrbos, max_ssize, 1,
3506                                      flags, &tmpaddr)) {
3507                         vm_map_unlock(map);
3508                         vm_map_entry_release(count);
3509                         return (KERN_NO_SPACE);
3510                 }
3511                 addrbos = tmpaddr;
3512         }
3513
3514         /* If addr is already mapped, no go */
3515         if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3516                 vm_map_unlock(map);
3517                 vm_map_entry_release(count);
3518                 return (KERN_NO_SPACE);
3519         }
3520
3521 #if 0
3522         /* XXX already handled by kern_mmap() */
3523         /* If we would blow our VMEM resource limit, no go */
3524         if (map->size + init_ssize >
3525             curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3526                 vm_map_unlock(map);
3527                 vm_map_entry_release(count);
3528                 return (KERN_NO_SPACE);
3529         }
3530 #endif
3531
3532         /*
3533          * If we can't accomodate max_ssize in the current mapping,
3534          * no go.  However, we need to be aware that subsequent user
3535          * mappings might map into the space we have reserved for
3536          * stack, and currently this space is not protected.  
3537          * 
3538          * Hopefully we will at least detect this condition 
3539          * when we try to grow the stack.
3540          */
3541         if ((prev_entry->next != &map->header) &&
3542             (prev_entry->next->start < addrbos + max_ssize)) {
3543                 vm_map_unlock(map);
3544                 vm_map_entry_release(count);
3545                 return (KERN_NO_SPACE);
3546         }
3547
3548         /*
3549          * We initially map a stack of only init_ssize.  We will
3550          * grow as needed later.  Since this is to be a grow 
3551          * down stack, we map at the top of the range.
3552          *
3553          * Note: we would normally expect prot and max to be
3554          * VM_PROT_ALL, and cow to be 0.  Possibly we should
3555          * eliminate these as input parameters, and just
3556          * pass these values here in the insert call.
3557          */
3558         rv = vm_map_insert(map, &count,
3559                            NULL, 0, addrbos + max_ssize - init_ssize,
3560                            addrbos + max_ssize,
3561                            VM_MAPTYPE_NORMAL,
3562                            prot, max,
3563                            cow);
3564
3565         /* Now set the avail_ssize amount */
3566         if (rv == KERN_SUCCESS) {
3567                 if (prev_entry != &map->header)
3568                         vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
3569                 new_stack_entry = prev_entry->next;
3570                 if (new_stack_entry->end   != addrbos + max_ssize ||
3571                     new_stack_entry->start != addrbos + max_ssize - init_ssize)
3572                         panic ("Bad entry start/end for new stack entry");
3573                 else 
3574                         new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
3575         }
3576
3577         vm_map_unlock(map);
3578         vm_map_entry_release(count);
3579         return (rv);
3580 }
3581
3582 /*
3583  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3584  * desired address is already mapped, or if we successfully grow
3585  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3586  * stack range (this is strange, but preserves compatibility with
3587  * the grow function in vm_machdep.c).
3588  *
3589  * No requirements.
3590  */
3591 int
3592 vm_map_growstack (struct proc *p, vm_offset_t addr)
3593 {
3594         vm_map_entry_t prev_entry;
3595         vm_map_entry_t stack_entry;
3596         vm_map_entry_t new_stack_entry;
3597         struct vmspace *vm = p->p_vmspace;
3598         vm_map_t map = &vm->vm_map;
3599         vm_offset_t    end;
3600         int grow_amount;
3601         int rv = KERN_SUCCESS;
3602         int is_procstack;
3603         int use_read_lock = 1;
3604         int count;
3605
3606         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3607 Retry:
3608         if (use_read_lock)
3609                 vm_map_lock_read(map);
3610         else
3611                 vm_map_lock(map);
3612
3613         /* If addr is already in the entry range, no need to grow.*/
3614         if (vm_map_lookup_entry(map, addr, &prev_entry))
3615                 goto done;
3616
3617         if ((stack_entry = prev_entry->next) == &map->header)
3618                 goto done;
3619         if (prev_entry == &map->header) 
3620                 end = stack_entry->start - stack_entry->aux.avail_ssize;
3621         else
3622                 end = prev_entry->end;
3623
3624         /*
3625          * This next test mimics the old grow function in vm_machdep.c.
3626          * It really doesn't quite make sense, but we do it anyway
3627          * for compatibility.
3628          *
3629          * If not growable stack, return success.  This signals the
3630          * caller to proceed as he would normally with normal vm.
3631          */
3632         if (stack_entry->aux.avail_ssize < 1 ||
3633             addr >= stack_entry->start ||
3634             addr <  stack_entry->start - stack_entry->aux.avail_ssize) {
3635                 goto done;
3636         } 
3637         
3638         /* Find the minimum grow amount */
3639         grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3640         if (grow_amount > stack_entry->aux.avail_ssize) {
3641                 rv = KERN_NO_SPACE;
3642                 goto done;
3643         }
3644
3645         /*
3646          * If there is no longer enough space between the entries
3647          * nogo, and adjust the available space.  Note: this 
3648          * should only happen if the user has mapped into the
3649          * stack area after the stack was created, and is
3650          * probably an error.
3651          *
3652          * This also effectively destroys any guard page the user
3653          * might have intended by limiting the stack size.
3654          */
3655         if (grow_amount > stack_entry->start - end) {
3656                 if (use_read_lock && vm_map_lock_upgrade(map)) {
3657                         /* lost lock */
3658                         use_read_lock = 0;
3659                         goto Retry;
3660                 }
3661                 use_read_lock = 0;
3662                 stack_entry->aux.avail_ssize = stack_entry->start - end;
3663                 rv = KERN_NO_SPACE;
3664                 goto done;
3665         }
3666
3667         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3668
3669         /* If this is the main process stack, see if we're over the 
3670          * stack limit.
3671          */
3672         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3673                              p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3674                 rv = KERN_NO_SPACE;
3675                 goto done;
3676         }
3677
3678         /* Round up the grow amount modulo SGROWSIZ */
3679         grow_amount = roundup (grow_amount, sgrowsiz);
3680         if (grow_amount > stack_entry->aux.avail_ssize) {
3681                 grow_amount = stack_entry->aux.avail_ssize;
3682         }
3683         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3684                              p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3685                 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3686                               ctob(vm->vm_ssize);
3687         }
3688
3689         /* If we would blow our VMEM resource limit, no go */
3690         if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3691                 rv = KERN_NO_SPACE;
3692                 goto done;
3693         }
3694
3695         if (use_read_lock && vm_map_lock_upgrade(map)) {
3696                 /* lost lock */
3697                 use_read_lock = 0;
3698                 goto Retry;
3699         }
3700         use_read_lock = 0;
3701
3702         /* Get the preliminary new entry start value */
3703         addr = stack_entry->start - grow_amount;
3704
3705         /* If this puts us into the previous entry, cut back our growth
3706          * to the available space.  Also, see the note above.
3707          */
3708         if (addr < end) {
3709                 stack_entry->aux.avail_ssize = stack_entry->start - end;
3710                 addr = end;
3711         }
3712
3713         rv = vm_map_insert(map, &count,
3714                            NULL, 0, addr, stack_entry->start,
3715                            VM_MAPTYPE_NORMAL,
3716                            VM_PROT_ALL, VM_PROT_ALL,
3717                            0);
3718
3719         /* Adjust the available stack space by the amount we grew. */
3720         if (rv == KERN_SUCCESS) {
3721                 if (prev_entry != &map->header)
3722                         vm_map_clip_end(map, prev_entry, addr, &count);
3723                 new_stack_entry = prev_entry->next;
3724                 if (new_stack_entry->end   != stack_entry->start  ||
3725                     new_stack_entry->start != addr)
3726                         panic ("Bad stack grow start/end in new stack entry");
3727                 else {
3728                         new_stack_entry->aux.avail_ssize =
3729                                 stack_entry->aux.avail_ssize -
3730                                 (new_stack_entry->end - new_stack_entry->start);
3731                         if (is_procstack)
3732                                 vm->vm_ssize += btoc(new_stack_entry->end -
3733                                                      new_stack_entry->start);
3734                 }
3735
3736                 if (map->flags & MAP_WIREFUTURE)
3737                         vm_map_unwire(map, new_stack_entry->start,
3738                                       new_stack_entry->end, FALSE);
3739         }
3740
3741 done:
3742         if (use_read_lock)
3743                 vm_map_unlock_read(map);
3744         else
3745                 vm_map_unlock(map);
3746         vm_map_entry_release(count);
3747         return (rv);
3748 }
3749
3750 /*
3751  * Unshare the specified VM space for exec.  If other processes are
3752  * mapped to it, then create a new one.  The new vmspace is null.
3753  *
3754  * No requirements.
3755  */
3756 void
3757 vmspace_exec(struct proc *p, struct vmspace *vmcopy) 
3758 {
3759         struct vmspace *oldvmspace = p->p_vmspace;
3760         struct vmspace *newvmspace;
3761         vm_map_t map = &p->p_vmspace->vm_map;
3762
3763         /*
3764          * If we are execing a resident vmspace we fork it, otherwise
3765          * we create a new vmspace.  Note that exitingcnt is not
3766          * copied to the new vmspace.
3767          */
3768         lwkt_gettoken(&oldvmspace->vm_map.token);
3769         if (vmcopy)  {
3770                 newvmspace = vmspace_fork(vmcopy);
3771                 lwkt_gettoken(&newvmspace->vm_map.token);
3772         } else {
3773                 newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3774                 lwkt_gettoken(&newvmspace->vm_map.token);
3775                 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3776                       (caddr_t)&oldvmspace->vm_endcopy -
3777                        (caddr_t)&oldvmspace->vm_startcopy);
3778         }
3779
3780         /*
3781          * Finish initializing the vmspace before assigning it
3782          * to the process.  The vmspace will become the current vmspace
3783          * if p == curproc.
3784          */
3785         pmap_pinit2(vmspace_pmap(newvmspace));
3786         pmap_replacevm(p, newvmspace, 0);
3787         lwkt_reltoken(&newvmspace->vm_map.token);
3788         lwkt_reltoken(&oldvmspace->vm_map.token);
3789         vmspace_rel(oldvmspace);
3790 }
3791
3792 /*
3793  * Unshare the specified VM space for forcing COW.  This
3794  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3795  */
3796 void
3797 vmspace_unshare(struct proc *p) 
3798 {
3799         struct vmspace *oldvmspace = p->p_vmspace;
3800         struct vmspace *newvmspace;
3801
3802         lwkt_gettoken(&oldvmspace->vm_map.token);
3803         if (vmspace_getrefs(oldvmspace) == 1) {
3804                 lwkt_reltoken(&oldvmspace->vm_map.token);
3805                 return;
3806         }
3807         newvmspace = vmspace_fork(oldvmspace);
3808         lwkt_gettoken(&newvmspace->vm_map.token);
3809         pmap_pinit2(vmspace_pmap(newvmspace));
3810         pmap_replacevm(p, newvmspace, 0);
3811         lwkt_reltoken(&newvmspace->vm_map.token);
3812         lwkt_reltoken(&oldvmspace->vm_map.token);
3813         vmspace_rel(oldvmspace);
3814 }
3815
3816 /*
3817  * vm_map_hint: return the beginning of the best area suitable for
3818  * creating a new mapping with "prot" protection.
3819  *
3820  * No requirements.
3821  */
3822 vm_offset_t
3823 vm_map_hint(struct proc *p, vm_offset_t addr, vm_prot_t prot)
3824 {
3825         struct vmspace *vms = p->p_vmspace;
3826
3827         if (!randomize_mmap || addr != 0) {
3828                 /*
3829                  * Set a reasonable start point for the hint if it was
3830                  * not specified or if it falls within the heap space.
3831                  * Hinted mmap()s do not allocate out of the heap space.
3832                  */
3833                 if (addr == 0 ||
3834                     (addr >= round_page((vm_offset_t)vms->vm_taddr) &&
3835                      addr < round_page((vm_offset_t)vms->vm_daddr + maxdsiz))) {
3836                         addr = round_page((vm_offset_t)vms->vm_daddr + maxdsiz);
3837                 }
3838
3839                 return addr;
3840         }
3841
3842 #ifdef notyet
3843 #ifdef __i386__
3844         /*
3845          * If executable skip first two pages, otherwise start
3846          * after data + heap region.
3847          */
3848         if ((prot & VM_PROT_EXECUTE) &&
3849             ((vm_offset_t)vms->vm_daddr >= I386_MAX_EXE_ADDR)) {
3850                 addr = (PAGE_SIZE * 2) +
3851                     (karc4random() & (I386_MAX_EXE_ADDR / 2 - 1));
3852                 return (round_page(addr));
3853         }
3854 #endif /* __i386__ */
3855 #endif /* notyet */
3856
3857         addr = (vm_offset_t)vms->vm_daddr + MAXDSIZ;
3858         addr += karc4random() & (MIN((256 * 1024 * 1024), MAXDSIZ) - 1);
3859
3860         return (round_page(addr));
3861 }
3862
3863 /*
3864  * Finds the VM object, offset, and protection for a given virtual address
3865  * in the specified map, assuming a page fault of the type specified.
3866  *
3867  * Leaves the map in question locked for read; return values are guaranteed
3868  * until a vm_map_lookup_done call is performed.  Note that the map argument
3869  * is in/out; the returned map must be used in the call to vm_map_lookup_done.
3870  *
3871  * A handle (out_entry) is returned for use in vm_map_lookup_done, to make
3872  * that fast.
3873  *
3874  * If a lookup is requested with "write protection" specified, the map may
3875  * be changed to perform virtual copying operations, although the data
3876  * referenced will remain the same.
3877  *
3878  * No requirements.
3879  */
3880 int
3881 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
3882               vm_offset_t vaddr,
3883               vm_prot_t fault_typea,
3884               vm_map_entry_t *out_entry,        /* OUT */
3885               vm_object_t *object,              /* OUT */
3886               vm_pindex_t *pindex,              /* OUT */
3887               vm_prot_t *out_prot,              /* OUT */
3888               boolean_t *wired)                 /* OUT */
3889 {
3890         vm_map_entry_t entry;
3891         vm_map_t map = *var_map;
3892         vm_prot_t prot;
3893         vm_prot_t fault_type = fault_typea;
3894         int use_read_lock = 1;
3895         int rv = KERN_SUCCESS;
3896
3897 RetryLookup:
3898         if (use_read_lock)
3899                 vm_map_lock_read(map);
3900         else
3901                 vm_map_lock(map);
3902
3903         /*
3904          * If the map has an interesting hint, try it before calling full
3905          * blown lookup routine.
3906          */
3907         entry = map->hint;
3908         cpu_ccfence();
3909         *out_entry = entry;
3910         *object = NULL;
3911
3912         if ((entry == &map->header) ||
3913             (vaddr < entry->start) || (vaddr >= entry->end)) {
3914                 vm_map_entry_t tmp_entry;
3915
3916                 /*
3917                  * Entry was either not a valid hint, or the vaddr was not
3918                  * contained in the entry, so do a full lookup.
3919                  */
3920                 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3921                         rv = KERN_INVALID_ADDRESS;
3922                         goto done;
3923                 }
3924
3925                 entry = tmp_entry;
3926                 *out_entry = entry;
3927         }
3928         
3929         /*
3930          * Handle submaps.
3931          */
3932         if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3933                 vm_map_t old_map = map;
3934
3935                 *var_map = map = entry->object.sub_map;
3936                 if (use_read_lock)
3937                         vm_map_unlock_read(old_map);
3938                 else
3939                         vm_map_unlock(old_map);
3940                 use_read_lock = 1;
3941                 goto RetryLookup;
3942         }
3943
3944         /*
3945          * Check whether this task is allowed to have this page.
3946          * Note the special case for MAP_ENTRY_COW
3947          * pages with an override.  This is to implement a forced
3948          * COW for debuggers.
3949          */
3950
3951         if (fault_type & VM_PROT_OVERRIDE_WRITE)
3952                 prot = entry->max_protection;
3953         else
3954                 prot = entry->protection;
3955
3956         fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3957         if ((fault_type & prot) != fault_type) {
3958                 rv = KERN_PROTECTION_FAILURE;
3959                 goto done;
3960         }
3961
3962         if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3963             (entry->eflags & MAP_ENTRY_COW) &&
3964             (fault_type & VM_PROT_WRITE) &&
3965             (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3966                 rv = KERN_PROTECTION_FAILURE;
3967                 goto done;
3968         }
3969
3970         /*
3971          * If this page is not pageable, we have to get it for all possible
3972          * accesses.
3973          */
3974         *wired = (entry->wired_count != 0);
3975         if (*wired)
3976                 prot = fault_type = entry->protection;
3977
3978         /*
3979          * Virtual page tables may need to update the accessed (A) bit
3980          * in a page table entry.  Upgrade the fault to a write fault for
3981          * that case if the map will support it.  If the map does not support
3982          * it the page table entry simply will not be updated.
3983          */
3984         if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
3985                 if (prot & VM_PROT_WRITE)
3986                         fault_type |= VM_PROT_WRITE;
3987         }
3988
3989         if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
3990             pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
3991                 if ((prot & VM_PROT_WRITE) == 0)
3992                         fault_type |= VM_PROT_WRITE;
3993         }
3994
3995         /*
3996          * If the entry was copy-on-write, we either ...
3997          */
3998         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3999                 /*
4000                  * If we want to write the page, we may as well handle that
4001                  * now since we've got the map locked.
4002                  *
4003                  * If we don't need to write the page, we just demote the
4004                  * permissions allowed.
4005                  */
4006
4007                 if (fault_type & VM_PROT_WRITE) {
4008                         /*
4009                          * Make a new object, and place it in the object
4010                          * chain.  Note that no new references have appeared
4011                          * -- one just moved from the map to the new
4012                          * object.
4013                          */
4014
4015                         if (use_read_lock && vm_map_lock_upgrade(map)) {
4016                                 /* lost lock */
4017                                 use_read_lock = 0;
4018                                 goto RetryLookup;
4019                         }
4020                         use_read_lock = 0;
4021
4022                         vm_map_entry_shadow(entry, 0);
4023                 } else {
4024                         /*
4025                          * We're attempting to read a copy-on-write page --
4026                          * don't allow writes.
4027                          */
4028
4029                         prot &= ~VM_PROT_WRITE;
4030                 }
4031         }
4032
4033         /*
4034          * Create an object if necessary.
4035          */
4036         if (entry->object.vm_object == NULL && !map->system_map) {
4037                 if (use_read_lock && vm_map_lock_upgrade(map))  {
4038                         /* lost lock */
4039                         use_read_lock = 0;
4040                         goto RetryLookup;
4041                 }
4042                 use_read_lock = 0;
4043                 vm_map_entry_allocate_object(entry);
4044         }
4045
4046         /*
4047          * Return the object/offset from this entry.  If the entry was
4048          * copy-on-write or empty, it has been fixed up.
4049          */
4050
4051         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4052         *object = entry->object.vm_object;
4053
4054         /*
4055          * Return whether this is the only map sharing this data.  On
4056          * success we return with a read lock held on the map.  On failure
4057          * we return with the map unlocked.
4058          */
4059         *out_prot = prot;
4060 done:
4061         if (rv == KERN_SUCCESS) {
4062                 if (use_read_lock == 0)
4063                         vm_map_lock_downgrade(map);
4064         } else if (use_read_lock) {
4065                 vm_map_unlock_read(map);
4066         } else {
4067                 vm_map_unlock(map);
4068         }
4069         return (rv);
4070 }
4071
4072 /*
4073  * Releases locks acquired by a vm_map_lookup()
4074  * (according to the handle returned by that lookup).
4075  *
4076  * No other requirements.
4077  */
4078 void
4079 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
4080 {
4081         /*
4082          * Unlock the main-level map
4083          */
4084         vm_map_unlock_read(map);
4085         if (count)
4086                 vm_map_entry_release(count);
4087 }
4088
4089 #include "opt_ddb.h"
4090 #ifdef DDB
4091 #include <sys/kernel.h>
4092
4093 #include <ddb/ddb.h>
4094
4095 /*
4096  * Debugging only
4097  */
4098 DB_SHOW_COMMAND(map, vm_map_print)
4099 {
4100         static int nlines;
4101         /* XXX convert args. */
4102         vm_map_t map = (vm_map_t)addr;
4103         boolean_t full = have_addr;
4104
4105         vm_map_entry_t entry;
4106
4107         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4108             (void *)map,
4109             (void *)map->pmap, map->nentries, map->timestamp);
4110         nlines++;
4111
4112         if (!full && db_indent)
4113                 return;
4114
4115         db_indent += 2;
4116         for (entry = map->header.next; entry != &map->header;
4117             entry = entry->next) {
4118                 db_iprintf("map entry %p: start=%p, end=%p\n",
4119                     (void *)entry, (void *)entry->start, (void *)entry->end);
4120                 nlines++;
4121                 {
4122                         static char *inheritance_name[4] =
4123                         {"share", "copy", "none", "donate_copy"};
4124
4125                         db_iprintf(" prot=%x/%x/%s",
4126                             entry->protection,
4127                             entry->max_protection,
4128                             inheritance_name[(int)(unsigned char)entry->inheritance]);
4129                         if (entry->wired_count != 0)
4130                                 db_printf(", wired");
4131                 }
4132                 if (entry->maptype == VM_MAPTYPE_SUBMAP) {
4133                         /* XXX no %qd in kernel.  Truncate entry->offset. */
4134                         db_printf(", share=%p, offset=0x%lx\n",
4135                             (void *)entry->object.sub_map,
4136                             (long)entry->offset);
4137                         nlines++;
4138                         if ((entry->prev == &map->header) ||
4139                             (entry->prev->object.sub_map !=
4140                                 entry->object.sub_map)) {
4141                                 db_indent += 2;
4142                                 vm_map_print((db_expr_t)(intptr_t)
4143                                              entry->object.sub_map,
4144                                              full, 0, NULL);
4145                                 db_indent -= 2;
4146                         }
4147                 } else {
4148                         /* XXX no %qd in kernel.  Truncate entry->offset. */
4149                         db_printf(", object=%p, offset=0x%lx",
4150                             (void *)entry->object.vm_object,
4151                             (long)entry->offset);
4152                         if (entry->eflags & MAP_ENTRY_COW)
4153                                 db_printf(", copy (%s)",
4154                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4155                         db_printf("\n");
4156                         nlines++;
4157
4158                         if ((entry->prev == &map->header) ||
4159                             (entry->prev->object.vm_object !=
4160                                 entry->object.vm_object)) {
4161                                 db_indent += 2;
4162                                 vm_object_print((db_expr_t)(intptr_t)
4163                                                 entry->object.vm_object,
4164                                                 full, 0, NULL);
4165                                 nlines += 4;
4166                                 db_indent -= 2;
4167                         }
4168                 }
4169         }
4170         db_indent -= 2;
4171         if (db_indent == 0)
4172                 nlines = 0;
4173 }
4174
4175 /*
4176  * Debugging only
4177  */
4178 DB_SHOW_COMMAND(procvm, procvm)
4179 {
4180         struct proc *p;
4181
4182         if (have_addr) {
4183                 p = (struct proc *) addr;
4184         } else {
4185                 p = curproc;
4186         }
4187
4188         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4189             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4190             (void *)vmspace_pmap(p->p_vmspace));
4191
4192         vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
4193 }
4194
4195 #endif /* DDB */