kernel - Fix deadlock w/recent vm_map work
[dragonfly.git] / sys / vm / vm_fault.c
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *      This product includes software developed by the University of
26  *      California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  *
71  * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
72  * $DragonFly: src/sys/vm/vm_fault.c,v 1.47 2008/07/01 02:02:56 dillon Exp $
73  */
74
75 /*
76  *      Page fault handling module.
77  */
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/vnode.h>
84 #include <sys/resourcevar.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vkernel.h>
87 #include <sys/lock.h>
88 #include <sys/sysctl.h>
89
90 #include <cpu/lwbuf.h>
91
92 #include <vm/vm.h>
93 #include <vm/vm_param.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_object.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_pageout.h>
99 #include <vm/vm_kern.h>
100 #include <vm/vm_pager.h>
101 #include <vm/vnode_pager.h>
102 #include <vm/vm_extern.h>
103
104 #include <sys/thread2.h>
105 #include <vm/vm_page2.h>
106
107 struct faultstate {
108         vm_page_t m;
109         vm_object_t object;
110         vm_pindex_t pindex;
111         vm_prot_t prot;
112         vm_page_t first_m;
113         vm_object_t first_object;
114         vm_prot_t first_prot;
115         vm_map_t map;
116         vm_map_entry_t entry;
117         int lookup_still_valid;
118         int didlimit;
119         int hardfault;
120         int fault_flags;
121         int map_generation;
122         boolean_t wired;
123         struct vnode *vp;
124 };
125
126 static int vm_fast_fault = 1;
127 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0, 
128            "Burst fault zero-fill regions");
129 static int debug_cluster = 0;
130 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
131
132 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t);
133 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *, vpte_t, int);
134 #if 0
135 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
136 #endif
137 static int vm_fault_ratelimit(struct vmspace *);
138 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry);
139 static void vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry,
140                         int prot);
141
142 /*
143  * The caller must hold vm_token.
144  */
145 static __inline void
146 release_page(struct faultstate *fs)
147 {
148         vm_page_deactivate(fs->m);
149         vm_page_wakeup(fs->m);
150         fs->m = NULL;
151 }
152
153 /*
154  * The caller must hold vm_token.
155  *
156  * NOTE: Once unlocked any cached fs->entry becomes invalid, any reuse
157  *       requires relocking and then checking the timestamp.
158  *
159  * NOTE: vm_map_lock_read() does not bump fs->map->timestamp so we do
160  *       not have to update fs->map_generation here.
161  *
162  * NOTE: This function can fail due to a deadlock against the caller's
163  *       holding of a vm_page BUSY.
164  */
165 static __inline int
166 relock_map(struct faultstate *fs)
167 {
168         int error;
169
170         if (fs->lookup_still_valid == FALSE && fs->map) {
171                 error = vm_map_lock_read_to(fs->map);
172                 if (error == 0)
173                         fs->lookup_still_valid = TRUE;
174         } else {
175                 error = 0;
176         }
177         return error;
178 }
179
180 static __inline void
181 unlock_map(struct faultstate *fs)
182 {
183         if (fs->lookup_still_valid && fs->map) {
184                 vm_map_lookup_done(fs->map, fs->entry, 0);
185                 fs->lookup_still_valid = FALSE;
186         }
187 }
188
189 /*
190  * Clean up after a successful call to vm_fault_object() so another call
191  * to vm_fault_object() can be made.
192  *
193  * The caller must hold vm_token.
194  */
195 static void
196 _cleanup_successful_fault(struct faultstate *fs, int relock)
197 {
198         if (fs->object != fs->first_object) {
199                 vm_page_free(fs->first_m);
200                 vm_object_pip_wakeup(fs->object);
201                 fs->first_m = NULL;
202         }
203         fs->object = fs->first_object;
204         if (relock && fs->lookup_still_valid == FALSE) {
205                 if (fs->map)
206                         vm_map_lock_read(fs->map);
207                 fs->lookup_still_valid = TRUE;
208         }
209 }
210
211 /*
212  * The caller must hold vm_token.
213  */
214 static void
215 _unlock_things(struct faultstate *fs, int dealloc)
216 {
217         vm_object_pip_wakeup(fs->first_object);
218         _cleanup_successful_fault(fs, 0);
219         if (dealloc) {
220                 vm_object_deallocate(fs->first_object);
221                 fs->first_object = NULL;
222         }
223         unlock_map(fs); 
224         if (fs->vp != NULL) { 
225                 vput(fs->vp);
226                 fs->vp = NULL;
227         }
228 }
229
230 #define unlock_things(fs) _unlock_things(fs, 0)
231 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
232 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
233
234 /*
235  * TRYPAGER 
236  *
237  * Determine if the pager for the current object *might* contain the page.
238  *
239  * We only need to try the pager if this is not a default object (default
240  * objects are zero-fill and have no real pager), and if we are not taking
241  * a wiring fault or if the FS entry is wired.
242  */
243 #define TRYPAGER(fs)    \
244                 (fs->object->type != OBJT_DEFAULT && \
245                 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
246
247 /*
248  * vm_fault:
249  *
250  * Handle a page fault occuring at the given address, requiring the given
251  * permissions, in the map specified.  If successful, the page is inserted
252  * into the associated physical map.
253  *
254  * NOTE: The given address should be truncated to the proper page address.
255  *
256  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
257  * a standard error specifying why the fault is fatal is returned.
258  *
259  * The map in question must be referenced, and remains so.
260  * The caller may hold no locks.
261  * No other requirements.
262  */
263 int
264 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
265 {
266         int result;
267         vm_pindex_t first_pindex;
268         struct faultstate fs;
269         int growstack;
270
271         mycpu->gd_cnt.v_vm_faults++;
272
273         fs.didlimit = 0;
274         fs.hardfault = 0;
275         fs.fault_flags = fault_flags;
276         growstack = 1;
277
278 RetryFault:
279         /*
280          * Find the vm_map_entry representing the backing store and resolve
281          * the top level object and page index.  This may have the side
282          * effect of executing a copy-on-write on the map entry and/or
283          * creating a shadow object, but will not COW any actual VM pages.
284          *
285          * On success fs.map is left read-locked and various other fields 
286          * are initialized but not otherwise referenced or locked.
287          *
288          * NOTE!  vm_map_lookup will try to upgrade the fault_type to
289          * VM_FAULT_WRITE if the map entry is a virtual page table and also
290          * writable, so we can set the 'A'accessed bit in the virtual page
291          * table entry.
292          */
293         fs.map = map;
294         result = vm_map_lookup(&fs.map, vaddr, fault_type,
295                                &fs.entry, &fs.first_object,
296                                &first_pindex, &fs.first_prot, &fs.wired);
297
298         /*
299          * If the lookup failed or the map protections are incompatible,
300          * the fault generally fails.  However, if the caller is trying
301          * to do a user wiring we have more work to do.
302          */
303         if (result != KERN_SUCCESS) {
304                 if (result != KERN_PROTECTION_FAILURE ||
305                     (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
306                 {
307                         if (result == KERN_INVALID_ADDRESS && growstack &&
308                             map != &kernel_map && curproc != NULL) {
309                                 result = vm_map_growstack(curproc, vaddr);
310                                 if (result != KERN_SUCCESS)
311                                         return (KERN_FAILURE);
312                                 growstack = 0;
313                                 goto RetryFault;
314                         }
315                         return (result);
316                 }
317
318                 /*
319                  * If we are user-wiring a r/w segment, and it is COW, then
320                  * we need to do the COW operation.  Note that we don't
321                  * currently COW RO sections now, because it is NOT desirable
322                  * to COW .text.  We simply keep .text from ever being COW'ed
323                  * and take the heat that one cannot debug wired .text sections.
324                  */
325                 result = vm_map_lookup(&fs.map, vaddr,
326                                        VM_PROT_READ|VM_PROT_WRITE|
327                                         VM_PROT_OVERRIDE_WRITE,
328                                        &fs.entry, &fs.first_object,
329                                        &first_pindex, &fs.first_prot,
330                                        &fs.wired);
331                 if (result != KERN_SUCCESS)
332                         return result;
333
334                 /*
335                  * If we don't COW now, on a user wire, the user will never
336                  * be able to write to the mapping.  If we don't make this
337                  * restriction, the bookkeeping would be nearly impossible.
338                  */
339                 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
340                         fs.entry->max_protection &= ~VM_PROT_WRITE;
341         }
342
343         /*
344          * fs.map is read-locked
345          *
346          * Misc checks.  Save the map generation number to detect races.
347          */
348         fs.map_generation = fs.map->timestamp;
349
350         if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) {
351                 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
352                         panic("vm_fault: fault on nofault entry, addr: %p",
353                               (void *)vaddr);
354                 }
355                 if ((fs.entry->eflags & MAP_ENTRY_KSTACK) &&
356                     vaddr >= fs.entry->start &&
357                     vaddr < fs.entry->start + PAGE_SIZE) {
358                         panic("vm_fault: fault on stack guard, addr: %p",
359                               (void *)vaddr);
360                 }
361         }
362
363         /*
364          * A system map entry may return a NULL object.  No object means
365          * no pager means an unrecoverable kernel fault.
366          */
367         if (fs.first_object == NULL) {
368                 panic("vm_fault: unrecoverable fault at %p in entry %p",
369                         (void *)vaddr, fs.entry);
370         }
371
372         /*
373          * Make a reference to this object to prevent its disposal while we
374          * are messing with it.  Once we have the reference, the map is free
375          * to be diddled.  Since objects reference their shadows (and copies),
376          * they will stay around as well.
377          *
378          * Bump the paging-in-progress count to prevent size changes (e.g.
379          * truncation operations) during I/O.  This must be done after
380          * obtaining the vnode lock in order to avoid possible deadlocks.
381          *
382          * The vm_object must be held before manipulation.
383          */
384         lwkt_gettoken(&vm_token);
385         vm_object_hold(fs.first_object);
386         vm_object_reference(fs.first_object);
387         fs.vp = vnode_pager_lock(fs.first_object);
388         vm_object_pip_add(fs.first_object, 1);
389         vm_object_drop(fs.first_object);
390         lwkt_reltoken(&vm_token);
391
392         fs.lookup_still_valid = TRUE;
393         fs.first_m = NULL;
394         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
395
396         /*
397          * If the entry is wired we cannot change the page protection.
398          */
399         if (fs.wired)
400                 fault_type = fs.first_prot;
401
402         /*
403          * The page we want is at (first_object, first_pindex), but if the
404          * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
405          * page table to figure out the actual pindex.
406          *
407          * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
408          * ONLY
409          */
410         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
411                 result = vm_fault_vpagetable(&fs, &first_pindex,
412                                              fs.entry->aux.master_pde,
413                                              fault_type);
414                 if (result == KERN_TRY_AGAIN)
415                         goto RetryFault;
416                 if (result != KERN_SUCCESS)
417                         return (result);
418         }
419
420         /*
421          * Now we have the actual (object, pindex), fault in the page.  If
422          * vm_fault_object() fails it will unlock and deallocate the FS
423          * data.   If it succeeds everything remains locked and fs->object
424          * will have an additional PIP count if it is not equal to
425          * fs->first_object
426          *
427          * vm_fault_object will set fs->prot for the pmap operation.  It is
428          * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
429          * page can be safely written.  However, it will force a read-only
430          * mapping for a read fault if the memory is managed by a virtual
431          * page table.
432          */
433         /* BEFORE */
434         result = vm_fault_object(&fs, first_pindex, fault_type);
435
436         if (result == KERN_TRY_AGAIN) {
437                 /*lwkt_reltoken(&vm_token);*/
438                 goto RetryFault;
439         }
440         if (result != KERN_SUCCESS) {
441                 /*lwkt_reltoken(&vm_token);*/
442                 return (result);
443         }
444
445         /*
446          * On success vm_fault_object() does not unlock or deallocate, and fs.m
447          * will contain a busied page.
448          *
449          * Enter the page into the pmap and do pmap-related adjustments.
450          */
451         vm_page_flag_set(fs.m, PG_REFERENCED);
452         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
453
454         /*
455          * Burst in a few more pages if possible.  The fs.map should still
456          * be locked.
457          */
458         if (fault_flags & VM_FAULT_BURST) {
459                 if ((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 &&
460                     fs.wired == 0) {
461                         vm_prefault(fs.map->pmap, vaddr, fs.entry, fs.prot);
462                 }
463         }
464         lwkt_gettoken(&vm_token);
465         unlock_things(&fs);
466
467         /*KKASSERT(fs.m->queue == PQ_NONE); page-in op may deactivate page */
468         KKASSERT(fs.m->flags & PG_BUSY);
469
470         /*
471          * If the page is not wired down, then put it where the pageout daemon
472          * can find it.
473          *
474          * We do not really need to get vm_token here but since all the
475          * vm_*() calls have to doing it here improves efficiency.
476          */
477         /*lwkt_gettoken(&vm_token);*/
478
479         if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
480                 lwkt_reltoken(&vm_token); /* before wire activate does not */
481                 if (fs.wired)
482                         vm_page_wire(fs.m);
483                 else
484                         vm_page_unwire(fs.m, 1);
485         } else {
486                 vm_page_activate(fs.m);
487                 lwkt_reltoken(&vm_token); /* before wire activate does not */
488         }
489         /*lwkt_reltoken(&vm_token); after wire/activate works */
490
491         if (curthread->td_lwp) {
492                 if (fs.hardfault) {
493                         curthread->td_lwp->lwp_ru.ru_majflt++;
494                 } else {
495                         curthread->td_lwp->lwp_ru.ru_minflt++;
496                 }
497         }
498
499         /*
500          * Unlock everything, and return
501          */
502         vm_page_wakeup(fs.m);
503         vm_object_deallocate(fs.first_object);
504         /*fs.m = NULL; */
505         /*fs.first_object = NULL; */
506         /*lwkt_reltoken(&vm_token);*/
507
508         return (KERN_SUCCESS);
509 }
510
511 /*
512  * Fault in the specified virtual address in the current process map, 
513  * returning a held VM page or NULL.  See vm_fault_page() for more 
514  * information.
515  *
516  * No requirements.
517  */
518 vm_page_t
519 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
520 {
521         struct lwp *lp = curthread->td_lwp;
522         vm_page_t m;
523
524         m = vm_fault_page(&lp->lwp_vmspace->vm_map, va, 
525                           fault_type, VM_FAULT_NORMAL, errorp);
526         return(m);
527 }
528
529 /*
530  * Fault in the specified virtual address in the specified map, doing all
531  * necessary manipulation of the object store and all necessary I/O.  Return
532  * a held VM page or NULL, and set *errorp.  The related pmap is not
533  * updated.
534  *
535  * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
536  * and marked PG_REFERENCED as well.
537  *
538  * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
539  * error will be returned.
540  *
541  * No requirements.
542  */
543 vm_page_t
544 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
545               int fault_flags, int *errorp)
546 {
547         vm_pindex_t first_pindex;
548         struct faultstate fs;
549         int result;
550         vm_prot_t orig_fault_type = fault_type;
551
552         mycpu->gd_cnt.v_vm_faults++;
553
554         fs.didlimit = 0;
555         fs.hardfault = 0;
556         fs.fault_flags = fault_flags;
557         KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
558
559 RetryFault:
560         /*
561          * Find the vm_map_entry representing the backing store and resolve
562          * the top level object and page index.  This may have the side
563          * effect of executing a copy-on-write on the map entry and/or
564          * creating a shadow object, but will not COW any actual VM pages.
565          *
566          * On success fs.map is left read-locked and various other fields 
567          * are initialized but not otherwise referenced or locked.
568          *
569          * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
570          * if the map entry is a virtual page table and also writable,
571          * so we can set the 'A'accessed bit in the virtual page table entry.
572          */
573         fs.map = map;
574         result = vm_map_lookup(&fs.map, vaddr, fault_type,
575                                &fs.entry, &fs.first_object,
576                                &first_pindex, &fs.first_prot, &fs.wired);
577
578         if (result != KERN_SUCCESS) {
579                 *errorp = result;
580                 return (NULL);
581         }
582
583         /*
584          * fs.map is read-locked
585          *
586          * Misc checks.  Save the map generation number to detect races.
587          */
588         fs.map_generation = fs.map->timestamp;
589
590         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
591                 panic("vm_fault: fault on nofault entry, addr: %lx",
592                     (u_long)vaddr);
593         }
594
595         /*
596          * A system map entry may return a NULL object.  No object means
597          * no pager means an unrecoverable kernel fault.
598          */
599         if (fs.first_object == NULL) {
600                 panic("vm_fault: unrecoverable fault at %p in entry %p",
601                         (void *)vaddr, fs.entry);
602         }
603
604         /*
605          * Make a reference to this object to prevent its disposal while we
606          * are messing with it.  Once we have the reference, the map is free
607          * to be diddled.  Since objects reference their shadows (and copies),
608          * they will stay around as well.
609          *
610          * Bump the paging-in-progress count to prevent size changes (e.g.
611          * truncation operations) during I/O.  This must be done after
612          * obtaining the vnode lock in order to avoid possible deadlocks.
613          *
614          * The vm_object must be held before manipulation.
615          */
616         lwkt_gettoken(&vm_token);
617         vm_object_hold(fs.first_object);
618         vm_object_reference(fs.first_object);
619         fs.vp = vnode_pager_lock(fs.first_object);
620         vm_object_pip_add(fs.first_object, 1);
621         vm_object_drop(fs.first_object);
622         lwkt_reltoken(&vm_token);
623
624         fs.lookup_still_valid = TRUE;
625         fs.first_m = NULL;
626         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
627
628         /*
629          * If the entry is wired we cannot change the page protection.
630          */
631         if (fs.wired)
632                 fault_type = fs.first_prot;
633
634         /*
635          * The page we want is at (first_object, first_pindex), but if the
636          * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
637          * page table to figure out the actual pindex.
638          *
639          * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
640          * ONLY
641          */
642         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
643                 result = vm_fault_vpagetable(&fs, &first_pindex,
644                                              fs.entry->aux.master_pde,
645                                              fault_type);
646                 if (result == KERN_TRY_AGAIN)
647                         goto RetryFault;
648                 if (result != KERN_SUCCESS) {
649                         *errorp = result;
650                         return (NULL);
651                 }
652         }
653
654         /*
655          * Now we have the actual (object, pindex), fault in the page.  If
656          * vm_fault_object() fails it will unlock and deallocate the FS
657          * data.   If it succeeds everything remains locked and fs->object
658          * will have an additinal PIP count if it is not equal to
659          * fs->first_object
660          */
661         result = vm_fault_object(&fs, first_pindex, fault_type);
662
663         if (result == KERN_TRY_AGAIN)
664                 goto RetryFault;
665         if (result != KERN_SUCCESS) {
666                 *errorp = result;
667                 return(NULL);
668         }
669
670         if ((orig_fault_type & VM_PROT_WRITE) &&
671             (fs.prot & VM_PROT_WRITE) == 0) {
672                 *errorp = KERN_PROTECTION_FAILURE;
673                 unlock_and_deallocate(&fs);
674                 return(NULL);
675         }
676
677         /*
678          * On success vm_fault_object() does not unlock or deallocate, and fs.m
679          * will contain a busied page.
680          */
681         unlock_things(&fs);
682
683         /*
684          * Return a held page.  We are not doing any pmap manipulation so do
685          * not set PG_MAPPED.  However, adjust the page flags according to
686          * the fault type because the caller may not use a managed pmapping
687          * (so we don't want to lose the fact that the page will be dirtied
688          * if a write fault was specified).
689          */
690         lwkt_gettoken(&vm_token);
691         vm_page_hold(fs.m);
692         if (fault_type & VM_PROT_WRITE)
693                 vm_page_dirty(fs.m);
694
695         /*
696          * Update the pmap.  We really only have to do this if a COW
697          * occured to replace the read-only page with the new page.  For
698          * now just do it unconditionally. XXX
699          */
700         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
701         vm_page_flag_set(fs.m, PG_REFERENCED);
702
703         /*
704          * Unbusy the page by activating it.  It remains held and will not
705          * be reclaimed.
706          */
707         vm_page_activate(fs.m);
708
709         if (curthread->td_lwp) {
710                 if (fs.hardfault) {
711                         curthread->td_lwp->lwp_ru.ru_majflt++;
712                 } else {
713                         curthread->td_lwp->lwp_ru.ru_minflt++;
714                 }
715         }
716
717         /*
718          * Unlock everything, and return the held page.
719          */
720         vm_page_wakeup(fs.m);
721         vm_object_deallocate(fs.first_object);
722         /*fs.first_object = NULL; */
723         lwkt_reltoken(&vm_token);
724
725         *errorp = 0;
726         return(fs.m);
727 }
728
729 /*
730  * Fault in the specified (object,offset), dirty the returned page as
731  * needed.  If the requested fault_type cannot be done NULL and an
732  * error is returned.
733  *
734  * A held (but not busied) page is returned.
735  *
736  * No requirements.
737  */
738 vm_page_t
739 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
740                      vm_prot_t fault_type, int fault_flags, int *errorp)
741 {
742         int result;
743         vm_pindex_t first_pindex;
744         struct faultstate fs;
745         struct vm_map_entry entry;
746
747         bzero(&entry, sizeof(entry));
748         entry.object.vm_object = object;
749         entry.maptype = VM_MAPTYPE_NORMAL;
750         entry.protection = entry.max_protection = fault_type;
751
752         fs.didlimit = 0;
753         fs.hardfault = 0;
754         fs.fault_flags = fault_flags;
755         fs.map = NULL;
756         KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
757
758 RetryFault:
759         
760         fs.first_object = object;
761         first_pindex = OFF_TO_IDX(offset);
762         fs.entry = &entry;
763         fs.first_prot = fault_type;
764         fs.wired = 0;
765         /*fs.map_generation = 0; unused */
766
767         /*
768          * Make a reference to this object to prevent its disposal while we
769          * are messing with it.  Once we have the reference, the map is free
770          * to be diddled.  Since objects reference their shadows (and copies),
771          * they will stay around as well.
772          *
773          * Bump the paging-in-progress count to prevent size changes (e.g.
774          * truncation operations) during I/O.  This must be done after
775          * obtaining the vnode lock in order to avoid possible deadlocks.
776          */
777         lwkt_gettoken(&vm_token);
778         vm_object_hold(fs.first_object);
779         vm_object_reference(fs.first_object);
780         fs.vp = vnode_pager_lock(fs.first_object);
781         vm_object_pip_add(fs.first_object, 1);
782         vm_object_drop(fs.first_object);
783         lwkt_reltoken(&vm_token);
784
785         fs.lookup_still_valid = TRUE;
786         fs.first_m = NULL;
787         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
788
789 #if 0
790         /* XXX future - ability to operate on VM object using vpagetable */
791         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
792                 result = vm_fault_vpagetable(&fs, &first_pindex,
793                                              fs.entry->aux.master_pde,
794                                              fault_type);
795                 if (result == KERN_TRY_AGAIN)
796                         goto RetryFault;
797                 if (result != KERN_SUCCESS) {
798                         *errorp = result;
799                         return (NULL);
800                 }
801         }
802 #endif
803
804         /*
805          * Now we have the actual (object, pindex), fault in the page.  If
806          * vm_fault_object() fails it will unlock and deallocate the FS
807          * data.   If it succeeds everything remains locked and fs->object
808          * will have an additinal PIP count if it is not equal to
809          * fs->first_object
810          */
811         result = vm_fault_object(&fs, first_pindex, fault_type);
812
813         if (result == KERN_TRY_AGAIN)
814                 goto RetryFault;
815         if (result != KERN_SUCCESS) {
816                 *errorp = result;
817                 return(NULL);
818         }
819
820         if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
821                 *errorp = KERN_PROTECTION_FAILURE;
822                 unlock_and_deallocate(&fs);
823                 return(NULL);
824         }
825
826         /*
827          * On success vm_fault_object() does not unlock or deallocate, and fs.m
828          * will contain a busied page.
829          */
830         unlock_things(&fs);
831
832         /*
833          * Return a held page.  We are not doing any pmap manipulation so do
834          * not set PG_MAPPED.  However, adjust the page flags according to
835          * the fault type because the caller may not use a managed pmapping
836          * (so we don't want to lose the fact that the page will be dirtied
837          * if a write fault was specified).
838          */
839         lwkt_gettoken(&vm_token);
840         vm_page_hold(fs.m);
841         if (fault_type & VM_PROT_WRITE)
842                 vm_page_dirty(fs.m);
843
844         if (fault_flags & VM_FAULT_DIRTY)
845                 vm_page_dirty(fs.m);
846         if (fault_flags & VM_FAULT_UNSWAP)
847                 swap_pager_unswapped(fs.m);
848
849         /*
850          * Indicate that the page was accessed.
851          */
852         vm_page_flag_set(fs.m, PG_REFERENCED);
853
854         /*
855          * Unbusy the page by activating it.  It remains held and will not
856          * be reclaimed.
857          */
858         vm_page_activate(fs.m);
859
860         if (curthread->td_lwp) {
861                 if (fs.hardfault) {
862                         mycpu->gd_cnt.v_vm_faults++;
863                         curthread->td_lwp->lwp_ru.ru_majflt++;
864                 } else {
865                         curthread->td_lwp->lwp_ru.ru_minflt++;
866                 }
867         }
868
869         /*
870          * Unlock everything, and return the held page.
871          */
872         vm_page_wakeup(fs.m);
873         vm_object_deallocate(fs.first_object);
874         /*fs.first_object = NULL; */
875         lwkt_reltoken(&vm_token);
876
877         *errorp = 0;
878         return(fs.m);
879 }
880
881 /*
882  * Translate the virtual page number (first_pindex) that is relative
883  * to the address space into a logical page number that is relative to the
884  * backing object.  Use the virtual page table pointed to by (vpte).
885  *
886  * This implements an N-level page table.  Any level can terminate the
887  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
888  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
889  *
890  * No requirements (vm_token need not be held).
891  */
892 static
893 int
894 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
895                     vpte_t vpte, int fault_type)
896 {
897         struct lwbuf *lwb;
898         struct lwbuf lwb_cache;
899         int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
900         int result = KERN_SUCCESS;
901         vpte_t *ptep;
902
903         for (;;) {
904                 /*
905                  * We cannot proceed if the vpte is not valid, not readable
906                  * for a read fault, or not writable for a write fault.
907                  */
908                 if ((vpte & VPTE_V) == 0) {
909                         unlock_and_deallocate(fs);
910                         return (KERN_FAILURE);
911                 }
912                 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_R) == 0) {
913                         unlock_and_deallocate(fs);
914                         return (KERN_FAILURE);
915                 }
916                 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_W) == 0) {
917                         unlock_and_deallocate(fs);
918                         return (KERN_FAILURE);
919                 }
920                 if ((vpte & VPTE_PS) || vshift == 0)
921                         break;
922                 KKASSERT(vshift >= VPTE_PAGE_BITS);
923
924                 /*
925                  * Get the page table page.  Nominally we only read the page
926                  * table, but since we are actively setting VPTE_M and VPTE_A,
927                  * tell vm_fault_object() that we are writing it. 
928                  *
929                  * There is currently no real need to optimize this.
930                  */
931                 result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
932                                          VM_PROT_READ|VM_PROT_WRITE);
933                 if (result != KERN_SUCCESS)
934                         return (result);
935
936                 /*
937                  * Process the returned fs.m and look up the page table
938                  * entry in the page table page.
939                  */
940                 vshift -= VPTE_PAGE_BITS;
941                 lwb = lwbuf_alloc(fs->m, &lwb_cache);
942                 ptep = ((vpte_t *)lwbuf_kva(lwb) +
943                         ((*pindex >> vshift) & VPTE_PAGE_MASK));
944                 vpte = *ptep;
945
946                 /*
947                  * Page table write-back.  If the vpte is valid for the
948                  * requested operation, do a write-back to the page table.
949                  *
950                  * XXX VPTE_M is not set properly for page directory pages.
951                  * It doesn't get set in the page directory if the page table
952                  * is modified during a read access.
953                  */
954                 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
955                     (vpte & VPTE_W)) {
956                         if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
957                                 atomic_set_long(ptep, VPTE_M | VPTE_A);
958                                 vm_page_dirty(fs->m);
959                         }
960                 }
961                 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V) &&
962                     (vpte & VPTE_R)) {
963                         if ((vpte & VPTE_A) == 0) {
964                                 atomic_set_long(ptep, VPTE_A);
965                                 vm_page_dirty(fs->m);
966                         }
967                 }
968                 lwbuf_free(lwb);
969                 vm_page_flag_set(fs->m, PG_REFERENCED);
970                 vm_page_activate(fs->m);
971                 vm_page_wakeup(fs->m);
972                 fs->m = NULL;
973                 cleanup_successful_fault(fs);
974         }
975         /*
976          * Combine remaining address bits with the vpte.
977          */
978         /* JG how many bits from each? */
979         *pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
980                   (*pindex & ((1L << vshift) - 1));
981         return (KERN_SUCCESS);
982 }
983
984
985 /*
986  * This is the core of the vm_fault code.
987  *
988  * Do all operations required to fault-in (fs.first_object, pindex).  Run
989  * through the shadow chain as necessary and do required COW or virtual
990  * copy operations.  The caller has already fully resolved the vm_map_entry
991  * and, if appropriate, has created a copy-on-write layer.  All we need to
992  * do is iterate the object chain.
993  *
994  * On failure (fs) is unlocked and deallocated and the caller may return or
995  * retry depending on the failure code.  On success (fs) is NOT unlocked or
996  * deallocated, fs.m will contained a resolved, busied page, and fs.object
997  * will have an additional PIP count if it is not equal to fs.first_object.
998  *
999  * No requirements.
1000  */
1001 static
1002 int
1003 vm_fault_object(struct faultstate *fs,
1004                 vm_pindex_t first_pindex, vm_prot_t fault_type)
1005 {
1006         vm_object_t next_object;
1007         vm_pindex_t pindex;
1008
1009         fs->prot = fs->first_prot;
1010         fs->object = fs->first_object;
1011         pindex = first_pindex;
1012
1013         /* 
1014          * If a read fault occurs we try to make the page writable if
1015          * possible.  There are three cases where we cannot make the
1016          * page mapping writable:
1017          *
1018          * (1) The mapping is read-only or the VM object is read-only,
1019          *     fs->prot above will simply not have VM_PROT_WRITE set.
1020          *
1021          * (2) If the mapping is a virtual page table we need to be able
1022          *     to detect writes so we can set VPTE_M in the virtual page
1023          *     table.
1024          *
1025          * (3) If the VM page is read-only or copy-on-write, upgrading would
1026          *     just result in an unnecessary COW fault.
1027          *
1028          * VM_PROT_VPAGED is set if faulting via a virtual page table and
1029          * causes adjustments to the 'M'odify bit to also turn off write
1030          * access to force a re-fault.
1031          */
1032         if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1033                 if ((fault_type & VM_PROT_WRITE) == 0)
1034                         fs->prot &= ~VM_PROT_WRITE;
1035         }
1036
1037         lwkt_gettoken(&vm_token);
1038
1039         for (;;) {
1040                 /*
1041                  * If the object is dead, we stop here
1042                  */
1043                 if (fs->object->flags & OBJ_DEAD) {
1044                         unlock_and_deallocate(fs);
1045                         lwkt_reltoken(&vm_token);
1046                         return (KERN_PROTECTION_FAILURE);
1047                 }
1048
1049                 /*
1050                  * See if the page is resident.
1051                  */
1052                 fs->m = vm_page_lookup(fs->object, pindex);
1053                 if (fs->m != NULL) {
1054                         int queue;
1055                         /*
1056                          * Wait/Retry if the page is busy.  We have to do this
1057                          * if the page is busy via either PG_BUSY or 
1058                          * vm_page_t->busy because the vm_pager may be using
1059                          * vm_page_t->busy for pageouts ( and even pageins if
1060                          * it is the vnode pager ), and we could end up trying
1061                          * to pagein and pageout the same page simultaneously.
1062                          *
1063                          * We can theoretically allow the busy case on a read
1064                          * fault if the page is marked valid, but since such
1065                          * pages are typically already pmap'd, putting that
1066                          * special case in might be more effort then it is 
1067                          * worth.  We cannot under any circumstances mess
1068                          * around with a vm_page_t->busy page except, perhaps,
1069                          * to pmap it.
1070                          */
1071                         if ((fs->m->flags & PG_BUSY) || fs->m->busy) {
1072                                 unlock_things(fs);
1073                                 vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1074                                 mycpu->gd_cnt.v_intrans++;
1075                                 vm_object_deallocate(fs->first_object);
1076                                 fs->first_object = NULL;
1077                                 lwkt_reltoken(&vm_token);
1078                                 return (KERN_TRY_AGAIN);
1079                         }
1080
1081                         /*
1082                          * If reactivating a page from PQ_CACHE we may have
1083                          * to rate-limit.
1084                          */
1085                         queue = fs->m->queue;
1086                         vm_page_unqueue_nowakeup(fs->m);
1087
1088                         if ((queue - fs->m->pc) == PQ_CACHE && 
1089                             vm_page_count_severe()) {
1090                                 vm_page_activate(fs->m);
1091                                 unlock_and_deallocate(fs);
1092                                 vm_waitpfault();
1093                                 lwkt_reltoken(&vm_token);
1094                                 return (KERN_TRY_AGAIN);
1095                         }
1096
1097                         /*
1098                          * Mark page busy for other processes, and the 
1099                          * pagedaemon.  If it still isn't completely valid
1100                          * (readable), or if a read-ahead-mark is set on
1101                          * the VM page, jump to readrest, else we found the
1102                          * page and can return.
1103                          *
1104                          * We can release the spl once we have marked the
1105                          * page busy.
1106                          */
1107                         vm_page_busy(fs->m);
1108
1109                         if (fs->m->object != &kernel_object) {
1110                                 if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1111                                     VM_PAGE_BITS_ALL) {
1112                                         goto readrest;
1113                                 }
1114                                 if (fs->m->flags & PG_RAM) {
1115                                         if (debug_cluster)
1116                                                 kprintf("R");
1117                                         vm_page_flag_clear(fs->m, PG_RAM);
1118                                         goto readrest;
1119                                 }
1120                         }
1121                         break; /* break to PAGE HAS BEEN FOUND */
1122                 }
1123
1124                 /*
1125                  * Page is not resident, If this is the search termination
1126                  * or the pager might contain the page, allocate a new page.
1127                  */
1128                 if (TRYPAGER(fs) || fs->object == fs->first_object) {
1129                         /*
1130                          * If the page is beyond the object size we fail
1131                          */
1132                         if (pindex >= fs->object->size) {
1133                                 lwkt_reltoken(&vm_token);
1134                                 unlock_and_deallocate(fs);
1135                                 return (KERN_PROTECTION_FAILURE);
1136                         }
1137
1138                         /*
1139                          * Ratelimit.
1140                          */
1141                         if (fs->didlimit == 0 && curproc != NULL) {
1142                                 int limticks;
1143
1144                                 limticks = vm_fault_ratelimit(curproc->p_vmspace);
1145                                 if (limticks) {
1146                                         lwkt_reltoken(&vm_token);
1147                                         unlock_and_deallocate(fs);
1148                                         tsleep(curproc, 0, "vmrate", limticks);
1149                                         fs->didlimit = 1;
1150                                         return (KERN_TRY_AGAIN);
1151                                 }
1152                         }
1153
1154                         /*
1155                          * Allocate a new page for this object/offset pair.
1156                          */
1157                         fs->m = NULL;
1158                         if (!vm_page_count_severe()) {
1159                                 fs->m = vm_page_alloc(fs->object, pindex,
1160                                     (fs->vp || fs->object->backing_object) ? VM_ALLOC_NORMAL : VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
1161                         }
1162                         if (fs->m == NULL) {
1163                                 lwkt_reltoken(&vm_token);
1164                                 unlock_and_deallocate(fs);
1165                                 vm_waitpfault();
1166                                 return (KERN_TRY_AGAIN);
1167                         }
1168                 }
1169
1170 readrest:
1171                 /*
1172                  * We have found an invalid or partially valid page, a
1173                  * page with a read-ahead mark which might be partially or
1174                  * fully valid (and maybe dirty too), or we have allocated
1175                  * a new page.
1176                  *
1177                  * Attempt to fault-in the page if there is a chance that the
1178                  * pager has it, and potentially fault in additional pages
1179                  * at the same time.
1180                  *
1181                  * We are NOT in splvm here and if TRYPAGER is true then
1182                  * fs.m will be non-NULL and will be PG_BUSY for us.
1183                  */
1184                 if (TRYPAGER(fs)) {
1185                         int rv;
1186                         int seqaccess;
1187                         u_char behavior = vm_map_entry_behavior(fs->entry);
1188
1189                         if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1190                                 seqaccess = 0;
1191                         else
1192                                 seqaccess = -1;
1193
1194                         /*
1195                          * If sequential access is detected then attempt
1196                          * to deactivate/cache pages behind the scan to
1197                          * prevent resource hogging.
1198                          *
1199                          * Use of PG_RAM to detect sequential access
1200                          * also simulates multi-zone sequential access
1201                          * detection for free.
1202                          *
1203                          * NOTE: Partially valid dirty pages cannot be
1204                          *       deactivated without causing NFS picemeal
1205                          *       writes to barf.
1206                          */
1207                         if ((fs->first_object->type != OBJT_DEVICE) &&
1208                             (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
1209                                 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
1210                                  (fs->m->flags & PG_RAM)))
1211                         ) {
1212                                 vm_pindex_t scan_pindex;
1213                                 int scan_count = 16;
1214
1215                                 if (first_pindex < 16) {
1216                                         scan_pindex = 0;
1217                                         scan_count = 0;
1218                                 } else {
1219                                         scan_pindex = first_pindex - 16;
1220                                         if (scan_pindex < 16)
1221                                                 scan_count = scan_pindex;
1222                                         else
1223                                                 scan_count = 16;
1224                                 }
1225
1226                                 while (scan_count) {
1227                                         vm_page_t mt;
1228
1229                                         mt = vm_page_lookup(fs->first_object,
1230                                                             scan_pindex);
1231                                         if (mt == NULL ||
1232                                             (mt->valid != VM_PAGE_BITS_ALL)) {
1233                                                 break;
1234                                         }
1235                                         if (mt->busy ||
1236                                             (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
1237                                             mt->hold_count ||
1238                                             mt->wire_count)  {
1239                                                 goto skip;
1240                                         }
1241                                         vm_page_busy(mt);
1242                                         if (mt->dirty == 0)
1243                                                 vm_page_test_dirty(mt);
1244                                         if (mt->dirty) {
1245                                                 vm_page_protect(mt,
1246                                                                 VM_PROT_NONE);
1247                                                 vm_page_deactivate(mt);
1248                                                 vm_page_wakeup(mt);
1249                                         } else {
1250                                                 vm_page_cache(mt);
1251                                         }
1252 skip:
1253                                         --scan_count;
1254                                         --scan_pindex;
1255                                 }
1256
1257                                 seqaccess = 1;
1258                         }
1259
1260                         /*
1261                          * Avoid deadlocking against the map when doing I/O.
1262                          * fs.object and the page is PG_BUSY'd.
1263                          *
1264                          * NOTE: Once unlocked, fs->entry can become stale
1265                          *       so this will NULL it out.
1266                          *
1267                          * NOTE: fs->entry is invalid until we relock the
1268                          *       map and verify that the timestamp has not
1269                          *       changed.
1270                          */
1271                         unlock_map(fs);
1272
1273                         /*
1274                          * Acquire the page data.  We still hold a ref on
1275                          * fs.object and the page has been PG_BUSY's.
1276                          *
1277                          * The pager may replace the page (for example, in
1278                          * order to enter a fictitious page into the
1279                          * object).  If it does so it is responsible for
1280                          * cleaning up the passed page and properly setting
1281                          * the new page PG_BUSY.
1282                          *
1283                          * If we got here through a PG_RAM read-ahead
1284                          * mark the page may be partially dirty and thus
1285                          * not freeable.  Don't bother checking to see
1286                          * if the pager has the page because we can't free
1287                          * it anyway.  We have to depend on the get_page
1288                          * operation filling in any gaps whether there is
1289                          * backing store or not.
1290                          */
1291                         rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1292
1293                         if (rv == VM_PAGER_OK) {
1294                                 /*
1295                                  * Relookup in case pager changed page. Pager
1296                                  * is responsible for disposition of old page
1297                                  * if moved.
1298                                  *
1299                                  * XXX other code segments do relookups too.
1300                                  * It's a bad abstraction that needs to be
1301                                  * fixed/removed.
1302                                  */
1303                                 fs->m = vm_page_lookup(fs->object, pindex);
1304                                 if (fs->m == NULL) {
1305                                         lwkt_reltoken(&vm_token);
1306                                         unlock_and_deallocate(fs);
1307                                         return (KERN_TRY_AGAIN);
1308                                 }
1309
1310                                 ++fs->hardfault;
1311                                 break; /* break to PAGE HAS BEEN FOUND */
1312                         }
1313
1314                         /*
1315                          * Remove the bogus page (which does not exist at this
1316                          * object/offset); before doing so, we must get back
1317                          * our object lock to preserve our invariant.
1318                          *
1319                          * Also wake up any other process that may want to bring
1320                          * in this page.
1321                          *
1322                          * If this is the top-level object, we must leave the
1323                          * busy page to prevent another process from rushing
1324                          * past us, and inserting the page in that object at
1325                          * the same time that we are.
1326                          */
1327                         if (rv == VM_PAGER_ERROR) {
1328                                 if (curproc)
1329                                         kprintf("vm_fault: pager read error, pid %d (%s)\n", curproc->p_pid, curproc->p_comm);
1330                                 else
1331                                         kprintf("vm_fault: pager read error, thread %p (%s)\n", curthread, curproc->p_comm);
1332                         }
1333
1334                         /*
1335                          * Data outside the range of the pager or an I/O error
1336                          *
1337                          * The page may have been wired during the pagein,
1338                          * e.g. by the buffer cache, and cannot simply be
1339                          * freed.  Call vnode_pager_freepage() to deal with it.
1340                          */
1341                         /*
1342                          * XXX - the check for kernel_map is a kludge to work
1343                          * around having the machine panic on a kernel space
1344                          * fault w/ I/O error.
1345                          */
1346                         if (((fs->map != &kernel_map) &&
1347                             (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1348                                 vnode_pager_freepage(fs->m);
1349                                 lwkt_reltoken(&vm_token);
1350                                 fs->m = NULL;
1351                                 unlock_and_deallocate(fs);
1352                                 if (rv == VM_PAGER_ERROR)
1353                                         return (KERN_FAILURE);
1354                                 else
1355                                         return (KERN_PROTECTION_FAILURE);
1356                                 /* NOT REACHED */
1357                         }
1358                         if (fs->object != fs->first_object) {
1359                                 vnode_pager_freepage(fs->m);
1360                                 fs->m = NULL;
1361                                 /*
1362                                  * XXX - we cannot just fall out at this
1363                                  * point, m has been freed and is invalid!
1364                                  */
1365                         }
1366                 }
1367
1368                 /*
1369                  * We get here if the object has a default pager (or unwiring) 
1370                  * or the pager doesn't have the page.
1371                  */
1372                 if (fs->object == fs->first_object)
1373                         fs->first_m = fs->m;
1374
1375                 /*
1376                  * Move on to the next object.  Lock the next object before
1377                  * unlocking the current one.
1378                  */
1379                 pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1380                 next_object = fs->object->backing_object;
1381                 if (next_object == NULL) {
1382                         /*
1383                          * If there's no object left, fill the page in the top
1384                          * object with zeros.
1385                          */
1386                         if (fs->object != fs->first_object) {
1387                                 vm_object_pip_wakeup(fs->object);
1388
1389                                 fs->object = fs->first_object;
1390                                 pindex = first_pindex;
1391                                 fs->m = fs->first_m;
1392                         }
1393                         fs->first_m = NULL;
1394
1395                         /*
1396                          * Zero the page if necessary and mark it valid.
1397                          */
1398                         if ((fs->m->flags & PG_ZERO) == 0) {
1399                                 vm_page_zero_fill(fs->m);
1400                         } else {
1401 #ifdef PMAP_DEBUG
1402                                 pmap_page_assertzero(VM_PAGE_TO_PHYS(fs->m));
1403 #endif
1404                                 vm_page_flag_clear(fs->m, PG_ZERO);
1405                                 mycpu->gd_cnt.v_ozfod++;
1406                         }
1407                         mycpu->gd_cnt.v_zfod++;
1408                         fs->m->valid = VM_PAGE_BITS_ALL;
1409                         break;  /* break to PAGE HAS BEEN FOUND */
1410                 }
1411                 if (fs->object != fs->first_object) {
1412                         vm_object_pip_wakeup(fs->object);
1413                 }
1414                 KASSERT(fs->object != next_object,
1415                         ("object loop %p", next_object));
1416                 fs->object = next_object;
1417                 vm_object_pip_add(fs->object, 1);
1418         }
1419
1420         /*
1421          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1422          * is held.]
1423          *
1424          * vm_token is still held
1425          *
1426          * If the page is being written, but isn't already owned by the
1427          * top-level object, we have to copy it into a new page owned by the
1428          * top-level object.
1429          */
1430         KASSERT((fs->m->flags & PG_BUSY) != 0,
1431                 ("vm_fault: not busy after main loop"));
1432
1433         if (fs->object != fs->first_object) {
1434                 /*
1435                  * We only really need to copy if we want to write it.
1436                  */
1437                 if (fault_type & VM_PROT_WRITE) {
1438                         /*
1439                          * This allows pages to be virtually copied from a 
1440                          * backing_object into the first_object, where the 
1441                          * backing object has no other refs to it, and cannot
1442                          * gain any more refs.  Instead of a bcopy, we just 
1443                          * move the page from the backing object to the 
1444                          * first object.  Note that we must mark the page 
1445                          * dirty in the first object so that it will go out 
1446                          * to swap when needed.
1447                          */
1448                         if (
1449                                 /*
1450                                  * Map, if present, has not changed
1451                                  */
1452                                 (fs->map == NULL ||
1453                                 fs->map_generation == fs->map->timestamp) &&
1454                                 /*
1455                                  * Only one shadow object
1456                                  */
1457                                 (fs->object->shadow_count == 1) &&
1458                                 /*
1459                                  * No COW refs, except us
1460                                  */
1461                                 (fs->object->ref_count == 1) &&
1462                                 /*
1463                                  * No one else can look this object up
1464                                  */
1465                                 (fs->object->handle == NULL) &&
1466                                 /*
1467                                  * No other ways to look the object up
1468                                  */
1469                                 ((fs->object->type == OBJT_DEFAULT) ||
1470                                  (fs->object->type == OBJT_SWAP)) &&
1471                                 /*
1472                                  * We don't chase down the shadow chain
1473                                  */
1474                                 (fs->object == fs->first_object->backing_object) &&
1475
1476                                 /*
1477                                  * grab the lock if we need to
1478                                  */
1479                                 (fs->lookup_still_valid ||
1480                                  fs->map == NULL ||
1481                                  lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1482                             ) {
1483                                 
1484                                 fs->lookup_still_valid = 1;
1485                                 /*
1486                                  * get rid of the unnecessary page
1487                                  */
1488                                 vm_page_protect(fs->first_m, VM_PROT_NONE);
1489                                 vm_page_free(fs->first_m);
1490                                 fs->first_m = NULL;
1491
1492                                 /*
1493                                  * grab the page and put it into the 
1494                                  * process'es object.  The page is 
1495                                  * automatically made dirty.
1496                                  */
1497                                 vm_page_rename(fs->m, fs->first_object, first_pindex);
1498                                 fs->first_m = fs->m;
1499                                 vm_page_busy(fs->first_m);
1500                                 fs->m = NULL;
1501                                 mycpu->gd_cnt.v_cow_optim++;
1502                         } else {
1503                                 /*
1504                                  * Oh, well, lets copy it.
1505                                  */
1506                                 vm_page_copy(fs->m, fs->first_m);
1507                                 vm_page_event(fs->m, VMEVENT_COW);
1508                         }
1509
1510                         if (fs->m) {
1511                                 /*
1512                                  * We no longer need the old page or object.
1513                                  */
1514                                 release_page(fs);
1515                         }
1516
1517                         /*
1518                          * fs->object != fs->first_object due to above 
1519                          * conditional
1520                          */
1521                         vm_object_pip_wakeup(fs->object);
1522
1523                         /*
1524                          * Only use the new page below...
1525                          */
1526
1527                         mycpu->gd_cnt.v_cow_faults++;
1528                         fs->m = fs->first_m;
1529                         fs->object = fs->first_object;
1530                         pindex = first_pindex;
1531                 } else {
1532                         /*
1533                          * If it wasn't a write fault avoid having to copy
1534                          * the page by mapping it read-only.
1535                          */
1536                         fs->prot &= ~VM_PROT_WRITE;
1537                 }
1538         }
1539
1540         /*
1541          * Relock the map if necessary, then check the generation count.
1542          * relock_map() will update fs->timestamp to account for the
1543          * relocking if necessary.
1544          *
1545          * If the count has changed after relocking then all sorts of
1546          * crap may have happened and we have to retry.
1547          *
1548          * NOTE: The relock_map() can fail due to a deadlock against
1549          *       the vm_page we are holding BUSY.
1550          */
1551         if (fs->lookup_still_valid == FALSE && fs->map) {
1552                 if (relock_map(fs) ||
1553                     fs->map->timestamp != fs->map_generation) {
1554                         release_page(fs);
1555                         lwkt_reltoken(&vm_token);
1556                         unlock_and_deallocate(fs);
1557                         return (KERN_TRY_AGAIN);
1558                 }
1559         }
1560
1561         /*
1562          * If the fault is a write, we know that this page is being
1563          * written NOW so dirty it explicitly to save on pmap_is_modified()
1564          * calls later.
1565          *
1566          * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1567          * if the page is already dirty to prevent data written with
1568          * the expectation of being synced from not being synced.
1569          * Likewise if this entry does not request NOSYNC then make
1570          * sure the page isn't marked NOSYNC.  Applications sharing
1571          * data should use the same flags to avoid ping ponging.
1572          *
1573          * Also tell the backing pager, if any, that it should remove
1574          * any swap backing since the page is now dirty.
1575          */
1576         if (fs->prot & VM_PROT_WRITE) {
1577                 vm_object_set_writeable_dirty(fs->m->object);
1578                 vm_set_nosync(fs->m, fs->entry);
1579                 if (fs->fault_flags & VM_FAULT_DIRTY) {
1580                         vm_page_dirty(fs->m);
1581                         swap_pager_unswapped(fs->m);
1582                 }
1583         }
1584
1585         lwkt_reltoken(&vm_token);
1586
1587         /*
1588          * Page had better still be busy.  We are still locked up and 
1589          * fs->object will have another PIP reference if it is not equal
1590          * to fs->first_object.
1591          */
1592         KASSERT(fs->m->flags & PG_BUSY,
1593                 ("vm_fault: page %p not busy!", fs->m));
1594
1595         /*
1596          * Sanity check: page must be completely valid or it is not fit to
1597          * map into user space.  vm_pager_get_pages() ensures this.
1598          */
1599         if (fs->m->valid != VM_PAGE_BITS_ALL) {
1600                 vm_page_zero_invalid(fs->m, TRUE);
1601                 kprintf("Warning: page %p partially invalid on fault\n", fs->m);
1602         }
1603         vm_page_flag_clear(fs->m, PG_ZERO);
1604
1605         return (KERN_SUCCESS);
1606 }
1607
1608 /*
1609  * Wire down a range of virtual addresses in a map.  The entry in question
1610  * should be marked in-transition and the map must be locked.  We must
1611  * release the map temporarily while faulting-in the page to avoid a
1612  * deadlock.  Note that the entry may be clipped while we are blocked but
1613  * will never be freed.
1614  *
1615  * No requirements.
1616  */
1617 int
1618 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire)
1619 {
1620         boolean_t fictitious;
1621         vm_offset_t start;
1622         vm_offset_t end;
1623         vm_offset_t va;
1624         vm_paddr_t pa;
1625         pmap_t pmap;
1626         int rv;
1627
1628         pmap = vm_map_pmap(map);
1629         start = entry->start;
1630         end = entry->end;
1631         fictitious = entry->object.vm_object &&
1632                         (entry->object.vm_object->type == OBJT_DEVICE);
1633         if (entry->eflags & MAP_ENTRY_KSTACK)
1634                 start += PAGE_SIZE;
1635         lwkt_gettoken(&vm_token);
1636         map->timestamp++;
1637         vm_map_unlock(map);
1638
1639         /*
1640          * We simulate a fault to get the page and enter it in the physical
1641          * map.
1642          */
1643         for (va = start; va < end; va += PAGE_SIZE) {
1644                 if (user_wire) {
1645                         rv = vm_fault(map, va, VM_PROT_READ, 
1646                                         VM_FAULT_USER_WIRE);
1647                 } else {
1648                         rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
1649                                         VM_FAULT_CHANGE_WIRING);
1650                 }
1651                 if (rv) {
1652                         while (va > start) {
1653                                 va -= PAGE_SIZE;
1654                                 if ((pa = pmap_extract(pmap, va)) == 0)
1655                                         continue;
1656                                 pmap_change_wiring(pmap, va, FALSE);
1657                                 if (!fictitious)
1658                                         vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1659                         }
1660                         vm_map_lock(map);
1661                         lwkt_reltoken(&vm_token);
1662                         return (rv);
1663                 }
1664         }
1665         vm_map_lock(map);
1666         lwkt_reltoken(&vm_token);
1667         return (KERN_SUCCESS);
1668 }
1669
1670 /*
1671  * Unwire a range of virtual addresses in a map.  The map should be
1672  * locked.
1673  */
1674 void
1675 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
1676 {
1677         boolean_t fictitious;
1678         vm_offset_t start;
1679         vm_offset_t end;
1680         vm_offset_t va;
1681         vm_paddr_t pa;
1682         pmap_t pmap;
1683
1684         pmap = vm_map_pmap(map);
1685         start = entry->start;
1686         end = entry->end;
1687         fictitious = entry->object.vm_object &&
1688                         (entry->object.vm_object->type == OBJT_DEVICE);
1689         if (entry->eflags & MAP_ENTRY_KSTACK)
1690                 start += PAGE_SIZE;
1691
1692         /*
1693          * Since the pages are wired down, we must be able to get their
1694          * mappings from the physical map system.
1695          */
1696         lwkt_gettoken(&vm_token);
1697         for (va = start; va < end; va += PAGE_SIZE) {
1698                 pa = pmap_extract(pmap, va);
1699                 if (pa != 0) {
1700                         pmap_change_wiring(pmap, va, FALSE);
1701                         if (!fictitious)
1702                                 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1703                 }
1704         }
1705         lwkt_reltoken(&vm_token);
1706 }
1707
1708 /*
1709  * Reduce the rate at which memory is allocated to a process based
1710  * on the perceived load on the VM system. As the load increases
1711  * the allocation burst rate goes down and the delay increases. 
1712  *
1713  * Rate limiting does not apply when faulting active or inactive
1714  * pages.  When faulting 'cache' pages, rate limiting only applies
1715  * if the system currently has a severe page deficit.
1716  *
1717  * XXX vm_pagesupply should be increased when a page is freed.
1718  *
1719  * We sleep up to 1/10 of a second.
1720  */
1721 static int
1722 vm_fault_ratelimit(struct vmspace *vmspace)
1723 {
1724         if (vm_load_enable == 0)
1725                 return(0);
1726         if (vmspace->vm_pagesupply > 0) {
1727                 --vmspace->vm_pagesupply;       /* SMP race ok */
1728                 return(0);
1729         }
1730 #ifdef INVARIANTS
1731         if (vm_load_debug) {
1732                 kprintf("load %-4d give %d pgs, wait %d, pid %-5d (%s)\n",
1733                         vm_load, 
1734                         (1000 - vm_load ) / 10, vm_load * hz / 10000,
1735                         curproc->p_pid, curproc->p_comm);
1736         }
1737 #endif
1738         vmspace->vm_pagesupply = (1000 - vm_load) / 10;
1739         return(vm_load * hz / 10000);
1740 }
1741
1742 /*
1743  * Copy all of the pages from a wired-down map entry to another.
1744  *
1745  * The source and destination maps must be locked for write.
1746  * The source map entry must be wired down (or be a sharing map
1747  * entry corresponding to a main map entry that is wired down).
1748  *
1749  * No other requirements.
1750  */
1751 void
1752 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1753                     vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
1754 {
1755         vm_object_t dst_object;
1756         vm_object_t src_object;
1757         vm_ooffset_t dst_offset;
1758         vm_ooffset_t src_offset;
1759         vm_prot_t prot;
1760         vm_offset_t vaddr;
1761         vm_page_t dst_m;
1762         vm_page_t src_m;
1763
1764 #ifdef  lint
1765         src_map++;
1766 #endif  /* lint */
1767
1768         src_object = src_entry->object.vm_object;
1769         src_offset = src_entry->offset;
1770
1771         /*
1772          * Create the top-level object for the destination entry. (Doesn't
1773          * actually shadow anything - we copy the pages directly.)
1774          */
1775         vm_map_entry_allocate_object(dst_entry);
1776         dst_object = dst_entry->object.vm_object;
1777
1778         prot = dst_entry->max_protection;
1779
1780         /*
1781          * Loop through all of the pages in the entry's range, copying each
1782          * one from the source object (it should be there) to the destination
1783          * object.
1784          */
1785         for (vaddr = dst_entry->start, dst_offset = 0;
1786             vaddr < dst_entry->end;
1787             vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1788
1789                 /*
1790                  * Allocate a page in the destination object
1791                  */
1792                 do {
1793                         dst_m = vm_page_alloc(dst_object,
1794                                 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1795                         if (dst_m == NULL) {
1796                                 vm_wait(0);
1797                         }
1798                 } while (dst_m == NULL);
1799
1800                 /*
1801                  * Find the page in the source object, and copy it in.
1802                  * (Because the source is wired down, the page will be in
1803                  * memory.)
1804                  */
1805                 src_m = vm_page_lookup(src_object,
1806                                        OFF_TO_IDX(dst_offset + src_offset));
1807                 if (src_m == NULL)
1808                         panic("vm_fault_copy_wired: page missing");
1809
1810                 vm_page_copy(src_m, dst_m);
1811                 vm_page_event(src_m, VMEVENT_COW);
1812
1813                 /*
1814                  * Enter it in the pmap...
1815                  */
1816
1817                 vm_page_flag_clear(dst_m, PG_ZERO);
1818                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1819
1820                 /*
1821                  * Mark it no longer busy, and put it on the active list.
1822                  */
1823                 vm_page_activate(dst_m);
1824                 vm_page_wakeup(dst_m);
1825         }
1826 }
1827
1828 #if 0
1829
1830 /*
1831  * This routine checks around the requested page for other pages that
1832  * might be able to be faulted in.  This routine brackets the viable
1833  * pages for the pages to be paged in.
1834  *
1835  * Inputs:
1836  *      m, rbehind, rahead
1837  *
1838  * Outputs:
1839  *  marray (array of vm_page_t), reqpage (index of requested page)
1840  *
1841  * Return value:
1842  *  number of pages in marray
1843  */
1844 static int
1845 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
1846                           vm_page_t *marray, int *reqpage)
1847 {
1848         int i,j;
1849         vm_object_t object;
1850         vm_pindex_t pindex, startpindex, endpindex, tpindex;
1851         vm_page_t rtm;
1852         int cbehind, cahead;
1853
1854         object = m->object;
1855         pindex = m->pindex;
1856
1857         /*
1858          * we don't fault-ahead for device pager
1859          */
1860         if (object->type == OBJT_DEVICE) {
1861                 *reqpage = 0;
1862                 marray[0] = m;
1863                 return 1;
1864         }
1865
1866         /*
1867          * if the requested page is not available, then give up now
1868          */
1869         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1870                 *reqpage = 0;   /* not used by caller, fix compiler warn */
1871                 return 0;
1872         }
1873
1874         if ((cbehind == 0) && (cahead == 0)) {
1875                 *reqpage = 0;
1876                 marray[0] = m;
1877                 return 1;
1878         }
1879
1880         if (rahead > cahead) {
1881                 rahead = cahead;
1882         }
1883
1884         if (rbehind > cbehind) {
1885                 rbehind = cbehind;
1886         }
1887
1888         /*
1889          * Do not do any readahead if we have insufficient free memory.
1890          *
1891          * XXX code was broken disabled before and has instability
1892          * with this conditonal fixed, so shortcut for now.
1893          */
1894         if (burst_fault == 0 || vm_page_count_severe()) {
1895                 marray[0] = m;
1896                 *reqpage = 0;
1897                 return 1;
1898         }
1899
1900         /*
1901          * scan backward for the read behind pages -- in memory 
1902          *
1903          * Assume that if the page is not found an interrupt will not
1904          * create it.  Theoretically interrupts can only remove (busy)
1905          * pages, not create new associations.
1906          */
1907         if (pindex > 0) {
1908                 if (rbehind > pindex) {
1909                         rbehind = pindex;
1910                         startpindex = 0;
1911                 } else {
1912                         startpindex = pindex - rbehind;
1913                 }
1914
1915                 lwkt_gettoken(&vm_token);
1916                 for (tpindex = pindex; tpindex > startpindex; --tpindex) {
1917                         if (vm_page_lookup(object, tpindex - 1))
1918                                 break;
1919                 }
1920
1921                 i = 0;
1922                 while (tpindex < pindex) {
1923                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM);
1924                         if (rtm == NULL) {
1925                                 lwkt_reltoken(&vm_token);
1926                                 for (j = 0; j < i; j++) {
1927                                         vm_page_free(marray[j]);
1928                                 }
1929                                 marray[0] = m;
1930                                 *reqpage = 0;
1931                                 return 1;
1932                         }
1933                         marray[i] = rtm;
1934                         ++i;
1935                         ++tpindex;
1936                 }
1937                 lwkt_reltoken(&vm_token);
1938         } else {
1939                 i = 0;
1940         }
1941
1942         /*
1943          * Assign requested page
1944          */
1945         marray[i] = m;
1946         *reqpage = i;
1947         ++i;
1948
1949         /*
1950          * Scan forwards for read-ahead pages
1951          */
1952         tpindex = pindex + 1;
1953         endpindex = tpindex + rahead;
1954         if (endpindex > object->size)
1955                 endpindex = object->size;
1956
1957         lwkt_gettoken(&vm_token);
1958         while (tpindex < endpindex) {
1959                 if (vm_page_lookup(object, tpindex))
1960                         break;
1961                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM);
1962                 if (rtm == NULL)
1963                         break;
1964                 marray[i] = rtm;
1965                 ++i;
1966                 ++tpindex;
1967         }
1968         lwkt_reltoken(&vm_token);
1969
1970         return (i);
1971 }
1972
1973 #endif
1974
1975 /*
1976  * vm_prefault() provides a quick way of clustering pagefaults into a
1977  * processes address space.  It is a "cousin" of pmap_object_init_pt,
1978  * except it runs at page fault time instead of mmap time.
1979  *
1980  * This code used to be per-platform pmap_prefault().  It is now
1981  * machine-independent and enhanced to also pre-fault zero-fill pages
1982  * (see vm.fast_fault) as well as make them writable, which greatly
1983  * reduces the number of page faults programs incur.
1984  *
1985  * Application performance when pre-faulting zero-fill pages is heavily
1986  * dependent on the application.  Very tiny applications like /bin/echo
1987  * lose a little performance while applications of any appreciable size
1988  * gain performance.  Prefaulting multiple pages also reduces SMP
1989  * congestion and can improve SMP performance significantly.
1990  *
1991  * NOTE!  prot may allow writing but this only applies to the top level
1992  *        object.  If we wind up mapping a page extracted from a backing
1993  *        object we have to make sure it is read-only.
1994  *
1995  * NOTE!  The caller has already handled any COW operations on the
1996  *        vm_map_entry via the normal fault code.  Do NOT call this
1997  *        shortcut unless the normal fault code has run on this entry.
1998  *
1999  * No other requirements.
2000  */
2001 #define PFBAK 4
2002 #define PFFOR 4
2003 #define PAGEORDER_SIZE (PFBAK+PFFOR)
2004
2005 static int vm_prefault_pageorder[] = {
2006         -PAGE_SIZE, PAGE_SIZE,
2007         -2 * PAGE_SIZE, 2 * PAGE_SIZE,
2008         -3 * PAGE_SIZE, 3 * PAGE_SIZE,
2009         -4 * PAGE_SIZE, 4 * PAGE_SIZE
2010 };
2011
2012 /*
2013  * Set PG_NOSYNC if the map entry indicates so, but only if the page
2014  * is not already dirty by other means.  This will prevent passive
2015  * filesystem syncing as well as 'sync' from writing out the page.
2016  */
2017 static void
2018 vm_set_nosync(vm_page_t m, vm_map_entry_t entry)
2019 {
2020         if (entry->eflags & MAP_ENTRY_NOSYNC) {
2021                 if (m->dirty == 0)
2022                         vm_page_flag_set(m, PG_NOSYNC);
2023         } else {
2024                 vm_page_flag_clear(m, PG_NOSYNC);
2025         }
2026 }
2027
2028 static void
2029 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot)
2030 {
2031         struct lwp *lp;
2032         vm_page_t m;
2033         vm_offset_t starta;
2034         vm_offset_t addr;
2035         vm_pindex_t index;
2036         vm_pindex_t pindex;
2037         vm_object_t object;
2038         int pprot;
2039         int i;
2040
2041         /*
2042          * We do not currently prefault mappings that use virtual page
2043          * tables.  We do not prefault foreign pmaps.
2044          */
2045         if (entry->maptype == VM_MAPTYPE_VPAGETABLE)
2046                 return;
2047         lp = curthread->td_lwp;
2048         if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2049                 return;
2050
2051         lwkt_gettoken(&vm_token);
2052
2053         object = entry->object.vm_object;
2054         KKASSERT(object != NULL);
2055         vm_object_hold(object);
2056
2057         starta = addra - PFBAK * PAGE_SIZE;
2058         if (starta < entry->start)
2059                 starta = entry->start;
2060         else if (starta > addra)
2061                 starta = 0;
2062
2063         KKASSERT(object == entry->object.vm_object);
2064         for (i = 0; i < PAGEORDER_SIZE; i++) {
2065                 vm_object_t lobject;
2066                 vm_object_t nobject;
2067                 int allocated = 0;
2068
2069                 addr = addra + vm_prefault_pageorder[i];
2070                 if (addr > addra + (PFFOR * PAGE_SIZE))
2071                         addr = 0;
2072
2073                 if (addr < starta || addr >= entry->end)
2074                         continue;
2075
2076                 if (pmap_prefault_ok(pmap, addr) == 0)
2077                         continue;
2078
2079                 /*
2080                  * Follow the VM object chain to obtain the page to be mapped
2081                  * into the pmap.
2082                  *
2083                  * If we reach the terminal object without finding a page
2084                  * and we determine it would be advantageous, then allocate
2085                  * a zero-fill page for the base object.  The base object
2086                  * is guaranteed to be OBJT_DEFAULT for this case.
2087                  *
2088                  * In order to not have to check the pager via *haspage*()
2089                  * we stop if any non-default object is encountered.  e.g.
2090                  * a vnode or swap object would stop the loop.
2091                  *
2092                  * XXX It is unclear whether hold chaining is sufficient
2093                  *     to maintain the validity of the backing object chain.
2094                  */
2095                 index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2096                 lobject = object;
2097                 pindex = index;
2098                 pprot = prot;
2099
2100                 KKASSERT(lobject == entry->object.vm_object);
2101                 vm_object_hold(lobject);
2102
2103                 while ((m = vm_page_lookup(lobject, pindex)) == NULL) {
2104                         if (lobject->type != OBJT_DEFAULT)
2105                                 break;
2106                         if (lobject->backing_object == NULL) {
2107                                 if (vm_fast_fault == 0)
2108                                         break;
2109                                 if (vm_prefault_pageorder[i] < 0 ||
2110                                     (prot & VM_PROT_WRITE) == 0 ||
2111                                     vm_page_count_min(0)) {
2112                                         break;
2113                                 }
2114
2115                                 /* NOTE: allocated from base object */
2116                                 m = vm_page_alloc(object, index,
2117                                               VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
2118
2119                                 if ((m->flags & PG_ZERO) == 0) {
2120                                         vm_page_zero_fill(m);
2121                                 } else {
2122 #ifdef PMAP_DEBUG
2123                                         pmap_page_assertzero(
2124                                                         VM_PAGE_TO_PHYS(m));
2125 #endif
2126                                         vm_page_flag_clear(m, PG_ZERO);
2127                                         mycpu->gd_cnt.v_ozfod++;
2128                                 }
2129                                 mycpu->gd_cnt.v_zfod++;
2130                                 m->valid = VM_PAGE_BITS_ALL;
2131                                 allocated = 1;
2132                                 pprot = prot;
2133                                 /* lobject = object .. not needed */
2134                                 break;
2135                         }
2136                         if (lobject->backing_object_offset & PAGE_MASK)
2137                                 break;
2138                         while ((nobject = lobject->backing_object) != NULL) {
2139                                 vm_object_hold(nobject);
2140                                 if (nobject == lobject->backing_object) {
2141                                         pindex +=
2142                                             lobject->backing_object_offset >>
2143                                             PAGE_SHIFT;
2144                                         vm_object_lock_swap();
2145                                         vm_object_drop(lobject);
2146                                         lobject = nobject;
2147                                         break;
2148                                 }
2149                                 vm_object_drop(nobject);
2150                         }
2151                         if (nobject == NULL) {
2152                                 kprintf("vm_prefault: Warning, backing object "
2153                                         "race averted lobject %p\n",
2154                                         lobject);
2155                                 continue;
2156                         }
2157                         pprot &= ~VM_PROT_WRITE;
2158                 }
2159                 vm_object_drop(lobject);
2160
2161                 /*
2162                  * NOTE: lobject now invalid (if we did a zero-fill we didn't
2163                  *       bother assigning lobject = object).
2164                  *
2165                  * Give-up if the page is not available.
2166                  */
2167                 if (m == NULL)
2168                         break;
2169
2170                 /*
2171                  * Do not conditionalize on PG_RAM.  If pages are present in
2172                  * the VM system we assume optimal caching.  If caching is
2173                  * not optimal the I/O gravy train will be restarted when we
2174                  * hit an unavailable page.  We do not want to try to restart
2175                  * the gravy train now because we really don't know how much
2176                  * of the object has been cached.  The cost for restarting
2177                  * the gravy train should be low (since accesses will likely
2178                  * be I/O bound anyway).
2179                  *
2180                  * The object must be marked dirty if we are mapping a
2181                  * writable page.
2182                  */
2183                 if (pprot & VM_PROT_WRITE)
2184                         vm_object_set_writeable_dirty(m->object);
2185
2186                 /*
2187                  * Enter the page into the pmap if appropriate.  If we had
2188                  * allocated the page we have to place it on a queue.  If not
2189                  * we just have to make sure it isn't on the cache queue
2190                  * (pages on the cache queue are not allowed to be mapped).
2191                  */
2192                 if (allocated) {
2193                         if (pprot & VM_PROT_WRITE)
2194                                 vm_set_nosync(m, entry);
2195                         pmap_enter(pmap, addr, m, pprot, 0);
2196                         vm_page_deactivate(m);
2197                         vm_page_wakeup(m);
2198                 } else if (
2199                     ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2200                     (m->busy == 0) &&
2201                     (m->flags & (PG_BUSY | PG_FICTITIOUS)) == 0) {
2202                         /*
2203                          * A fully valid page not undergoing soft I/O can
2204                          * be immediately entered into the pmap.
2205                          */
2206                         vm_page_busy(m);
2207                         if ((m->queue - m->pc) == PQ_CACHE) {
2208                                 vm_page_deactivate(m);
2209                         }
2210                         if (pprot & VM_PROT_WRITE)
2211                                 vm_set_nosync(m, entry);
2212                         pmap_enter(pmap, addr, m, pprot, 0);
2213                         vm_page_wakeup(m);
2214                 }
2215         }
2216         vm_object_drop(object);
2217         lwkt_reltoken(&vm_token);
2218 }