Convert RANDOM_IP_ID into a sysctl.
[dragonfly.git] / sys / netinet / ip_input.c
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33
34 /*
35  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
36  *
37  * License terms: all terms for the DragonFly license above plus the following:
38  *
39  * 4. All advertising materials mentioning features or use of this software
40  *    must display the following acknowledgement:
41  *
42  *      This product includes software developed by Jeffrey M. Hsu
43  *      for the DragonFly Project.
44  *
45  *    This requirement may be waived with permission from Jeffrey Hsu.
46  *    This requirement will sunset and may be removed on July 8 2005,
47  *    after which the standard DragonFly license (as shown above) will
48  *    apply.
49  */
50
51 /*
52  * Copyright (c) 1982, 1986, 1988, 1993
53  *      The Regents of the University of California.  All rights reserved.
54  *
55  * Redistribution and use in source and binary forms, with or without
56  * modification, are permitted provided that the following conditions
57  * are met:
58  * 1. Redistributions of source code must retain the above copyright
59  *    notice, this list of conditions and the following disclaimer.
60  * 2. Redistributions in binary form must reproduce the above copyright
61  *    notice, this list of conditions and the following disclaimer in the
62  *    documentation and/or other materials provided with the distribution.
63  * 3. All advertising materials mentioning features or use of this software
64  *    must display the following acknowledgement:
65  *      This product includes software developed by the University of
66  *      California, Berkeley and its contributors.
67  * 4. Neither the name of the University nor the names of its contributors
68  *    may be used to endorse or promote products derived from this software
69  *    without specific prior written permission.
70  *
71  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
72  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
74  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
75  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
76  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
77  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
78  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
79  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
80  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
81  * SUCH DAMAGE.
82  *
83  *      @(#)ip_input.c  8.2 (Berkeley) 1/4/94
84  * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
85  * $DragonFly: src/sys/netinet/ip_input.c,v 1.56 2005/08/15 16:46:21 dillon Exp $
86  */
87
88 #define _IP_VHL
89
90 #include "opt_bootp.h"
91 #include "opt_ipfw.h"
92 #include "opt_ipdn.h"
93 #include "opt_ipdivert.h"
94 #include "opt_ipfilter.h"
95 #include "opt_ipstealth.h"
96 #include "opt_ipsec.h"
97
98 #include <sys/param.h>
99 #include <sys/systm.h>
100 #include <sys/mbuf.h>
101 #include <sys/malloc.h>
102 #include <sys/mpipe.h>
103 #include <sys/domain.h>
104 #include <sys/protosw.h>
105 #include <sys/socket.h>
106 #include <sys/time.h>
107 #include <sys/globaldata.h>
108 #include <sys/thread.h>
109 #include <sys/kernel.h>
110 #include <sys/syslog.h>
111 #include <sys/sysctl.h>
112 #include <sys/in_cksum.h>
113
114 #include <sys/thread2.h>
115 #include <sys/msgport2.h>
116
117 #include <machine/stdarg.h>
118
119 #include <net/if.h>
120 #include <net/if_types.h>
121 #include <net/if_var.h>
122 #include <net/if_dl.h>
123 #include <net/pfil.h>
124 #include <net/route.h>
125 #include <net/netisr.h>
126 #include <net/intrq.h>
127
128 #include <netinet/in.h>
129 #include <netinet/in_systm.h>
130 #include <netinet/in_var.h>
131 #include <netinet/ip.h>
132 #include <netinet/in_pcb.h>
133 #include <netinet/ip_var.h>
134 #include <netinet/ip_icmp.h>
135
136
137 #include <sys/socketvar.h>
138
139 #include <net/ipfw/ip_fw.h>
140 #include <net/dummynet/ip_dummynet.h>
141
142 #ifdef IPSEC
143 #include <netinet6/ipsec.h>
144 #include <netproto/key/key.h>
145 #endif
146
147 #ifdef FAST_IPSEC
148 #include <netproto/ipsec/ipsec.h>
149 #include <netproto/ipsec/key.h>
150 #endif
151
152 int rsvp_on = 0;
153 static int ip_rsvp_on;
154 struct socket *ip_rsvpd;
155
156 int ipforwarding = 0;
157 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
158     &ipforwarding, 0, "Enable IP forwarding between interfaces");
159
160 static int ipsendredirects = 1; /* XXX */
161 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
162     &ipsendredirects, 0, "Enable sending IP redirects");
163
164 int ip_defttl = IPDEFTTL;
165 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
166     &ip_defttl, 0, "Maximum TTL on IP packets");
167
168 static int ip_dosourceroute = 0;
169 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
170     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
171
172 static int ip_acceptsourceroute = 0;
173 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
174     CTLFLAG_RW, &ip_acceptsourceroute, 0,
175     "Enable accepting source routed IP packets");
176
177 static int ip_keepfaith = 0;
178 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
179     &ip_keepfaith, 0,
180     "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
181
182 static int nipq = 0;    /* total # of reass queues */
183 static int maxnipq;
184 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
185     &maxnipq, 0,
186     "Maximum number of IPv4 fragment reassembly queue entries");
187
188 static int maxfragsperpacket;
189 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
190     &maxfragsperpacket, 0,
191     "Maximum number of IPv4 fragments allowed per packet");
192
193 static int ip_sendsourcequench = 0;
194 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
195     &ip_sendsourcequench, 0,
196     "Enable the transmission of source quench packets");
197
198 int ip_do_randomid = 0;
199 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
200     &ip_do_randomid, 0,
201     "Assign random ip_id values");      
202 /*
203  * XXX - Setting ip_checkinterface mostly implements the receive side of
204  * the Strong ES model described in RFC 1122, but since the routing table
205  * and transmit implementation do not implement the Strong ES model,
206  * setting this to 1 results in an odd hybrid.
207  *
208  * XXX - ip_checkinterface currently must be disabled if you use ipnat
209  * to translate the destination address to another local interface.
210  *
211  * XXX - ip_checkinterface must be disabled if you add IP aliases
212  * to the loopback interface instead of the interface where the
213  * packets for those addresses are received.
214  */
215 static int ip_checkinterface = 0;
216 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
217     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
218
219 #ifdef DIAGNOSTIC
220 static int ipprintfs = 0;
221 #endif
222
223 static struct ifqueue ipintrq;
224 static int ipqmaxlen = IFQ_MAXLEN;
225
226 extern  struct domain inetdomain;
227 extern  struct protosw inetsw[];
228 u_char  ip_protox[IPPROTO_MAX];
229 struct  in_ifaddrhead in_ifaddrhead;            /* first inet address */
230 struct  in_ifaddrhashhead *in_ifaddrhashtbl;    /* inet addr hash table */
231 u_long  in_ifaddrhmask;                         /* mask for hash table */
232
233 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
234     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
235 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
236     &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
237
238 struct ip_stats ipstats_percpu[MAXCPU];
239 #ifdef SMP
240 static int
241 sysctl_ipstats(SYSCTL_HANDLER_ARGS)
242 {
243         int cpu, error = 0;
244
245         for (cpu = 0; cpu < ncpus; ++cpu) {
246                 if ((error = SYSCTL_OUT(req, &ipstats_percpu[cpu],
247                                         sizeof(struct ip_stats))))
248                         break;
249                 if ((error = SYSCTL_IN(req, &ipstats_percpu[cpu],
250                                        sizeof(struct ip_stats))))
251                         break;
252         }
253
254         return (error);
255 }
256 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
257     0, 0, sysctl_ipstats, "S,ip_stats", "IP statistics");
258 #else
259 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
260     &ipstat, ip_stats, "IP statistics");
261 #endif
262
263 /* Packet reassembly stuff */
264 #define IPREASS_NHASH_LOG2      6
265 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
266 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
267 #define IPREASS_HASH(x,y)                                               \
268     (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
269
270 static struct ipq ipq[IPREASS_NHASH];
271 const  int    ipintrq_present = 1;
272
273 #ifdef IPCTL_DEFMTU
274 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
275     &ip_mtu, 0, "Default MTU");
276 #endif
277
278 #ifdef IPSTEALTH
279 static int ipstealth = 0;
280 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, &ipstealth, 0, "");
281 #else
282 static const int ipstealth = 0;
283 #endif
284
285
286 /* Firewall hooks */
287 ip_fw_chk_t *ip_fw_chk_ptr;
288 int fw_enable = 1;
289 int fw_one_pass = 1;
290
291 /* Dummynet hooks */
292 ip_dn_io_t *ip_dn_io_ptr;
293
294 struct pfil_head inet_pfil_hook;
295
296 /*
297  * XXX this is ugly -- the following two global variables are
298  * used to store packet state while it travels through the stack.
299  * Note that the code even makes assumptions on the size and
300  * alignment of fields inside struct ip_srcrt so e.g. adding some
301  * fields will break the code. This needs to be fixed.
302  *
303  * We need to save the IP options in case a protocol wants to respond
304  * to an incoming packet over the same route if the packet got here
305  * using IP source routing.  This allows connection establishment and
306  * maintenance when the remote end is on a network that is not known
307  * to us.
308  */
309 static int ip_nhops = 0;
310
311 static  struct ip_srcrt {
312         struct  in_addr dst;                    /* final destination */
313         char    nop;                            /* one NOP to align */
314         char    srcopt[IPOPT_OFFSET + 1];       /* OPTVAL, OLEN and OFFSET */
315         struct  in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
316 } ip_srcrt;
317
318 static MALLOC_DEFINE(M_IPQ, "ipq", "IP Fragment Management");
319 static struct malloc_pipe ipq_mpipe;
320
321 static void             save_rte (u_char *, struct in_addr);
322 static int              ip_dooptions (struct mbuf *m, int,
323                                         struct sockaddr_in *next_hop);
324 static void             ip_forward (struct mbuf *m, boolean_t using_srcrt,
325                                         struct sockaddr_in *next_hop);
326 static void             ip_freef (struct ipq *);
327 static int              ip_input_handler (struct netmsg *);
328 static struct mbuf      *ip_reass (struct mbuf *, struct ipq *,
329                                         struct ipq *, u_int32_t *);
330
331 /*
332  * IP initialization: fill in IP protocol switch table.
333  * All protocols not implemented in kernel go to raw IP protocol handler.
334  */
335 void
336 ip_init(void)
337 {
338         struct protosw *pr;
339         int i;
340 #ifdef SMP
341         int cpu;
342 #endif
343
344         /*
345          * Make sure we can handle a reasonable number of fragments but
346          * cap it at 4000 (XXX).
347          */
348         mpipe_init(&ipq_mpipe, M_IPQ, sizeof(struct ipq),
349                     IFQ_MAXLEN, 4000, 0, NULL);
350         TAILQ_INIT(&in_ifaddrhead);
351         in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
352         pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
353         if (pr == NULL)
354                 panic("ip_init");
355         for (i = 0; i < IPPROTO_MAX; i++)
356                 ip_protox[i] = pr - inetsw;
357         for (pr = inetdomain.dom_protosw;
358              pr < inetdomain.dom_protoswNPROTOSW; pr++)
359                 if (pr->pr_domain->dom_family == PF_INET &&
360                     pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
361                         ip_protox[pr->pr_protocol] = pr - inetsw;
362
363         inet_pfil_hook.ph_type = PFIL_TYPE_AF;
364         inet_pfil_hook.ph_af = AF_INET;
365         if ((i = pfil_head_register(&inet_pfil_hook)) != 0) {
366                 printf("%s: WARNING: unable to register pfil hook, "
367                         "error %d\n", __func__, i);
368         }
369
370         for (i = 0; i < IPREASS_NHASH; i++)
371             ipq[i].next = ipq[i].prev = &ipq[i];
372
373         maxnipq = nmbclusters / 32;
374         maxfragsperpacket = 16;
375
376         ip_id = time_second & 0xffff;
377         ipintrq.ifq_maxlen = ipqmaxlen;
378
379         /*
380          * Initialize IP statistics counters for each CPU.
381          *
382          */
383 #ifdef SMP
384         for (cpu = 0; cpu < ncpus; ++cpu) {
385                 bzero(&ipstats_percpu[cpu], sizeof(struct ip_stats));
386         }
387 #else
388         bzero(&ipstat, sizeof(struct ip_stats));
389 #endif
390
391         netisr_register(NETISR_IP, ip_mport, ip_input_handler);
392 }
393
394 /*
395  * XXX watch out this one. It is perhaps used as a cache for
396  * the most recently used route ? it is cleared in in_addroute()
397  * when a new route is successfully created.
398  */
399 struct route ipforward_rt;
400
401 /* Do transport protocol processing. */
402 static void
403 transport_processing_oncpu(struct mbuf *m, int hlen, struct ip *ip,
404                            struct sockaddr_in *nexthop)
405 {
406         /*
407          * Switch out to protocol's input routine.
408          */
409         if (nexthop && ip->ip_p == IPPROTO_TCP) {
410                 /* TCP needs IPFORWARD info if available */
411                 struct m_hdr tag;
412
413                 tag.mh_type = MT_TAG;
414                 tag.mh_flags = PACKET_TAG_IPFORWARD;
415                 tag.mh_data = (caddr_t)nexthop;
416                 tag.mh_next = m;
417
418                 (*inetsw[ip_protox[ip->ip_p]].pr_input)
419                     ((struct mbuf *)&tag, hlen, ip->ip_p);
420         } else {
421                 (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen, ip->ip_p);
422         }
423 }
424
425 struct netmsg_transport_packet {
426         struct lwkt_msg         nm_lmsg;
427         struct mbuf             *nm_mbuf;
428         int                     nm_hlen;
429         boolean_t               nm_hasnexthop;
430         struct sockaddr_in      nm_nexthop;
431 };
432
433 static int
434 transport_processing_handler(lwkt_msg_t lmsg)
435 {
436         struct netmsg_transport_packet *msg = (void *)lmsg;
437         struct sockaddr_in *nexthop;
438         struct ip *ip;
439
440         ip = mtod(msg->nm_mbuf, struct ip *);
441         nexthop = msg->nm_hasnexthop ? &msg->nm_nexthop : NULL;
442         transport_processing_oncpu(msg->nm_mbuf, msg->nm_hlen, ip, nexthop);
443         lwkt_replymsg(lmsg, 0);
444         return(EASYNC);
445 }
446
447 static int
448 ip_input_handler(struct netmsg *msg0)
449 {
450         struct mbuf *m = ((struct netmsg_packet *)msg0)->nm_packet;
451
452         ip_input(m);
453         lwkt_replymsg(&msg0->nm_lmsg, 0);
454         return(EASYNC);
455 }
456
457 /*
458  * IP input routine.  Checksum and byte swap header.  If fragmented
459  * try to reassemble.  Process options.  Pass to next level.
460  */
461 void
462 ip_input(struct mbuf *m)
463 {
464         struct ip *ip;
465         struct ipq *fp;
466         struct in_ifaddr *ia = NULL;
467         struct ifaddr *ifa;
468         int i, hlen, checkif;
469         u_short sum;
470         struct in_addr pkt_dst;
471         u_int32_t divert_info = 0;              /* packet divert/tee info */
472         struct ip_fw_args args;
473         boolean_t using_srcrt = FALSE;          /* forward (by PFIL_HOOKS) */
474         boolean_t needredispatch = FALSE;
475         struct in_addr odst;                    /* original dst address(NAT) */
476 #if defined(FAST_IPSEC) || defined(IPDIVERT)
477         struct m_tag *mtag;
478 #endif
479 #ifdef FAST_IPSEC
480         struct tdb_ident *tdbi;
481         struct secpolicy *sp;
482         int error;
483 #endif
484
485         args.eh = NULL;
486         args.oif = NULL;
487         args.rule = NULL;
488         args.next_hop = NULL;
489
490         /* Grab info from MT_TAG mbufs prepended to the chain. */
491         while (m != NULL && m->m_type == MT_TAG) {
492                 switch(m->_m_tag_id) {
493                 case PACKET_TAG_DUMMYNET:
494                         args.rule = ((struct dn_pkt *)m)->rule;
495                         break;
496                 case PACKET_TAG_IPFORWARD:
497                         args.next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
498                         break;
499                 default:
500                         printf("ip_input: unrecognised MT_TAG tag %d\n",
501                             m->_m_tag_id);
502                         break;
503                 }
504                 m = m->m_next;
505         }
506         KASSERT(m != NULL && (m->m_flags & M_PKTHDR), ("ip_input: no HDR"));
507
508         if (args.rule != NULL) {        /* dummynet already filtered us */
509                 ip = mtod(m, struct ip *);
510                 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
511                 goto iphack;
512         }
513
514         ipstat.ips_total++;
515
516         /* length checks already done in ip_demux() */
517         KASSERT(m->m_len >= sizeof(ip), ("IP header not in one mbuf"));
518
519         ip = mtod(m, struct ip *);
520
521         if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
522                 ipstat.ips_badvers++;
523                 goto bad;
524         }
525
526         hlen = IP_VHL_HL(ip->ip_vhl) << 2;
527         /* length checks already done in ip_demux() */
528         KASSERT(hlen >= sizeof(struct ip), ("IP header len too small"));
529         KASSERT(m->m_len >= hlen, ("packet shorter than IP header length"));
530
531         /* 127/8 must not appear on wire - RFC1122 */
532         if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
533             (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
534                 if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK)) {
535                         ipstat.ips_badaddr++;
536                         goto bad;
537                 }
538         }
539
540         if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
541                 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
542         } else {
543                 if (hlen == sizeof(struct ip)) {
544                         sum = in_cksum_hdr(ip);
545                 } else {
546                         sum = in_cksum(m, hlen);
547                 }
548         }
549         if (sum != 0) {
550                 ipstat.ips_badsum++;
551                 goto bad;
552         }
553
554 #ifdef ALTQ
555         if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
556                 /* packet is dropped by traffic conditioner */
557                 return;
558         }
559 #endif
560         /*
561          * Convert fields to host representation.
562          */
563         ip->ip_len = ntohs(ip->ip_len);
564         if (ip->ip_len < hlen) {
565                 ipstat.ips_badlen++;
566                 goto bad;
567         }
568         ip->ip_off = ntohs(ip->ip_off);
569
570         /*
571          * Check that the amount of data in the buffers
572          * is as at least much as the IP header would have us expect.
573          * Trim mbufs if longer than we expect.
574          * Drop packet if shorter than we expect.
575          */
576         if (m->m_pkthdr.len < ip->ip_len) {
577                 ipstat.ips_tooshort++;
578                 goto bad;
579         }
580         if (m->m_pkthdr.len > ip->ip_len) {
581                 if (m->m_len == m->m_pkthdr.len) {
582                         m->m_len = ip->ip_len;
583                         m->m_pkthdr.len = ip->ip_len;
584                 } else
585                         m_adj(m, ip->ip_len - m->m_pkthdr.len);
586         }
587 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
588         /*
589          * Bypass packet filtering for packets from a tunnel (gif).
590          */
591         if (ipsec_gethist(m, NULL))
592                 goto pass;
593 #endif
594
595         /*
596          * IpHack's section.
597          * Right now when no processing on packet has done
598          * and it is still fresh out of network we do our black
599          * deals with it.
600          * - Firewall: deny/allow/divert
601          * - Xlate: translate packet's addr/port (NAT).
602          * - Pipe: pass pkt through dummynet.
603          * - Wrap: fake packet's addr/port <unimpl.>
604          * - Encapsulate: put it in another IP and send out. <unimp.>
605          */
606
607 iphack:
608
609         /*
610          * Run through list of hooks for input packets.
611          *
612          * NB: Beware of the destination address changing (e.g.
613          *     by NAT rewriting). When this happens, tell
614          *     ip_forward to do the right thing.
615          */
616         if (pfil_has_hooks(&inet_pfil_hook)) {
617                 odst = ip->ip_dst;
618                 if (pfil_run_hooks(&inet_pfil_hook, &m,
619                     m->m_pkthdr.rcvif, PFIL_IN)) {
620                         return;
621                 }
622                 if (m == NULL)                  /* consumed by filter */
623                         return;
624                 ip = mtod(m, struct ip *);
625                 using_srcrt = (odst.s_addr != ip->ip_dst.s_addr);
626         }
627
628         if (fw_enable && IPFW_LOADED) {
629                 /*
630                  * If we've been forwarded from the output side, then
631                  * skip the firewall a second time
632                  */
633                 if (args.next_hop != NULL)
634                         goto ours;
635
636                 args.m = m;
637                 i = ip_fw_chk_ptr(&args);
638                 m = args.m;
639
640                 if ((i & IP_FW_PORT_DENY_FLAG) || m == NULL) {  /* drop */
641                         if (m != NULL)
642                                 m_freem(m);
643                         return;
644                 }
645                 ip = mtod(m, struct ip *);      /* just in case m changed */
646                 if (i == 0 && args.next_hop == NULL)    /* common case */
647                         goto pass;
648                 if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG)) {
649                         /* Send packet to the appropriate pipe */
650                         ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
651                         return;
652                 }
653 #ifdef IPDIVERT
654                 if (i != 0 && !(i & IP_FW_PORT_DYNT_FLAG)) {
655                         /* Divert or tee packet */
656                         divert_info = i;
657                         goto ours;
658                 }
659 #endif
660                 if (i == 0 && args.next_hop != NULL)
661                         goto pass;
662                 /*
663                  * if we get here, the packet must be dropped
664                  */
665                 m_freem(m);
666                 return;
667         }
668 pass:
669
670         /*
671          * Process options and, if not destined for us,
672          * ship it on.  ip_dooptions returns 1 when an
673          * error was detected (causing an icmp message
674          * to be sent and the original packet to be freed).
675          */
676         ip_nhops = 0;           /* for source routed packets */
677         if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, args.next_hop))
678                 return;
679
680         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
681          * matter if it is destined to another node, or whether it is
682          * a multicast one, RSVP wants it! and prevents it from being forwarded
683          * anywhere else. Also checks if the rsvp daemon is running before
684          * grabbing the packet.
685          */
686         if (rsvp_on && ip->ip_p == IPPROTO_RSVP)
687                 goto ours;
688
689         /*
690          * Check our list of addresses, to see if the packet is for us.
691          * If we don't have any addresses, assume any unicast packet
692          * we receive might be for us (and let the upper layers deal
693          * with it).
694          */
695         if (TAILQ_EMPTY(&in_ifaddrhead) && !(m->m_flags & (M_MCAST | M_BCAST)))
696                 goto ours;
697
698         /*
699          * Cache the destination address of the packet; this may be
700          * changed by use of 'ipfw fwd'.
701          */
702         pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
703
704         /*
705          * Enable a consistency check between the destination address
706          * and the arrival interface for a unicast packet (the RFC 1122
707          * strong ES model) if IP forwarding is disabled and the packet
708          * is not locally generated and the packet is not subject to
709          * 'ipfw fwd'.
710          *
711          * XXX - Checking also should be disabled if the destination
712          * address is ipnat'ed to a different interface.
713          *
714          * XXX - Checking is incompatible with IP aliases added
715          * to the loopback interface instead of the interface where
716          * the packets are received.
717          */
718         checkif = ip_checkinterface &&
719                   !ipforwarding &&
720                   m->m_pkthdr.rcvif != NULL &&
721                   !(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
722                   (args.next_hop == NULL);
723
724         /*
725          * Check for exact addresses in the hash bucket.
726          */
727         LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
728                 /*
729                  * If the address matches, verify that the packet
730                  * arrived via the correct interface if checking is
731                  * enabled.
732                  */
733                 if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
734                     (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
735                         goto ours;
736         }
737         /*
738          * Check for broadcast addresses.
739          *
740          * Only accept broadcast packets that arrive via the matching
741          * interface.  Reception of forwarded directed broadcasts would
742          * be handled via ip_forward() and ether_output() with the loopback
743          * into the stack for SIMPLEX interfaces handled by ether_output().
744          */
745         if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
746                 TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
747                         if (ifa->ifa_addr == NULL) /* shutdown/startup race */
748                                 continue;
749                         if (ifa->ifa_addr->sa_family != AF_INET)
750                                 continue;
751                         ia = ifatoia(ifa);
752                         if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
753                                                                 pkt_dst.s_addr)
754                                 goto ours;
755                         if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
756                                 goto ours;
757 #ifdef BOOTP_COMPAT
758                         if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
759                                 goto ours;
760 #endif
761                 }
762         }
763         if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
764                 struct in_multi *inm;
765
766                 if (ip_mrouter != NULL) {
767                         /*
768                          * If we are acting as a multicast router, all
769                          * incoming multicast packets are passed to the
770                          * kernel-level multicast forwarding function.
771                          * The packet is returned (relatively) intact; if
772                          * ip_mforward() returns a non-zero value, the packet
773                          * must be discarded, else it may be accepted below.
774                          */
775                         if (ip_mforward != NULL &&
776                             ip_mforward(ip, m->m_pkthdr.rcvif, m, NULL) != 0) {
777                                 ipstat.ips_cantforward++;
778                                 m_freem(m);
779                                 return;
780                         }
781
782                         /*
783                          * The process-level routing daemon needs to receive
784                          * all multicast IGMP packets, whether or not this
785                          * host belongs to their destination groups.
786                          */
787                         if (ip->ip_p == IPPROTO_IGMP)
788                                 goto ours;
789                         ipstat.ips_forward++;
790                 }
791                 /*
792                  * See if we belong to the destination multicast group on the
793                  * arrival interface.
794                  */
795                 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
796                 if (inm == NULL) {
797                         ipstat.ips_notmember++;
798                         m_freem(m);
799                         return;
800                 }
801                 goto ours;
802         }
803         if (ip->ip_dst.s_addr == INADDR_BROADCAST)
804                 goto ours;
805         if (ip->ip_dst.s_addr == INADDR_ANY)
806                 goto ours;
807
808         /*
809          * FAITH(Firewall Aided Internet Translator)
810          */
811         if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
812                 if (ip_keepfaith) {
813                         if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
814                                 goto ours;
815                 }
816                 m_freem(m);
817                 return;
818         }
819
820         /*
821          * Not for us; forward if possible and desirable.
822          */
823         if (!ipforwarding) {
824                 ipstat.ips_cantforward++;
825                 m_freem(m);
826         } else {
827 #ifdef IPSEC
828                 /*
829                  * Enforce inbound IPsec SPD.
830                  */
831                 if (ipsec4_in_reject(m, NULL)) {
832                         ipsecstat.in_polvio++;
833                         goto bad;
834                 }
835 #endif
836 #ifdef FAST_IPSEC
837                 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
838                 crit_enter();
839                 if (mtag != NULL) {
840                         tdbi = (struct tdb_ident *)m_tag_data(mtag);
841                         sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
842                 } else {
843                         sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
844                                                    IP_FORWARDING, &error);
845                 }
846                 if (sp == NULL) {       /* NB: can happen if error */
847                         crit_exit();
848                         /*XXX error stat???*/
849                         DPRINTF(("ip_input: no SP for forwarding\n"));  /*XXX*/
850                         goto bad;
851                 }
852
853                 /*
854                  * Check security policy against packet attributes.
855                  */
856                 error = ipsec_in_reject(sp, m);
857                 KEY_FREESP(&sp);
858                 crit_exit();
859                 if (error) {
860                         ipstat.ips_cantforward++;
861                         goto bad;
862                 }
863 #endif
864                 ip_forward(m, using_srcrt, args.next_hop);
865         }
866         return;
867
868 ours:
869
870         /*
871          * IPSTEALTH: Process non-routing options only
872          * if the packet is destined for us.
873          */
874         if (ipstealth &&
875             hlen > sizeof(struct ip) &&
876             ip_dooptions(m, 1, args.next_hop))
877                 return;
878
879         /* Count the packet in the ip address stats */
880         if (ia != NULL) {
881                 ia->ia_ifa.if_ipackets++;
882                 ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
883         }
884
885         /*
886          * If offset or IP_MF are set, must reassemble.
887          * Otherwise, nothing need be done.
888          * (We could look in the reassembly queue to see
889          * if the packet was previously fragmented,
890          * but it's not worth the time; just let them time out.)
891          */
892         if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
893
894                 /* If maxnipq is 0, never accept fragments. */
895                 if (maxnipq == 0) {
896                         ipstat.ips_fragments++;
897                         ipstat.ips_fragdropped++;
898                         goto bad;
899                 }
900
901                 sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
902                 /*
903                  * Look for queue of fragments
904                  * of this datagram.
905                  */
906                 for (fp = ipq[sum].next; fp != &ipq[sum]; fp = fp->next)
907                         if (ip->ip_id == fp->ipq_id &&
908                             ip->ip_src.s_addr == fp->ipq_src.s_addr &&
909                             ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
910                             ip->ip_p == fp->ipq_p)
911                                 goto found;
912
913                 fp = NULL;
914
915                 /*
916                  * Enforce upper bound on number of fragmented packets
917                  * for which we attempt reassembly;
918                  * If maxnipq is -1, accept all fragments without limitation.
919                  */
920                 if ((nipq > maxnipq) && (maxnipq > 0)) {
921                         /*
922                          * drop something from the tail of the current queue
923                          * before proceeding further
924                          */
925                         if (ipq[sum].prev == &ipq[sum]) {   /* gak */
926                                 for (i = 0; i < IPREASS_NHASH; i++) {
927                                         if (ipq[i].prev != &ipq[i]) {
928                                                 ipstat.ips_fragtimeout +=
929                                                     ipq[i].prev->ipq_nfrags;
930                                                 ip_freef(ipq[i].prev);
931                                                 break;
932                                         }
933                                 }
934                         } else {
935                                 ipstat.ips_fragtimeout +=
936                                     ipq[sum].prev->ipq_nfrags;
937                                 ip_freef(ipq[sum].prev);
938                         }
939                 }
940 found:
941                 /*
942                  * Adjust ip_len to not reflect header,
943                  * convert offset of this to bytes.
944                  */
945                 ip->ip_len -= hlen;
946                 if (ip->ip_off & IP_MF) {
947                         /*
948                          * Make sure that fragments have a data length
949                          * that's a non-zero multiple of 8 bytes.
950                          */
951                         if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
952                                 ipstat.ips_toosmall++; /* XXX */
953                                 goto bad;
954                         }
955                         m->m_flags |= M_FRAG;
956                 } else
957                         m->m_flags &= ~M_FRAG;
958                 ip->ip_off <<= 3;
959
960                 /*
961                  * Attempt reassembly; if it succeeds, proceed.
962                  * ip_reass() will return a different mbuf, and update
963                  * the divert info in divert_info.
964                  */
965                 ipstat.ips_fragments++;
966                 m->m_pkthdr.header = ip;
967                 m = ip_reass(m, fp, &ipq[sum], &divert_info);
968                 if (m == NULL)
969                         return;
970                 ipstat.ips_reassembled++;
971                 needredispatch = TRUE;
972                 ip = mtod(m, struct ip *);
973                 /* Get the header length of the reassembled packet */
974                 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
975 #ifdef IPDIVERT
976                 /* Restore original checksum before diverting packet */
977                 if (divert_info != 0) {
978                         ip->ip_len += hlen;
979                         ip->ip_len = htons(ip->ip_len);
980                         ip->ip_off = htons(ip->ip_off);
981                         ip->ip_sum = 0;
982                         if (hlen == sizeof(struct ip))
983                                 ip->ip_sum = in_cksum_hdr(ip);
984                         else
985                                 ip->ip_sum = in_cksum(m, hlen);
986                         ip->ip_off = ntohs(ip->ip_off);
987                         ip->ip_len = ntohs(ip->ip_len);
988                         ip->ip_len -= hlen;
989                 }
990 #endif
991         } else {
992                 ip->ip_len -= hlen;
993         }
994
995 #ifdef IPDIVERT
996         /*
997          * Divert or tee packet to the divert protocol if required.
998          */
999         if (divert_info != 0) {
1000                 struct mbuf *clone = NULL;
1001
1002                 /* Clone packet if we're doing a 'tee' */
1003                 if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
1004                         clone = m_dup(m, MB_DONTWAIT);
1005
1006                 /* Restore packet header fields to original values */
1007                 ip->ip_len += hlen;
1008                 ip->ip_len = htons(ip->ip_len);
1009                 ip->ip_off = htons(ip->ip_off);
1010
1011                 /* Deliver packet to divert input routine */
1012                 divert_packet(m, 1, divert_info & 0xffff);
1013                 ipstat.ips_delivered++;
1014
1015                 /* If 'tee', continue with original packet */
1016                 if (clone == NULL)
1017                         return;
1018                 m = clone;
1019                 ip = mtod(m, struct ip *);
1020                 ip->ip_len += hlen;
1021                 /*
1022                  * Jump backwards to complete processing of the
1023                  * packet. But first clear divert_info to avoid
1024                  * entering this block again.
1025                  * We do not need to clear args.divert_rule
1026                  * or args.next_hop as they will not be used.
1027                  *
1028                  * XXX Better safe than sorry, remove the DIVERT tag.
1029                  */
1030                 mtag = m_tag_find(m, PACKET_TAG_IPFW_DIVERT, NULL);
1031                 if (mtag != NULL)
1032                         m_tag_delete(m, mtag);
1033                 
1034                 divert_info = 0;
1035                 goto pass;
1036         }
1037 #endif
1038
1039 #ifdef IPSEC
1040         /*
1041          * enforce IPsec policy checking if we are seeing last header.
1042          * note that we do not visit this with protocols with pcb layer
1043          * code - like udp/tcp/raw ip.
1044          */
1045         if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) &&
1046             ipsec4_in_reject(m, NULL)) {
1047                 ipsecstat.in_polvio++;
1048                 goto bad;
1049         }
1050 #endif
1051 #if FAST_IPSEC
1052         /*
1053          * enforce IPsec policy checking if we are seeing last header.
1054          * note that we do not visit this with protocols with pcb layer
1055          * code - like udp/tcp/raw ip.
1056          */
1057         if (inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) {
1058                 /*
1059                  * Check if the packet has already had IPsec processing
1060                  * done.  If so, then just pass it along.  This tag gets
1061                  * set during AH, ESP, etc. input handling, before the
1062                  * packet is returned to the ip input queue for delivery.
1063                  */
1064                 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
1065                 crit_enter();
1066                 if (mtag != NULL) {
1067                         tdbi = (struct tdb_ident *)m_tag_data(mtag);
1068                         sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
1069                 } else {
1070                         sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
1071                                                    IP_FORWARDING, &error);
1072                 }
1073                 if (sp != NULL) {
1074                         /*
1075                          * Check security policy against packet attributes.
1076                          */
1077                         error = ipsec_in_reject(sp, m);
1078                         KEY_FREESP(&sp);
1079                 } else {
1080                         /* XXX error stat??? */
1081                         error = EINVAL;
1082 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
1083                         goto bad;
1084                 }
1085                 crit_exit();
1086                 if (error)
1087                         goto bad;
1088         }
1089 #endif /* FAST_IPSEC */
1090
1091         ipstat.ips_delivered++;
1092         if (needredispatch) {
1093                 struct netmsg_transport_packet *msg;
1094                 lwkt_port_t port;
1095
1096                 msg = malloc(sizeof(struct netmsg_transport_packet),
1097                                 M_LWKTMSG, M_INTWAIT | M_NULLOK);
1098                 if (msg == NULL)
1099                         goto bad;
1100
1101                 lwkt_initmsg(&msg->nm_lmsg, &netisr_afree_rport, 0,
1102                         lwkt_cmd_func(transport_processing_handler),
1103                         lwkt_cmd_op_none);
1104                 msg->nm_hlen = hlen;
1105                 msg->nm_hasnexthop = (args.next_hop != NULL);
1106                 if (msg->nm_hasnexthop)
1107                         msg->nm_nexthop = *args.next_hop;  /* structure copy */
1108
1109                 ip->ip_off = htons(ip->ip_off);
1110                 ip->ip_len = htons(ip->ip_len);
1111                 port = ip_mport(&m);
1112                 if (port) {
1113                     msg->nm_mbuf = m;
1114                     ip = mtod(m, struct ip *);
1115                     ip->ip_len = ntohs(ip->ip_len);
1116                     ip->ip_off = ntohs(ip->ip_off);
1117                     lwkt_sendmsg(port, &msg->nm_lmsg);
1118                 }
1119         } else {
1120                 transport_processing_oncpu(m, hlen, ip, args.next_hop);
1121         }
1122         return;
1123
1124 bad:
1125         m_freem(m);
1126 }
1127
1128 /*
1129  * Take incoming datagram fragment and try to reassemble it into
1130  * whole datagram.  If a chain for reassembly of this datagram already
1131  * exists, then it is given as fp; otherwise have to make a chain.
1132  *
1133  * When IPDIVERT enabled, keep additional state with each packet that
1134  * tells us if we need to divert or tee the packet we're building.
1135  * In particular, *divinfo includes the port and TEE flag.
1136  */
1137
1138 static struct mbuf *
1139 ip_reass(struct mbuf *m, struct ipq *fp, struct ipq *where,
1140          u_int32_t *divinfo)
1141 {
1142         struct ip *ip = mtod(m, struct ip *);
1143         struct mbuf *p = NULL, *q, *nq;
1144         struct mbuf *n;
1145         int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1146         int i, next;
1147 #ifdef IPDIVERT
1148         struct m_tag *mtag;
1149 #endif
1150
1151         /*
1152          * Presence of header sizes in mbufs
1153          * would confuse code below.
1154          */
1155         m->m_data += hlen;
1156         m->m_len -= hlen;
1157
1158         /*
1159          * If first fragment to arrive, create a reassembly queue.
1160          */
1161         if (fp == NULL) {
1162                 if ((fp = mpipe_alloc_nowait(&ipq_mpipe)) == NULL)
1163                         goto dropfrag;
1164                 insque(fp, where);
1165                 nipq++;
1166                 fp->ipq_nfrags = 1;
1167                 fp->ipq_ttl = IPFRAGTTL;
1168                 fp->ipq_p = ip->ip_p;
1169                 fp->ipq_id = ip->ip_id;
1170                 fp->ipq_src = ip->ip_src;
1171                 fp->ipq_dst = ip->ip_dst;
1172                 fp->ipq_frags = m;
1173                 m->m_nextpkt = NULL;
1174 #ifdef IPDIVERT
1175                 fp->ipq_div_info = 0;
1176 #endif
1177                 goto inserted;
1178         } else {
1179                 fp->ipq_nfrags++;
1180         }
1181
1182 #define GETIP(m)        ((struct ip*)((m)->m_pkthdr.header))
1183
1184         /*
1185          * Find a segment which begins after this one does.
1186          */
1187         for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1188                 if (GETIP(q)->ip_off > ip->ip_off)
1189                         break;
1190
1191         /*
1192          * If there is a preceding segment, it may provide some of
1193          * our data already.  If so, drop the data from the incoming
1194          * segment.  If it provides all of our data, drop us, otherwise
1195          * stick new segment in the proper place.
1196          *
1197          * If some of the data is dropped from the the preceding
1198          * segment, then it's checksum is invalidated.
1199          */
1200         if (p) {
1201                 i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1202                 if (i > 0) {
1203                         if (i >= ip->ip_len)
1204                                 goto dropfrag;
1205                         m_adj(m, i);
1206                         m->m_pkthdr.csum_flags = 0;
1207                         ip->ip_off += i;
1208                         ip->ip_len -= i;
1209                 }
1210                 m->m_nextpkt = p->m_nextpkt;
1211                 p->m_nextpkt = m;
1212         } else {
1213                 m->m_nextpkt = fp->ipq_frags;
1214                 fp->ipq_frags = m;
1215         }
1216
1217         /*
1218          * While we overlap succeeding segments trim them or,
1219          * if they are completely covered, dequeue them.
1220          */
1221         for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1222              q = nq) {
1223                 i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1224                 if (i < GETIP(q)->ip_len) {
1225                         GETIP(q)->ip_len -= i;
1226                         GETIP(q)->ip_off += i;
1227                         m_adj(q, i);
1228                         q->m_pkthdr.csum_flags = 0;
1229                         break;
1230                 }
1231                 nq = q->m_nextpkt;
1232                 m->m_nextpkt = nq;
1233                 ipstat.ips_fragdropped++;
1234                 fp->ipq_nfrags--;
1235                 m_freem(q);
1236         }
1237
1238 inserted:
1239
1240 #ifdef IPDIVERT
1241         /*
1242          * Transfer firewall instructions to the fragment structure.
1243          * Only trust info in the fragment at offset 0.
1244          */
1245         if (ip->ip_off == 0) {
1246                 fp->ipq_div_info = *divinfo;
1247         } else {
1248                 mtag = m_tag_find(m, PACKET_TAG_IPFW_DIVERT, NULL);
1249                 if (mtag != NULL)
1250                         m_tag_delete(m, mtag);
1251         }
1252         *divinfo = 0;
1253 #endif
1254
1255         /*
1256          * Check for complete reassembly and perform frag per packet
1257          * limiting.
1258          *
1259          * Frag limiting is performed here so that the nth frag has
1260          * a chance to complete the packet before we drop the packet.
1261          * As a result, n+1 frags are actually allowed per packet, but
1262          * only n will ever be stored. (n = maxfragsperpacket.)
1263          *
1264          */
1265         next = 0;
1266         for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1267                 if (GETIP(q)->ip_off != next) {
1268                         if (fp->ipq_nfrags > maxfragsperpacket) {
1269                                 ipstat.ips_fragdropped += fp->ipq_nfrags;
1270                                 ip_freef(fp);
1271                         }
1272                         return (NULL);
1273                 }
1274                 next += GETIP(q)->ip_len;
1275         }
1276         /* Make sure the last packet didn't have the IP_MF flag */
1277         if (p->m_flags & M_FRAG) {
1278                 if (fp->ipq_nfrags > maxfragsperpacket) {
1279                         ipstat.ips_fragdropped += fp->ipq_nfrags;
1280                         ip_freef(fp);
1281                 }
1282                 return (NULL);
1283         }
1284
1285         /*
1286          * Reassembly is complete.  Make sure the packet is a sane size.
1287          */
1288         q = fp->ipq_frags;
1289         ip = GETIP(q);
1290         if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1291                 ipstat.ips_toolong++;
1292                 ipstat.ips_fragdropped += fp->ipq_nfrags;
1293                 ip_freef(fp);
1294                 return (NULL);
1295         }
1296
1297         /*
1298          * Concatenate fragments.
1299          */
1300         m = q;
1301         n = m->m_next;
1302         m->m_next = NULL;
1303         m_cat(m, n);
1304         nq = q->m_nextpkt;
1305         q->m_nextpkt = NULL;
1306         for (q = nq; q != NULL; q = nq) {
1307                 nq = q->m_nextpkt;
1308                 q->m_nextpkt = NULL;
1309                 m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1310                 m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1311                 m_cat(m, q);
1312         }
1313
1314 #ifdef IPDIVERT
1315         /*
1316          * Extract firewall instructions from the fragment structure.
1317          */
1318         *divinfo = fp->ipq_div_info;
1319 #endif
1320
1321         /*
1322          * Create header for new ip packet by
1323          * modifying header of first packet;
1324          * dequeue and discard fragment reassembly header.
1325          * Make header visible.
1326          */
1327         ip->ip_len = next;
1328         ip->ip_src = fp->ipq_src;
1329         ip->ip_dst = fp->ipq_dst;
1330         remque(fp);
1331         nipq--;
1332         mpipe_free(&ipq_mpipe, fp);
1333         m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1334         m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1335         /* some debugging cruft by sklower, below, will go away soon */
1336         if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1337                 int plen = 0;
1338
1339                 for (n = m; n; n = n->m_next)
1340                         plen += n->m_len;
1341                 m->m_pkthdr.len = plen;
1342         }
1343         return (m);
1344
1345 dropfrag:
1346 #ifdef IPDIVERT
1347         *divinfo = 0;
1348 #endif
1349         ipstat.ips_fragdropped++;
1350         if (fp != NULL)
1351                 fp->ipq_nfrags--;
1352         m_freem(m);
1353         return (NULL);
1354
1355 #undef GETIP
1356 }
1357
1358 /*
1359  * Free a fragment reassembly header and all
1360  * associated datagrams.
1361  */
1362 static void
1363 ip_freef(struct ipq *fp)
1364 {
1365         struct mbuf *q;
1366
1367         while (fp->ipq_frags) {
1368                 q = fp->ipq_frags;
1369                 fp->ipq_frags = q->m_nextpkt;
1370                 m_freem(q);
1371         }
1372         remque(fp);
1373         mpipe_free(&ipq_mpipe, fp);
1374         nipq--;
1375 }
1376
1377 /*
1378  * IP timer processing;
1379  * if a timer expires on a reassembly
1380  * queue, discard it.
1381  */
1382 void
1383 ip_slowtimo(void)
1384 {
1385         struct ipq *fp;
1386         int i;
1387
1388         crit_enter();
1389         for (i = 0; i < IPREASS_NHASH; i++) {
1390                 fp = ipq[i].next;
1391                 if (fp == NULL)
1392                         continue;
1393                 while (fp != &ipq[i]) {
1394                         --fp->ipq_ttl;
1395                         fp = fp->next;
1396                         if (fp->prev->ipq_ttl == 0) {
1397                                 ipstat.ips_fragtimeout += fp->prev->ipq_nfrags;
1398                                 ip_freef(fp->prev);
1399                         }
1400                 }
1401         }
1402         /*
1403          * If we are over the maximum number of fragments
1404          * (due to the limit being lowered), drain off
1405          * enough to get down to the new limit.
1406          */
1407         if (maxnipq >= 0 && nipq > maxnipq) {
1408                 for (i = 0; i < IPREASS_NHASH; i++) {
1409                         while (nipq > maxnipq &&
1410                                 (ipq[i].next != &ipq[i])) {
1411                                 ipstat.ips_fragdropped +=
1412                                     ipq[i].next->ipq_nfrags;
1413                                 ip_freef(ipq[i].next);
1414                         }
1415                 }
1416         }
1417         ipflow_slowtimo();
1418         crit_exit();
1419 }
1420
1421 /*
1422  * Drain off all datagram fragments.
1423  */
1424 void
1425 ip_drain(void)
1426 {
1427         int i;
1428
1429         for (i = 0; i < IPREASS_NHASH; i++) {
1430                 while (ipq[i].next != &ipq[i]) {
1431                         ipstat.ips_fragdropped += ipq[i].next->ipq_nfrags;
1432                         ip_freef(ipq[i].next);
1433                 }
1434         }
1435         in_rtqdrain();
1436 }
1437
1438 /*
1439  * Do option processing on a datagram,
1440  * possibly discarding it if bad options are encountered,
1441  * or forwarding it if source-routed.
1442  * The pass argument is used when operating in the IPSTEALTH
1443  * mode to tell what options to process:
1444  * [LS]SRR (pass 0) or the others (pass 1).
1445  * The reason for as many as two passes is that when doing IPSTEALTH,
1446  * non-routing options should be processed only if the packet is for us.
1447  * Returns 1 if packet has been forwarded/freed,
1448  * 0 if the packet should be processed further.
1449  */
1450 static int
1451 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1452 {
1453         struct sockaddr_in ipaddr = { sizeof ipaddr, AF_INET };
1454         struct ip *ip = mtod(m, struct ip *);
1455         u_char *cp;
1456         struct in_ifaddr *ia;
1457         int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB;
1458         boolean_t forward = FALSE;
1459         struct in_addr *sin, dst;
1460         n_time ntime;
1461
1462         dst = ip->ip_dst;
1463         cp = (u_char *)(ip + 1);
1464         cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1465         for (; cnt > 0; cnt -= optlen, cp += optlen) {
1466                 opt = cp[IPOPT_OPTVAL];
1467                 if (opt == IPOPT_EOL)
1468                         break;
1469                 if (opt == IPOPT_NOP)
1470                         optlen = 1;
1471                 else {
1472                         if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1473                                 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1474                                 goto bad;
1475                         }
1476                         optlen = cp[IPOPT_OLEN];
1477                         if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1478                                 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1479                                 goto bad;
1480                         }
1481                 }
1482                 switch (opt) {
1483
1484                 default:
1485                         break;
1486
1487                 /*
1488                  * Source routing with record.
1489                  * Find interface with current destination address.
1490                  * If none on this machine then drop if strictly routed,
1491                  * or do nothing if loosely routed.
1492                  * Record interface address and bring up next address
1493                  * component.  If strictly routed make sure next
1494                  * address is on directly accessible net.
1495                  */
1496                 case IPOPT_LSRR:
1497                 case IPOPT_SSRR:
1498                         if (ipstealth && pass > 0)
1499                                 break;
1500                         if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1501                                 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1502                                 goto bad;
1503                         }
1504                         if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1505                                 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1506                                 goto bad;
1507                         }
1508                         ipaddr.sin_addr = ip->ip_dst;
1509                         ia = (struct in_ifaddr *)
1510                                 ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1511                         if (ia == NULL) {
1512                                 if (opt == IPOPT_SSRR) {
1513                                         type = ICMP_UNREACH;
1514                                         code = ICMP_UNREACH_SRCFAIL;
1515                                         goto bad;
1516                                 }
1517                                 if (!ip_dosourceroute)
1518                                         goto nosourcerouting;
1519                                 /*
1520                                  * Loose routing, and not at next destination
1521                                  * yet; nothing to do except forward.
1522                                  */
1523                                 break;
1524                         }
1525                         off--;                  /* 0 origin */
1526                         if (off > optlen - (int)sizeof(struct in_addr)) {
1527                                 /*
1528                                  * End of source route.  Should be for us.
1529                                  */
1530                                 if (!ip_acceptsourceroute)
1531                                         goto nosourcerouting;
1532                                 save_rte(cp, ip->ip_src);
1533                                 break;
1534                         }
1535                         if (ipstealth)
1536                                 goto dropit;
1537                         if (!ip_dosourceroute) {
1538                                 if (ipforwarding) {
1539                                         char buf[sizeof "aaa.bbb.ccc.ddd"];
1540
1541                                         /*
1542                                          * Acting as a router, so generate ICMP
1543                                          */
1544 nosourcerouting:
1545                                         strcpy(buf, inet_ntoa(ip->ip_dst));
1546                                         log(LOG_WARNING,
1547                                             "attempted source route from %s to %s\n",
1548                                             inet_ntoa(ip->ip_src), buf);
1549                                         type = ICMP_UNREACH;
1550                                         code = ICMP_UNREACH_SRCFAIL;
1551                                         goto bad;
1552                                 } else {
1553                                         /*
1554                                          * Not acting as a router,
1555                                          * so silently drop.
1556                                          */
1557 dropit:
1558                                         ipstat.ips_cantforward++;
1559                                         m_freem(m);
1560                                         return (1);
1561                                 }
1562                         }
1563
1564                         /*
1565                          * locate outgoing interface
1566                          */
1567                         memcpy(&ipaddr.sin_addr, cp + off,
1568                             sizeof ipaddr.sin_addr);
1569
1570                         if (opt == IPOPT_SSRR) {
1571 #define INA     struct in_ifaddr *
1572 #define SA      struct sockaddr *
1573                                 if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr))
1574                                                                         == NULL)
1575                                         ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1576                         } else
1577                                 ia = ip_rtaddr(ipaddr.sin_addr, &ipforward_rt);
1578                         if (ia == NULL) {
1579                                 type = ICMP_UNREACH;
1580                                 code = ICMP_UNREACH_SRCFAIL;
1581                                 goto bad;
1582                         }
1583                         ip->ip_dst = ipaddr.sin_addr;
1584                         memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1585                             sizeof(struct in_addr));
1586                         cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1587                         /*
1588                          * Let ip_intr's mcast routing check handle mcast pkts
1589                          */
1590                         forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1591                         break;
1592
1593                 case IPOPT_RR:
1594                         if (ipstealth && pass == 0)
1595                                 break;
1596                         if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1597                                 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1598                                 goto bad;
1599                         }
1600                         if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1601                                 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1602                                 goto bad;
1603                         }
1604                         /*
1605                          * If no space remains, ignore.
1606                          */
1607                         off--;                  /* 0 origin */
1608                         if (off > optlen - (int)sizeof(struct in_addr))
1609                                 break;
1610                         memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1611                             sizeof ipaddr.sin_addr);
1612                         /*
1613                          * locate outgoing interface; if we're the destination,
1614                          * use the incoming interface (should be same).
1615                          */
1616                         if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1617                             (ia = ip_rtaddr(ipaddr.sin_addr, &ipforward_rt))
1618                                                                      == NULL) {
1619                                 type = ICMP_UNREACH;
1620                                 code = ICMP_UNREACH_HOST;
1621                                 goto bad;
1622                         }
1623                         memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1624                             sizeof(struct in_addr));
1625                         cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1626                         break;
1627
1628                 case IPOPT_TS:
1629                         if (ipstealth && pass == 0)
1630                                 break;
1631                         code = cp - (u_char *)ip;
1632                         if (optlen < 4 || optlen > 40) {
1633                                 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1634                                 goto bad;
1635                         }
1636                         if ((off = cp[IPOPT_OFFSET]) < 5) {
1637                                 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1638                                 goto bad;
1639                         }
1640                         if (off > optlen - (int)sizeof(int32_t)) {
1641                                 cp[IPOPT_OFFSET + 1] += (1 << 4);
1642                                 if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1643                                         code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1644                                         goto bad;
1645                                 }
1646                                 break;
1647                         }
1648                         off--;                          /* 0 origin */
1649                         sin = (struct in_addr *)(cp + off);
1650                         switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1651
1652                         case IPOPT_TS_TSONLY:
1653                                 break;
1654
1655                         case IPOPT_TS_TSANDADDR:
1656                                 if (off + sizeof(n_time) +
1657                                     sizeof(struct in_addr) > optlen) {
1658                                         code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1659                                         goto bad;
1660                                 }
1661                                 ipaddr.sin_addr = dst;
1662                                 ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1663                                                             m->m_pkthdr.rcvif);
1664                                 if (ia == NULL)
1665                                         continue;
1666                                 memcpy(sin, &IA_SIN(ia)->sin_addr,
1667                                     sizeof(struct in_addr));
1668                                 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1669                                 off += sizeof(struct in_addr);
1670                                 break;
1671
1672                         case IPOPT_TS_PRESPEC:
1673                                 if (off + sizeof(n_time) +
1674                                     sizeof(struct in_addr) > optlen) {
1675                                         code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1676                                         goto bad;
1677                                 }
1678                                 memcpy(&ipaddr.sin_addr, sin,
1679                                     sizeof(struct in_addr));
1680                                 if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1681                                         continue;
1682                                 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1683                                 off += sizeof(struct in_addr);
1684                                 break;
1685
1686                         default:
1687                                 code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1688                                 goto bad;
1689                         }
1690                         ntime = iptime();
1691                         memcpy(cp + off, &ntime, sizeof(n_time));
1692                         cp[IPOPT_OFFSET] += sizeof(n_time);
1693                 }
1694         }
1695         if (forward && ipforwarding) {
1696                 ip_forward(m, TRUE, next_hop);
1697                 return (1);
1698         }
1699         return (0);
1700 bad:
1701         icmp_error(m, type, code, 0, NULL);
1702         ipstat.ips_badoptions++;
1703         return (1);
1704 }
1705
1706 /*
1707  * Given address of next destination (final or next hop),
1708  * return internet address info of interface to be used to get there.
1709  */
1710 struct in_ifaddr *
1711 ip_rtaddr(struct in_addr dst, struct route *ro)
1712 {
1713         struct sockaddr_in *sin;
1714
1715         sin = (struct sockaddr_in *)&ro->ro_dst;
1716
1717         if (ro->ro_rt == NULL || dst.s_addr != sin->sin_addr.s_addr) {
1718                 if (ro->ro_rt != NULL) {
1719                         RTFREE(ro->ro_rt);
1720                         ro->ro_rt = NULL;
1721                 }
1722                 sin->sin_family = AF_INET;
1723                 sin->sin_len = sizeof *sin;
1724                 sin->sin_addr = dst;
1725                 rtalloc_ign(ro, RTF_PRCLONING);
1726         }
1727
1728         if (ro->ro_rt == NULL)
1729                 return (NULL);
1730
1731         return (ifatoia(ro->ro_rt->rt_ifa));
1732 }
1733
1734 /*
1735  * Save incoming source route for use in replies,
1736  * to be picked up later by ip_srcroute if the receiver is interested.
1737  */
1738 void
1739 save_rte(u_char *option, struct in_addr dst)
1740 {
1741         unsigned olen;
1742
1743         olen = option[IPOPT_OLEN];
1744 #ifdef DIAGNOSTIC
1745         if (ipprintfs)
1746                 printf("save_rte: olen %d\n", olen);
1747 #endif
1748         if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1749                 return;
1750         bcopy(option, ip_srcrt.srcopt, olen);
1751         ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1752         ip_srcrt.dst = dst;
1753 }
1754
1755 /*
1756  * Retrieve incoming source route for use in replies,
1757  * in the same form used by setsockopt.
1758  * The first hop is placed before the options, will be removed later.
1759  */
1760 struct mbuf *
1761 ip_srcroute(void)
1762 {
1763         struct in_addr *p, *q;
1764         struct mbuf *m;
1765
1766         if (ip_nhops == 0)
1767                 return (NULL);
1768         m = m_get(MB_DONTWAIT, MT_HEADER);
1769         if (m == NULL)
1770                 return (NULL);
1771
1772 #define OPTSIZ  (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1773
1774         /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1775         m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1776             OPTSIZ;
1777 #ifdef DIAGNOSTIC
1778         if (ipprintfs)
1779                 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1780 #endif
1781
1782         /*
1783          * First save first hop for return route
1784          */
1785         p = &ip_srcrt.route[ip_nhops - 1];
1786         *(mtod(m, struct in_addr *)) = *p--;
1787 #ifdef DIAGNOSTIC
1788         if (ipprintfs)
1789                 printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1790 #endif
1791
1792         /*
1793          * Copy option fields and padding (nop) to mbuf.
1794          */
1795         ip_srcrt.nop = IPOPT_NOP;
1796         ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1797         memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &ip_srcrt.nop,
1798             OPTSIZ);
1799         q = (struct in_addr *)(mtod(m, caddr_t) +
1800             sizeof(struct in_addr) + OPTSIZ);
1801 #undef OPTSIZ
1802         /*
1803          * Record return path as an IP source route,
1804          * reversing the path (pointers are now aligned).
1805          */
1806         while (p >= ip_srcrt.route) {
1807 #ifdef DIAGNOSTIC
1808                 if (ipprintfs)
1809                         printf(" %x", ntohl(q->s_addr));
1810 #endif
1811                 *q++ = *p--;
1812         }
1813         /*
1814          * Last hop goes to final destination.
1815          */
1816         *q = ip_srcrt.dst;
1817 #ifdef DIAGNOSTIC
1818         if (ipprintfs)
1819                 printf(" %x\n", ntohl(q->s_addr));
1820 #endif
1821         return (m);
1822 }
1823
1824 /*
1825  * Strip out IP options.
1826  */
1827 void
1828 ip_stripoptions(struct mbuf *m)
1829 {
1830         int datalen;
1831         struct ip *ip = mtod(m, struct ip *);
1832         caddr_t opts;
1833         int optlen;
1834
1835         optlen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1836         opts = (caddr_t)(ip + 1);
1837         datalen = m->m_len - (sizeof(struct ip) + optlen);
1838         bcopy(opts + optlen, opts, datalen);
1839         m->m_len -= optlen;
1840         if (m->m_flags & M_PKTHDR)
1841                 m->m_pkthdr.len -= optlen;
1842         ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1843 }
1844
1845 u_char inetctlerrmap[PRC_NCMDS] = {
1846         0,              0,              0,              0,
1847         0,              EMSGSIZE,       EHOSTDOWN,      EHOSTUNREACH,
1848         EHOSTUNREACH,   EHOSTUNREACH,   ECONNREFUSED,   ECONNREFUSED,
1849         EMSGSIZE,       EHOSTUNREACH,   0,              0,
1850         0,              0,              0,              0,
1851         ENOPROTOOPT,    ECONNREFUSED
1852 };
1853
1854 /*
1855  * Forward a packet.  If some error occurs return the sender
1856  * an icmp packet.  Note we can't always generate a meaningful
1857  * icmp message because icmp doesn't have a large enough repertoire
1858  * of codes and types.
1859  *
1860  * If not forwarding, just drop the packet.  This could be confusing
1861  * if ipforwarding was zero but some routing protocol was advancing
1862  * us as a gateway to somewhere.  However, we must let the routing
1863  * protocol deal with that.
1864  *
1865  * The using_srcrt parameter indicates whether the packet is being forwarded
1866  * via a source route.
1867  */
1868 static void
1869 ip_forward(struct mbuf *m, boolean_t using_srcrt, struct sockaddr_in *next_hop)
1870 {
1871         struct ip *ip = mtod(m, struct ip *);
1872         struct sockaddr_in *ipforward_rtaddr;
1873         struct rtentry *rt;
1874         int error, type = 0, code = 0;
1875         struct mbuf *mcopy;
1876         n_long dest;
1877         struct in_addr pkt_dst;
1878         struct ifnet *destifp;
1879         struct m_hdr tag;
1880 #if defined(IPSEC) || defined(FAST_IPSEC)
1881         struct ifnet dummyifp;
1882 #endif
1883
1884         dest = INADDR_ANY;
1885         /*
1886          * Cache the destination address of the packet; this may be
1887          * changed by use of 'ipfw fwd'.
1888          */
1889         pkt_dst = (next_hop != NULL) ? next_hop->sin_addr : ip->ip_dst;
1890
1891 #ifdef DIAGNOSTIC
1892         if (ipprintfs)
1893                 printf("forward: src %x dst %x ttl %x\n",
1894                        ip->ip_src.s_addr, pkt_dst.s_addr, ip->ip_ttl);
1895 #endif
1896
1897         if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
1898                 ipstat.ips_cantforward++;
1899                 m_freem(m);
1900                 return;
1901         }
1902         if (!ipstealth && ip->ip_ttl <= IPTTLDEC) {
1903                 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, NULL);
1904                 return;
1905         }
1906
1907         ipforward_rtaddr = (struct sockaddr_in *) &ipforward_rt.ro_dst;
1908         if (ipforward_rt.ro_rt == NULL ||
1909             ipforward_rtaddr->sin_addr.s_addr != pkt_dst.s_addr) {
1910                 if (ipforward_rt.ro_rt != NULL) {
1911                         RTFREE(ipforward_rt.ro_rt);
1912                         ipforward_rt.ro_rt = NULL;
1913                 }
1914                 ipforward_rtaddr->sin_family = AF_INET;
1915                 ipforward_rtaddr->sin_len = sizeof(struct sockaddr_in);
1916                 ipforward_rtaddr->sin_addr = pkt_dst;
1917                 rtalloc_ign(&ipforward_rt, RTF_PRCLONING);
1918                 if (ipforward_rt.ro_rt == NULL) {
1919                         icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest,
1920                                    NULL);
1921                         return;
1922                 }
1923         }
1924         rt = ipforward_rt.ro_rt;
1925
1926         /*
1927          * Save the IP header and at most 8 bytes of the payload,
1928          * in case we need to generate an ICMP message to the src.
1929          *
1930          * XXX this can be optimized a lot by saving the data in a local
1931          * buffer on the stack (72 bytes at most), and only allocating the
1932          * mbuf if really necessary. The vast majority of the packets
1933          * are forwarded without having to send an ICMP back (either
1934          * because unnecessary, or because rate limited), so we are
1935          * really we are wasting a lot of work here.
1936          *
1937          * We don't use m_copy() because it might return a reference
1938          * to a shared cluster. Both this function and ip_output()
1939          * assume exclusive access to the IP header in `m', so any
1940          * data in a cluster may change before we reach icmp_error().
1941          */
1942         MGETHDR(mcopy, MB_DONTWAIT, m->m_type);
1943         if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, MB_DONTWAIT)) {
1944                 /*
1945                  * It's probably ok if the pkthdr dup fails (because
1946                  * the deep copy of the tag chain failed), but for now
1947                  * be conservative and just discard the copy since
1948                  * code below may some day want the tags.
1949                  */
1950                 m_free(mcopy);
1951                 mcopy = NULL;
1952         }
1953         if (mcopy != NULL) {
1954                 mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1955                     (int)ip->ip_len);
1956                 mcopy->m_pkthdr.len = mcopy->m_len;
1957                 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1958         }
1959
1960         if (!ipstealth)
1961                 ip->ip_ttl -= IPTTLDEC;
1962
1963         /*
1964          * If forwarding packet using same interface that it came in on,
1965          * perhaps should send a redirect to sender to shortcut a hop.
1966          * Only send redirect if source is sending directly to us,
1967          * and if packet was not source routed (or has any options).
1968          * Also, don't send redirect if forwarding using a default route
1969          * or a route modified by a redirect.
1970          */
1971         if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1972             !(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
1973             satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
1974             ipsendredirects && !using_srcrt && next_hop == NULL) {
1975                 u_long src = ntohl(ip->ip_src.s_addr);
1976                 struct in_ifaddr *rt_ifa = (struct in_ifaddr *)rt->rt_ifa;
1977
1978                 if (rt_ifa != NULL &&
1979                     (src & rt_ifa->ia_subnetmask) == rt_ifa->ia_subnet) {
1980                         if (rt->rt_flags & RTF_GATEWAY)
1981                                 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1982                         else
1983                                 dest = pkt_dst.s_addr;
1984                         /*
1985                          * Router requirements says to only send
1986                          * host redirects.
1987                          */
1988                         type = ICMP_REDIRECT;
1989                         code = ICMP_REDIRECT_HOST;
1990 #ifdef DIAGNOSTIC
1991                         if (ipprintfs)
1992                                 printf("redirect (%d) to %x\n", code, dest);
1993 #endif
1994                 }
1995         }
1996
1997         if (next_hop != NULL) {
1998                 /* Pass IPFORWARD info if available */
1999                 tag.mh_type = MT_TAG;
2000                 tag.mh_flags = PACKET_TAG_IPFORWARD;
2001                 tag.mh_data = (caddr_t)next_hop;
2002                 tag.mh_next = m;
2003                 m = (struct mbuf *)&tag;
2004         }
2005
2006         error = ip_output(m, NULL, &ipforward_rt, IP_FORWARDING, NULL, NULL);
2007         if (error == 0) {
2008                 ipstat.ips_forward++;
2009                 if (type == 0) {
2010                         if (mcopy) {
2011                                 ipflow_create(&ipforward_rt, mcopy);
2012                                 m_freem(mcopy);
2013                         }
2014                         return;         /* most common case */
2015                 } else {
2016                         ipstat.ips_redirectsent++;
2017                 }
2018         } else {
2019                 ipstat.ips_cantforward++;
2020         }
2021
2022         if (mcopy == NULL)
2023                 return;
2024
2025         /*
2026          * Send ICMP message.
2027          */
2028         destifp = NULL;
2029
2030         switch (error) {
2031
2032         case 0:                         /* forwarded, but need redirect */
2033                 /* type, code set above */
2034                 break;
2035
2036         case ENETUNREACH:               /* shouldn't happen, checked above */
2037         case EHOSTUNREACH:
2038         case ENETDOWN:
2039         case EHOSTDOWN:
2040         default:
2041                 type = ICMP_UNREACH;
2042                 code = ICMP_UNREACH_HOST;
2043                 break;
2044
2045         case EMSGSIZE:
2046                 type = ICMP_UNREACH;
2047                 code = ICMP_UNREACH_NEEDFRAG;
2048 #ifdef IPSEC
2049                 /*
2050                  * If the packet is routed over IPsec tunnel, tell the
2051                  * originator the tunnel MTU.
2052                  *      tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2053                  * XXX quickhack!!!
2054                  */
2055                 if (ipforward_rt.ro_rt != NULL) {
2056                         struct secpolicy *sp = NULL;
2057                         int ipsecerror;
2058                         int ipsechdr;
2059                         struct route *ro;
2060
2061                         sp = ipsec4_getpolicybyaddr(mcopy,
2062                                                     IPSEC_DIR_OUTBOUND,
2063                                                     IP_FORWARDING,
2064                                                     &ipsecerror);
2065
2066                         if (sp == NULL)
2067                                 destifp = ipforward_rt.ro_rt->rt_ifp;
2068                         else {
2069                                 /* count IPsec header size */
2070                                 ipsechdr = ipsec4_hdrsiz(mcopy,
2071                                                          IPSEC_DIR_OUTBOUND,
2072                                                          NULL);
2073
2074                                 /*
2075                                  * find the correct route for outer IPv4
2076                                  * header, compute tunnel MTU.
2077                                  *
2078                                  * XXX BUG ALERT
2079                                  * The "dummyifp" code relies upon the fact
2080                                  * that icmp_error() touches only ifp->if_mtu.
2081                                  */
2082                                 /*XXX*/
2083                                 destifp = NULL;
2084                                 if (sp->req != NULL && sp->req->sav != NULL &&
2085                                     sp->req->sav->sah != NULL) {
2086                                         ro = &sp->req->sav->sah->sa_route;
2087                                         if (ro->ro_rt != NULL &&
2088                                             ro->ro_rt->rt_ifp != NULL) {
2089                                                 dummyifp.if_mtu =
2090                                                     ro->ro_rt->rt_ifp->if_mtu;
2091                                                 dummyifp.if_mtu -= ipsechdr;
2092                                                 destifp = &dummyifp;
2093                                         }
2094                                 }
2095
2096                                 key_freesp(sp);
2097                         }
2098                 }
2099 #elif FAST_IPSEC
2100                 /*
2101                  * If the packet is routed over IPsec tunnel, tell the
2102                  * originator the tunnel MTU.
2103                  *      tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2104                  * XXX quickhack!!!
2105                  */
2106                 if (ipforward_rt.ro_rt != NULL) {
2107                         struct secpolicy *sp = NULL;
2108                         int ipsecerror;
2109                         int ipsechdr;
2110                         struct route *ro;
2111
2112                         sp = ipsec_getpolicybyaddr(mcopy,
2113                                                    IPSEC_DIR_OUTBOUND,
2114                                                    IP_FORWARDING,
2115                                                    &ipsecerror);
2116
2117                         if (sp == NULL)
2118                                 destifp = ipforward_rt.ro_rt->rt_ifp;
2119                         else {
2120                                 /* count IPsec header size */
2121                                 ipsechdr = ipsec4_hdrsiz(mcopy,
2122                                                          IPSEC_DIR_OUTBOUND,
2123                                                          NULL);
2124
2125                                 /*
2126                                  * find the correct route for outer IPv4
2127                                  * header, compute tunnel MTU.
2128                                  *
2129                                  * XXX BUG ALERT
2130                                  * The "dummyifp" code relies upon the fact
2131                                  * that icmp_error() touches only ifp->if_mtu.
2132                                  */
2133                                 /*XXX*/
2134                                 destifp = NULL;
2135                                 if (sp->req != NULL &&
2136                                     sp->req->sav != NULL &&
2137                                     sp->req->sav->sah != NULL) {
2138                                         ro = &sp->req->sav->sah->sa_route;
2139                                         if (ro->ro_rt != NULL &&
2140                                             ro->ro_rt->rt_ifp != NULL) {
2141                                                 dummyifp.if_mtu =
2142                                                     ro->ro_rt->rt_ifp->if_mtu;
2143                                                 dummyifp.if_mtu -= ipsechdr;
2144                                                 destifp = &dummyifp;
2145                                         }
2146                                 }
2147
2148                                 KEY_FREESP(&sp);
2149                         }
2150                 }
2151 #else /* !IPSEC && !FAST_IPSEC */
2152                 if (ipforward_rt.ro_rt != NULL)
2153                         destifp = ipforward_rt.ro_rt->rt_ifp;
2154 #endif /*IPSEC*/
2155                 ipstat.ips_cantfrag++;
2156                 break;
2157
2158         case ENOBUFS:
2159                 /*
2160                  * A router should not generate ICMP_SOURCEQUENCH as
2161                  * required in RFC1812 Requirements for IP Version 4 Routers.
2162                  * Source quench could be a big problem under DoS attacks,
2163                  * or if the underlying interface is rate-limited.
2164                  * Those who need source quench packets may re-enable them
2165                  * via the net.inet.ip.sendsourcequench sysctl.
2166                  */
2167                 if (!ip_sendsourcequench) {
2168                         m_freem(mcopy);
2169                         return;
2170                 } else {
2171                         type = ICMP_SOURCEQUENCH;
2172                         code = 0;
2173                 }
2174                 break;
2175
2176         case EACCES:                    /* ipfw denied packet */
2177                 m_freem(mcopy);
2178                 return;
2179         }
2180         icmp_error(mcopy, type, code, dest, destifp);
2181 }
2182
2183 void
2184 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2185                struct mbuf *m)
2186 {
2187         if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2188                 struct timeval tv;
2189
2190                 microtime(&tv);
2191                 *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2192                     SCM_TIMESTAMP, SOL_SOCKET);
2193                 if (*mp)
2194                         mp = &(*mp)->m_next;
2195         }
2196         if (inp->inp_flags & INP_RECVDSTADDR) {
2197                 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2198                     sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2199                 if (*mp)
2200                         mp = &(*mp)->m_next;
2201         }
2202 #ifdef notyet
2203         /* XXX
2204          * Moving these out of udp_input() made them even more broken
2205          * than they already were.
2206          */
2207         /* options were tossed already */
2208         if (inp->inp_flags & INP_RECVOPTS) {
2209                 *mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2210                     sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2211                 if (*mp)
2212                         mp = &(*mp)->m_next;
2213         }
2214         /* ip_srcroute doesn't do what we want here, need to fix */
2215         if (inp->inp_flags & INP_RECVRETOPTS) {
2216                 *mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2217                     sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2218                 if (*mp)
2219                         mp = &(*mp)->m_next;
2220         }
2221 #endif
2222         if (inp->inp_flags & INP_RECVIF) {
2223                 struct ifnet *ifp;
2224                 struct sdlbuf {
2225                         struct sockaddr_dl sdl;
2226                         u_char  pad[32];
2227                 } sdlbuf;
2228                 struct sockaddr_dl *sdp;
2229                 struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2230
2231                 if (((ifp = m->m_pkthdr.rcvif)) &&
2232                     ((ifp->if_index != 0) && (ifp->if_index <= if_index))) {
2233                         sdp = IF_LLSOCKADDR(ifp);
2234                         /*
2235                          * Change our mind and don't try copy.
2236                          */
2237                         if ((sdp->sdl_family != AF_LINK) ||
2238                             (sdp->sdl_len > sizeof(sdlbuf))) {
2239                                 goto makedummy;
2240                         }
2241                         bcopy(sdp, sdl2, sdp->sdl_len);
2242                 } else {
2243 makedummy:
2244                         sdl2->sdl_len =
2245                             offsetof(struct sockaddr_dl, sdl_data[0]);
2246                         sdl2->sdl_family = AF_LINK;
2247                         sdl2->sdl_index = 0;
2248                         sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2249                 }
2250                 *mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2251                         IP_RECVIF, IPPROTO_IP);
2252                 if (*mp)
2253                         mp = &(*mp)->m_next;
2254         }
2255 }
2256
2257 /*
2258  * XXX these routines are called from the upper part of the kernel.
2259  *
2260  * They could also be moved to ip_mroute.c, since all the RSVP
2261  *  handling is done there already.
2262  */
2263 int
2264 ip_rsvp_init(struct socket *so)
2265 {
2266         if (so->so_type != SOCK_RAW ||
2267             so->so_proto->pr_protocol != IPPROTO_RSVP)
2268                 return EOPNOTSUPP;
2269
2270         if (ip_rsvpd != NULL)
2271                 return EADDRINUSE;
2272
2273         ip_rsvpd = so;
2274         /*
2275          * This may seem silly, but we need to be sure we don't over-increment
2276          * the RSVP counter, in case something slips up.
2277          */
2278         if (!ip_rsvp_on) {
2279                 ip_rsvp_on = 1;
2280                 rsvp_on++;
2281         }
2282
2283         return 0;
2284 }
2285
2286 int
2287 ip_rsvp_done(void)
2288 {
2289         ip_rsvpd = NULL;
2290         /*
2291          * This may seem silly, but we need to be sure we don't over-decrement
2292          * the RSVP counter, in case something slips up.
2293          */
2294         if (ip_rsvp_on) {
2295                 ip_rsvp_on = 0;
2296                 rsvp_on--;
2297         }
2298         return 0;
2299 }
2300
2301 void
2302 rsvp_input(struct mbuf *m, ...) /* XXX must fixup manually */
2303 {
2304         int off, proto;
2305         __va_list ap;
2306
2307         __va_start(ap, m);
2308         off = __va_arg(ap, int);
2309         proto = __va_arg(ap, int);
2310         __va_end(ap);
2311
2312         if (rsvp_input_p) { /* call the real one if loaded */
2313                 rsvp_input_p(m, off, proto);
2314                 return;
2315         }
2316
2317         /* Can still get packets with rsvp_on = 0 if there is a local member
2318          * of the group to which the RSVP packet is addressed.  But in this
2319          * case we want to throw the packet away.
2320          */
2321
2322         if (!rsvp_on) {
2323                 m_freem(m);
2324                 return;
2325         }
2326
2327         if (ip_rsvpd != NULL) {
2328                 rip_input(m, off, proto);
2329                 return;
2330         }
2331         /* Drop the packet */
2332         m_freem(m);
2333 }