Merge branch 'vendor/GCC50'
[dragonfly.git] / sys / dev / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include "i915_drv.h"
29 #include "intel_drv.h"
30 #include <linux/module.h>
31 #include <machine/clock.h>
32
33 #define FORCEWAKE_ACK_TIMEOUT_MS 2
34
35 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
36  * framebuffer contents in-memory, aiming at reducing the required bandwidth
37  * during in-memory transfers and, therefore, reduce the power packet.
38  *
39  * The benefits of FBC are mostly visible with solid backgrounds and
40  * variation-less patterns.
41  *
42  * FBC-related functionality can be enabled by the means of the
43  * i915.i915_enable_fbc parameter
44  */
45
46 static bool intel_crtc_active(struct drm_crtc *crtc)
47 {
48         /* Be paranoid as we can arrive here with only partial
49          * state retrieved from the hardware during setup.
50          */
51         return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
52 }
53
54 static void i8xx_disable_fbc(struct drm_device *dev)
55 {
56         struct drm_i915_private *dev_priv = dev->dev_private;
57         u32 fbc_ctl;
58
59         /* Disable compression */
60         fbc_ctl = I915_READ(FBC_CONTROL);
61         if ((fbc_ctl & FBC_CTL_EN) == 0)
62                 return;
63
64         fbc_ctl &= ~FBC_CTL_EN;
65         I915_WRITE(FBC_CONTROL, fbc_ctl);
66
67         /* Wait for compressing bit to clear */
68         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
69                 DRM_DEBUG_KMS("FBC idle timed out\n");
70                 return;
71         }
72
73         DRM_DEBUG_KMS("disabled FBC\n");
74 }
75
76 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
77 {
78         struct drm_device *dev = crtc->dev;
79         struct drm_i915_private *dev_priv = dev->dev_private;
80         struct drm_framebuffer *fb = crtc->fb;
81         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
82         struct drm_i915_gem_object *obj = intel_fb->obj;
83         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
84         int cfb_pitch;
85         int plane, i;
86         u32 fbc_ctl, fbc_ctl2;
87
88         cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
89         if (fb->pitches[0] < cfb_pitch)
90                 cfb_pitch = fb->pitches[0];
91
92         /* FBC_CTL wants 64B units */
93         cfb_pitch = (cfb_pitch / 64) - 1;
94         plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
95
96         /* Clear old tags */
97         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
98                 I915_WRITE(FBC_TAG + (i * 4), 0);
99
100         /* Set it up... */
101         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
102         fbc_ctl2 |= plane;
103         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
104         I915_WRITE(FBC_FENCE_OFF, crtc->y);
105
106         /* enable it... */
107         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
108         if (IS_I945GM(dev))
109                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
110         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
111         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
112         fbc_ctl |= obj->fence_reg;
113         I915_WRITE(FBC_CONTROL, fbc_ctl);
114
115         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
116                       cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
117 }
118
119 static bool i8xx_fbc_enabled(struct drm_device *dev)
120 {
121         struct drm_i915_private *dev_priv = dev->dev_private;
122
123         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
124 }
125
126 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
127 {
128         struct drm_device *dev = crtc->dev;
129         struct drm_i915_private *dev_priv = dev->dev_private;
130         struct drm_framebuffer *fb = crtc->fb;
131         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
132         struct drm_i915_gem_object *obj = intel_fb->obj;
133         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
134         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
135         unsigned long stall_watermark = 200;
136         u32 dpfc_ctl;
137
138         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
139         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
140         I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
141
142         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
143                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
144                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
145         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
146
147         /* enable it... */
148         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
149
150         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
151 }
152
153 static void g4x_disable_fbc(struct drm_device *dev)
154 {
155         struct drm_i915_private *dev_priv = dev->dev_private;
156         u32 dpfc_ctl;
157
158         /* Disable compression */
159         dpfc_ctl = I915_READ(DPFC_CONTROL);
160         if (dpfc_ctl & DPFC_CTL_EN) {
161                 dpfc_ctl &= ~DPFC_CTL_EN;
162                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
163
164                 DRM_DEBUG_KMS("disabled FBC\n");
165         }
166 }
167
168 static bool g4x_fbc_enabled(struct drm_device *dev)
169 {
170         struct drm_i915_private *dev_priv = dev->dev_private;
171
172         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
173 }
174
175 static void sandybridge_blit_fbc_update(struct drm_device *dev)
176 {
177         struct drm_i915_private *dev_priv = dev->dev_private;
178         u32 blt_ecoskpd;
179
180         /* Make sure blitter notifies FBC of writes */
181         gen6_gt_force_wake_get(dev_priv);
182         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
183         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
184                 GEN6_BLITTER_LOCK_SHIFT;
185         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
186         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
187         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
188         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
189                          GEN6_BLITTER_LOCK_SHIFT);
190         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
191         POSTING_READ(GEN6_BLITTER_ECOSKPD);
192         gen6_gt_force_wake_put(dev_priv);
193 }
194
195 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
196 {
197         struct drm_device *dev = crtc->dev;
198         struct drm_i915_private *dev_priv = dev->dev_private;
199         struct drm_framebuffer *fb = crtc->fb;
200         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
201         struct drm_i915_gem_object *obj = intel_fb->obj;
202         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
203         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
204         unsigned long stall_watermark = 200;
205         u32 dpfc_ctl;
206
207         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
208         dpfc_ctl &= DPFC_RESERVED;
209         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
210         /* Set persistent mode for front-buffer rendering, ala X. */
211         dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
212         dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
213         I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
214
215         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
216                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
217                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
218         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
219         I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
220         /* enable it... */
221         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
222
223         if (IS_GEN6(dev)) {
224                 I915_WRITE(SNB_DPFC_CTL_SA,
225                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
226                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
227                 sandybridge_blit_fbc_update(dev);
228         }
229
230         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
231 }
232
233 static void ironlake_disable_fbc(struct drm_device *dev)
234 {
235         struct drm_i915_private *dev_priv = dev->dev_private;
236         u32 dpfc_ctl;
237
238         /* Disable compression */
239         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
240         if (dpfc_ctl & DPFC_CTL_EN) {
241                 dpfc_ctl &= ~DPFC_CTL_EN;
242                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
243
244                 if (IS_IVYBRIDGE(dev))
245                         /* WaFbcDisableDpfcClockGating:ivb */
246                         I915_WRITE(ILK_DSPCLK_GATE_D,
247                                    I915_READ(ILK_DSPCLK_GATE_D) &
248                                    ~ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
249
250                 if (IS_HASWELL(dev))
251                         /* WaFbcDisableDpfcClockGating:hsw */
252                         I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
253                                    I915_READ(HSW_CLKGATE_DISABLE_PART_1) &
254                                    ~HSW_DPFC_GATING_DISABLE);
255
256                 DRM_DEBUG_KMS("disabled FBC\n");
257         }
258 }
259
260 static bool ironlake_fbc_enabled(struct drm_device *dev)
261 {
262         struct drm_i915_private *dev_priv = dev->dev_private;
263
264         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
265 }
266
267 static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
268 {
269         struct drm_device *dev = crtc->dev;
270         struct drm_i915_private *dev_priv = dev->dev_private;
271         struct drm_framebuffer *fb = crtc->fb;
272         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
273         struct drm_i915_gem_object *obj = intel_fb->obj;
274         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
275
276         I915_WRITE(IVB_FBC_RT_BASE, obj->gtt_offset);
277
278         I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
279                    IVB_DPFC_CTL_FENCE_EN |
280                    intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
281
282         if (IS_IVYBRIDGE(dev)) {
283                 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
284                 I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
285                 /* WaFbcDisableDpfcClockGating:ivb */
286                 I915_WRITE(ILK_DSPCLK_GATE_D,
287                            I915_READ(ILK_DSPCLK_GATE_D) |
288                            ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
289         } else {
290                 /* WaFbcAsynchFlipDisableFbcQueue:hsw */
291                 I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
292                            HSW_BYPASS_FBC_QUEUE);
293                 /* WaFbcDisableDpfcClockGating:hsw */
294                 I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
295                            I915_READ(HSW_CLKGATE_DISABLE_PART_1) |
296                            HSW_DPFC_GATING_DISABLE);
297         }
298
299         I915_WRITE(SNB_DPFC_CTL_SA,
300                    SNB_CPU_FENCE_ENABLE | obj->fence_reg);
301         I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
302
303         sandybridge_blit_fbc_update(dev);
304
305         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
306 }
307
308 bool intel_fbc_enabled(struct drm_device *dev)
309 {
310         struct drm_i915_private *dev_priv = dev->dev_private;
311
312         if (!dev_priv->display.fbc_enabled)
313                 return false;
314
315         return dev_priv->display.fbc_enabled(dev);
316 }
317
318 static void intel_fbc_work_fn(struct work_struct *__work)
319 {
320         struct intel_fbc_work *work =
321                 container_of(to_delayed_work(__work),
322                              struct intel_fbc_work, work);
323         struct drm_device *dev = work->crtc->dev;
324         struct drm_i915_private *dev_priv = dev->dev_private;
325
326         mutex_lock(&dev->struct_mutex);
327         if (work == dev_priv->fbc_work) {
328                 /* Double check that we haven't switched fb without cancelling
329                  * the prior work.
330                  */
331                 if (work->crtc->fb == work->fb) {
332                         dev_priv->display.enable_fbc(work->crtc,
333                                                      work->interval);
334
335                         dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
336                         dev_priv->cfb_fb = work->crtc->fb->base.id;
337                         dev_priv->cfb_y = work->crtc->y;
338                 }
339
340                 dev_priv->fbc_work = NULL;
341         }
342         mutex_unlock(&dev->struct_mutex);
343
344         kfree(work);
345 }
346
347 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
348 {
349         if (dev_priv->fbc_work == NULL)
350                 return;
351
352         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
353
354         /* Synchronisation is provided by struct_mutex and checking of
355          * dev_priv->fbc_work, so we can perform the cancellation
356          * entirely asynchronously.
357          */
358         if (cancel_delayed_work(&dev_priv->fbc_work->work))
359                 /* tasklet was killed before being run, clean up */
360                 kfree(dev_priv->fbc_work);
361
362         /* Mark the work as no longer wanted so that if it does
363          * wake-up (because the work was already running and waiting
364          * for our mutex), it will discover that is no longer
365          * necessary to run.
366          */
367         dev_priv->fbc_work = NULL;
368 }
369
370 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
371 {
372         struct intel_fbc_work *work;
373         struct drm_device *dev = crtc->dev;
374         struct drm_i915_private *dev_priv = dev->dev_private;
375
376         if (!dev_priv->display.enable_fbc)
377                 return;
378
379         intel_cancel_fbc_work(dev_priv);
380
381         work = kzalloc(sizeof *work, GFP_KERNEL);
382         if (work == NULL) {
383                 dev_priv->display.enable_fbc(crtc, interval);
384                 return;
385         }
386
387         work->crtc = crtc;
388         work->fb = crtc->fb;
389         work->interval = interval;
390         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
391
392         dev_priv->fbc_work = work;
393
394         DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
395
396         /* Delay the actual enabling to let pageflipping cease and the
397          * display to settle before starting the compression. Note that
398          * this delay also serves a second purpose: it allows for a
399          * vblank to pass after disabling the FBC before we attempt
400          * to modify the control registers.
401          *
402          * A more complicated solution would involve tracking vblanks
403          * following the termination of the page-flipping sequence
404          * and indeed performing the enable as a co-routine and not
405          * waiting synchronously upon the vblank.
406          */
407         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
408 }
409
410 void intel_disable_fbc(struct drm_device *dev)
411 {
412         struct drm_i915_private *dev_priv = dev->dev_private;
413
414         intel_cancel_fbc_work(dev_priv);
415
416         if (!dev_priv->display.disable_fbc)
417                 return;
418
419         dev_priv->display.disable_fbc(dev);
420         dev_priv->cfb_plane = -1;
421 }
422
423 /**
424  * intel_update_fbc - enable/disable FBC as needed
425  * @dev: the drm_device
426  *
427  * Set up the framebuffer compression hardware at mode set time.  We
428  * enable it if possible:
429  *   - plane A only (on pre-965)
430  *   - no pixel mulitply/line duplication
431  *   - no alpha buffer discard
432  *   - no dual wide
433  *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
434  *
435  * We can't assume that any compression will take place (worst case),
436  * so the compressed buffer has to be the same size as the uncompressed
437  * one.  It also must reside (along with the line length buffer) in
438  * stolen memory.
439  *
440  * We need to enable/disable FBC on a global basis.
441  */
442 void intel_update_fbc(struct drm_device *dev)
443 {
444         struct drm_i915_private *dev_priv = dev->dev_private;
445         struct drm_crtc *crtc = NULL, *tmp_crtc;
446         struct intel_crtc *intel_crtc;
447         struct drm_framebuffer *fb;
448         struct intel_framebuffer *intel_fb;
449         struct drm_i915_gem_object *obj;
450         int enable_fbc;
451         unsigned int max_hdisplay, max_vdisplay;
452
453         if (!i915_powersave)
454                 return;
455
456         if (!I915_HAS_FBC(dev))
457                 return;
458
459         /*
460          * If FBC is already on, we just have to verify that we can
461          * keep it that way...
462          * Need to disable if:
463          *   - more than one pipe is active
464          *   - changing FBC params (stride, fence, mode)
465          *   - new fb is too large to fit in compressed buffer
466          *   - going to an unsupported config (interlace, pixel multiply, etc.)
467          */
468         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
469                 if (intel_crtc_active(tmp_crtc) &&
470                     !to_intel_crtc(tmp_crtc)->primary_disabled) {
471                         if (crtc) {
472                                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
473                                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
474                                 goto out_disable;
475                         }
476                         crtc = tmp_crtc;
477                 }
478         }
479
480         if (!crtc || crtc->fb == NULL) {
481                 DRM_DEBUG_KMS("no output, disabling\n");
482                 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
483                 goto out_disable;
484         }
485
486         intel_crtc = to_intel_crtc(crtc);
487         fb = crtc->fb;
488         intel_fb = to_intel_framebuffer(fb);
489         obj = intel_fb->obj;
490
491         enable_fbc = i915_enable_fbc;
492         if (enable_fbc < 0) {
493                 DRM_DEBUG_KMS("fbc set to per-chip default\n");
494                 enable_fbc = 1;
495                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
496                         enable_fbc = 0;
497         }
498         if (!enable_fbc) {
499                 DRM_DEBUG_KMS("fbc disabled per module param\n");
500                 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
501                 goto out_disable;
502         }
503         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
504             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
505                 DRM_DEBUG_KMS("mode incompatible with compression, "
506                               "disabling\n");
507                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
508                 goto out_disable;
509         }
510
511         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
512                 max_hdisplay = 4096;
513                 max_vdisplay = 2048;
514         } else {
515                 max_hdisplay = 2048;
516                 max_vdisplay = 1536;
517         }
518         if ((crtc->mode.hdisplay > max_hdisplay) ||
519             (crtc->mode.vdisplay > max_vdisplay)) {
520                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
521                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
522                 goto out_disable;
523         }
524         if ((IS_I915GM(dev) || IS_I945GM(dev) || IS_HASWELL(dev)) &&
525             intel_crtc->plane != 0) {
526                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
527                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
528                 goto out_disable;
529         }
530
531         /* The use of a CPU fence is mandatory in order to detect writes
532          * by the CPU to the scanout and trigger updates to the FBC.
533          */
534         if (obj->tiling_mode != I915_TILING_X ||
535             obj->fence_reg == I915_FENCE_REG_NONE) {
536                 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
537                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
538                 goto out_disable;
539         }
540
541 #ifdef DDB
542         /* If the kernel debugger is active, always disable compression */
543         if (db_active)
544                 goto out_disable;
545 #endif
546
547         if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
548                 DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
549                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
550                 goto out_disable;
551         }
552
553         /* If the scanout has not changed, don't modify the FBC settings.
554          * Note that we make the fundamental assumption that the fb->obj
555          * cannot be unpinned (and have its GTT offset and fence revoked)
556          * without first being decoupled from the scanout and FBC disabled.
557          */
558         if (dev_priv->cfb_plane == intel_crtc->plane &&
559             dev_priv->cfb_fb == fb->base.id &&
560             dev_priv->cfb_y == crtc->y)
561                 return;
562
563         if (intel_fbc_enabled(dev)) {
564                 /* We update FBC along two paths, after changing fb/crtc
565                  * configuration (modeswitching) and after page-flipping
566                  * finishes. For the latter, we know that not only did
567                  * we disable the FBC at the start of the page-flip
568                  * sequence, but also more than one vblank has passed.
569                  *
570                  * For the former case of modeswitching, it is possible
571                  * to switch between two FBC valid configurations
572                  * instantaneously so we do need to disable the FBC
573                  * before we can modify its control registers. We also
574                  * have to wait for the next vblank for that to take
575                  * effect. However, since we delay enabling FBC we can
576                  * assume that a vblank has passed since disabling and
577                  * that we can safely alter the registers in the deferred
578                  * callback.
579                  *
580                  * In the scenario that we go from a valid to invalid
581                  * and then back to valid FBC configuration we have
582                  * no strict enforcement that a vblank occurred since
583                  * disabling the FBC. However, along all current pipe
584                  * disabling paths we do need to wait for a vblank at
585                  * some point. And we wait before enabling FBC anyway.
586                  */
587                 DRM_DEBUG_KMS("disabling active FBC for update\n");
588                 intel_disable_fbc(dev);
589         }
590
591         intel_enable_fbc(crtc, 500);
592         return;
593
594 out_disable:
595         /* Multiple disables should be harmless */
596         if (intel_fbc_enabled(dev)) {
597                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
598                 intel_disable_fbc(dev);
599         }
600         i915_gem_stolen_cleanup_compression(dev);
601 }
602
603 static void i915_pineview_get_mem_freq(struct drm_device *dev)
604 {
605         drm_i915_private_t *dev_priv = dev->dev_private;
606         u32 tmp;
607
608         tmp = I915_READ(CLKCFG);
609
610         switch (tmp & CLKCFG_FSB_MASK) {
611         case CLKCFG_FSB_533:
612                 dev_priv->fsb_freq = 533; /* 133*4 */
613                 break;
614         case CLKCFG_FSB_800:
615                 dev_priv->fsb_freq = 800; /* 200*4 */
616                 break;
617         case CLKCFG_FSB_667:
618                 dev_priv->fsb_freq =  667; /* 167*4 */
619                 break;
620         case CLKCFG_FSB_400:
621                 dev_priv->fsb_freq = 400; /* 100*4 */
622                 break;
623         }
624
625         switch (tmp & CLKCFG_MEM_MASK) {
626         case CLKCFG_MEM_533:
627                 dev_priv->mem_freq = 533;
628                 break;
629         case CLKCFG_MEM_667:
630                 dev_priv->mem_freq = 667;
631                 break;
632         case CLKCFG_MEM_800:
633                 dev_priv->mem_freq = 800;
634                 break;
635         }
636
637         /* detect pineview DDR3 setting */
638         tmp = I915_READ(CSHRDDR3CTL);
639         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
640 }
641
642 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
643 {
644         drm_i915_private_t *dev_priv = dev->dev_private;
645         u16 ddrpll, csipll;
646
647         ddrpll = I915_READ16(DDRMPLL1);
648         csipll = I915_READ16(CSIPLL0);
649
650         switch (ddrpll & 0xff) {
651         case 0xc:
652                 dev_priv->mem_freq = 800;
653                 break;
654         case 0x10:
655                 dev_priv->mem_freq = 1066;
656                 break;
657         case 0x14:
658                 dev_priv->mem_freq = 1333;
659                 break;
660         case 0x18:
661                 dev_priv->mem_freq = 1600;
662                 break;
663         default:
664                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
665                                  ddrpll & 0xff);
666                 dev_priv->mem_freq = 0;
667                 break;
668         }
669
670         dev_priv->ips.r_t = dev_priv->mem_freq;
671
672         switch (csipll & 0x3ff) {
673         case 0x00c:
674                 dev_priv->fsb_freq = 3200;
675                 break;
676         case 0x00e:
677                 dev_priv->fsb_freq = 3733;
678                 break;
679         case 0x010:
680                 dev_priv->fsb_freq = 4266;
681                 break;
682         case 0x012:
683                 dev_priv->fsb_freq = 4800;
684                 break;
685         case 0x014:
686                 dev_priv->fsb_freq = 5333;
687                 break;
688         case 0x016:
689                 dev_priv->fsb_freq = 5866;
690                 break;
691         case 0x018:
692                 dev_priv->fsb_freq = 6400;
693                 break;
694         default:
695                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
696                                  csipll & 0x3ff);
697                 dev_priv->fsb_freq = 0;
698                 break;
699         }
700
701         if (dev_priv->fsb_freq == 3200) {
702                 dev_priv->ips.c_m = 0;
703         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
704                 dev_priv->ips.c_m = 1;
705         } else {
706                 dev_priv->ips.c_m = 2;
707         }
708 }
709
710 static const struct cxsr_latency cxsr_latency_table[] = {
711         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
712         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
713         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
714         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
715         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
716
717         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
718         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
719         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
720         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
721         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
722
723         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
724         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
725         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
726         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
727         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
728
729         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
730         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
731         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
732         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
733         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
734
735         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
736         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
737         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
738         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
739         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
740
741         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
742         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
743         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
744         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
745         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
746 };
747
748 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
749                                                          int is_ddr3,
750                                                          int fsb,
751                                                          int mem)
752 {
753         const struct cxsr_latency *latency;
754         int i;
755
756         if (fsb == 0 || mem == 0)
757                 return NULL;
758
759         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
760                 latency = &cxsr_latency_table[i];
761                 if (is_desktop == latency->is_desktop &&
762                     is_ddr3 == latency->is_ddr3 &&
763                     fsb == latency->fsb_freq && mem == latency->mem_freq)
764                         return latency;
765         }
766
767         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
768
769         return NULL;
770 }
771
772 static void pineview_disable_cxsr(struct drm_device *dev)
773 {
774         struct drm_i915_private *dev_priv = dev->dev_private;
775
776         /* deactivate cxsr */
777         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
778 }
779
780 /*
781  * Latency for FIFO fetches is dependent on several factors:
782  *   - memory configuration (speed, channels)
783  *   - chipset
784  *   - current MCH state
785  * It can be fairly high in some situations, so here we assume a fairly
786  * pessimal value.  It's a tradeoff between extra memory fetches (if we
787  * set this value too high, the FIFO will fetch frequently to stay full)
788  * and power consumption (set it too low to save power and we might see
789  * FIFO underruns and display "flicker").
790  *
791  * A value of 5us seems to be a good balance; safe for very low end
792  * platforms but not overly aggressive on lower latency configs.
793  */
794 static const int latency_ns = 5000;
795
796 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
797 {
798         struct drm_i915_private *dev_priv = dev->dev_private;
799         uint32_t dsparb = I915_READ(DSPARB);
800         int size;
801
802         size = dsparb & 0x7f;
803         if (plane)
804                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
805
806         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
807                       plane ? "B" : "A", size);
808
809         return size;
810 }
811
812 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
813 {
814         struct drm_i915_private *dev_priv = dev->dev_private;
815         uint32_t dsparb = I915_READ(DSPARB);
816         int size;
817
818         size = dsparb & 0x1ff;
819         if (plane)
820                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
821         size >>= 1; /* Convert to cachelines */
822
823         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
824                       plane ? "B" : "A", size);
825
826         return size;
827 }
828
829 static int i845_get_fifo_size(struct drm_device *dev, int plane)
830 {
831         struct drm_i915_private *dev_priv = dev->dev_private;
832         uint32_t dsparb = I915_READ(DSPARB);
833         int size;
834
835         size = dsparb & 0x7f;
836         size >>= 2; /* Convert to cachelines */
837
838         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
839                       plane ? "B" : "A",
840                       size);
841
842         return size;
843 }
844
845 static int i830_get_fifo_size(struct drm_device *dev, int plane)
846 {
847         struct drm_i915_private *dev_priv = dev->dev_private;
848         uint32_t dsparb = I915_READ(DSPARB);
849         int size;
850
851         size = dsparb & 0x7f;
852         size >>= 1; /* Convert to cachelines */
853
854         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
855                       plane ? "B" : "A", size);
856
857         return size;
858 }
859
860 /* Pineview has different values for various configs */
861 static const struct intel_watermark_params pineview_display_wm = {
862         PINEVIEW_DISPLAY_FIFO,
863         PINEVIEW_MAX_WM,
864         PINEVIEW_DFT_WM,
865         PINEVIEW_GUARD_WM,
866         PINEVIEW_FIFO_LINE_SIZE
867 };
868 static const struct intel_watermark_params pineview_display_hplloff_wm = {
869         PINEVIEW_DISPLAY_FIFO,
870         PINEVIEW_MAX_WM,
871         PINEVIEW_DFT_HPLLOFF_WM,
872         PINEVIEW_GUARD_WM,
873         PINEVIEW_FIFO_LINE_SIZE
874 };
875 static const struct intel_watermark_params pineview_cursor_wm = {
876         PINEVIEW_CURSOR_FIFO,
877         PINEVIEW_CURSOR_MAX_WM,
878         PINEVIEW_CURSOR_DFT_WM,
879         PINEVIEW_CURSOR_GUARD_WM,
880         PINEVIEW_FIFO_LINE_SIZE,
881 };
882 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
883         PINEVIEW_CURSOR_FIFO,
884         PINEVIEW_CURSOR_MAX_WM,
885         PINEVIEW_CURSOR_DFT_WM,
886         PINEVIEW_CURSOR_GUARD_WM,
887         PINEVIEW_FIFO_LINE_SIZE
888 };
889 static const struct intel_watermark_params g4x_wm_info = {
890         G4X_FIFO_SIZE,
891         G4X_MAX_WM,
892         G4X_MAX_WM,
893         2,
894         G4X_FIFO_LINE_SIZE,
895 };
896 static const struct intel_watermark_params g4x_cursor_wm_info = {
897         I965_CURSOR_FIFO,
898         I965_CURSOR_MAX_WM,
899         I965_CURSOR_DFT_WM,
900         2,
901         G4X_FIFO_LINE_SIZE,
902 };
903 static const struct intel_watermark_params valleyview_wm_info = {
904         VALLEYVIEW_FIFO_SIZE,
905         VALLEYVIEW_MAX_WM,
906         VALLEYVIEW_MAX_WM,
907         2,
908         G4X_FIFO_LINE_SIZE,
909 };
910 static const struct intel_watermark_params valleyview_cursor_wm_info = {
911         I965_CURSOR_FIFO,
912         VALLEYVIEW_CURSOR_MAX_WM,
913         I965_CURSOR_DFT_WM,
914         2,
915         G4X_FIFO_LINE_SIZE,
916 };
917 static const struct intel_watermark_params i965_cursor_wm_info = {
918         I965_CURSOR_FIFO,
919         I965_CURSOR_MAX_WM,
920         I965_CURSOR_DFT_WM,
921         2,
922         I915_FIFO_LINE_SIZE,
923 };
924 static const struct intel_watermark_params i945_wm_info = {
925         I945_FIFO_SIZE,
926         I915_MAX_WM,
927         1,
928         2,
929         I915_FIFO_LINE_SIZE
930 };
931 static const struct intel_watermark_params i915_wm_info = {
932         I915_FIFO_SIZE,
933         I915_MAX_WM,
934         1,
935         2,
936         I915_FIFO_LINE_SIZE
937 };
938 static const struct intel_watermark_params i855_wm_info = {
939         I855GM_FIFO_SIZE,
940         I915_MAX_WM,
941         1,
942         2,
943         I830_FIFO_LINE_SIZE
944 };
945 static const struct intel_watermark_params i830_wm_info = {
946         I830_FIFO_SIZE,
947         I915_MAX_WM,
948         1,
949         2,
950         I830_FIFO_LINE_SIZE
951 };
952
953 static const struct intel_watermark_params ironlake_display_wm_info = {
954         ILK_DISPLAY_FIFO,
955         ILK_DISPLAY_MAXWM,
956         ILK_DISPLAY_DFTWM,
957         2,
958         ILK_FIFO_LINE_SIZE
959 };
960 static const struct intel_watermark_params ironlake_cursor_wm_info = {
961         ILK_CURSOR_FIFO,
962         ILK_CURSOR_MAXWM,
963         ILK_CURSOR_DFTWM,
964         2,
965         ILK_FIFO_LINE_SIZE
966 };
967 static const struct intel_watermark_params ironlake_display_srwm_info = {
968         ILK_DISPLAY_SR_FIFO,
969         ILK_DISPLAY_MAX_SRWM,
970         ILK_DISPLAY_DFT_SRWM,
971         2,
972         ILK_FIFO_LINE_SIZE
973 };
974 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
975         ILK_CURSOR_SR_FIFO,
976         ILK_CURSOR_MAX_SRWM,
977         ILK_CURSOR_DFT_SRWM,
978         2,
979         ILK_FIFO_LINE_SIZE
980 };
981
982 static const struct intel_watermark_params sandybridge_display_wm_info = {
983         SNB_DISPLAY_FIFO,
984         SNB_DISPLAY_MAXWM,
985         SNB_DISPLAY_DFTWM,
986         2,
987         SNB_FIFO_LINE_SIZE
988 };
989 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
990         SNB_CURSOR_FIFO,
991         SNB_CURSOR_MAXWM,
992         SNB_CURSOR_DFTWM,
993         2,
994         SNB_FIFO_LINE_SIZE
995 };
996 static const struct intel_watermark_params sandybridge_display_srwm_info = {
997         SNB_DISPLAY_SR_FIFO,
998         SNB_DISPLAY_MAX_SRWM,
999         SNB_DISPLAY_DFT_SRWM,
1000         2,
1001         SNB_FIFO_LINE_SIZE
1002 };
1003 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
1004         SNB_CURSOR_SR_FIFO,
1005         SNB_CURSOR_MAX_SRWM,
1006         SNB_CURSOR_DFT_SRWM,
1007         2,
1008         SNB_FIFO_LINE_SIZE
1009 };
1010
1011
1012 /**
1013  * intel_calculate_wm - calculate watermark level
1014  * @clock_in_khz: pixel clock
1015  * @wm: chip FIFO params
1016  * @pixel_size: display pixel size
1017  * @latency_ns: memory latency for the platform
1018  *
1019  * Calculate the watermark level (the level at which the display plane will
1020  * start fetching from memory again).  Each chip has a different display
1021  * FIFO size and allocation, so the caller needs to figure that out and pass
1022  * in the correct intel_watermark_params structure.
1023  *
1024  * As the pixel clock runs, the FIFO will be drained at a rate that depends
1025  * on the pixel size.  When it reaches the watermark level, it'll start
1026  * fetching FIFO line sized based chunks from memory until the FIFO fills
1027  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
1028  * will occur, and a display engine hang could result.
1029  */
1030 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1031                                         const struct intel_watermark_params *wm,
1032                                         int fifo_size,
1033                                         int pixel_size,
1034                                         unsigned long latency_ns)
1035 {
1036         long entries_required, wm_size;
1037
1038         /*
1039          * Note: we need to make sure we don't overflow for various clock &
1040          * latency values.
1041          * clocks go from a few thousand to several hundred thousand.
1042          * latency is usually a few thousand
1043          */
1044         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1045                 1000;
1046         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1047
1048         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1049
1050         wm_size = fifo_size - (entries_required + wm->guard_size);
1051
1052         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1053
1054         /* Don't promote wm_size to unsigned... */
1055         if (wm_size > (long)wm->max_wm)
1056                 wm_size = wm->max_wm;
1057         if (wm_size <= 0)
1058                 wm_size = wm->default_wm;
1059         return wm_size;
1060 }
1061
1062 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1063 {
1064         struct drm_crtc *crtc, *enabled = NULL;
1065
1066         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1067                 if (intel_crtc_active(crtc)) {
1068                         if (enabled)
1069                                 return NULL;
1070                         enabled = crtc;
1071                 }
1072         }
1073
1074         return enabled;
1075 }
1076
1077 static void pineview_update_wm(struct drm_device *dev)
1078 {
1079         struct drm_i915_private *dev_priv = dev->dev_private;
1080         struct drm_crtc *crtc;
1081         const struct cxsr_latency *latency;
1082         u32 reg;
1083         unsigned long wm;
1084
1085         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1086                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1087         if (!latency) {
1088                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1089                 pineview_disable_cxsr(dev);
1090                 return;
1091         }
1092
1093         crtc = single_enabled_crtc(dev);
1094         if (crtc) {
1095                 int clock = crtc->mode.clock;
1096                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1097
1098                 /* Display SR */
1099                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1100                                         pineview_display_wm.fifo_size,
1101                                         pixel_size, latency->display_sr);
1102                 reg = I915_READ(DSPFW1);
1103                 reg &= ~DSPFW_SR_MASK;
1104                 reg |= wm << DSPFW_SR_SHIFT;
1105                 I915_WRITE(DSPFW1, reg);
1106                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1107
1108                 /* cursor SR */
1109                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1110                                         pineview_display_wm.fifo_size,
1111                                         pixel_size, latency->cursor_sr);
1112                 reg = I915_READ(DSPFW3);
1113                 reg &= ~DSPFW_CURSOR_SR_MASK;
1114                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1115                 I915_WRITE(DSPFW3, reg);
1116
1117                 /* Display HPLL off SR */
1118                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1119                                         pineview_display_hplloff_wm.fifo_size,
1120                                         pixel_size, latency->display_hpll_disable);
1121                 reg = I915_READ(DSPFW3);
1122                 reg &= ~DSPFW_HPLL_SR_MASK;
1123                 reg |= wm & DSPFW_HPLL_SR_MASK;
1124                 I915_WRITE(DSPFW3, reg);
1125
1126                 /* cursor HPLL off SR */
1127                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1128                                         pineview_display_hplloff_wm.fifo_size,
1129                                         pixel_size, latency->cursor_hpll_disable);
1130                 reg = I915_READ(DSPFW3);
1131                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1132                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1133                 I915_WRITE(DSPFW3, reg);
1134                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1135
1136                 /* activate cxsr */
1137                 I915_WRITE(DSPFW3,
1138                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1139                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1140         } else {
1141                 pineview_disable_cxsr(dev);
1142                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1143         }
1144 }
1145
1146 static bool g4x_compute_wm0(struct drm_device *dev,
1147                             int plane,
1148                             const struct intel_watermark_params *display,
1149                             int display_latency_ns,
1150                             const struct intel_watermark_params *cursor,
1151                             int cursor_latency_ns,
1152                             int *plane_wm,
1153                             int *cursor_wm)
1154 {
1155         struct drm_crtc *crtc;
1156         int htotal, hdisplay, clock, pixel_size;
1157         int line_time_us, line_count;
1158         int entries, tlb_miss;
1159
1160         crtc = intel_get_crtc_for_plane(dev, plane);
1161         if (!intel_crtc_active(crtc)) {
1162                 *cursor_wm = cursor->guard_size;
1163                 *plane_wm = display->guard_size;
1164                 return false;
1165         }
1166
1167         htotal = crtc->mode.htotal;
1168         hdisplay = crtc->mode.hdisplay;
1169         clock = crtc->mode.clock;
1170         pixel_size = crtc->fb->bits_per_pixel / 8;
1171
1172         /* Use the small buffer method to calculate plane watermark */
1173         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1174         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1175         if (tlb_miss > 0)
1176                 entries += tlb_miss;
1177         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1178         *plane_wm = entries + display->guard_size;
1179         if (*plane_wm > (int)display->max_wm)
1180                 *plane_wm = display->max_wm;
1181
1182         /* Use the large buffer method to calculate cursor watermark */
1183         line_time_us = ((htotal * 1000) / clock);
1184         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1185         entries = line_count * 64 * pixel_size;
1186         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1187         if (tlb_miss > 0)
1188                 entries += tlb_miss;
1189         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1190         *cursor_wm = entries + cursor->guard_size;
1191         if (*cursor_wm > (int)cursor->max_wm)
1192                 *cursor_wm = (int)cursor->max_wm;
1193
1194         return true;
1195 }
1196
1197 /*
1198  * Check the wm result.
1199  *
1200  * If any calculated watermark values is larger than the maximum value that
1201  * can be programmed into the associated watermark register, that watermark
1202  * must be disabled.
1203  */
1204 static bool g4x_check_srwm(struct drm_device *dev,
1205                            int display_wm, int cursor_wm,
1206                            const struct intel_watermark_params *display,
1207                            const struct intel_watermark_params *cursor)
1208 {
1209         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1210                       display_wm, cursor_wm);
1211
1212         if (display_wm > display->max_wm) {
1213                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1214                               display_wm, display->max_wm);
1215                 return false;
1216         }
1217
1218         if (cursor_wm > cursor->max_wm) {
1219                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1220                               cursor_wm, cursor->max_wm);
1221                 return false;
1222         }
1223
1224         if (!(display_wm || cursor_wm)) {
1225                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1226                 return false;
1227         }
1228
1229         return true;
1230 }
1231
1232 static bool g4x_compute_srwm(struct drm_device *dev,
1233                              int plane,
1234                              int latency_ns,
1235                              const struct intel_watermark_params *display,
1236                              const struct intel_watermark_params *cursor,
1237                              int *display_wm, int *cursor_wm)
1238 {
1239         struct drm_crtc *crtc;
1240         int hdisplay, htotal, pixel_size, clock;
1241         unsigned long line_time_us;
1242         int line_count, line_size;
1243         int small, large;
1244         int entries;
1245
1246         if (!latency_ns) {
1247                 *display_wm = *cursor_wm = 0;
1248                 return false;
1249         }
1250
1251         crtc = intel_get_crtc_for_plane(dev, plane);
1252         hdisplay = crtc->mode.hdisplay;
1253         htotal = crtc->mode.htotal;
1254         clock = crtc->mode.clock;
1255         pixel_size = crtc->fb->bits_per_pixel / 8;
1256
1257         line_time_us = (htotal * 1000) / clock;
1258         line_count = (latency_ns / line_time_us + 1000) / 1000;
1259         line_size = hdisplay * pixel_size;
1260
1261         /* Use the minimum of the small and large buffer method for primary */
1262         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1263         large = line_count * line_size;
1264
1265         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1266         *display_wm = entries + display->guard_size;
1267
1268         /* calculate the self-refresh watermark for display cursor */
1269         entries = line_count * pixel_size * 64;
1270         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1271         *cursor_wm = entries + cursor->guard_size;
1272
1273         return g4x_check_srwm(dev,
1274                               *display_wm, *cursor_wm,
1275                               display, cursor);
1276 }
1277
1278 static bool vlv_compute_drain_latency(struct drm_device *dev,
1279                                      int plane,
1280                                      int *plane_prec_mult,
1281                                      int *plane_dl,
1282                                      int *cursor_prec_mult,
1283                                      int *cursor_dl)
1284 {
1285         struct drm_crtc *crtc;
1286         int clock, pixel_size;
1287         int entries;
1288
1289         crtc = intel_get_crtc_for_plane(dev, plane);
1290         if (!intel_crtc_active(crtc))
1291                 return false;
1292
1293         clock = crtc->mode.clock;       /* VESA DOT Clock */
1294         pixel_size = crtc->fb->bits_per_pixel / 8;      /* BPP */
1295
1296         entries = (clock / 1000) * pixel_size;
1297         *plane_prec_mult = (entries > 256) ?
1298                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1299         *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1300                                                      pixel_size);
1301
1302         entries = (clock / 1000) * 4;   /* BPP is always 4 for cursor */
1303         *cursor_prec_mult = (entries > 256) ?
1304                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1305         *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1306
1307         return true;
1308 }
1309
1310 /*
1311  * Update drain latency registers of memory arbiter
1312  *
1313  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1314  * to be programmed. Each plane has a drain latency multiplier and a drain
1315  * latency value.
1316  */
1317
1318 static void vlv_update_drain_latency(struct drm_device *dev)
1319 {
1320         struct drm_i915_private *dev_priv = dev->dev_private;
1321         int planea_prec, planea_dl, planeb_prec, planeb_dl;
1322         int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1323         int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1324                                                         either 16 or 32 */
1325
1326         /* For plane A, Cursor A */
1327         if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1328                                       &cursor_prec_mult, &cursora_dl)) {
1329                 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1330                         DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1331                 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1332                         DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1333
1334                 I915_WRITE(VLV_DDL1, cursora_prec |
1335                                 (cursora_dl << DDL_CURSORA_SHIFT) |
1336                                 planea_prec | planea_dl);
1337         }
1338
1339         /* For plane B, Cursor B */
1340         if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1341                                       &cursor_prec_mult, &cursorb_dl)) {
1342                 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1343                         DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1344                 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1345                         DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1346
1347                 I915_WRITE(VLV_DDL2, cursorb_prec |
1348                                 (cursorb_dl << DDL_CURSORB_SHIFT) |
1349                                 planeb_prec | planeb_dl);
1350         }
1351 }
1352
1353 #define single_plane_enabled(mask) is_power_of_2(mask)
1354
1355 static void valleyview_update_wm(struct drm_device *dev)
1356 {
1357         static const int sr_latency_ns = 12000;
1358         struct drm_i915_private *dev_priv = dev->dev_private;
1359         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1360         int plane_sr, cursor_sr;
1361         int ignore_plane_sr, ignore_cursor_sr;
1362         unsigned int enabled = 0;
1363
1364         vlv_update_drain_latency(dev);
1365
1366         if (g4x_compute_wm0(dev, PIPE_A,
1367                             &valleyview_wm_info, latency_ns,
1368                             &valleyview_cursor_wm_info, latency_ns,
1369                             &planea_wm, &cursora_wm))
1370                 enabled |= 1 << PIPE_A;
1371
1372         if (g4x_compute_wm0(dev, PIPE_B,
1373                             &valleyview_wm_info, latency_ns,
1374                             &valleyview_cursor_wm_info, latency_ns,
1375                             &planeb_wm, &cursorb_wm))
1376                 enabled |= 1 << PIPE_B;
1377
1378         if (single_plane_enabled(enabled) &&
1379             g4x_compute_srwm(dev, ffs(enabled) - 1,
1380                              sr_latency_ns,
1381                              &valleyview_wm_info,
1382                              &valleyview_cursor_wm_info,
1383                              &plane_sr, &ignore_cursor_sr) &&
1384             g4x_compute_srwm(dev, ffs(enabled) - 1,
1385                              2*sr_latency_ns,
1386                              &valleyview_wm_info,
1387                              &valleyview_cursor_wm_info,
1388                              &ignore_plane_sr, &cursor_sr)) {
1389                 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1390         } else {
1391                 I915_WRITE(FW_BLC_SELF_VLV,
1392                            I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1393                 plane_sr = cursor_sr = 0;
1394         }
1395
1396         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1397                       planea_wm, cursora_wm,
1398                       planeb_wm, cursorb_wm,
1399                       plane_sr, cursor_sr);
1400
1401         I915_WRITE(DSPFW1,
1402                    (plane_sr << DSPFW_SR_SHIFT) |
1403                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1404                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1405                    planea_wm);
1406         I915_WRITE(DSPFW2,
1407                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1408                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1409         I915_WRITE(DSPFW3,
1410                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1411                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1412 }
1413
1414 static void g4x_update_wm(struct drm_device *dev)
1415 {
1416         static const int sr_latency_ns = 12000;
1417         struct drm_i915_private *dev_priv = dev->dev_private;
1418         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1419         int plane_sr, cursor_sr;
1420         unsigned int enabled = 0;
1421
1422         if (g4x_compute_wm0(dev, PIPE_A,
1423                             &g4x_wm_info, latency_ns,
1424                             &g4x_cursor_wm_info, latency_ns,
1425                             &planea_wm, &cursora_wm))
1426                 enabled |= 1 << PIPE_A;
1427
1428         if (g4x_compute_wm0(dev, PIPE_B,
1429                             &g4x_wm_info, latency_ns,
1430                             &g4x_cursor_wm_info, latency_ns,
1431                             &planeb_wm, &cursorb_wm))
1432                 enabled |= 1 << PIPE_B;
1433
1434         if (single_plane_enabled(enabled) &&
1435             g4x_compute_srwm(dev, ffs(enabled) - 1,
1436                              sr_latency_ns,
1437                              &g4x_wm_info,
1438                              &g4x_cursor_wm_info,
1439                              &plane_sr, &cursor_sr)) {
1440                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1441         } else {
1442                 I915_WRITE(FW_BLC_SELF,
1443                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1444                 plane_sr = cursor_sr = 0;
1445         }
1446
1447         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1448                       planea_wm, cursora_wm,
1449                       planeb_wm, cursorb_wm,
1450                       plane_sr, cursor_sr);
1451
1452         I915_WRITE(DSPFW1,
1453                    (plane_sr << DSPFW_SR_SHIFT) |
1454                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1455                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1456                    planea_wm);
1457         I915_WRITE(DSPFW2,
1458                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1459                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1460         /* HPLL off in SR has some issues on G4x... disable it */
1461         I915_WRITE(DSPFW3,
1462                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1463                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1464 }
1465
1466 static void i965_update_wm(struct drm_device *dev)
1467 {
1468         struct drm_i915_private *dev_priv = dev->dev_private;
1469         struct drm_crtc *crtc;
1470         int srwm = 1;
1471         int cursor_sr = 16;
1472
1473         /* Calc sr entries for one plane configs */
1474         crtc = single_enabled_crtc(dev);
1475         if (crtc) {
1476                 /* self-refresh has much higher latency */
1477                 static const int sr_latency_ns = 12000;
1478                 int clock = crtc->mode.clock;
1479                 int htotal = crtc->mode.htotal;
1480                 int hdisplay = crtc->mode.hdisplay;
1481                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1482                 unsigned long line_time_us;
1483                 int entries;
1484
1485                 line_time_us = ((htotal * 1000) / clock);
1486
1487                 /* Use ns/us then divide to preserve precision */
1488                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1489                         pixel_size * hdisplay;
1490                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1491                 srwm = I965_FIFO_SIZE - entries;
1492                 if (srwm < 0)
1493                         srwm = 1;
1494                 srwm &= 0x1ff;
1495                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1496                               entries, srwm);
1497
1498                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1499                         pixel_size * 64;
1500                 entries = DIV_ROUND_UP(entries,
1501                                           i965_cursor_wm_info.cacheline_size);
1502                 cursor_sr = i965_cursor_wm_info.fifo_size -
1503                         (entries + i965_cursor_wm_info.guard_size);
1504
1505                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1506                         cursor_sr = i965_cursor_wm_info.max_wm;
1507
1508                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1509                               "cursor %d\n", srwm, cursor_sr);
1510
1511                 if (IS_CRESTLINE(dev))
1512                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1513         } else {
1514                 /* Turn off self refresh if both pipes are enabled */
1515                 if (IS_CRESTLINE(dev))
1516                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1517                                    & ~FW_BLC_SELF_EN);
1518         }
1519
1520         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1521                       srwm);
1522
1523         /* 965 has limitations... */
1524         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1525                    (8 << 16) | (8 << 8) | (8 << 0));
1526         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1527         /* update cursor SR watermark */
1528         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1529 }
1530
1531 static void i9xx_update_wm(struct drm_device *dev)
1532 {
1533         struct drm_i915_private *dev_priv = dev->dev_private;
1534         const struct intel_watermark_params *wm_info;
1535         uint32_t fwater_lo;
1536         uint32_t fwater_hi;
1537         int cwm, srwm = 1;
1538         int fifo_size;
1539         int planea_wm, planeb_wm;
1540         struct drm_crtc *crtc, *enabled = NULL;
1541
1542         if (IS_I945GM(dev))
1543                 wm_info = &i945_wm_info;
1544         else if (!IS_GEN2(dev))
1545                 wm_info = &i915_wm_info;
1546         else
1547                 wm_info = &i855_wm_info;
1548
1549         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1550         crtc = intel_get_crtc_for_plane(dev, 0);
1551         if (intel_crtc_active(crtc)) {
1552                 int cpp = crtc->fb->bits_per_pixel / 8;
1553                 if (IS_GEN2(dev))
1554                         cpp = 4;
1555
1556                 planea_wm = intel_calculate_wm(crtc->mode.clock,
1557                                                wm_info, fifo_size, cpp,
1558                                                latency_ns);
1559                 enabled = crtc;
1560         } else
1561                 planea_wm = fifo_size - wm_info->guard_size;
1562
1563         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1564         crtc = intel_get_crtc_for_plane(dev, 1);
1565         if (intel_crtc_active(crtc)) {
1566                 int cpp = crtc->fb->bits_per_pixel / 8;
1567                 if (IS_GEN2(dev))
1568                         cpp = 4;
1569
1570                 planeb_wm = intel_calculate_wm(crtc->mode.clock,
1571                                                wm_info, fifo_size, cpp,
1572                                                latency_ns);
1573                 if (enabled == NULL)
1574                         enabled = crtc;
1575                 else
1576                         enabled = NULL;
1577         } else
1578                 planeb_wm = fifo_size - wm_info->guard_size;
1579
1580         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1581
1582         /*
1583          * Overlay gets an aggressive default since video jitter is bad.
1584          */
1585         cwm = 2;
1586
1587         /* Play safe and disable self-refresh before adjusting watermarks. */
1588         if (IS_I945G(dev) || IS_I945GM(dev))
1589                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1590         else if (IS_I915GM(dev))
1591                 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1592
1593         /* Calc sr entries for one plane configs */
1594         if (HAS_FW_BLC(dev) && enabled) {
1595                 /* self-refresh has much higher latency */
1596                 static const int sr_latency_ns = 6000;
1597                 int clock = enabled->mode.clock;
1598                 int htotal = enabled->mode.htotal;
1599                 int hdisplay = enabled->mode.hdisplay;
1600                 int pixel_size = enabled->fb->bits_per_pixel / 8;
1601                 unsigned long line_time_us;
1602                 int entries;
1603
1604                 line_time_us = (htotal * 1000) / clock;
1605
1606                 /* Use ns/us then divide to preserve precision */
1607                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1608                         pixel_size * hdisplay;
1609                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1610                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1611                 srwm = wm_info->fifo_size - entries;
1612                 if (srwm < 0)
1613                         srwm = 1;
1614
1615                 if (IS_I945G(dev) || IS_I945GM(dev))
1616                         I915_WRITE(FW_BLC_SELF,
1617                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1618                 else if (IS_I915GM(dev))
1619                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1620         }
1621
1622         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1623                       planea_wm, planeb_wm, cwm, srwm);
1624
1625         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1626         fwater_hi = (cwm & 0x1f);
1627
1628         /* Set request length to 8 cachelines per fetch */
1629         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1630         fwater_hi = fwater_hi | (1 << 8);
1631
1632         I915_WRITE(FW_BLC, fwater_lo);
1633         I915_WRITE(FW_BLC2, fwater_hi);
1634
1635         if (HAS_FW_BLC(dev)) {
1636                 if (enabled) {
1637                         if (IS_I945G(dev) || IS_I945GM(dev))
1638                                 I915_WRITE(FW_BLC_SELF,
1639                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1640                         else if (IS_I915GM(dev))
1641                                 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1642                         DRM_DEBUG_KMS("memory self refresh enabled\n");
1643                 } else
1644                         DRM_DEBUG_KMS("memory self refresh disabled\n");
1645         }
1646 }
1647
1648 static void i830_update_wm(struct drm_device *dev)
1649 {
1650         struct drm_i915_private *dev_priv = dev->dev_private;
1651         struct drm_crtc *crtc;
1652         uint32_t fwater_lo;
1653         int planea_wm;
1654
1655         crtc = single_enabled_crtc(dev);
1656         if (crtc == NULL)
1657                 return;
1658
1659         planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1660                                        dev_priv->display.get_fifo_size(dev, 0),
1661                                        4, latency_ns);
1662         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1663         fwater_lo |= (3<<8) | planea_wm;
1664
1665         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1666
1667         I915_WRITE(FW_BLC, fwater_lo);
1668 }
1669
1670 #define ILK_LP0_PLANE_LATENCY           700
1671 #define ILK_LP0_CURSOR_LATENCY          1300
1672
1673 /*
1674  * Check the wm result.
1675  *
1676  * If any calculated watermark values is larger than the maximum value that
1677  * can be programmed into the associated watermark register, that watermark
1678  * must be disabled.
1679  */
1680 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1681                                 int fbc_wm, int display_wm, int cursor_wm,
1682                                 const struct intel_watermark_params *display,
1683                                 const struct intel_watermark_params *cursor)
1684 {
1685         struct drm_i915_private *dev_priv = dev->dev_private;
1686
1687         DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1688                       " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1689
1690         if (fbc_wm > SNB_FBC_MAX_SRWM) {
1691                 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1692                               fbc_wm, SNB_FBC_MAX_SRWM, level);
1693
1694                 /* fbc has it's own way to disable FBC WM */
1695                 I915_WRITE(DISP_ARB_CTL,
1696                            I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1697                 return false;
1698         } else if (INTEL_INFO(dev)->gen >= 6) {
1699                 /* enable FBC WM (except on ILK, where it must remain off) */
1700                 I915_WRITE(DISP_ARB_CTL,
1701                            I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
1702         }
1703
1704         if (display_wm > display->max_wm) {
1705                 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1706                               display_wm, SNB_DISPLAY_MAX_SRWM, level);
1707                 return false;
1708         }
1709
1710         if (cursor_wm > cursor->max_wm) {
1711                 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1712                               cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1713                 return false;
1714         }
1715
1716         if (!(fbc_wm || display_wm || cursor_wm)) {
1717                 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1718                 return false;
1719         }
1720
1721         return true;
1722 }
1723
1724 /*
1725  * Compute watermark values of WM[1-3],
1726  */
1727 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1728                                   int latency_ns,
1729                                   const struct intel_watermark_params *display,
1730                                   const struct intel_watermark_params *cursor,
1731                                   int *fbc_wm, int *display_wm, int *cursor_wm)
1732 {
1733         struct drm_crtc *crtc;
1734         unsigned long line_time_us;
1735         int hdisplay, htotal, pixel_size, clock;
1736         int line_count, line_size;
1737         int small, large;
1738         int entries;
1739
1740         if (!latency_ns) {
1741                 *fbc_wm = *display_wm = *cursor_wm = 0;
1742                 return false;
1743         }
1744
1745         crtc = intel_get_crtc_for_plane(dev, plane);
1746         hdisplay = crtc->mode.hdisplay;
1747         htotal = crtc->mode.htotal;
1748         clock = crtc->mode.clock;
1749         pixel_size = crtc->fb->bits_per_pixel / 8;
1750
1751         line_time_us = (htotal * 1000) / clock;
1752         line_count = (latency_ns / line_time_us + 1000) / 1000;
1753         line_size = hdisplay * pixel_size;
1754
1755         /* Use the minimum of the small and large buffer method for primary */
1756         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1757         large = line_count * line_size;
1758
1759         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1760         *display_wm = entries + display->guard_size;
1761
1762         /*
1763          * Spec says:
1764          * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1765          */
1766         *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1767
1768         /* calculate the self-refresh watermark for display cursor */
1769         entries = line_count * pixel_size * 64;
1770         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1771         *cursor_wm = entries + cursor->guard_size;
1772
1773         return ironlake_check_srwm(dev, level,
1774                                    *fbc_wm, *display_wm, *cursor_wm,
1775                                    display, cursor);
1776 }
1777
1778 static void ironlake_update_wm(struct drm_device *dev)
1779 {
1780         struct drm_i915_private *dev_priv = dev->dev_private;
1781         int fbc_wm, plane_wm, cursor_wm;
1782         unsigned int enabled;
1783
1784         enabled = 0;
1785         if (g4x_compute_wm0(dev, PIPE_A,
1786                             &ironlake_display_wm_info,
1787                             ILK_LP0_PLANE_LATENCY,
1788                             &ironlake_cursor_wm_info,
1789                             ILK_LP0_CURSOR_LATENCY,
1790                             &plane_wm, &cursor_wm)) {
1791                 I915_WRITE(WM0_PIPEA_ILK,
1792                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1793                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1794                               " plane %d, " "cursor: %d\n",
1795                               plane_wm, cursor_wm);
1796                 enabled |= 1 << PIPE_A;
1797         }
1798
1799         if (g4x_compute_wm0(dev, PIPE_B,
1800                             &ironlake_display_wm_info,
1801                             ILK_LP0_PLANE_LATENCY,
1802                             &ironlake_cursor_wm_info,
1803                             ILK_LP0_CURSOR_LATENCY,
1804                             &plane_wm, &cursor_wm)) {
1805                 I915_WRITE(WM0_PIPEB_ILK,
1806                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1807                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1808                               " plane %d, cursor: %d\n",
1809                               plane_wm, cursor_wm);
1810                 enabled |= 1 << PIPE_B;
1811         }
1812
1813         /*
1814          * Calculate and update the self-refresh watermark only when one
1815          * display plane is used.
1816          */
1817         I915_WRITE(WM3_LP_ILK, 0);
1818         I915_WRITE(WM2_LP_ILK, 0);
1819         I915_WRITE(WM1_LP_ILK, 0);
1820
1821         if (!single_plane_enabled(enabled))
1822                 return;
1823         enabled = ffs(enabled) - 1;
1824
1825         /* WM1 */
1826         if (!ironlake_compute_srwm(dev, 1, enabled,
1827                                    ILK_READ_WM1_LATENCY() * 500,
1828                                    &ironlake_display_srwm_info,
1829                                    &ironlake_cursor_srwm_info,
1830                                    &fbc_wm, &plane_wm, &cursor_wm))
1831                 return;
1832
1833         I915_WRITE(WM1_LP_ILK,
1834                    WM1_LP_SR_EN |
1835                    (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1836                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1837                    (plane_wm << WM1_LP_SR_SHIFT) |
1838                    cursor_wm);
1839
1840         /* WM2 */
1841         if (!ironlake_compute_srwm(dev, 2, enabled,
1842                                    ILK_READ_WM2_LATENCY() * 500,
1843                                    &ironlake_display_srwm_info,
1844                                    &ironlake_cursor_srwm_info,
1845                                    &fbc_wm, &plane_wm, &cursor_wm))
1846                 return;
1847
1848         I915_WRITE(WM2_LP_ILK,
1849                    WM2_LP_EN |
1850                    (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1851                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1852                    (plane_wm << WM1_LP_SR_SHIFT) |
1853                    cursor_wm);
1854
1855         /*
1856          * WM3 is unsupported on ILK, probably because we don't have latency
1857          * data for that power state
1858          */
1859 }
1860
1861 static void sandybridge_update_wm(struct drm_device *dev)
1862 {
1863         struct drm_i915_private *dev_priv = dev->dev_private;
1864         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
1865         u32 val;
1866         int fbc_wm, plane_wm, cursor_wm;
1867         unsigned int enabled;
1868
1869         enabled = 0;
1870         if (g4x_compute_wm0(dev, PIPE_A,
1871                             &sandybridge_display_wm_info, latency,
1872                             &sandybridge_cursor_wm_info, latency,
1873                             &plane_wm, &cursor_wm)) {
1874                 val = I915_READ(WM0_PIPEA_ILK);
1875                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1876                 I915_WRITE(WM0_PIPEA_ILK, val |
1877                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1878                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1879                               " plane %d, " "cursor: %d\n",
1880                               plane_wm, cursor_wm);
1881                 enabled |= 1 << PIPE_A;
1882         }
1883
1884         if (g4x_compute_wm0(dev, PIPE_B,
1885                             &sandybridge_display_wm_info, latency,
1886                             &sandybridge_cursor_wm_info, latency,
1887                             &plane_wm, &cursor_wm)) {
1888                 val = I915_READ(WM0_PIPEB_ILK);
1889                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1890                 I915_WRITE(WM0_PIPEB_ILK, val |
1891                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1892                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1893                               " plane %d, cursor: %d\n",
1894                               plane_wm, cursor_wm);
1895                 enabled |= 1 << PIPE_B;
1896         }
1897
1898         /*
1899          * Calculate and update the self-refresh watermark only when one
1900          * display plane is used.
1901          *
1902          * SNB support 3 levels of watermark.
1903          *
1904          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1905          * and disabled in the descending order
1906          *
1907          */
1908         I915_WRITE(WM3_LP_ILK, 0);
1909         I915_WRITE(WM2_LP_ILK, 0);
1910         I915_WRITE(WM1_LP_ILK, 0);
1911
1912         if (!single_plane_enabled(enabled) ||
1913             dev_priv->sprite_scaling_enabled)
1914                 return;
1915         enabled = ffs(enabled) - 1;
1916
1917         /* WM1 */
1918         if (!ironlake_compute_srwm(dev, 1, enabled,
1919                                    SNB_READ_WM1_LATENCY() * 500,
1920                                    &sandybridge_display_srwm_info,
1921                                    &sandybridge_cursor_srwm_info,
1922                                    &fbc_wm, &plane_wm, &cursor_wm))
1923                 return;
1924
1925         I915_WRITE(WM1_LP_ILK,
1926                    WM1_LP_SR_EN |
1927                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1928                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1929                    (plane_wm << WM1_LP_SR_SHIFT) |
1930                    cursor_wm);
1931
1932         /* WM2 */
1933         if (!ironlake_compute_srwm(dev, 2, enabled,
1934                                    SNB_READ_WM2_LATENCY() * 500,
1935                                    &sandybridge_display_srwm_info,
1936                                    &sandybridge_cursor_srwm_info,
1937                                    &fbc_wm, &plane_wm, &cursor_wm))
1938                 return;
1939
1940         I915_WRITE(WM2_LP_ILK,
1941                    WM2_LP_EN |
1942                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1943                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1944                    (plane_wm << WM1_LP_SR_SHIFT) |
1945                    cursor_wm);
1946
1947         /* WM3 */
1948         if (!ironlake_compute_srwm(dev, 3, enabled,
1949                                    SNB_READ_WM3_LATENCY() * 500,
1950                                    &sandybridge_display_srwm_info,
1951                                    &sandybridge_cursor_srwm_info,
1952                                    &fbc_wm, &plane_wm, &cursor_wm))
1953                 return;
1954
1955         I915_WRITE(WM3_LP_ILK,
1956                    WM3_LP_EN |
1957                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1958                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1959                    (plane_wm << WM1_LP_SR_SHIFT) |
1960                    cursor_wm);
1961 }
1962
1963 static void ivybridge_update_wm(struct drm_device *dev)
1964 {
1965         struct drm_i915_private *dev_priv = dev->dev_private;
1966         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
1967         u32 val;
1968         int fbc_wm, plane_wm, cursor_wm;
1969         int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
1970         unsigned int enabled;
1971
1972         enabled = 0;
1973         if (g4x_compute_wm0(dev, PIPE_A,
1974                             &sandybridge_display_wm_info, latency,
1975                             &sandybridge_cursor_wm_info, latency,
1976                             &plane_wm, &cursor_wm)) {
1977                 val = I915_READ(WM0_PIPEA_ILK);
1978                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1979                 I915_WRITE(WM0_PIPEA_ILK, val |
1980                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1981                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1982                               " plane %d, " "cursor: %d\n",
1983                               plane_wm, cursor_wm);
1984                 enabled |= 1 << PIPE_A;
1985         }
1986
1987         if (g4x_compute_wm0(dev, PIPE_B,
1988                             &sandybridge_display_wm_info, latency,
1989                             &sandybridge_cursor_wm_info, latency,
1990                             &plane_wm, &cursor_wm)) {
1991                 val = I915_READ(WM0_PIPEB_ILK);
1992                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1993                 I915_WRITE(WM0_PIPEB_ILK, val |
1994                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1995                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1996                               " plane %d, cursor: %d\n",
1997                               plane_wm, cursor_wm);
1998                 enabled |= 1 << PIPE_B;
1999         }
2000
2001         if (g4x_compute_wm0(dev, PIPE_C,
2002                             &sandybridge_display_wm_info, latency,
2003                             &sandybridge_cursor_wm_info, latency,
2004                             &plane_wm, &cursor_wm)) {
2005                 val = I915_READ(WM0_PIPEC_IVB);
2006                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
2007                 I915_WRITE(WM0_PIPEC_IVB, val |
2008                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
2009                 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
2010                               " plane %d, cursor: %d\n",
2011                               plane_wm, cursor_wm);
2012                 enabled |= 1 << PIPE_C;
2013         }
2014
2015         /*
2016          * Calculate and update the self-refresh watermark only when one
2017          * display plane is used.
2018          *
2019          * SNB support 3 levels of watermark.
2020          *
2021          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
2022          * and disabled in the descending order
2023          *
2024          */
2025         I915_WRITE(WM3_LP_ILK, 0);
2026         I915_WRITE(WM2_LP_ILK, 0);
2027         I915_WRITE(WM1_LP_ILK, 0);
2028
2029         if (!single_plane_enabled(enabled) ||
2030             dev_priv->sprite_scaling_enabled)
2031                 return;
2032         enabled = ffs(enabled) - 1;
2033
2034         /* WM1 */
2035         if (!ironlake_compute_srwm(dev, 1, enabled,
2036                                    SNB_READ_WM1_LATENCY() * 500,
2037                                    &sandybridge_display_srwm_info,
2038                                    &sandybridge_cursor_srwm_info,
2039                                    &fbc_wm, &plane_wm, &cursor_wm))
2040                 return;
2041
2042         I915_WRITE(WM1_LP_ILK,
2043                    WM1_LP_SR_EN |
2044                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2045                    (fbc_wm << WM1_LP_FBC_SHIFT) |
2046                    (plane_wm << WM1_LP_SR_SHIFT) |
2047                    cursor_wm);
2048
2049         /* WM2 */
2050         if (!ironlake_compute_srwm(dev, 2, enabled,
2051                                    SNB_READ_WM2_LATENCY() * 500,
2052                                    &sandybridge_display_srwm_info,
2053                                    &sandybridge_cursor_srwm_info,
2054                                    &fbc_wm, &plane_wm, &cursor_wm))
2055                 return;
2056
2057         I915_WRITE(WM2_LP_ILK,
2058                    WM2_LP_EN |
2059                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2060                    (fbc_wm << WM1_LP_FBC_SHIFT) |
2061                    (plane_wm << WM1_LP_SR_SHIFT) |
2062                    cursor_wm);
2063
2064         /* WM3, note we have to correct the cursor latency */
2065         if (!ironlake_compute_srwm(dev, 3, enabled,
2066                                    SNB_READ_WM3_LATENCY() * 500,
2067                                    &sandybridge_display_srwm_info,
2068                                    &sandybridge_cursor_srwm_info,
2069                                    &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
2070             !ironlake_compute_srwm(dev, 3, enabled,
2071                                    2 * SNB_READ_WM3_LATENCY() * 500,
2072                                    &sandybridge_display_srwm_info,
2073                                    &sandybridge_cursor_srwm_info,
2074                                    &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2075                 return;
2076
2077         I915_WRITE(WM3_LP_ILK,
2078                    WM3_LP_EN |
2079                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2080                    (fbc_wm << WM1_LP_FBC_SHIFT) |
2081                    (plane_wm << WM1_LP_SR_SHIFT) |
2082                    cursor_wm);
2083 }
2084
2085 static uint32_t hsw_wm_get_pixel_rate(struct drm_device *dev,
2086                                       struct drm_crtc *crtc)
2087 {
2088         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2089         uint32_t pixel_rate, pfit_size;
2090
2091         pixel_rate = intel_crtc->config.adjusted_mode.clock;
2092
2093         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
2094          * adjust the pixel_rate here. */
2095
2096         pfit_size = intel_crtc->config.pch_pfit.size;
2097         if (pfit_size) {
2098                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
2099
2100                 pipe_w = intel_crtc->config.requested_mode.hdisplay;
2101                 pipe_h = intel_crtc->config.requested_mode.vdisplay;
2102                 pfit_w = (pfit_size >> 16) & 0xFFFF;
2103                 pfit_h = pfit_size & 0xFFFF;
2104                 if (pipe_w < pfit_w)
2105                         pipe_w = pfit_w;
2106                 if (pipe_h < pfit_h)
2107                         pipe_h = pfit_h;
2108
2109                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
2110                                      pfit_w * pfit_h);
2111         }
2112
2113         return pixel_rate;
2114 }
2115
2116 static uint32_t hsw_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2117                                uint32_t latency)
2118 {
2119         uint64_t ret;
2120
2121         ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
2122         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
2123
2124         return ret;
2125 }
2126
2127 static uint32_t hsw_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
2128                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2129                                uint32_t latency)
2130 {
2131         uint32_t ret;
2132
2133         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
2134         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
2135         ret = DIV_ROUND_UP(ret, 64) + 2;
2136         return ret;
2137 }
2138
2139 static uint32_t hsw_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
2140                            uint8_t bytes_per_pixel)
2141 {
2142         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
2143 }
2144
2145 struct hsw_pipe_wm_parameters {
2146         bool active;
2147         bool sprite_enabled;
2148         uint8_t pri_bytes_per_pixel;
2149         uint8_t spr_bytes_per_pixel;
2150         uint8_t cur_bytes_per_pixel;
2151         uint32_t pri_horiz_pixels;
2152         uint32_t spr_horiz_pixels;
2153         uint32_t cur_horiz_pixels;
2154         uint32_t pipe_htotal;
2155         uint32_t pixel_rate;
2156 };
2157
2158 struct hsw_wm_maximums {
2159         uint16_t pri;
2160         uint16_t spr;
2161         uint16_t cur;
2162         uint16_t fbc;
2163 };
2164
2165 struct hsw_lp_wm_result {
2166         bool enable;
2167         bool fbc_enable;
2168         uint32_t pri_val;
2169         uint32_t spr_val;
2170         uint32_t cur_val;
2171         uint32_t fbc_val;
2172 };
2173
2174 struct hsw_wm_values {
2175         uint32_t wm_pipe[3];
2176         uint32_t wm_lp[3];
2177         uint32_t wm_lp_spr[3];
2178         uint32_t wm_linetime[3];
2179         bool enable_fbc_wm;
2180 };
2181
2182 enum hsw_data_buf_partitioning {
2183         HSW_DATA_BUF_PART_1_2,
2184         HSW_DATA_BUF_PART_5_6,
2185 };
2186
2187 /* For both WM_PIPE and WM_LP. */
2188 static uint32_t hsw_compute_pri_wm(struct hsw_pipe_wm_parameters *params,
2189                                    uint32_t mem_value,
2190                                    bool is_lp)
2191 {
2192         uint32_t method1, method2;
2193
2194         /* TODO: for now, assume the primary plane is always enabled. */
2195         if (!params->active)
2196                 return 0;
2197
2198         method1 = hsw_wm_method1(params->pixel_rate,
2199                                  params->pri_bytes_per_pixel,
2200                                  mem_value);
2201
2202         if (!is_lp)
2203                 return method1;
2204
2205         method2 = hsw_wm_method2(params->pixel_rate,
2206                                  params->pipe_htotal,
2207                                  params->pri_horiz_pixels,
2208                                  params->pri_bytes_per_pixel,
2209                                  mem_value);
2210
2211         return min(method1, method2);
2212 }
2213
2214 /* For both WM_PIPE and WM_LP. */
2215 static uint32_t hsw_compute_spr_wm(struct hsw_pipe_wm_parameters *params,
2216                                    uint32_t mem_value)
2217 {
2218         uint32_t method1, method2;
2219
2220         if (!params->active || !params->sprite_enabled)
2221                 return 0;
2222
2223         method1 = hsw_wm_method1(params->pixel_rate,
2224                                  params->spr_bytes_per_pixel,
2225                                  mem_value);
2226         method2 = hsw_wm_method2(params->pixel_rate,
2227                                  params->pipe_htotal,
2228                                  params->spr_horiz_pixels,
2229                                  params->spr_bytes_per_pixel,
2230                                  mem_value);
2231         return min(method1, method2);
2232 }
2233
2234 /* For both WM_PIPE and WM_LP. */
2235 static uint32_t hsw_compute_cur_wm(struct hsw_pipe_wm_parameters *params,
2236                                    uint32_t mem_value)
2237 {
2238         if (!params->active)
2239                 return 0;
2240
2241         return hsw_wm_method2(params->pixel_rate,
2242                               params->pipe_htotal,
2243                               params->cur_horiz_pixels,
2244                               params->cur_bytes_per_pixel,
2245                               mem_value);
2246 }
2247
2248 /* Only for WM_LP. */
2249 static uint32_t hsw_compute_fbc_wm(struct hsw_pipe_wm_parameters *params,
2250                                    uint32_t pri_val,
2251                                    uint32_t mem_value)
2252 {
2253         if (!params->active)
2254                 return 0;
2255
2256         return hsw_wm_fbc(pri_val,
2257                           params->pri_horiz_pixels,
2258                           params->pri_bytes_per_pixel);
2259 }
2260
2261 static bool hsw_compute_lp_wm(uint32_t mem_value, struct hsw_wm_maximums *max,
2262                               struct hsw_pipe_wm_parameters *params,
2263                               struct hsw_lp_wm_result *result)
2264 {
2265         enum i915_pipe pipe;
2266         uint32_t pri_val[3], spr_val[3], cur_val[3], fbc_val[3];
2267
2268         for (pipe = PIPE_A; pipe <= PIPE_C; pipe++) {
2269                 struct hsw_pipe_wm_parameters *p = &params[pipe];
2270
2271                 pri_val[pipe] = hsw_compute_pri_wm(p, mem_value, true);
2272                 spr_val[pipe] = hsw_compute_spr_wm(p, mem_value);
2273                 cur_val[pipe] = hsw_compute_cur_wm(p, mem_value);
2274                 fbc_val[pipe] = hsw_compute_fbc_wm(p, pri_val[pipe], mem_value);
2275         }
2276
2277         result->pri_val = max3(pri_val[0], pri_val[1], pri_val[2]);
2278         result->spr_val = max3(spr_val[0], spr_val[1], spr_val[2]);
2279         result->cur_val = max3(cur_val[0], cur_val[1], cur_val[2]);
2280         result->fbc_val = max3(fbc_val[0], fbc_val[1], fbc_val[2]);
2281
2282         if (result->fbc_val > max->fbc) {
2283                 result->fbc_enable = false;
2284                 result->fbc_val = 0;
2285         } else {
2286                 result->fbc_enable = true;
2287         }
2288
2289         result->enable = result->pri_val <= max->pri &&
2290                          result->spr_val <= max->spr &&
2291                          result->cur_val <= max->cur;
2292         return result->enable;
2293 }
2294
2295 static uint32_t hsw_compute_wm_pipe(struct drm_i915_private *dev_priv,
2296                                     uint32_t mem_value, enum i915_pipe pipe,
2297                                     struct hsw_pipe_wm_parameters *params)
2298 {
2299         uint32_t pri_val, cur_val, spr_val;
2300
2301         pri_val = hsw_compute_pri_wm(params, mem_value, false);
2302         spr_val = hsw_compute_spr_wm(params, mem_value);
2303         cur_val = hsw_compute_cur_wm(params, mem_value);
2304
2305         WARN(pri_val > 127,
2306              "Primary WM error, mode not supported for pipe %c\n",
2307              pipe_name(pipe));
2308         WARN(spr_val > 127,
2309              "Sprite WM error, mode not supported for pipe %c\n",
2310              pipe_name(pipe));
2311         WARN(cur_val > 63,
2312              "Cursor WM error, mode not supported for pipe %c\n",
2313              pipe_name(pipe));
2314
2315         return (pri_val << WM0_PIPE_PLANE_SHIFT) |
2316                (spr_val << WM0_PIPE_SPRITE_SHIFT) |
2317                cur_val;
2318 }
2319
2320 static uint32_t
2321 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2322 {
2323         struct drm_i915_private *dev_priv = dev->dev_private;
2324         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2325         struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2326         u32 linetime, ips_linetime;
2327
2328         if (!intel_crtc_active(crtc))
2329                 return 0;
2330
2331         /* The WM are computed with base on how long it takes to fill a single
2332          * row at the given clock rate, multiplied by 8.
2333          * */
2334         linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
2335         ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
2336                                          intel_ddi_get_cdclk_freq(dev_priv));
2337
2338         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2339                PIPE_WM_LINETIME_TIME(linetime);
2340 }
2341
2342 static void hsw_compute_wm_parameters(struct drm_device *dev,
2343                                       struct hsw_pipe_wm_parameters *params,
2344                                       uint32_t *wm,
2345                                       struct hsw_wm_maximums *lp_max_1_2,
2346                                       struct hsw_wm_maximums *lp_max_5_6)
2347 {
2348         struct drm_i915_private *dev_priv = dev->dev_private;
2349         struct drm_crtc *crtc;
2350         struct drm_plane *plane;
2351         uint64_t sskpd = I915_READ64(MCH_SSKPD);
2352         enum i915_pipe pipe;
2353         int pipes_active = 0, sprites_enabled = 0;
2354
2355         if ((sskpd >> 56) & 0xFF)
2356                 wm[0] = (sskpd >> 56) & 0xFF;
2357         else
2358                 wm[0] = sskpd & 0xF;
2359         wm[1] = ((sskpd >> 4) & 0xFF) * 5;
2360         wm[2] = ((sskpd >> 12) & 0xFF) * 5;
2361         wm[3] = ((sskpd >> 20) & 0x1FF) * 5;
2362         wm[4] = ((sskpd >> 32) & 0x1FF) * 5;
2363
2364         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2365                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2366                 struct hsw_pipe_wm_parameters *p;
2367
2368                 pipe = intel_crtc->pipe;
2369                 p = &params[pipe];
2370
2371                 p->active = intel_crtc_active(crtc);
2372                 if (!p->active)
2373                         continue;
2374
2375                 pipes_active++;
2376
2377                 p->pipe_htotal = intel_crtc->config.adjusted_mode.htotal;
2378                 p->pixel_rate = hsw_wm_get_pixel_rate(dev, crtc);
2379                 p->pri_bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
2380                 p->cur_bytes_per_pixel = 4;
2381                 p->pri_horiz_pixels =
2382                         intel_crtc->config.requested_mode.hdisplay;
2383                 p->cur_horiz_pixels = 64;
2384         }
2385
2386         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2387                 struct intel_plane *intel_plane = to_intel_plane(plane);
2388                 struct hsw_pipe_wm_parameters *p;
2389
2390                 pipe = intel_plane->pipe;
2391                 p = &params[pipe];
2392
2393                 p->sprite_enabled = intel_plane->wm.enable;
2394                 p->spr_bytes_per_pixel = intel_plane->wm.bytes_per_pixel;
2395                 p->spr_horiz_pixels = intel_plane->wm.horiz_pixels;
2396
2397                 if (p->sprite_enabled)
2398                         sprites_enabled++;
2399         }
2400
2401         if (pipes_active > 1) {
2402                 lp_max_1_2->pri = lp_max_5_6->pri = sprites_enabled ? 128 : 256;
2403                 lp_max_1_2->spr = lp_max_5_6->spr = 128;
2404                 lp_max_1_2->cur = lp_max_5_6->cur = 64;
2405         } else {
2406                 lp_max_1_2->pri = sprites_enabled ? 384 : 768;
2407                 lp_max_5_6->pri = sprites_enabled ? 128 : 768;
2408                 lp_max_1_2->spr = 384;
2409                 lp_max_5_6->spr = 640;
2410                 lp_max_1_2->cur = lp_max_5_6->cur = 255;
2411         }
2412         lp_max_1_2->fbc = lp_max_5_6->fbc = 15;
2413 }
2414
2415 static void hsw_compute_wm_results(struct drm_device *dev,
2416                                    struct hsw_pipe_wm_parameters *params,
2417                                    uint32_t *wm,
2418                                    struct hsw_wm_maximums *lp_maximums,
2419                                    struct hsw_wm_values *results)
2420 {
2421         struct drm_i915_private *dev_priv = dev->dev_private;
2422         struct drm_crtc *crtc;
2423         struct hsw_lp_wm_result lp_results[4] = {};
2424         enum i915_pipe pipe;
2425         int level, max_level, wm_lp;
2426
2427         for (level = 1; level <= 4; level++)
2428                 if (!hsw_compute_lp_wm(wm[level], lp_maximums, params,
2429                                        &lp_results[level - 1]))
2430                         break;
2431         max_level = level - 1;
2432
2433         /* The spec says it is preferred to disable FBC WMs instead of disabling
2434          * a WM level. */
2435         results->enable_fbc_wm = true;
2436         for (level = 1; level <= max_level; level++) {
2437                 if (!lp_results[level - 1].fbc_enable) {
2438                         results->enable_fbc_wm = false;
2439                         break;
2440                 }
2441         }
2442
2443         memset(results, 0, sizeof(*results));
2444         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2445                 const struct hsw_lp_wm_result *r;
2446
2447                 level = (max_level == 4 && wm_lp > 1) ? wm_lp + 1 : wm_lp;
2448                 if (level > max_level)
2449                         break;
2450
2451                 r = &lp_results[level - 1];
2452                 results->wm_lp[wm_lp - 1] = HSW_WM_LP_VAL(level * 2,
2453                                                           r->fbc_val,
2454                                                           r->pri_val,
2455                                                           r->cur_val);
2456                 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2457         }
2458
2459         for_each_pipe(pipe)
2460                 results->wm_pipe[pipe] = hsw_compute_wm_pipe(dev_priv, wm[0],
2461                                                              pipe,
2462                                                              &params[pipe]);
2463
2464         for_each_pipe(pipe) {
2465                 crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2466                 results->wm_linetime[pipe] = hsw_compute_linetime_wm(dev, crtc);
2467         }
2468 }
2469
2470 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2471  * case both are at the same level. Prefer r1 in case they're the same. */
2472 static struct hsw_wm_values *hsw_find_best_result(struct hsw_wm_values *r1,
2473                                            struct hsw_wm_values *r2)
2474 {
2475         int i, val_r1 = 0, val_r2 = 0;
2476
2477         for (i = 0; i < 3; i++) {
2478                 if (r1->wm_lp[i] & WM3_LP_EN)
2479                         val_r1 = r1->wm_lp[i] & WM1_LP_LATENCY_MASK;
2480                 if (r2->wm_lp[i] & WM3_LP_EN)
2481                         val_r2 = r2->wm_lp[i] & WM1_LP_LATENCY_MASK;
2482         }
2483
2484         if (val_r1 == val_r2) {
2485                 if (r2->enable_fbc_wm && !r1->enable_fbc_wm)
2486                         return r2;
2487                 else
2488                         return r1;
2489         } else if (val_r1 > val_r2) {
2490                 return r1;
2491         } else {
2492                 return r2;
2493         }
2494 }
2495
2496 /*
2497  * The spec says we shouldn't write when we don't need, because every write
2498  * causes WMs to be re-evaluated, expending some power.
2499  */
2500 static void hsw_write_wm_values(struct drm_i915_private *dev_priv,
2501                                 struct hsw_wm_values *results,
2502                                 enum hsw_data_buf_partitioning partitioning)
2503 {
2504         struct hsw_wm_values previous;
2505         uint32_t val;
2506         enum hsw_data_buf_partitioning prev_partitioning;
2507         bool prev_enable_fbc_wm;
2508
2509         previous.wm_pipe[0] = I915_READ(WM0_PIPEA_ILK);
2510         previous.wm_pipe[1] = I915_READ(WM0_PIPEB_ILK);
2511         previous.wm_pipe[2] = I915_READ(WM0_PIPEC_IVB);
2512         previous.wm_lp[0] = I915_READ(WM1_LP_ILK);
2513         previous.wm_lp[1] = I915_READ(WM2_LP_ILK);
2514         previous.wm_lp[2] = I915_READ(WM3_LP_ILK);
2515         previous.wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2516         previous.wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2517         previous.wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2518         previous.wm_linetime[0] = I915_READ(PIPE_WM_LINETIME(PIPE_A));
2519         previous.wm_linetime[1] = I915_READ(PIPE_WM_LINETIME(PIPE_B));
2520         previous.wm_linetime[2] = I915_READ(PIPE_WM_LINETIME(PIPE_C));
2521
2522         prev_partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2523                             HSW_DATA_BUF_PART_5_6 : HSW_DATA_BUF_PART_1_2;
2524
2525         prev_enable_fbc_wm = !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2526
2527         if (memcmp(results->wm_pipe, previous.wm_pipe,
2528                    sizeof(results->wm_pipe)) == 0 &&
2529             memcmp(results->wm_lp, previous.wm_lp,
2530                    sizeof(results->wm_lp)) == 0 &&
2531             memcmp(results->wm_lp_spr, previous.wm_lp_spr,
2532                    sizeof(results->wm_lp_spr)) == 0 &&
2533             memcmp(results->wm_linetime, previous.wm_linetime,
2534                    sizeof(results->wm_linetime)) == 0 &&
2535             partitioning == prev_partitioning &&
2536             results->enable_fbc_wm == prev_enable_fbc_wm)
2537                 return;
2538
2539         if (previous.wm_lp[2] != 0)
2540                 I915_WRITE(WM3_LP_ILK, 0);
2541         if (previous.wm_lp[1] != 0)
2542                 I915_WRITE(WM2_LP_ILK, 0);
2543         if (previous.wm_lp[0] != 0)
2544                 I915_WRITE(WM1_LP_ILK, 0);
2545
2546         if (previous.wm_pipe[0] != results->wm_pipe[0])
2547                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2548         if (previous.wm_pipe[1] != results->wm_pipe[1])
2549                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2550         if (previous.wm_pipe[2] != results->wm_pipe[2])
2551                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2552
2553         if (previous.wm_linetime[0] != results->wm_linetime[0])
2554                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2555         if (previous.wm_linetime[1] != results->wm_linetime[1])
2556                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2557         if (previous.wm_linetime[2] != results->wm_linetime[2])
2558                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2559
2560         if (prev_partitioning != partitioning) {
2561                 val = I915_READ(WM_MISC);
2562                 if (partitioning == HSW_DATA_BUF_PART_1_2)
2563                         val &= ~WM_MISC_DATA_PARTITION_5_6;
2564                 else
2565                         val |= WM_MISC_DATA_PARTITION_5_6;
2566                 I915_WRITE(WM_MISC, val);
2567         }
2568
2569         if (prev_enable_fbc_wm != results->enable_fbc_wm) {
2570                 val = I915_READ(DISP_ARB_CTL);
2571                 if (results->enable_fbc_wm)
2572                         val &= ~DISP_FBC_WM_DIS;
2573                 else
2574                         val |= DISP_FBC_WM_DIS;
2575                 I915_WRITE(DISP_ARB_CTL, val);
2576         }
2577
2578         if (previous.wm_lp_spr[0] != results->wm_lp_spr[0])
2579                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2580         if (previous.wm_lp_spr[1] != results->wm_lp_spr[1])
2581                 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2582         if (previous.wm_lp_spr[2] != results->wm_lp_spr[2])
2583                 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2584
2585         if (results->wm_lp[0] != 0)
2586                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2587         if (results->wm_lp[1] != 0)
2588                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2589         if (results->wm_lp[2] != 0)
2590                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2591 }
2592
2593 static void haswell_update_wm(struct drm_device *dev)
2594 {
2595         struct drm_i915_private *dev_priv = dev->dev_private;
2596         struct hsw_wm_maximums lp_max_1_2, lp_max_5_6;
2597         struct hsw_pipe_wm_parameters params[3];
2598         struct hsw_wm_values results_1_2, results_5_6, *best_results;
2599         uint32_t wm[5];
2600         enum hsw_data_buf_partitioning partitioning;
2601
2602         hsw_compute_wm_parameters(dev, params, wm, &lp_max_1_2, &lp_max_5_6);
2603
2604         hsw_compute_wm_results(dev, params, wm, &lp_max_1_2, &results_1_2);
2605         if (lp_max_1_2.pri != lp_max_5_6.pri) {
2606                 hsw_compute_wm_results(dev, params, wm, &lp_max_5_6,
2607                                        &results_5_6);
2608                 best_results = hsw_find_best_result(&results_1_2, &results_5_6);
2609         } else {
2610                 best_results = &results_1_2;
2611         }
2612
2613         partitioning = (best_results == &results_1_2) ?
2614                        HSW_DATA_BUF_PART_1_2 : HSW_DATA_BUF_PART_5_6;
2615
2616         hsw_write_wm_values(dev_priv, best_results, partitioning);
2617 }
2618
2619 static void haswell_update_sprite_wm(struct drm_device *dev, int pipe,
2620                                      uint32_t sprite_width, int pixel_size,
2621                                      bool enable)
2622 {
2623         struct drm_plane *plane;
2624
2625         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2626                 struct intel_plane *intel_plane = to_intel_plane(plane);
2627
2628                 if (intel_plane->pipe == pipe) {
2629                         intel_plane->wm.enable = enable;
2630                         intel_plane->wm.horiz_pixels = sprite_width + 1;
2631                         intel_plane->wm.bytes_per_pixel = pixel_size;
2632                         break;
2633                 }
2634         }
2635
2636         haswell_update_wm(dev);
2637 }
2638
2639 static bool
2640 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2641                               uint32_t sprite_width, int pixel_size,
2642                               const struct intel_watermark_params *display,
2643                               int display_latency_ns, int *sprite_wm)
2644 {
2645         struct drm_crtc *crtc;
2646         int clock;
2647         int entries, tlb_miss;
2648
2649         crtc = intel_get_crtc_for_plane(dev, plane);
2650         if (!intel_crtc_active(crtc)) {
2651                 *sprite_wm = display->guard_size;
2652                 return false;
2653         }
2654
2655         clock = crtc->mode.clock;
2656
2657         /* Use the small buffer method to calculate the sprite watermark */
2658         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
2659         tlb_miss = display->fifo_size*display->cacheline_size -
2660                 sprite_width * 8;
2661         if (tlb_miss > 0)
2662                 entries += tlb_miss;
2663         entries = DIV_ROUND_UP(entries, display->cacheline_size);
2664         *sprite_wm = entries + display->guard_size;
2665         if (*sprite_wm > (int)display->max_wm)
2666                 *sprite_wm = display->max_wm;
2667
2668         return true;
2669 }
2670
2671 static bool
2672 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
2673                                 uint32_t sprite_width, int pixel_size,
2674                                 const struct intel_watermark_params *display,
2675                                 int latency_ns, int *sprite_wm)
2676 {
2677         struct drm_crtc *crtc;
2678         unsigned long line_time_us;
2679         int clock;
2680         int line_count, line_size;
2681         int small, large;
2682         int entries;
2683
2684         if (!latency_ns) {
2685                 *sprite_wm = 0;
2686                 return false;
2687         }
2688
2689         crtc = intel_get_crtc_for_plane(dev, plane);
2690         clock = crtc->mode.clock;
2691         if (!clock) {
2692                 *sprite_wm = 0;
2693                 return false;
2694         }
2695
2696         line_time_us = (sprite_width * 1000) / clock;
2697         if (!line_time_us) {
2698                 *sprite_wm = 0;
2699                 return false;
2700         }
2701
2702         line_count = (latency_ns / line_time_us + 1000) / 1000;
2703         line_size = sprite_width * pixel_size;
2704
2705         /* Use the minimum of the small and large buffer method for primary */
2706         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
2707         large = line_count * line_size;
2708
2709         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
2710         *sprite_wm = entries + display->guard_size;
2711
2712         return *sprite_wm > 0x3ff ? false : true;
2713 }
2714
2715 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
2716                                          uint32_t sprite_width, int pixel_size,
2717                                          bool enable)
2718 {
2719         struct drm_i915_private *dev_priv = dev->dev_private;
2720         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
2721         u32 val;
2722         int sprite_wm, reg;
2723         int ret;
2724
2725         if (!enable)
2726                 return;
2727
2728         switch (pipe) {
2729         case 0:
2730                 reg = WM0_PIPEA_ILK;
2731                 break;
2732         case 1:
2733                 reg = WM0_PIPEB_ILK;
2734                 break;
2735         case 2:
2736                 reg = WM0_PIPEC_IVB;
2737                 break;
2738         default:
2739                 return; /* bad pipe */
2740         }
2741
2742         ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2743                                             &sandybridge_display_wm_info,
2744                                             latency, &sprite_wm);
2745         if (!ret) {
2746                 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
2747                               pipe_name(pipe));
2748                 return;
2749         }
2750
2751         val = I915_READ(reg);
2752         val &= ~WM0_PIPE_SPRITE_MASK;
2753         I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2754         DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
2755
2756
2757         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2758                                               pixel_size,
2759                                               &sandybridge_display_srwm_info,
2760                                               SNB_READ_WM1_LATENCY() * 500,
2761                                               &sprite_wm);
2762         if (!ret) {
2763                 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
2764                               pipe_name(pipe));
2765                 return;
2766         }
2767         I915_WRITE(WM1S_LP_ILK, sprite_wm);
2768
2769         /* Only IVB has two more LP watermarks for sprite */
2770         if (!IS_IVYBRIDGE(dev))
2771                 return;
2772
2773         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2774                                               pixel_size,
2775                                               &sandybridge_display_srwm_info,
2776                                               SNB_READ_WM2_LATENCY() * 500,
2777                                               &sprite_wm);
2778         if (!ret) {
2779                 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
2780                               pipe_name(pipe));
2781                 return;
2782         }
2783         I915_WRITE(WM2S_LP_IVB, sprite_wm);
2784
2785         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2786                                               pixel_size,
2787                                               &sandybridge_display_srwm_info,
2788                                               SNB_READ_WM3_LATENCY() * 500,
2789                                               &sprite_wm);
2790         if (!ret) {
2791                 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
2792                               pipe_name(pipe));
2793                 return;
2794         }
2795         I915_WRITE(WM3S_LP_IVB, sprite_wm);
2796 }
2797
2798 /**
2799  * intel_update_watermarks - update FIFO watermark values based on current modes
2800  *
2801  * Calculate watermark values for the various WM regs based on current mode
2802  * and plane configuration.
2803  *
2804  * There are several cases to deal with here:
2805  *   - normal (i.e. non-self-refresh)
2806  *   - self-refresh (SR) mode
2807  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2808  *   - lines are small relative to FIFO size (buffer can hold more than 2
2809  *     lines), so need to account for TLB latency
2810  *
2811  *   The normal calculation is:
2812  *     watermark = dotclock * bytes per pixel * latency
2813  *   where latency is platform & configuration dependent (we assume pessimal
2814  *   values here).
2815  *
2816  *   The SR calculation is:
2817  *     watermark = (trunc(latency/line time)+1) * surface width *
2818  *       bytes per pixel
2819  *   where
2820  *     line time = htotal / dotclock
2821  *     surface width = hdisplay for normal plane and 64 for cursor
2822  *   and latency is assumed to be high, as above.
2823  *
2824  * The final value programmed to the register should always be rounded up,
2825  * and include an extra 2 entries to account for clock crossings.
2826  *
2827  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2828  * to set the non-SR watermarks to 8.
2829  */
2830 void intel_update_watermarks(struct drm_device *dev)
2831 {
2832         struct drm_i915_private *dev_priv = dev->dev_private;
2833
2834         if (dev_priv->display.update_wm)
2835                 dev_priv->display.update_wm(dev);
2836 }
2837
2838 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2839                                     uint32_t sprite_width, int pixel_size,
2840                                     bool enable)
2841 {
2842         struct drm_i915_private *dev_priv = dev->dev_private;
2843
2844         if (dev_priv->display.update_sprite_wm)
2845                 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2846                                                    pixel_size, enable);
2847 }
2848
2849 static struct drm_i915_gem_object *
2850 intel_alloc_context_page(struct drm_device *dev)
2851 {
2852         struct drm_i915_gem_object *ctx;
2853         int ret;
2854
2855         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2856
2857         ctx = i915_gem_alloc_object(dev, 4096);
2858         if (!ctx) {
2859                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2860                 return NULL;
2861         }
2862
2863         ret = i915_gem_object_pin(ctx, 4096, true, false);
2864         if (ret) {
2865                 DRM_ERROR("failed to pin power context: %d\n", ret);
2866                 goto err_unref;
2867         }
2868
2869         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2870         if (ret) {
2871                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2872                 goto err_unpin;
2873         }
2874
2875         return ctx;
2876
2877 err_unpin:
2878         i915_gem_object_unpin(ctx);
2879 err_unref:
2880         drm_gem_object_unreference(&ctx->base);
2881         return NULL;
2882 }
2883
2884 /**
2885  * Lock protecting IPS related data structures
2886  */
2887 struct lock mchdev_lock;
2888 LOCK_SYSINIT(mchdev, &mchdev_lock, "mchdev", LK_CANRECURSE);
2889
2890 /* Global for IPS driver to get at the current i915 device. Protected by
2891  * mchdev_lock. */
2892 static struct drm_i915_private *i915_mch_dev;
2893
2894 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2895 {
2896         struct drm_i915_private *dev_priv = dev->dev_private;
2897         u16 rgvswctl;
2898
2899         rgvswctl = I915_READ16(MEMSWCTL);
2900         if (rgvswctl & MEMCTL_CMD_STS) {
2901                 DRM_DEBUG("gpu busy, RCS change rejected\n");
2902                 return false; /* still busy with another command */
2903         }
2904
2905         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2906                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2907         I915_WRITE16(MEMSWCTL, rgvswctl);
2908         POSTING_READ16(MEMSWCTL);
2909
2910         rgvswctl |= MEMCTL_CMD_STS;
2911         I915_WRITE16(MEMSWCTL, rgvswctl);
2912
2913         return true;
2914 }
2915
2916 static void ironlake_enable_drps(struct drm_device *dev)
2917 {
2918         struct drm_i915_private *dev_priv = dev->dev_private;
2919         u32 rgvmodectl = I915_READ(MEMMODECTL);
2920         u8 fmax, fmin, fstart, vstart;
2921
2922         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
2923
2924         /* Enable temp reporting */
2925         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2926         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2927
2928         /* 100ms RC evaluation intervals */
2929         I915_WRITE(RCUPEI, 100000);
2930         I915_WRITE(RCDNEI, 100000);
2931
2932         /* Set max/min thresholds to 90ms and 80ms respectively */
2933         I915_WRITE(RCBMAXAVG, 90000);
2934         I915_WRITE(RCBMINAVG, 80000);
2935
2936         I915_WRITE(MEMIHYST, 1);
2937
2938         /* Set up min, max, and cur for interrupt handling */
2939         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2940         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2941         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2942                 MEMMODE_FSTART_SHIFT;
2943
2944         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2945                 PXVFREQ_PX_SHIFT;
2946
2947         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2948         dev_priv->ips.fstart = fstart;
2949
2950         dev_priv->ips.max_delay = fstart;
2951         dev_priv->ips.min_delay = fmin;
2952         dev_priv->ips.cur_delay = fstart;
2953
2954         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2955                          fmax, fmin, fstart);
2956
2957         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2958
2959         /*
2960          * Interrupts will be enabled in ironlake_irq_postinstall
2961          */
2962
2963         I915_WRITE(VIDSTART, vstart);
2964         POSTING_READ(VIDSTART);
2965
2966         rgvmodectl |= MEMMODE_SWMODE_EN;
2967         I915_WRITE(MEMMODECTL, rgvmodectl);
2968
2969         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2970                 DRM_ERROR("stuck trying to change perf mode\n");
2971         mdelay(1);
2972
2973         ironlake_set_drps(dev, fstart);
2974
2975         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2976                 I915_READ(0x112e0);
2977         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2978         dev_priv->ips.last_count2 = I915_READ(0x112f4);
2979         getrawmonotonic(&dev_priv->ips.last_time2);
2980
2981         lockmgr(&mchdev_lock, LK_RELEASE);
2982 }
2983
2984 static void ironlake_disable_drps(struct drm_device *dev)
2985 {
2986         struct drm_i915_private *dev_priv = dev->dev_private;
2987         u16 rgvswctl;
2988
2989         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
2990
2991         rgvswctl = I915_READ16(MEMSWCTL);
2992
2993         /* Ack interrupts, disable EFC interrupt */
2994         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2995         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2996         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2997         I915_WRITE(DEIIR, DE_PCU_EVENT);
2998         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2999
3000         /* Go back to the starting frequency */
3001         ironlake_set_drps(dev, dev_priv->ips.fstart);
3002         mdelay(1);
3003         rgvswctl |= MEMCTL_CMD_STS;
3004         I915_WRITE(MEMSWCTL, rgvswctl);
3005         mdelay(1);
3006
3007         lockmgr(&mchdev_lock, LK_RELEASE);
3008 }
3009
3010 /* There's a funny hw issue where the hw returns all 0 when reading from
3011  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3012  * ourselves, instead of doing a rmw cycle (which might result in us clearing
3013  * all limits and the gpu stuck at whatever frequency it is at atm).
3014  */
3015 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
3016 {
3017         u32 limits;
3018
3019         limits = 0;
3020
3021         if (*val >= dev_priv->rps.max_delay)
3022                 *val = dev_priv->rps.max_delay;
3023         limits |= dev_priv->rps.max_delay << 24;
3024
3025         /* Only set the down limit when we've reached the lowest level to avoid
3026          * getting more interrupts, otherwise leave this clear. This prevents a
3027          * race in the hw when coming out of rc6: There's a tiny window where
3028          * the hw runs at the minimal clock before selecting the desired
3029          * frequency, if the down threshold expires in that window we will not
3030          * receive a down interrupt. */
3031         if (*val <= dev_priv->rps.min_delay) {
3032                 *val = dev_priv->rps.min_delay;
3033                 limits |= dev_priv->rps.min_delay << 16;
3034         }
3035
3036         return limits;
3037 }
3038
3039 void gen6_set_rps(struct drm_device *dev, u8 val)
3040 {
3041         struct drm_i915_private *dev_priv = dev->dev_private;
3042         u32 limits = gen6_rps_limits(dev_priv, &val);
3043
3044         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3045         WARN_ON(val > dev_priv->rps.max_delay);
3046         WARN_ON(val < dev_priv->rps.min_delay);
3047
3048         if (val == dev_priv->rps.cur_delay)
3049                 return;
3050
3051         if (IS_HASWELL(dev))
3052                 I915_WRITE(GEN6_RPNSWREQ,
3053                            HSW_FREQUENCY(val));
3054         else
3055                 I915_WRITE(GEN6_RPNSWREQ,
3056                            GEN6_FREQUENCY(val) |
3057                            GEN6_OFFSET(0) |
3058                            GEN6_AGGRESSIVE_TURBO);
3059
3060         /* Make sure we continue to get interrupts
3061          * until we hit the minimum or maximum frequencies.
3062          */
3063         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
3064
3065         POSTING_READ(GEN6_RPNSWREQ);
3066
3067         dev_priv->rps.cur_delay = val;
3068
3069         trace_intel_gpu_freq_change(val * 50);
3070 }
3071
3072 /*
3073  * Wait until the previous freq change has completed,
3074  * or the timeout elapsed, and then update our notion
3075  * of the current GPU frequency.
3076  */
3077 static void vlv_update_rps_cur_delay(struct drm_i915_private *dev_priv)
3078 {
3079         unsigned long timeout = jiffies + msecs_to_jiffies(10);
3080         u32 pval;
3081
3082         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3083
3084         do {
3085                 pval = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3086                 if (time_after(jiffies, timeout)) {
3087                         DRM_DEBUG_DRIVER("timed out waiting for Punit\n");
3088                         break;
3089                 }
3090                 udelay(10);
3091         } while (pval & 1);
3092
3093         pval >>= 8;
3094
3095         if (pval != dev_priv->rps.cur_delay)
3096                 DRM_DEBUG_DRIVER("Punit overrode GPU freq: %d MHz (%u) requested, but got %d Mhz (%u)\n",
3097                                  vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.cur_delay),
3098                                  dev_priv->rps.cur_delay,
3099                                  vlv_gpu_freq(dev_priv->mem_freq, pval), pval);
3100
3101         dev_priv->rps.cur_delay = pval;
3102 }
3103
3104 void valleyview_set_rps(struct drm_device *dev, u8 val)
3105 {
3106         struct drm_i915_private *dev_priv = dev->dev_private;
3107
3108         gen6_rps_limits(dev_priv, &val);
3109
3110         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3111         WARN_ON(val > dev_priv->rps.max_delay);
3112         WARN_ON(val < dev_priv->rps.min_delay);
3113
3114         vlv_update_rps_cur_delay(dev_priv);
3115
3116         DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3117                          vlv_gpu_freq(dev_priv->mem_freq,
3118                                       dev_priv->rps.cur_delay),
3119                          dev_priv->rps.cur_delay,
3120                          vlv_gpu_freq(dev_priv->mem_freq, val), val);
3121
3122         if (val == dev_priv->rps.cur_delay)
3123                 return;
3124
3125         vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3126
3127         dev_priv->rps.cur_delay = val;
3128
3129         trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv->mem_freq, val));
3130 }
3131
3132
3133 static void gen6_disable_rps(struct drm_device *dev)
3134 {
3135         struct drm_i915_private *dev_priv = dev->dev_private;
3136
3137         I915_WRITE(GEN6_RC_CONTROL, 0);
3138         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3139         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3140         I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
3141         /* Complete PM interrupt masking here doesn't race with the rps work
3142          * item again unmasking PM interrupts because that is using a different
3143          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3144          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3145
3146         lockmgr(&dev_priv->rps.lock, LK_EXCLUSIVE);
3147         dev_priv->rps.pm_iir = 0;
3148         lockmgr(&dev_priv->rps.lock, LK_RELEASE);
3149
3150         I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3151 }
3152
3153 static void valleyview_disable_rps(struct drm_device *dev)
3154 {
3155         struct drm_i915_private *dev_priv = dev->dev_private;
3156
3157         I915_WRITE(GEN6_RC_CONTROL, 0);
3158         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3159         I915_WRITE(GEN6_PMIER, 0);
3160         /* Complete PM interrupt masking here doesn't race with the rps work
3161          * item again unmasking PM interrupts because that is using a different
3162          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3163          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3164
3165         lockmgr(&dev_priv->rps.lock, LK_EXCLUSIVE);
3166         dev_priv->rps.pm_iir = 0;
3167         lockmgr(&dev_priv->rps.lock, LK_RELEASE);
3168
3169         I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
3170
3171         if (dev_priv->vlv_pctx) {
3172                 drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3173                 dev_priv->vlv_pctx = NULL;
3174         }
3175 }
3176
3177 int intel_enable_rc6(const struct drm_device *dev)
3178 {
3179         /* Respect the kernel parameter if it is set */
3180         if (i915_enable_rc6 >= 0)
3181                 return i915_enable_rc6;
3182
3183         /* Disable RC6 on Ironlake */
3184         if (INTEL_INFO(dev)->gen == 5)
3185                 return 0;
3186
3187         if (IS_HASWELL(dev)) {
3188                 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
3189                 return INTEL_RC6_ENABLE;
3190         }
3191
3192         /* snb/ivb have more than one rc6 state. */
3193         if (INTEL_INFO(dev)->gen == 6) {
3194                 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
3195                 return INTEL_RC6_ENABLE;
3196         }
3197
3198         DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
3199         return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3200 }
3201
3202 static void gen6_enable_rps(struct drm_device *dev)
3203 {
3204         struct drm_i915_private *dev_priv = dev->dev_private;
3205         struct intel_ring_buffer *ring;
3206         u32 rp_state_cap;
3207         u32 gt_perf_status;
3208         u32 rc6vids, pcu_mbox, rc6_mask = 0;
3209         u32 gtfifodbg;
3210         int rc6_mode;
3211         int i, ret;
3212
3213         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3214
3215         /* Here begins a magic sequence of register writes to enable
3216          * auto-downclocking.
3217          *
3218          * Perhaps there might be some value in exposing these to
3219          * userspace...
3220          */
3221         I915_WRITE(GEN6_RC_STATE, 0);
3222
3223         /* Clear the DBG now so we don't confuse earlier errors */
3224         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3225                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3226                 I915_WRITE(GTFIFODBG, gtfifodbg);
3227         }
3228
3229         gen6_gt_force_wake_get(dev_priv);
3230
3231         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3232         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3233
3234         /* In units of 50MHz */
3235         dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
3236         dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
3237         dev_priv->rps.cur_delay = 0;
3238
3239         /* disable the counters and set deterministic thresholds */
3240         I915_WRITE(GEN6_RC_CONTROL, 0);
3241
3242         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3243         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3244         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3245         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3246         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3247
3248         for_each_ring(ring, dev_priv, i)
3249                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3250
3251         I915_WRITE(GEN6_RC_SLEEP, 0);
3252         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3253         I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3254         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3255         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3256
3257         /* Check if we are enabling RC6 */
3258         rc6_mode = intel_enable_rc6(dev_priv->dev);
3259         if (rc6_mode & INTEL_RC6_ENABLE)
3260                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3261
3262         /* We don't use those on Haswell */
3263         if (!IS_HASWELL(dev)) {
3264                 if (rc6_mode & INTEL_RC6p_ENABLE)
3265                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3266
3267                 if (rc6_mode & INTEL_RC6pp_ENABLE)
3268                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3269         }
3270
3271         DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3272                         (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3273                         (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3274                         (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3275
3276         I915_WRITE(GEN6_RC_CONTROL,
3277                    rc6_mask |
3278                    GEN6_RC_CTL_EI_MODE(1) |
3279                    GEN6_RC_CTL_HW_ENABLE);
3280
3281         if (IS_HASWELL(dev)) {
3282                 I915_WRITE(GEN6_RPNSWREQ,
3283                            HSW_FREQUENCY(10));
3284                 I915_WRITE(GEN6_RC_VIDEO_FREQ,
3285                            HSW_FREQUENCY(12));
3286         } else {
3287                 I915_WRITE(GEN6_RPNSWREQ,
3288                            GEN6_FREQUENCY(10) |
3289                            GEN6_OFFSET(0) |
3290                            GEN6_AGGRESSIVE_TURBO);
3291                 I915_WRITE(GEN6_RC_VIDEO_FREQ,
3292                            GEN6_FREQUENCY(12));
3293         }
3294
3295         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
3296         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3297                    dev_priv->rps.max_delay << 24 |
3298                    dev_priv->rps.min_delay << 16);
3299
3300         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3301         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3302         I915_WRITE(GEN6_RP_UP_EI, 66000);
3303         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3304
3305         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3306         I915_WRITE(GEN6_RP_CONTROL,
3307                    GEN6_RP_MEDIA_TURBO |
3308                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3309                    GEN6_RP_MEDIA_IS_GFX |
3310                    GEN6_RP_ENABLE |
3311                    GEN6_RP_UP_BUSY_AVG |
3312                    (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
3313
3314         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3315         if (!ret) {
3316                 pcu_mbox = 0;
3317                 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3318                 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3319                         DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3320                                          (dev_priv->rps.max_delay & 0xff) * 50,
3321                                          (pcu_mbox & 0xff) * 50);
3322                         dev_priv->rps.hw_max = pcu_mbox & 0xff;
3323                 }
3324         } else {
3325                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3326         }
3327
3328         gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
3329
3330         /* requires MSI enabled */
3331         I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) | GEN6_PM_RPS_EVENTS);
3332         lockmgr(&dev_priv->rps.lock, LK_EXCLUSIVE);
3333         /* FIXME: Our interrupt enabling sequence is bonghits.
3334          * dev_priv->rps.pm_iir really should be 0 here. */
3335         dev_priv->rps.pm_iir = 0;
3336         I915_WRITE(GEN6_PMIMR, I915_READ(GEN6_PMIMR) & ~GEN6_PM_RPS_EVENTS);
3337         I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
3338         lockmgr(&dev_priv->rps.lock, LK_RELEASE);
3339         /* unmask all PM interrupts */
3340         I915_WRITE(GEN6_PMINTRMSK, 0);
3341
3342         rc6vids = 0;
3343         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3344         if (IS_GEN6(dev) && ret) {
3345                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3346         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3347                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3348                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3349                 rc6vids &= 0xffff00;
3350                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3351                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3352                 if (ret)
3353                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3354         }
3355
3356         gen6_gt_force_wake_put(dev_priv);
3357 }
3358
3359 static void gen6_update_ring_freq(struct drm_device *dev)
3360 {
3361         struct drm_i915_private *dev_priv = dev->dev_private;
3362         int min_freq = 15;
3363         unsigned int gpu_freq;
3364         unsigned int max_ia_freq, min_ring_freq;
3365         int scaling_factor = 180;
3366
3367         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3368
3369 #if 0
3370         max_ia_freq = cpufreq_quick_get_max(0);
3371         /*
3372          * Default to measured freq if none found, PCU will ensure we don't go
3373          * over
3374          */
3375         if (!max_ia_freq)
3376                 max_ia_freq = tsc_khz;
3377 #else
3378         max_ia_freq = tsc_frequency / 1000;
3379 #endif
3380
3381         /* Convert from kHz to MHz */
3382         max_ia_freq /= 1000;
3383
3384         min_ring_freq = I915_READ(MCHBAR_MIRROR_BASE_SNB + DCLK);
3385         /* convert DDR frequency from units of 133.3MHz to bandwidth */
3386         min_ring_freq = (2 * 4 * min_ring_freq + 2) / 3;
3387
3388         /*
3389          * For each potential GPU frequency, load a ring frequency we'd like
3390          * to use for memory access.  We do this by specifying the IA frequency
3391          * the PCU should use as a reference to determine the ring frequency.
3392          */
3393         for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
3394              gpu_freq--) {
3395                 int diff = dev_priv->rps.max_delay - gpu_freq;
3396                 unsigned int ia_freq = 0, ring_freq = 0;
3397
3398                 if (IS_HASWELL(dev)) {
3399                         ring_freq = (gpu_freq * 5 + 3) / 4;
3400                         ring_freq = max(min_ring_freq, ring_freq);
3401                         /* leave ia_freq as the default, chosen by cpufreq */
3402                 } else {
3403                         /* On older processors, there is no separate ring
3404                          * clock domain, so in order to boost the bandwidth
3405                          * of the ring, we need to upclock the CPU (ia_freq).
3406                          *
3407                          * For GPU frequencies less than 750MHz,
3408                          * just use the lowest ring freq.
3409                          */
3410                         if (gpu_freq < min_freq)
3411                                 ia_freq = 800;
3412                         else
3413                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3414                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3415                 }
3416
3417                 sandybridge_pcode_write(dev_priv,
3418                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3419                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3420                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3421                                         gpu_freq);
3422         }
3423 }
3424
3425 int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3426 {
3427         u32 val, rp0;
3428
3429         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3430
3431         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3432         /* Clamp to max */
3433         rp0 = min_t(u32, rp0, 0xea);
3434
3435         return rp0;
3436 }
3437
3438 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3439 {
3440         u32 val, rpe;
3441
3442         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3443         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3444         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3445         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3446
3447         return rpe;
3448 }
3449
3450 int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3451 {
3452         return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3453 }
3454
3455 static void vlv_rps_timer_work(struct work_struct *work)
3456 {
3457         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
3458                                                     rps.vlv_work.work);
3459
3460         /*
3461          * Timer fired, we must be idle.  Drop to min voltage state.
3462          * Note: we use RPe here since it should match the
3463          * Vmin we were shooting for.  That should give us better
3464          * perf when we come back out of RC6 than if we used the
3465          * min freq available.
3466          */
3467         mutex_lock(&dev_priv->rps.hw_lock);
3468         if (dev_priv->rps.cur_delay > dev_priv->rps.rpe_delay)
3469                 valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
3470         mutex_unlock(&dev_priv->rps.hw_lock);
3471 }
3472
3473 static void valleyview_setup_pctx(struct drm_device *dev)
3474 {
3475         struct drm_i915_private *dev_priv = dev->dev_private;
3476         struct drm_i915_gem_object *pctx;
3477         unsigned long pctx_paddr;
3478         u32 pcbr;
3479         int pctx_size = 24*1024;
3480
3481         pcbr = I915_READ(VLV_PCBR);
3482         if (pcbr) {
3483                 /* BIOS set it up already, grab the pre-alloc'd space */
3484                 int pcbr_offset;
3485
3486                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3487                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3488                                                                       pcbr_offset,
3489                                                                       -1,
3490                                                                       pctx_size);
3491                 goto out;
3492         }
3493
3494         /*
3495          * From the Gunit register HAS:
3496          * The Gfx driver is expected to program this register and ensure
3497          * proper allocation within Gfx stolen memory.  For example, this
3498          * register should be programmed such than the PCBR range does not
3499          * overlap with other ranges, such as the frame buffer, protected
3500          * memory, or any other relevant ranges.
3501          */
3502         pctx = i915_gem_object_create_stolen(dev, pctx_size);
3503         if (!pctx) {
3504                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3505                 return;
3506         }
3507
3508         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3509         I915_WRITE(VLV_PCBR, pctx_paddr);
3510
3511 out:
3512         dev_priv->vlv_pctx = pctx;
3513 }
3514
3515 static void valleyview_enable_rps(struct drm_device *dev)
3516 {
3517         struct drm_i915_private *dev_priv = dev->dev_private;
3518         struct intel_ring_buffer *ring;
3519         u32 gtfifodbg, val;
3520         int i;
3521
3522         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3523
3524         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3525                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3526                 I915_WRITE(GTFIFODBG, gtfifodbg);
3527         }
3528
3529         valleyview_setup_pctx(dev);
3530
3531         gen6_gt_force_wake_get(dev_priv);
3532
3533         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
3534         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
3535         I915_WRITE(GEN6_RP_UP_EI, 66000);
3536         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
3537
3538         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3539
3540         I915_WRITE(GEN6_RP_CONTROL,
3541                    GEN6_RP_MEDIA_TURBO |
3542                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3543                    GEN6_RP_MEDIA_IS_GFX |
3544                    GEN6_RP_ENABLE |
3545                    GEN6_RP_UP_BUSY_AVG |
3546                    GEN6_RP_DOWN_IDLE_CONT);
3547
3548         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
3549         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3550         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3551
3552         for_each_ring(ring, dev_priv, i)
3553                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3554
3555         I915_WRITE(GEN6_RC6_THRESHOLD, 0xc350);
3556
3557         /* allows RC6 residency counter to work */
3558         I915_WRITE(0x138104, _MASKED_BIT_ENABLE(0x3));
3559         I915_WRITE(GEN6_RC_CONTROL,
3560                    GEN7_RC_CTL_TO_MODE);
3561
3562         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3563         switch ((val >> 6) & 3) {
3564         case 0:
3565         case 1:
3566                 dev_priv->mem_freq = 800;
3567                 break;
3568         case 2:
3569                 dev_priv->mem_freq = 1066;
3570                 break;
3571         case 3:
3572                 dev_priv->mem_freq = 1333;
3573                 break;
3574         }
3575         DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
3576
3577         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
3578         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
3579
3580         dev_priv->rps.cur_delay = (val >> 8) & 0xff;
3581         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
3582                          vlv_gpu_freq(dev_priv->mem_freq,
3583                                       dev_priv->rps.cur_delay),
3584                          dev_priv->rps.cur_delay);
3585
3586         dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
3587         dev_priv->rps.hw_max = dev_priv->rps.max_delay;
3588         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3589                          vlv_gpu_freq(dev_priv->mem_freq,
3590                                       dev_priv->rps.max_delay),
3591                          dev_priv->rps.max_delay);
3592
3593         dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
3594         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3595                          vlv_gpu_freq(dev_priv->mem_freq,
3596                                       dev_priv->rps.rpe_delay),
3597                          dev_priv->rps.rpe_delay);
3598
3599         dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
3600         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
3601                          vlv_gpu_freq(dev_priv->mem_freq,
3602                                       dev_priv->rps.min_delay),
3603                          dev_priv->rps.min_delay);
3604
3605         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
3606                          vlv_gpu_freq(dev_priv->mem_freq,
3607                                       dev_priv->rps.rpe_delay),
3608                          dev_priv->rps.rpe_delay);
3609
3610         INIT_DELAYED_WORK(&dev_priv->rps.vlv_work, vlv_rps_timer_work);
3611
3612         valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
3613
3614         /* requires MSI enabled */
3615         I915_WRITE(GEN6_PMIER, GEN6_PM_RPS_EVENTS);
3616         lockmgr(&dev_priv->rps.lock, LK_EXCLUSIVE);
3617         WARN_ON(dev_priv->rps.pm_iir != 0);
3618         I915_WRITE(GEN6_PMIMR, 0);
3619         lockmgr(&dev_priv->rps.lock, LK_RELEASE);
3620         /* enable all PM interrupts */
3621         I915_WRITE(GEN6_PMINTRMSK, 0);
3622
3623         gen6_gt_force_wake_put(dev_priv);
3624 }
3625
3626 void ironlake_teardown_rc6(struct drm_device *dev)
3627 {
3628         struct drm_i915_private *dev_priv = dev->dev_private;
3629
3630         if (dev_priv->ips.renderctx) {
3631                 i915_gem_object_unpin(dev_priv->ips.renderctx);
3632                 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
3633                 dev_priv->ips.renderctx = NULL;
3634         }
3635
3636         if (dev_priv->ips.pwrctx) {
3637                 i915_gem_object_unpin(dev_priv->ips.pwrctx);
3638                 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
3639                 dev_priv->ips.pwrctx = NULL;
3640         }
3641 }
3642
3643 static void ironlake_disable_rc6(struct drm_device *dev)
3644 {
3645         struct drm_i915_private *dev_priv = dev->dev_private;
3646
3647         if (I915_READ(PWRCTXA)) {
3648                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
3649                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
3650                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
3651                          50);
3652
3653                 I915_WRITE(PWRCTXA, 0);
3654                 POSTING_READ(PWRCTXA);
3655
3656                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3657                 POSTING_READ(RSTDBYCTL);
3658         }
3659 }
3660
3661 static int ironlake_setup_rc6(struct drm_device *dev)
3662 {
3663         struct drm_i915_private *dev_priv = dev->dev_private;
3664
3665         if (dev_priv->ips.renderctx == NULL)
3666                 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
3667         if (!dev_priv->ips.renderctx)
3668                 return -ENOMEM;
3669
3670         if (dev_priv->ips.pwrctx == NULL)
3671                 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
3672         if (!dev_priv->ips.pwrctx) {
3673                 ironlake_teardown_rc6(dev);
3674                 return -ENOMEM;
3675         }
3676
3677         return 0;
3678 }
3679
3680 static void ironlake_enable_rc6(struct drm_device *dev)
3681 {
3682         struct drm_i915_private *dev_priv = dev->dev_private;
3683         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
3684         bool was_interruptible;
3685         int ret;
3686
3687         /* rc6 disabled by default due to repeated reports of hanging during
3688          * boot and resume.
3689          */
3690         if (!intel_enable_rc6(dev))
3691                 return;
3692
3693         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3694
3695         ret = ironlake_setup_rc6(dev);
3696         if (ret)
3697                 return;
3698
3699         was_interruptible = dev_priv->mm.interruptible;
3700         dev_priv->mm.interruptible = false;
3701
3702         /*
3703          * GPU can automatically power down the render unit if given a page
3704          * to save state.
3705          */
3706         ret = intel_ring_begin(ring, 6);
3707         if (ret) {
3708                 ironlake_teardown_rc6(dev);
3709                 dev_priv->mm.interruptible = was_interruptible;
3710                 return;
3711         }
3712
3713         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
3714         intel_ring_emit(ring, MI_SET_CONTEXT);
3715         intel_ring_emit(ring, dev_priv->ips.renderctx->gtt_offset |
3716                         MI_MM_SPACE_GTT |
3717                         MI_SAVE_EXT_STATE_EN |
3718                         MI_RESTORE_EXT_STATE_EN |
3719                         MI_RESTORE_INHIBIT);
3720         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
3721         intel_ring_emit(ring, MI_NOOP);
3722         intel_ring_emit(ring, MI_FLUSH);
3723         intel_ring_advance(ring);
3724
3725         /*
3726          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
3727          * does an implicit flush, combined with MI_FLUSH above, it should be
3728          * safe to assume that renderctx is valid
3729          */
3730         ret = intel_ring_idle(ring);
3731         dev_priv->mm.interruptible = was_interruptible;
3732         if (ret) {
3733                 DRM_ERROR("failed to enable ironlake power savings\n");
3734                 ironlake_teardown_rc6(dev);
3735                 return;
3736         }
3737
3738         I915_WRITE(PWRCTXA, dev_priv->ips.pwrctx->gtt_offset | PWRCTX_EN);
3739         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
3740 }
3741
3742 static unsigned long intel_pxfreq(u32 vidfreq)
3743 {
3744         unsigned long freq;
3745         int div = (vidfreq & 0x3f0000) >> 16;
3746         int post = (vidfreq & 0x3000) >> 12;
3747         int pre = (vidfreq & 0x7);
3748
3749         if (!pre)
3750                 return 0;
3751
3752         freq = ((div * 133333) / ((1<<post) * pre));
3753
3754         return freq;
3755 }
3756
3757 static const struct cparams {
3758         u16 i;
3759         u16 t;
3760         u16 m;
3761         u16 c;
3762 } cparams[] = {
3763         { 1, 1333, 301, 28664 },
3764         { 1, 1066, 294, 24460 },
3765         { 1, 800, 294, 25192 },
3766         { 0, 1333, 276, 27605 },
3767         { 0, 1066, 276, 27605 },
3768         { 0, 800, 231, 23784 },
3769 };
3770
3771 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
3772 {
3773         u64 total_count, diff, ret;
3774         u32 count1, count2, count3, m = 0, c = 0;
3775         unsigned long now = jiffies_to_msecs(jiffies), diff1;
3776         int i;
3777
3778         diff1 = now - dev_priv->ips.last_time1;
3779
3780         /* Prevent division-by-zero if we are asking too fast.
3781          * Also, we don't get interesting results if we are polling
3782          * faster than once in 10ms, so just return the saved value
3783          * in such cases.
3784          */
3785         if (diff1 <= 10)
3786                 return dev_priv->ips.chipset_power;
3787
3788         count1 = I915_READ(DMIEC);
3789         count2 = I915_READ(DDREC);
3790         count3 = I915_READ(CSIEC);
3791
3792         total_count = count1 + count2 + count3;
3793
3794         /* FIXME: handle per-counter overflow */
3795         if (total_count < dev_priv->ips.last_count1) {
3796                 diff = ~0UL - dev_priv->ips.last_count1;
3797                 diff += total_count;
3798         } else {
3799                 diff = total_count - dev_priv->ips.last_count1;
3800         }
3801
3802         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
3803                 if (cparams[i].i == dev_priv->ips.c_m &&
3804                     cparams[i].t == dev_priv->ips.r_t) {
3805                         m = cparams[i].m;
3806                         c = cparams[i].c;
3807                         break;
3808                 }
3809         }
3810
3811         diff = div_u64(diff, diff1);
3812         ret = ((m * diff) + c);
3813         ret = div_u64(ret, 10);
3814
3815         dev_priv->ips.last_count1 = total_count;
3816         dev_priv->ips.last_time1 = now;
3817
3818         dev_priv->ips.chipset_power = ret;
3819
3820         return ret;
3821 }
3822
3823 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
3824 {
3825         unsigned long val;
3826
3827         if (dev_priv->info->gen != 5)
3828                 return 0;
3829
3830         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3831
3832         val = __i915_chipset_val(dev_priv);
3833
3834         lockmgr(&mchdev_lock, LK_RELEASE);
3835
3836         return val;
3837 }
3838
3839 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
3840 {
3841         unsigned long m, x, b;
3842         u32 tsfs;
3843
3844         tsfs = I915_READ(TSFS);
3845
3846         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
3847         x = I915_READ8(TR1);
3848
3849         b = tsfs & TSFS_INTR_MASK;
3850
3851         return ((m * x) / 127) - b;
3852 }
3853
3854 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
3855 {
3856         static const struct v_table {
3857                 u16 vd; /* in .1 mil */
3858                 u16 vm; /* in .1 mil */
3859         } v_table[] = {
3860                 { 0, 0, },
3861                 { 375, 0, },
3862                 { 500, 0, },
3863                 { 625, 0, },
3864                 { 750, 0, },
3865                 { 875, 0, },
3866                 { 1000, 0, },
3867                 { 1125, 0, },
3868                 { 4125, 3000, },
3869                 { 4125, 3000, },
3870                 { 4125, 3000, },
3871                 { 4125, 3000, },
3872                 { 4125, 3000, },
3873                 { 4125, 3000, },
3874                 { 4125, 3000, },
3875                 { 4125, 3000, },
3876                 { 4125, 3000, },
3877                 { 4125, 3000, },
3878                 { 4125, 3000, },
3879                 { 4125, 3000, },
3880                 { 4125, 3000, },
3881                 { 4125, 3000, },
3882                 { 4125, 3000, },
3883                 { 4125, 3000, },
3884                 { 4125, 3000, },
3885                 { 4125, 3000, },
3886                 { 4125, 3000, },
3887                 { 4125, 3000, },
3888                 { 4125, 3000, },
3889                 { 4125, 3000, },
3890                 { 4125, 3000, },
3891                 { 4125, 3000, },
3892                 { 4250, 3125, },
3893                 { 4375, 3250, },
3894                 { 4500, 3375, },
3895                 { 4625, 3500, },
3896                 { 4750, 3625, },
3897                 { 4875, 3750, },
3898                 { 5000, 3875, },
3899                 { 5125, 4000, },
3900                 { 5250, 4125, },
3901                 { 5375, 4250, },
3902                 { 5500, 4375, },
3903                 { 5625, 4500, },
3904                 { 5750, 4625, },
3905                 { 5875, 4750, },
3906                 { 6000, 4875, },
3907                 { 6125, 5000, },
3908                 { 6250, 5125, },
3909                 { 6375, 5250, },
3910                 { 6500, 5375, },
3911                 { 6625, 5500, },
3912                 { 6750, 5625, },
3913                 { 6875, 5750, },
3914                 { 7000, 5875, },
3915                 { 7125, 6000, },
3916                 { 7250, 6125, },
3917                 { 7375, 6250, },
3918                 { 7500, 6375, },
3919                 { 7625, 6500, },
3920                 { 7750, 6625, },
3921                 { 7875, 6750, },
3922                 { 8000, 6875, },
3923                 { 8125, 7000, },
3924                 { 8250, 7125, },
3925                 { 8375, 7250, },
3926                 { 8500, 7375, },
3927                 { 8625, 7500, },
3928                 { 8750, 7625, },
3929                 { 8875, 7750, },
3930                 { 9000, 7875, },
3931                 { 9125, 8000, },
3932                 { 9250, 8125, },
3933                 { 9375, 8250, },
3934                 { 9500, 8375, },
3935                 { 9625, 8500, },
3936                 { 9750, 8625, },
3937                 { 9875, 8750, },
3938                 { 10000, 8875, },
3939                 { 10125, 9000, },
3940                 { 10250, 9125, },
3941                 { 10375, 9250, },
3942                 { 10500, 9375, },
3943                 { 10625, 9500, },
3944                 { 10750, 9625, },
3945                 { 10875, 9750, },
3946                 { 11000, 9875, },
3947                 { 11125, 10000, },
3948                 { 11250, 10125, },
3949                 { 11375, 10250, },
3950                 { 11500, 10375, },
3951                 { 11625, 10500, },
3952                 { 11750, 10625, },
3953                 { 11875, 10750, },
3954                 { 12000, 10875, },
3955                 { 12125, 11000, },
3956                 { 12250, 11125, },
3957                 { 12375, 11250, },
3958                 { 12500, 11375, },
3959                 { 12625, 11500, },
3960                 { 12750, 11625, },
3961                 { 12875, 11750, },
3962                 { 13000, 11875, },
3963                 { 13125, 12000, },
3964                 { 13250, 12125, },
3965                 { 13375, 12250, },
3966                 { 13500, 12375, },
3967                 { 13625, 12500, },
3968                 { 13750, 12625, },
3969                 { 13875, 12750, },
3970                 { 14000, 12875, },
3971                 { 14125, 13000, },
3972                 { 14250, 13125, },
3973                 { 14375, 13250, },
3974                 { 14500, 13375, },
3975                 { 14625, 13500, },
3976                 { 14750, 13625, },
3977                 { 14875, 13750, },
3978                 { 15000, 13875, },
3979                 { 15125, 14000, },
3980                 { 15250, 14125, },
3981                 { 15375, 14250, },
3982                 { 15500, 14375, },
3983                 { 15625, 14500, },
3984                 { 15750, 14625, },
3985                 { 15875, 14750, },
3986                 { 16000, 14875, },
3987                 { 16125, 15000, },
3988         };
3989         if (dev_priv->info->is_mobile)
3990                 return v_table[pxvid].vm;
3991         else
3992                 return v_table[pxvid].vd;
3993 }
3994
3995 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
3996 {
3997         struct timespec now, diff1;
3998         u64 diff;
3999         unsigned long diffms;
4000         u32 count;
4001
4002         getrawmonotonic(&now);
4003         diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4004
4005         /* Don't divide by 0 */
4006         diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4007         if (!diffms)
4008                 return;
4009
4010         count = I915_READ(GFXEC);
4011
4012         if (count < dev_priv->ips.last_count2) {
4013                 diff = ~0UL - dev_priv->ips.last_count2;
4014                 diff += count;
4015         } else {
4016                 diff = count - dev_priv->ips.last_count2;
4017         }
4018
4019         dev_priv->ips.last_count2 = count;
4020         dev_priv->ips.last_time2 = now;
4021
4022         /* More magic constants... */
4023         diff = diff * 1181;
4024         diff = div_u64(diff, diffms * 10);
4025         dev_priv->ips.gfx_power = diff;
4026 }
4027
4028 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4029 {
4030         if (dev_priv->info->gen != 5)
4031                 return;
4032
4033         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
4034
4035         __i915_update_gfx_val(dev_priv);
4036
4037         lockmgr(&mchdev_lock, LK_RELEASE);
4038 }
4039
4040 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4041 {
4042         unsigned long t, corr, state1, corr2, state2;
4043         u32 pxvid, ext_v;
4044
4045         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
4046         pxvid = (pxvid >> 24) & 0x7f;
4047         ext_v = pvid_to_extvid(dev_priv, pxvid);
4048
4049         state1 = ext_v;
4050
4051         t = i915_mch_val(dev_priv);
4052
4053         /* Revel in the empirically derived constants */
4054
4055         /* Correction factor in 1/100000 units */
4056         if (t > 80)
4057                 corr = ((t * 2349) + 135940);
4058         else if (t >= 50)
4059                 corr = ((t * 964) + 29317);
4060         else /* < 50 */
4061                 corr = ((t * 301) + 1004);
4062
4063         corr = corr * ((150142 * state1) / 10000 - 78642);
4064         corr /= 100000;
4065         corr2 = (corr * dev_priv->ips.corr);
4066
4067         state2 = (corr2 * state1) / 10000;
4068         state2 /= 100; /* convert to mW */
4069
4070         __i915_update_gfx_val(dev_priv);
4071
4072         return dev_priv->ips.gfx_power + state2;
4073 }
4074
4075 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4076 {
4077         unsigned long val;
4078
4079         if (dev_priv->info->gen != 5)
4080                 return 0;
4081
4082         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
4083
4084         val = __i915_gfx_val(dev_priv);
4085
4086         lockmgr(&mchdev_lock, LK_RELEASE);
4087
4088         return val;
4089 }
4090
4091 /**
4092  * i915_read_mch_val - return value for IPS use
4093  *
4094  * Calculate and return a value for the IPS driver to use when deciding whether
4095  * we have thermal and power headroom to increase CPU or GPU power budget.
4096  */
4097 unsigned long i915_read_mch_val(void)
4098 {
4099         struct drm_i915_private *dev_priv;
4100         unsigned long chipset_val, graphics_val, ret = 0;
4101
4102         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
4103         if (!i915_mch_dev)
4104                 goto out_unlock;
4105         dev_priv = i915_mch_dev;
4106
4107         chipset_val = __i915_chipset_val(dev_priv);
4108         graphics_val = __i915_gfx_val(dev_priv);
4109
4110         ret = chipset_val + graphics_val;
4111
4112 out_unlock:
4113         lockmgr(&mchdev_lock, LK_RELEASE);
4114
4115         return ret;
4116 }
4117
4118 /**
4119  * i915_gpu_raise - raise GPU frequency limit
4120  *
4121  * Raise the limit; IPS indicates we have thermal headroom.
4122  */
4123 bool i915_gpu_raise(void)
4124 {
4125         struct drm_i915_private *dev_priv;
4126         bool ret = true;
4127
4128         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
4129         if (!i915_mch_dev) {
4130                 ret = false;
4131                 goto out_unlock;
4132         }
4133         dev_priv = i915_mch_dev;
4134
4135         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4136                 dev_priv->ips.max_delay--;
4137
4138 out_unlock:
4139         lockmgr(&mchdev_lock, LK_RELEASE);
4140
4141         return ret;
4142 }
4143
4144 /**
4145  * i915_gpu_lower - lower GPU frequency limit
4146  *
4147  * IPS indicates we're close to a thermal limit, so throttle back the GPU
4148  * frequency maximum.
4149  */
4150 bool i915_gpu_lower(void)
4151 {
4152         struct drm_i915_private *dev_priv;
4153         bool ret = true;
4154
4155         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
4156         if (!i915_mch_dev) {
4157                 ret = false;
4158                 goto out_unlock;
4159         }
4160         dev_priv = i915_mch_dev;
4161
4162         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4163                 dev_priv->ips.max_delay++;
4164
4165 out_unlock:
4166         lockmgr(&mchdev_lock, LK_RELEASE);
4167
4168         return ret;
4169 }
4170
4171 /**
4172  * i915_gpu_busy - indicate GPU business to IPS
4173  *
4174  * Tell the IPS driver whether or not the GPU is busy.
4175  */
4176 bool i915_gpu_busy(void)
4177 {
4178         struct drm_i915_private *dev_priv;
4179         struct intel_ring_buffer *ring;
4180         bool ret = false;
4181         int i;
4182
4183         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
4184         if (!i915_mch_dev)
4185                 goto out_unlock;
4186         dev_priv = i915_mch_dev;
4187
4188         for_each_ring(ring, dev_priv, i)
4189                 ret |= !list_empty(&ring->request_list);
4190
4191 out_unlock:
4192         lockmgr(&mchdev_lock, LK_RELEASE);
4193
4194         return ret;
4195 }
4196
4197 /**
4198  * i915_gpu_turbo_disable - disable graphics turbo
4199  *
4200  * Disable graphics turbo by resetting the max frequency and setting the
4201  * current frequency to the default.
4202  */
4203 bool i915_gpu_turbo_disable(void)
4204 {
4205         struct drm_i915_private *dev_priv;
4206         bool ret = true;
4207
4208         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
4209         if (!i915_mch_dev) {
4210                 ret = false;
4211                 goto out_unlock;
4212         }
4213         dev_priv = i915_mch_dev;
4214
4215         dev_priv->ips.max_delay = dev_priv->ips.fstart;
4216
4217         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4218                 ret = false;
4219
4220 out_unlock:
4221         lockmgr(&mchdev_lock, LK_RELEASE);
4222
4223         return ret;
4224 }
4225
4226 #if 0
4227 /**
4228  * Tells the intel_ips driver that the i915 driver is now loaded, if
4229  * IPS got loaded first.
4230  *
4231  * This awkward dance is so that neither module has to depend on the
4232  * other in order for IPS to do the appropriate communication of
4233  * GPU turbo limits to i915.
4234  */
4235 static void
4236 ips_ping_for_i915_load(void)
4237 {
4238         void (*link)(void);
4239
4240         link = symbol_get(ips_link_to_i915_driver);
4241         if (link) {
4242                 link();
4243                 symbol_put(ips_link_to_i915_driver);
4244         }
4245 }
4246 #endif
4247
4248 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4249 {
4250         /* We only register the i915 ips part with intel-ips once everything is
4251          * set up, to avoid intel-ips sneaking in and reading bogus values. */
4252         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
4253         i915_mch_dev = dev_priv;
4254         lockmgr(&mchdev_lock, LK_RELEASE);
4255 }
4256
4257 void intel_gpu_ips_teardown(void)
4258 {
4259         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
4260         i915_mch_dev = NULL;
4261         lockmgr(&mchdev_lock, LK_RELEASE);
4262 }
4263 static void intel_init_emon(struct drm_device *dev)
4264 {
4265         struct drm_i915_private *dev_priv = dev->dev_private;
4266         u32 lcfuse;
4267         u8 pxw[16];
4268         int i;
4269
4270         /* Disable to program */
4271         I915_WRITE(ECR, 0);
4272         POSTING_READ(ECR);
4273
4274         /* Program energy weights for various events */
4275         I915_WRITE(SDEW, 0x15040d00);
4276         I915_WRITE(CSIEW0, 0x007f0000);
4277         I915_WRITE(CSIEW1, 0x1e220004);
4278         I915_WRITE(CSIEW2, 0x04000004);
4279
4280         for (i = 0; i < 5; i++)
4281                 I915_WRITE(PEW + (i * 4), 0);
4282         for (i = 0; i < 3; i++)
4283                 I915_WRITE(DEW + (i * 4), 0);
4284
4285         /* Program P-state weights to account for frequency power adjustment */
4286         for (i = 0; i < 16; i++) {
4287                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4288                 unsigned long freq = intel_pxfreq(pxvidfreq);
4289                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4290                         PXVFREQ_PX_SHIFT;
4291                 unsigned long val;
4292
4293                 val = vid * vid;
4294                 val *= (freq / 1000);
4295                 val *= 255;
4296                 val /= (127*127*900);
4297                 if (val > 0xff)
4298                         DRM_ERROR("bad pxval: %ld\n", val);
4299                 pxw[i] = val;
4300         }
4301         /* Render standby states get 0 weight */
4302         pxw[14] = 0;
4303         pxw[15] = 0;
4304
4305         for (i = 0; i < 4; i++) {
4306                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4307                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4308                 I915_WRITE(PXW + (i * 4), val);
4309         }
4310
4311         /* Adjust magic regs to magic values (more experimental results) */
4312         I915_WRITE(OGW0, 0);
4313         I915_WRITE(OGW1, 0);
4314         I915_WRITE(EG0, 0x00007f00);
4315         I915_WRITE(EG1, 0x0000000e);
4316         I915_WRITE(EG2, 0x000e0000);
4317         I915_WRITE(EG3, 0x68000300);
4318         I915_WRITE(EG4, 0x42000000);
4319         I915_WRITE(EG5, 0x00140031);
4320         I915_WRITE(EG6, 0);
4321         I915_WRITE(EG7, 0);
4322
4323         for (i = 0; i < 8; i++)
4324                 I915_WRITE(PXWL + (i * 4), 0);
4325
4326         /* Enable PMON + select events */
4327         I915_WRITE(ECR, 0x80000019);
4328
4329         lcfuse = I915_READ(LCFUSE02);
4330
4331         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4332 }
4333
4334 void intel_disable_gt_powersave(struct drm_device *dev)
4335 {
4336         struct drm_i915_private *dev_priv = dev->dev_private;
4337
4338         /* Interrupts should be disabled already to avoid re-arming. */
4339         WARN_ON(dev->irq_enabled);
4340
4341         if (IS_IRONLAKE_M(dev)) {
4342                 ironlake_disable_drps(dev);
4343                 ironlake_disable_rc6(dev);
4344         } else if (INTEL_INFO(dev)->gen >= 6) {
4345                 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
4346                 cancel_work_sync(&dev_priv->rps.work);
4347                 if (IS_VALLEYVIEW(dev))
4348                         cancel_delayed_work_sync(&dev_priv->rps.vlv_work);
4349                 mutex_lock(&dev_priv->rps.hw_lock);
4350                 if (IS_VALLEYVIEW(dev))
4351                         valleyview_disable_rps(dev);
4352                 else
4353                         gen6_disable_rps(dev);
4354                 mutex_unlock(&dev_priv->rps.hw_lock);
4355         }
4356 }
4357
4358 static void intel_gen6_powersave_work(struct work_struct *work)
4359 {
4360         struct drm_i915_private *dev_priv =
4361                 container_of(work, struct drm_i915_private,
4362                              rps.delayed_resume_work.work);
4363         struct drm_device *dev = dev_priv->dev;
4364
4365         mutex_lock(&dev_priv->rps.hw_lock);
4366
4367         if (IS_VALLEYVIEW(dev)) {
4368                 valleyview_enable_rps(dev);
4369         } else {
4370                 gen6_enable_rps(dev);
4371                 gen6_update_ring_freq(dev);
4372         }
4373         mutex_unlock(&dev_priv->rps.hw_lock);
4374 }
4375
4376 void intel_enable_gt_powersave(struct drm_device *dev)
4377 {
4378         struct drm_i915_private *dev_priv = dev->dev_private;
4379
4380         if (IS_IRONLAKE_M(dev)) {
4381                 ironlake_enable_drps(dev);
4382                 ironlake_enable_rc6(dev);
4383                 intel_init_emon(dev);
4384         } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
4385                 /*
4386                  * PCU communication is slow and this doesn't need to be
4387                  * done at any specific time, so do this out of our fast path
4388                  * to make resume and init faster.
4389                  */
4390                 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
4391                                       round_jiffies_up_relative(HZ));
4392         }
4393 }
4394
4395 static void ibx_init_clock_gating(struct drm_device *dev)
4396 {
4397         struct drm_i915_private *dev_priv = dev->dev_private;
4398
4399         /*
4400          * On Ibex Peak and Cougar Point, we need to disable clock
4401          * gating for the panel power sequencer or it will fail to
4402          * start up when no ports are active.
4403          */
4404         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4405 }
4406
4407 static void g4x_disable_trickle_feed(struct drm_device *dev)
4408 {
4409         struct drm_i915_private *dev_priv = dev->dev_private;
4410         int pipe;
4411
4412         for_each_pipe(pipe) {
4413                 I915_WRITE(DSPCNTR(pipe),
4414                            I915_READ(DSPCNTR(pipe)) |
4415                            DISPPLANE_TRICKLE_FEED_DISABLE);
4416                 intel_flush_display_plane(dev_priv, pipe);
4417         }
4418 }
4419
4420 static void ironlake_init_clock_gating(struct drm_device *dev)
4421 {
4422         struct drm_i915_private *dev_priv = dev->dev_private;
4423         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4424
4425         /* Required for FBC */
4426         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
4427                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
4428                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
4429
4430         I915_WRITE(PCH_3DCGDIS0,
4431                    MARIUNIT_CLOCK_GATE_DISABLE |
4432                    SVSMUNIT_CLOCK_GATE_DISABLE);
4433         I915_WRITE(PCH_3DCGDIS1,
4434                    VFMUNIT_CLOCK_GATE_DISABLE);
4435
4436         /*
4437          * According to the spec the following bits should be set in
4438          * order to enable memory self-refresh
4439          * The bit 22/21 of 0x42004
4440          * The bit 5 of 0x42020
4441          * The bit 15 of 0x45000
4442          */
4443         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4444                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
4445                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
4446         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
4447         I915_WRITE(DISP_ARB_CTL,
4448                    (I915_READ(DISP_ARB_CTL) |
4449                     DISP_FBC_WM_DIS));
4450         I915_WRITE(WM3_LP_ILK, 0);
4451         I915_WRITE(WM2_LP_ILK, 0);
4452         I915_WRITE(WM1_LP_ILK, 0);
4453
4454         /*
4455          * Based on the document from hardware guys the following bits
4456          * should be set unconditionally in order to enable FBC.
4457          * The bit 22 of 0x42000
4458          * The bit 22 of 0x42004
4459          * The bit 7,8,9 of 0x42020.
4460          */
4461         if (IS_IRONLAKE_M(dev)) {
4462                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
4463                            I915_READ(ILK_DISPLAY_CHICKEN1) |
4464                            ILK_FBCQ_DIS);
4465                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
4466                            I915_READ(ILK_DISPLAY_CHICKEN2) |
4467                            ILK_DPARB_GATE);
4468         }
4469
4470         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4471
4472         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4473                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4474                    ILK_ELPIN_409_SELECT);
4475         I915_WRITE(_3D_CHICKEN2,
4476                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
4477                    _3D_CHICKEN2_WM_READ_PIPELINED);
4478
4479         /* WaDisableRenderCachePipelinedFlush:ilk */
4480         I915_WRITE(CACHE_MODE_0,
4481                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4482
4483         g4x_disable_trickle_feed(dev);
4484
4485         ibx_init_clock_gating(dev);
4486 }
4487
4488 static void cpt_init_clock_gating(struct drm_device *dev)
4489 {
4490         struct drm_i915_private *dev_priv = dev->dev_private;
4491         int pipe;
4492         uint32_t val;
4493
4494         /*
4495          * On Ibex Peak and Cougar Point, we need to disable clock
4496          * gating for the panel power sequencer or it will fail to
4497          * start up when no ports are active.
4498          */
4499         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
4500         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
4501                    DPLS_EDP_PPS_FIX_DIS);
4502         /* The below fixes the weird display corruption, a few pixels shifted
4503          * downward, on (only) LVDS of some HP laptops with IVY.
4504          */
4505         for_each_pipe(pipe) {
4506                 val = I915_READ(TRANS_CHICKEN2(pipe));
4507                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
4508                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4509                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
4510                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
4511                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
4512                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
4513                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
4514                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
4515         }
4516         /* WADP0ClockGatingDisable */
4517         for_each_pipe(pipe) {
4518                 I915_WRITE(TRANS_CHICKEN1(pipe),
4519                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4520         }
4521 }
4522
4523 static void gen6_check_mch_setup(struct drm_device *dev)
4524 {
4525         struct drm_i915_private *dev_priv = dev->dev_private;
4526         uint32_t tmp;
4527
4528         tmp = I915_READ(MCH_SSKPD);
4529         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
4530                 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
4531                 DRM_INFO("This can cause pipe underruns and display issues.\n");
4532                 DRM_INFO("Please upgrade your BIOS to fix this.\n");
4533         }
4534 }
4535
4536 static void gen6_init_clock_gating(struct drm_device *dev)
4537 {
4538         struct drm_i915_private *dev_priv = dev->dev_private;
4539         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
4540
4541         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
4542
4543         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4544                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4545                    ILK_ELPIN_409_SELECT);
4546
4547         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
4548         I915_WRITE(_3D_CHICKEN,
4549                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
4550
4551         /* WaSetupGtModeTdRowDispatch:snb */
4552         if (IS_SNB_GT1(dev))
4553                 I915_WRITE(GEN6_GT_MODE,
4554                            _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
4555
4556         I915_WRITE(WM3_LP_ILK, 0);
4557         I915_WRITE(WM2_LP_ILK, 0);
4558         I915_WRITE(WM1_LP_ILK, 0);
4559
4560         I915_WRITE(CACHE_MODE_0,
4561                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
4562
4563         I915_WRITE(GEN6_UCGCTL1,
4564                    I915_READ(GEN6_UCGCTL1) |
4565                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
4566                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
4567
4568         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4569          * gating disable must be set.  Failure to set it results in
4570          * flickering pixels due to Z write ordering failures after
4571          * some amount of runtime in the Mesa "fire" demo, and Unigine
4572          * Sanctuary and Tropics, and apparently anything else with
4573          * alpha test or pixel discard.
4574          *
4575          * According to the spec, bit 11 (RCCUNIT) must also be set,
4576          * but we didn't debug actual testcases to find it out.
4577          *
4578          * Also apply WaDisableVDSUnitClockGating:snb and
4579          * WaDisableRCPBUnitClockGating:snb.
4580          */
4581         I915_WRITE(GEN6_UCGCTL2,
4582                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4583                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4584                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4585
4586         /* Bspec says we need to always set all mask bits. */
4587         I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
4588                    _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
4589
4590         /*
4591          * According to the spec the following bits should be
4592          * set in order to enable memory self-refresh and fbc:
4593          * The bit21 and bit22 of 0x42000
4594          * The bit21 and bit22 of 0x42004
4595          * The bit5 and bit7 of 0x42020
4596          * The bit14 of 0x70180
4597          * The bit14 of 0x71180
4598          */
4599         I915_WRITE(ILK_DISPLAY_CHICKEN1,
4600                    I915_READ(ILK_DISPLAY_CHICKEN1) |
4601                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
4602         I915_WRITE(ILK_DISPLAY_CHICKEN2,
4603                    I915_READ(ILK_DISPLAY_CHICKEN2) |
4604                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
4605         I915_WRITE(ILK_DSPCLK_GATE_D,
4606                    I915_READ(ILK_DSPCLK_GATE_D) |
4607                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
4608                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
4609
4610         /* WaMbcDriverBootEnable:snb */
4611         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4612                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
4613
4614         g4x_disable_trickle_feed(dev);
4615
4616         /* The default value should be 0x200 according to docs, but the two
4617          * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
4618         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
4619         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
4620
4621         cpt_init_clock_gating(dev);
4622
4623         gen6_check_mch_setup(dev);
4624 }
4625
4626 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
4627 {
4628         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
4629
4630         reg &= ~GEN7_FF_SCHED_MASK;
4631         reg |= GEN7_FF_TS_SCHED_HW;
4632         reg |= GEN7_FF_VS_SCHED_HW;
4633         reg |= GEN7_FF_DS_SCHED_HW;
4634
4635         if (IS_HASWELL(dev_priv->dev))
4636                 reg &= ~GEN7_FF_VS_REF_CNT_FFME;
4637
4638         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
4639 }
4640
4641 static void lpt_init_clock_gating(struct drm_device *dev)
4642 {
4643         struct drm_i915_private *dev_priv = dev->dev_private;
4644
4645         /*
4646          * TODO: this bit should only be enabled when really needed, then
4647          * disabled when not needed anymore in order to save power.
4648          */
4649         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
4650                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
4651                            I915_READ(SOUTH_DSPCLK_GATE_D) |
4652                            PCH_LP_PARTITION_LEVEL_DISABLE);
4653
4654         /* WADPOClockGatingDisable:hsw */
4655         I915_WRITE(_TRANSA_CHICKEN1,
4656                    I915_READ(_TRANSA_CHICKEN1) |
4657                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
4658 }
4659
4660 static void lpt_suspend_hw(struct drm_device *dev)
4661 {
4662         struct drm_i915_private *dev_priv = dev->dev_private;
4663
4664         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
4665                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
4666
4667                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
4668                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
4669         }
4670 }
4671
4672 static void haswell_init_clock_gating(struct drm_device *dev)
4673 {
4674         struct drm_i915_private *dev_priv = dev->dev_private;
4675
4676         I915_WRITE(WM3_LP_ILK, 0);
4677         I915_WRITE(WM2_LP_ILK, 0);
4678         I915_WRITE(WM1_LP_ILK, 0);
4679
4680         /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4681          * This implements the WaDisableRCZUnitClockGating:hsw workaround.
4682          */
4683         I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
4684
4685         /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
4686         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4687                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4688
4689         /* WaApplyL3ControlAndL3ChickenMode:hsw */
4690         I915_WRITE(GEN7_L3CNTLREG1,
4691                         GEN7_WA_FOR_GEN7_L3_CONTROL);
4692         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4693                         GEN7_WA_L3_CHICKEN_MODE);
4694
4695         /* This is required by WaCatErrorRejectionIssue:hsw */
4696         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4697                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4698                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4699
4700         g4x_disable_trickle_feed(dev);
4701
4702         /* WaVSRefCountFullforceMissDisable:hsw */
4703         gen7_setup_fixed_func_scheduler(dev_priv);
4704
4705         /* WaDisable4x2SubspanOptimization:hsw */
4706         I915_WRITE(CACHE_MODE_1,
4707                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4708
4709         /* WaMbcDriverBootEnable:hsw */
4710         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4711                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
4712
4713         /* WaSwitchSolVfFArbitrationPriority:hsw */
4714         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
4715
4716         /* WaRsPkgCStateDisplayPMReq:hsw */
4717         I915_WRITE(CHICKEN_PAR1_1,
4718                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
4719
4720         lpt_init_clock_gating(dev);
4721 }
4722
4723 static void ivybridge_init_clock_gating(struct drm_device *dev)
4724 {
4725         struct drm_i915_private *dev_priv = dev->dev_private;
4726         uint32_t snpcr;
4727
4728         I915_WRITE(WM3_LP_ILK, 0);
4729         I915_WRITE(WM2_LP_ILK, 0);
4730         I915_WRITE(WM1_LP_ILK, 0);
4731
4732         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
4733
4734         /* WaDisableEarlyCull:ivb */
4735         I915_WRITE(_3D_CHICKEN3,
4736                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4737
4738         /* WaDisableBackToBackFlipFix:ivb */
4739         I915_WRITE(IVB_CHICKEN3,
4740                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4741                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
4742
4743         /* WaDisablePSDDualDispatchEnable:ivb */
4744         if (IS_IVB_GT1(dev))
4745                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4746                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4747         else
4748                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
4749                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4750
4751         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
4752         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4753                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4754
4755         /* WaApplyL3ControlAndL3ChickenMode:ivb */
4756         I915_WRITE(GEN7_L3CNTLREG1,
4757                         GEN7_WA_FOR_GEN7_L3_CONTROL);
4758         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
4759                    GEN7_WA_L3_CHICKEN_MODE);
4760         if (IS_IVB_GT1(dev))
4761                 I915_WRITE(GEN7_ROW_CHICKEN2,
4762                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4763         else
4764                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
4765                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4766
4767
4768         /* WaForceL3Serialization:ivb */
4769         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4770                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4771
4772         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4773          * gating disable must be set.  Failure to set it results in
4774          * flickering pixels due to Z write ordering failures after
4775          * some amount of runtime in the Mesa "fire" demo, and Unigine
4776          * Sanctuary and Tropics, and apparently anything else with
4777          * alpha test or pixel discard.
4778          *
4779          * According to the spec, bit 11 (RCCUNIT) must also be set,
4780          * but we didn't debug actual testcases to find it out.
4781          *
4782          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4783          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
4784          */
4785         I915_WRITE(GEN6_UCGCTL2,
4786                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
4787                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4788
4789         /* This is required by WaCatErrorRejectionIssue:ivb */
4790         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4791                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4792                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4793
4794         g4x_disable_trickle_feed(dev);
4795
4796         /* WaMbcDriverBootEnable:ivb */
4797         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4798                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
4799
4800         /* WaVSRefCountFullforceMissDisable:ivb */
4801         gen7_setup_fixed_func_scheduler(dev_priv);
4802
4803         /* WaDisable4x2SubspanOptimization:ivb */
4804         I915_WRITE(CACHE_MODE_1,
4805                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4806
4807         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4808         snpcr &= ~GEN6_MBC_SNPCR_MASK;
4809         snpcr |= GEN6_MBC_SNPCR_MED;
4810         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4811
4812         if (!HAS_PCH_NOP(dev))
4813                 cpt_init_clock_gating(dev);
4814
4815         gen6_check_mch_setup(dev);
4816 }
4817
4818 static void valleyview_init_clock_gating(struct drm_device *dev)
4819 {
4820         struct drm_i915_private *dev_priv = dev->dev_private;
4821
4822         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
4823
4824         /* WaDisableEarlyCull:vlv */
4825         I915_WRITE(_3D_CHICKEN3,
4826                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
4827
4828         /* WaDisableBackToBackFlipFix:vlv */
4829         I915_WRITE(IVB_CHICKEN3,
4830                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
4831                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
4832
4833         /* WaDisablePSDDualDispatchEnable:vlv */
4834         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
4835                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
4836                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
4837
4838         /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
4839         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
4840                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
4841
4842         /* WaApplyL3ControlAndL3ChickenMode:vlv */
4843         I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
4844         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
4845
4846         /* WaForceL3Serialization:vlv */
4847         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
4848                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
4849
4850         /* WaDisableDopClockGating:vlv */
4851         I915_WRITE(GEN7_ROW_CHICKEN2,
4852                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
4853
4854         /* This is required by WaCatErrorRejectionIssue:vlv */
4855         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
4856                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
4857                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
4858
4859         /* WaMbcDriverBootEnable:vlv */
4860         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
4861                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
4862
4863
4864         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
4865          * gating disable must be set.  Failure to set it results in
4866          * flickering pixels due to Z write ordering failures after
4867          * some amount of runtime in the Mesa "fire" demo, and Unigine
4868          * Sanctuary and Tropics, and apparently anything else with
4869          * alpha test or pixel discard.
4870          *
4871          * According to the spec, bit 11 (RCCUNIT) must also be set,
4872          * but we didn't debug actual testcases to find it out.
4873          *
4874          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
4875          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
4876          *
4877          * Also apply WaDisableVDSUnitClockGating:vlv and
4878          * WaDisableRCPBUnitClockGating:vlv.
4879          */
4880         I915_WRITE(GEN6_UCGCTL2,
4881                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
4882                    GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
4883                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
4884                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
4885                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
4886
4887         I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
4888
4889         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
4890
4891         I915_WRITE(CACHE_MODE_1,
4892                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
4893
4894         /*
4895          * WaDisableVLVClockGating_VBIIssue:vlv
4896          * Disable clock gating on th GCFG unit to prevent a delay
4897          * in the reporting of vblank events.
4898          */
4899         I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
4900
4901         /* Conservative clock gating settings for now */
4902         I915_WRITE(0x9400, 0xffffffff);
4903         I915_WRITE(0x9404, 0xffffffff);
4904         I915_WRITE(0x9408, 0xffffffff);
4905         I915_WRITE(0x940c, 0xffffffff);
4906         I915_WRITE(0x9410, 0xffffffff);
4907         I915_WRITE(0x9414, 0xffffffff);
4908         I915_WRITE(0x9418, 0xffffffff);
4909 }
4910
4911 static void g4x_init_clock_gating(struct drm_device *dev)
4912 {
4913         struct drm_i915_private *dev_priv = dev->dev_private;
4914         uint32_t dspclk_gate;
4915
4916         I915_WRITE(RENCLK_GATE_D1, 0);
4917         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
4918                    GS_UNIT_CLOCK_GATE_DISABLE |
4919                    CL_UNIT_CLOCK_GATE_DISABLE);
4920         I915_WRITE(RAMCLK_GATE_D, 0);
4921         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
4922                 OVRUNIT_CLOCK_GATE_DISABLE |
4923                 OVCUNIT_CLOCK_GATE_DISABLE;
4924         if (IS_GM45(dev))
4925                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4926         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4927
4928         /* WaDisableRenderCachePipelinedFlush */
4929         I915_WRITE(CACHE_MODE_0,
4930                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4931
4932         g4x_disable_trickle_feed(dev);
4933 }
4934
4935 static void crestline_init_clock_gating(struct drm_device *dev)
4936 {
4937         struct drm_i915_private *dev_priv = dev->dev_private;
4938
4939         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4940         I915_WRITE(RENCLK_GATE_D2, 0);
4941         I915_WRITE(DSPCLK_GATE_D, 0);
4942         I915_WRITE(RAMCLK_GATE_D, 0);
4943         I915_WRITE16(DEUC, 0);
4944         I915_WRITE(MI_ARB_STATE,
4945                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
4946 }
4947
4948 static void broadwater_init_clock_gating(struct drm_device *dev)
4949 {
4950         struct drm_i915_private *dev_priv = dev->dev_private;
4951
4952         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4953                    I965_RCC_CLOCK_GATE_DISABLE |
4954                    I965_RCPB_CLOCK_GATE_DISABLE |
4955                    I965_ISC_CLOCK_GATE_DISABLE |
4956                    I965_FBC_CLOCK_GATE_DISABLE);
4957         I915_WRITE(RENCLK_GATE_D2, 0);
4958         I915_WRITE(MI_ARB_STATE,
4959                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
4960 }
4961
4962 static void gen3_init_clock_gating(struct drm_device *dev)
4963 {
4964         struct drm_i915_private *dev_priv = dev->dev_private;
4965         u32 dstate = I915_READ(D_STATE);
4966
4967         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4968                 DSTATE_DOT_CLOCK_GATING;
4969         I915_WRITE(D_STATE, dstate);
4970
4971         if (IS_PINEVIEW(dev))
4972                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
4973
4974         /* IIR "flip pending" means done if this bit is set */
4975         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
4976 }
4977
4978 static void i85x_init_clock_gating(struct drm_device *dev)
4979 {
4980         struct drm_i915_private *dev_priv = dev->dev_private;
4981
4982         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4983 }
4984
4985 static void i830_init_clock_gating(struct drm_device *dev)
4986 {
4987         struct drm_i915_private *dev_priv = dev->dev_private;
4988
4989         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4990 }
4991
4992 void intel_init_clock_gating(struct drm_device *dev)
4993 {
4994         struct drm_i915_private *dev_priv = dev->dev_private;
4995
4996         dev_priv->display.init_clock_gating(dev);
4997 }
4998
4999 void intel_suspend_hw(struct drm_device *dev)
5000 {
5001         if (HAS_PCH_LPT(dev))
5002                 lpt_suspend_hw(dev);
5003 }
5004
5005 /**
5006  * We should only use the power well if we explicitly asked the hardware to
5007  * enable it, so check if it's enabled and also check if we've requested it to
5008  * be enabled.
5009  */
5010 bool intel_display_power_enabled(struct drm_device *dev,
5011                                  enum intel_display_power_domain domain)
5012 {
5013         struct drm_i915_private *dev_priv = dev->dev_private;
5014
5015         if (!HAS_POWER_WELL(dev))
5016                 return true;
5017
5018         switch (domain) {
5019         case POWER_DOMAIN_PIPE_A:
5020         case POWER_DOMAIN_TRANSCODER_EDP:
5021                 return true;
5022         case POWER_DOMAIN_PIPE_B:
5023         case POWER_DOMAIN_PIPE_C:
5024         case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
5025         case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
5026         case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
5027         case POWER_DOMAIN_TRANSCODER_A:
5028         case POWER_DOMAIN_TRANSCODER_B:
5029         case POWER_DOMAIN_TRANSCODER_C:
5030                 return I915_READ(HSW_PWR_WELL_DRIVER) ==
5031                        (HSW_PWR_WELL_ENABLE | HSW_PWR_WELL_STATE);
5032         default:
5033                 BUG();
5034         }
5035 }
5036
5037 static void __intel_set_power_well(struct drm_device *dev, bool enable)
5038 {
5039         struct drm_i915_private *dev_priv = dev->dev_private;
5040         bool is_enabled, enable_requested;
5041         uint32_t tmp;
5042
5043         tmp = I915_READ(HSW_PWR_WELL_DRIVER);
5044         is_enabled = tmp & HSW_PWR_WELL_STATE;
5045         enable_requested = tmp & HSW_PWR_WELL_ENABLE;
5046
5047         if (enable) {
5048                 if (!enable_requested)
5049                         I915_WRITE(HSW_PWR_WELL_DRIVER, HSW_PWR_WELL_ENABLE);
5050
5051                 if (!is_enabled) {
5052                         DRM_DEBUG_KMS("Enabling power well\n");
5053                         if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
5054                                       HSW_PWR_WELL_STATE), 20))
5055                                 DRM_ERROR("Timeout enabling power well\n");
5056                 }
5057         } else {
5058                 if (enable_requested) {
5059                         enum i915_pipe p;
5060
5061                         I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
5062                         POSTING_READ(HSW_PWR_WELL_DRIVER);
5063                         DRM_DEBUG_KMS("Requesting to disable the power well\n");
5064
5065                         /*
5066                          * After this, the registers on the pipes that are part
5067                          * of the power well will become zero, so we have to
5068                          * adjust our counters according to that.
5069                          *
5070                          * FIXME: Should we do this in general in
5071                          * drm_vblank_post_modeset?
5072                          */
5073                         lockmgr(&dev->vbl_lock, LK_EXCLUSIVE);
5074                         for_each_pipe(p)
5075                                 if (p != PIPE_A)
5076                                         dev->last_vblank[p] = 0;
5077                         lockmgr(&dev->vbl_lock, LK_RELEASE);
5078                 }
5079         }
5080 }
5081
5082 static struct i915_power_well *hsw_pwr;
5083
5084 #if 0
5085 /* Display audio driver power well request */
5086 static void i915_request_power_well(void)
5087 {
5088         if (WARN_ON(!hsw_pwr))
5089                 return;
5090
5091         lockmgr(&hsw_pwr->lock, LK_EXCLUSIVE);
5092         if (!hsw_pwr->count++ &&
5093                         !hsw_pwr->i915_request)
5094                 __intel_set_power_well(hsw_pwr->device, true);
5095         lockmgr(&hsw_pwr->lock, LK_RELEASE);
5096 }
5097
5098 /* Display audio driver power well release */
5099 static void i915_release_power_well(void)
5100 {
5101         if (WARN_ON(!hsw_pwr))
5102                 return;
5103
5104         lockmgr(&hsw_pwr->lock, LK_EXCLUSIVE);
5105         WARN_ON(!hsw_pwr->count);
5106         if (!--hsw_pwr->count &&
5107                        !hsw_pwr->i915_request)
5108                 __intel_set_power_well(hsw_pwr->device, false);
5109         lockmgr(&hsw_pwr->lock, LK_RELEASE);
5110 }
5111 #endif
5112
5113 int i915_init_power_well(struct drm_device *dev)
5114 {
5115         struct drm_i915_private *dev_priv = dev->dev_private;
5116
5117         hsw_pwr = &dev_priv->power_well;
5118
5119         hsw_pwr->device = dev;
5120         lockinit(&hsw_pwr->lock, "hswpl", 0, LK_CANRECURSE);
5121         hsw_pwr->count = 0;
5122
5123         return 0;
5124 }
5125
5126 void i915_remove_power_well(struct drm_device *dev)
5127 {
5128         hsw_pwr = NULL;
5129 }
5130
5131 void intel_set_power_well(struct drm_device *dev, bool enable)
5132 {
5133         struct drm_i915_private *dev_priv = dev->dev_private;
5134         struct i915_power_well *power_well = &dev_priv->power_well;
5135
5136         if (!HAS_POWER_WELL(dev))
5137                 return;
5138
5139         if (!i915_disable_power_well && !enable)
5140                 return;
5141
5142         lockmgr(&power_well->lock, LK_EXCLUSIVE);
5143         power_well->i915_request = enable;
5144
5145         /* only reject "disable" power well request */
5146         if (power_well->count && !enable) {
5147                 lockmgr(&power_well->lock, LK_RELEASE);
5148                 return;
5149         }
5150
5151         __intel_set_power_well(dev, enable);
5152         lockmgr(&power_well->lock, LK_RELEASE);
5153 }
5154
5155 /*
5156  * Starting with Haswell, we have a "Power Down Well" that can be turned off
5157  * when not needed anymore. We have 4 registers that can request the power well
5158  * to be enabled, and it will only be disabled if none of the registers is
5159  * requesting it to be enabled.
5160  */
5161 void intel_init_power_well(struct drm_device *dev)
5162 {
5163         struct drm_i915_private *dev_priv = dev->dev_private;
5164
5165         if (!HAS_POWER_WELL(dev))
5166                 return;
5167
5168         /* For now, we need the power well to be always enabled. */
5169         intel_set_power_well(dev, true);
5170
5171         /* We're taking over the BIOS, so clear any requests made by it since
5172          * the driver is in charge now. */
5173         if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE)
5174                 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
5175 }
5176
5177 /* Set up chip specific power management-related functions */
5178 void intel_init_pm(struct drm_device *dev)
5179 {
5180         struct drm_i915_private *dev_priv = dev->dev_private;
5181
5182         if (I915_HAS_FBC(dev)) {
5183                 if (HAS_PCH_SPLIT(dev)) {
5184                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5185                         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
5186                                 dev_priv->display.enable_fbc =
5187                                         gen7_enable_fbc;
5188                         else
5189                                 dev_priv->display.enable_fbc =
5190                                         ironlake_enable_fbc;
5191                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
5192                 } else if (IS_GM45(dev)) {
5193                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5194                         dev_priv->display.enable_fbc = g4x_enable_fbc;
5195                         dev_priv->display.disable_fbc = g4x_disable_fbc;
5196                 } else if (IS_CRESTLINE(dev)) {
5197                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5198                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
5199                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
5200                 }
5201                 /* 855GM needs testing */
5202         }
5203
5204         /* For cxsr */
5205         if (IS_PINEVIEW(dev))
5206                 i915_pineview_get_mem_freq(dev);
5207         else if (IS_GEN5(dev))
5208                 i915_ironlake_get_mem_freq(dev);
5209
5210         /* For FIFO watermark updates */
5211         if (HAS_PCH_SPLIT(dev)) {
5212                 if (IS_GEN5(dev)) {
5213                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
5214                                 dev_priv->display.update_wm = ironlake_update_wm;
5215                         else {
5216                                 DRM_DEBUG_KMS("Failed to get proper latency. "
5217                                               "Disable CxSR\n");
5218                                 dev_priv->display.update_wm = NULL;
5219                         }
5220                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
5221                 } else if (IS_GEN6(dev)) {
5222                         if (SNB_READ_WM0_LATENCY()) {
5223                                 dev_priv->display.update_wm = sandybridge_update_wm;
5224                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
5225                         } else {
5226                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
5227                                               "Disable CxSR\n");
5228                                 dev_priv->display.update_wm = NULL;
5229                         }
5230                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
5231                 } else if (IS_IVYBRIDGE(dev)) {
5232                         if (SNB_READ_WM0_LATENCY()) {
5233                                 dev_priv->display.update_wm = ivybridge_update_wm;
5234                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
5235                         } else {
5236                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
5237                                               "Disable CxSR\n");
5238                                 dev_priv->display.update_wm = NULL;
5239                         }
5240                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
5241                 } else if (IS_HASWELL(dev)) {
5242                         if (I915_READ64(MCH_SSKPD)) {
5243                                 dev_priv->display.update_wm = haswell_update_wm;
5244                                 dev_priv->display.update_sprite_wm =
5245                                         haswell_update_sprite_wm;
5246                         } else {
5247                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
5248                                               "Disable CxSR\n");
5249                                 dev_priv->display.update_wm = NULL;
5250                         }
5251                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
5252                 } else
5253                         dev_priv->display.update_wm = NULL;
5254         } else if (IS_VALLEYVIEW(dev)) {
5255                 dev_priv->display.update_wm = valleyview_update_wm;
5256                 dev_priv->display.init_clock_gating =
5257                         valleyview_init_clock_gating;
5258         } else if (IS_PINEVIEW(dev)) {
5259                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5260                                             dev_priv->is_ddr3,
5261                                             dev_priv->fsb_freq,
5262                                             dev_priv->mem_freq)) {
5263                         DRM_INFO("failed to find known CxSR latency "
5264                                  "(found ddr%s fsb freq %d, mem freq %d), "
5265                                  "disabling CxSR\n",
5266                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
5267                                  dev_priv->fsb_freq, dev_priv->mem_freq);
5268                         /* Disable CxSR and never update its watermark again */
5269                         pineview_disable_cxsr(dev);
5270                         dev_priv->display.update_wm = NULL;
5271                 } else
5272                         dev_priv->display.update_wm = pineview_update_wm;
5273                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5274         } else if (IS_G4X(dev)) {
5275                 dev_priv->display.update_wm = g4x_update_wm;
5276                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
5277         } else if (IS_GEN4(dev)) {
5278                 dev_priv->display.update_wm = i965_update_wm;
5279                 if (IS_CRESTLINE(dev))
5280                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
5281                 else if (IS_BROADWATER(dev))
5282                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
5283         } else if (IS_GEN3(dev)) {
5284                 dev_priv->display.update_wm = i9xx_update_wm;
5285                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5286                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
5287         } else if (IS_I865G(dev)) {
5288                 dev_priv->display.update_wm = i830_update_wm;
5289                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5290                 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5291         } else if (IS_I85X(dev)) {
5292                 dev_priv->display.update_wm = i9xx_update_wm;
5293                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5294                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
5295         } else {
5296                 dev_priv->display.update_wm = i830_update_wm;
5297                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
5298                 if (IS_845G(dev))
5299                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
5300                 else
5301                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
5302         }
5303 }
5304
5305 static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
5306 {
5307         u32 gt_thread_status_mask;
5308
5309         if (IS_HASWELL(dev_priv->dev))
5310                 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
5311         else
5312                 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
5313
5314         /* w/a for a sporadic read returning 0 by waiting for the GT
5315          * thread to wake up.
5316          */
5317         if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
5318                 DRM_ERROR("GT thread status wait timed out\n");
5319 }
5320
5321 static void __gen6_gt_force_wake_reset(struct drm_i915_private *dev_priv)
5322 {
5323         I915_WRITE_NOTRACE(FORCEWAKE, 0);
5324         POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
5325 }
5326
5327 static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
5328 {
5329         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK) & 1) == 0,
5330                             FORCEWAKE_ACK_TIMEOUT_MS))
5331                 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
5332
5333         I915_WRITE_NOTRACE(FORCEWAKE, 1);
5334         POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
5335
5336         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK) & 1),
5337                             FORCEWAKE_ACK_TIMEOUT_MS))
5338                 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
5339
5340         /* WaRsForcewakeWaitTC0:snb */
5341         __gen6_gt_wait_for_thread_c0(dev_priv);
5342 }
5343
5344 static void __gen6_gt_force_wake_mt_reset(struct drm_i915_private *dev_priv)
5345 {
5346         I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(0xffff));
5347         /* something from same cacheline, but !FORCEWAKE_MT */
5348         POSTING_READ(ECOBUS);
5349 }
5350
5351 static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
5352 {
5353         u32 forcewake_ack;
5354
5355         if (IS_HASWELL(dev_priv->dev))
5356                 forcewake_ack = FORCEWAKE_ACK_HSW;
5357         else
5358                 forcewake_ack = FORCEWAKE_MT_ACK;
5359
5360         if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & FORCEWAKE_KERNEL) == 0,
5361                             FORCEWAKE_ACK_TIMEOUT_MS))
5362                 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
5363
5364         I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
5365         /* something from same cacheline, but !FORCEWAKE_MT */
5366         POSTING_READ(ECOBUS);
5367
5368         if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & FORCEWAKE_KERNEL),
5369                             FORCEWAKE_ACK_TIMEOUT_MS))
5370                 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
5371
5372         /* WaRsForcewakeWaitTC0:ivb,hsw */
5373         __gen6_gt_wait_for_thread_c0(dev_priv);
5374 }
5375
5376 /*
5377  * Generally this is called implicitly by the register read function. However,
5378  * if some sequence requires the GT to not power down then this function should
5379  * be called at the beginning of the sequence followed by a call to
5380  * gen6_gt_force_wake_put() at the end of the sequence.
5381  */
5382 void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
5383 {
5384
5385         lockmgr(&dev_priv->gt_lock, LK_EXCLUSIVE);
5386         if (dev_priv->forcewake_count++ == 0)
5387                 dev_priv->gt.force_wake_get(dev_priv);
5388         lockmgr(&dev_priv->gt_lock, LK_RELEASE);
5389 }
5390
5391 void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
5392 {
5393         u32 gtfifodbg;
5394         gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
5395         if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
5396              "MMIO read or write has been dropped %x\n", gtfifodbg))
5397                 I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
5398 }
5399
5400 static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
5401 {
5402         I915_WRITE_NOTRACE(FORCEWAKE, 0);
5403         /* something from same cacheline, but !FORCEWAKE */
5404         POSTING_READ(ECOBUS);
5405         gen6_gt_check_fifodbg(dev_priv);
5406 }
5407
5408 static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
5409 {
5410         I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
5411         /* something from same cacheline, but !FORCEWAKE_MT */
5412         POSTING_READ(ECOBUS);
5413         gen6_gt_check_fifodbg(dev_priv);
5414 }
5415
5416 /*
5417  * see gen6_gt_force_wake_get()
5418  */
5419 void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
5420 {
5421         lockmgr(&dev_priv->gt_lock, LK_EXCLUSIVE);
5422         if (--dev_priv->forcewake_count == 0)
5423                 dev_priv->gt.force_wake_put(dev_priv);
5424         lockmgr(&dev_priv->gt_lock, LK_RELEASE);
5425 }
5426
5427 int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
5428 {
5429         int ret = 0;
5430
5431         if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
5432                 int loop = 500;
5433                 u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
5434                 while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
5435                         udelay(10);
5436                         fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
5437                 }
5438                 if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES))
5439                         ++ret;
5440                 dev_priv->gt_fifo_count = fifo;
5441         }
5442         dev_priv->gt_fifo_count--;
5443
5444         return ret;
5445 }
5446
5447 static void vlv_force_wake_reset(struct drm_i915_private *dev_priv)
5448 {
5449         I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(0xffff));
5450         /* something from same cacheline, but !FORCEWAKE_VLV */
5451         POSTING_READ(FORCEWAKE_ACK_VLV);
5452 }
5453
5454 static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
5455 {
5456         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & FORCEWAKE_KERNEL) == 0,
5457                             FORCEWAKE_ACK_TIMEOUT_MS))
5458                 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
5459
5460         I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
5461         I915_WRITE_NOTRACE(FORCEWAKE_MEDIA_VLV,
5462                            _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
5463
5464         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & FORCEWAKE_KERNEL),
5465                             FORCEWAKE_ACK_TIMEOUT_MS))
5466                 DRM_ERROR("Timed out waiting for GT to ack forcewake request.\n");
5467
5468         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_MEDIA_VLV) &
5469                              FORCEWAKE_KERNEL),
5470                             FORCEWAKE_ACK_TIMEOUT_MS))
5471                 DRM_ERROR("Timed out waiting for media to ack forcewake request.\n");
5472
5473         /* WaRsForcewakeWaitTC0:vlv */
5474         __gen6_gt_wait_for_thread_c0(dev_priv);
5475 }
5476
5477 static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
5478 {
5479         I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
5480         I915_WRITE_NOTRACE(FORCEWAKE_MEDIA_VLV,
5481                            _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
5482         /* The below doubles as a POSTING_READ */
5483         gen6_gt_check_fifodbg(dev_priv);
5484 }
5485
5486 void intel_gt_sanitize(struct drm_device *dev)
5487 {
5488         struct drm_i915_private *dev_priv = dev->dev_private;
5489
5490         if (IS_VALLEYVIEW(dev)) {
5491                 vlv_force_wake_reset(dev_priv);
5492         } else if (INTEL_INFO(dev)->gen >= 6) {
5493                 __gen6_gt_force_wake_reset(dev_priv);
5494                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
5495                         __gen6_gt_force_wake_mt_reset(dev_priv);
5496         }
5497
5498         /* BIOS often leaves RC6 enabled, but disable it for hw init */
5499         if (INTEL_INFO(dev)->gen >= 6)
5500                 intel_disable_gt_powersave(dev);
5501 }
5502
5503 void intel_gt_init(struct drm_device *dev)
5504 {
5505         struct drm_i915_private *dev_priv = dev->dev_private;
5506
5507         if (IS_VALLEYVIEW(dev)) {
5508                 dev_priv->gt.force_wake_get = vlv_force_wake_get;
5509                 dev_priv->gt.force_wake_put = vlv_force_wake_put;
5510         } else if (IS_HASWELL(dev)) {
5511                 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_mt_get;
5512                 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_mt_put;
5513         } else if (IS_IVYBRIDGE(dev)) {
5514                 u32 ecobus;
5515
5516                 /* IVB configs may use multi-threaded forcewake */
5517
5518                 /* A small trick here - if the bios hasn't configured
5519                  * MT forcewake, and if the device is in RC6, then
5520                  * force_wake_mt_get will not wake the device and the
5521                  * ECOBUS read will return zero. Which will be
5522                  * (correctly) interpreted by the test below as MT
5523                  * forcewake being disabled.
5524                  */
5525                 mutex_lock(&dev->struct_mutex);
5526                 __gen6_gt_force_wake_mt_get(dev_priv);
5527                 ecobus = I915_READ_NOTRACE(ECOBUS);
5528                 __gen6_gt_force_wake_mt_put(dev_priv);
5529                 mutex_unlock(&dev->struct_mutex);
5530
5531                 if (ecobus & FORCEWAKE_MT_ENABLE) {
5532                         dev_priv->gt.force_wake_get =
5533                                                 __gen6_gt_force_wake_mt_get;
5534                         dev_priv->gt.force_wake_put =
5535                                                 __gen6_gt_force_wake_mt_put;
5536                 } else {
5537                         DRM_INFO("No MT forcewake available on Ivybridge, this can result in issues\n");
5538                         DRM_INFO("when using vblank-synced partial screen updates.\n");
5539                         dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
5540                         dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
5541                 }
5542         } else if (IS_GEN6(dev)) {
5543                 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
5544                 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
5545         }
5546 }
5547
5548 void intel_pm_init(struct drm_device *dev)
5549 {
5550         struct drm_i915_private *dev_priv = dev->dev_private;
5551
5552         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
5553                           intel_gen6_powersave_work);
5554 }
5555
5556 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
5557 {
5558         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5559
5560         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5561                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
5562                 return -EAGAIN;
5563         }
5564
5565         I915_WRITE(GEN6_PCODE_DATA, *val);
5566         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5567
5568         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5569                      500)) {
5570                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
5571                 return -ETIMEDOUT;
5572         }
5573
5574         *val = I915_READ(GEN6_PCODE_DATA);
5575         I915_WRITE(GEN6_PCODE_DATA, 0);
5576
5577         return 0;
5578 }
5579
5580 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
5581 {
5582         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5583
5584         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
5585                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
5586                 return -EAGAIN;
5587         }
5588
5589         I915_WRITE(GEN6_PCODE_DATA, val);
5590         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
5591
5592         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
5593                      500)) {
5594                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
5595                 return -ETIMEDOUT;
5596         }
5597
5598         I915_WRITE(GEN6_PCODE_DATA, 0);
5599
5600         return 0;
5601 }
5602
5603 int vlv_gpu_freq(int ddr_freq, int val)
5604 {
5605         int mult, base;
5606
5607         switch (ddr_freq) {
5608         case 800:
5609                 mult = 20;
5610                 base = 120;
5611                 break;
5612         case 1066:
5613                 mult = 22;
5614                 base = 133;
5615                 break;
5616         case 1333:
5617                 mult = 21;
5618                 base = 125;
5619                 break;
5620         default:
5621                 return -1;
5622         }
5623
5624         return ((val - 0xbd) * mult) + base;
5625 }
5626
5627 int vlv_freq_opcode(int ddr_freq, int val)
5628 {
5629         int mult, base;
5630
5631         switch (ddr_freq) {
5632         case 800:
5633                 mult = 20;
5634                 base = 120;
5635                 break;
5636         case 1066:
5637                 mult = 22;
5638                 base = 133;
5639                 break;
5640         case 1333:
5641                 mult = 21;
5642                 base = 125;
5643                 break;
5644         default:
5645                 return -1;
5646         }
5647
5648         val /= mult;
5649         val -= base / mult;
5650         val += 0xbd;
5651
5652         if (val > 0xea)
5653                 val = 0xea;
5654
5655         return val;
5656 }
5657