Merge branch 'vendor/LESS'
[dragonfly.git] / sys / vm / vm_fault.c
1 /*
2  * Copyright (c) 2003-2014 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  * ---
35  *
36  * Copyright (c) 1991, 1993
37  *      The Regents of the University of California.  All rights reserved.
38  * Copyright (c) 1994 John S. Dyson
39  * All rights reserved.
40  * Copyright (c) 1994 David Greenman
41  * All rights reserved.
42  *
43  *
44  * This code is derived from software contributed to Berkeley by
45  * The Mach Operating System project at Carnegie-Mellon University.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  * ---
72  *
73  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
74  * All rights reserved.
75  *
76  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
77  *
78  * Permission to use, copy, modify and distribute this software and
79  * its documentation is hereby granted, provided that both the copyright
80  * notice and this permission notice appear in all copies of the
81  * software, derivative works or modified versions, and any portions
82  * thereof, and that both notices appear in supporting documentation.
83  *
84  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
85  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
86  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
87  *
88  * Carnegie Mellon requests users of this software to return to
89  *
90  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
91  *  School of Computer Science
92  *  Carnegie Mellon University
93  *  Pittsburgh PA 15213-3890
94  *
95  * any improvements or extensions that they make and grant Carnegie the
96  * rights to redistribute these changes.
97  */
98
99 /*
100  *      Page fault handling module.
101  */
102
103 #include <sys/param.h>
104 #include <sys/systm.h>
105 #include <sys/kernel.h>
106 #include <sys/proc.h>
107 #include <sys/vnode.h>
108 #include <sys/resourcevar.h>
109 #include <sys/vmmeter.h>
110 #include <sys/vkernel.h>
111 #include <sys/lock.h>
112 #include <sys/sysctl.h>
113
114 #include <cpu/lwbuf.h>
115
116 #include <vm/vm.h>
117 #include <vm/vm_param.h>
118 #include <vm/pmap.h>
119 #include <vm/vm_map.h>
120 #include <vm/vm_object.h>
121 #include <vm/vm_page.h>
122 #include <vm/vm_pageout.h>
123 #include <vm/vm_kern.h>
124 #include <vm/vm_pager.h>
125 #include <vm/vnode_pager.h>
126 #include <vm/vm_extern.h>
127
128 #include <sys/thread2.h>
129 #include <vm/vm_page2.h>
130
131 struct faultstate {
132         vm_page_t m;
133         vm_object_t object;
134         vm_pindex_t pindex;
135         vm_prot_t prot;
136         vm_page_t first_m;
137         vm_object_t first_object;
138         vm_prot_t first_prot;
139         vm_map_t map;
140         vm_map_entry_t entry;
141         int lookup_still_valid;
142         int hardfault;
143         int fault_flags;
144         int map_generation;
145         int shared;
146         int first_shared;
147         boolean_t wired;
148         struct vnode *vp;
149 };
150
151 static int debug_fault = 0;
152 SYSCTL_INT(_vm, OID_AUTO, debug_fault, CTLFLAG_RW, &debug_fault, 0, "");
153 static int debug_cluster = 0;
154 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
155 int vm_shared_fault = 1;
156 TUNABLE_INT("vm.shared_fault", &vm_shared_fault);
157 SYSCTL_INT(_vm, OID_AUTO, shared_fault, CTLFLAG_RW, &vm_shared_fault, 0,
158            "Allow shared token on vm_object");
159 static long vm_shared_hit = 0;
160 SYSCTL_LONG(_vm, OID_AUTO, shared_hit, CTLFLAG_RW, &vm_shared_hit, 0,
161            "Successful shared faults");
162 static long vm_shared_count = 0;
163 SYSCTL_LONG(_vm, OID_AUTO, shared_count, CTLFLAG_RW, &vm_shared_count, 0,
164            "Shared fault attempts");
165 static long vm_shared_miss = 0;
166 SYSCTL_LONG(_vm, OID_AUTO, shared_miss, CTLFLAG_RW, &vm_shared_miss, 0,
167            "Unsuccessful shared faults");
168
169 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t, int);
170 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *,
171                         vpte_t, int, int);
172 #if 0
173 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
174 #endif
175 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry);
176 static void vm_prefault(pmap_t pmap, vm_offset_t addra,
177                         vm_map_entry_t entry, int prot, int fault_flags);
178 static void vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
179                         vm_map_entry_t entry, int prot, int fault_flags);
180
181 static __inline void
182 release_page(struct faultstate *fs)
183 {
184         vm_page_deactivate(fs->m);
185         vm_page_wakeup(fs->m);
186         fs->m = NULL;
187 }
188
189 /*
190  * NOTE: Once unlocked any cached fs->entry becomes invalid, any reuse
191  *       requires relocking and then checking the timestamp.
192  *
193  * NOTE: vm_map_lock_read() does not bump fs->map->timestamp so we do
194  *       not have to update fs->map_generation here.
195  *
196  * NOTE: This function can fail due to a deadlock against the caller's
197  *       holding of a vm_page BUSY.
198  */
199 static __inline int
200 relock_map(struct faultstate *fs)
201 {
202         int error;
203
204         if (fs->lookup_still_valid == FALSE && fs->map) {
205                 error = vm_map_lock_read_to(fs->map);
206                 if (error == 0)
207                         fs->lookup_still_valid = TRUE;
208         } else {
209                 error = 0;
210         }
211         return error;
212 }
213
214 static __inline void
215 unlock_map(struct faultstate *fs)
216 {
217         if (fs->lookup_still_valid && fs->map) {
218                 vm_map_lookup_done(fs->map, fs->entry, 0);
219                 fs->lookup_still_valid = FALSE;
220         }
221 }
222
223 /*
224  * Clean up after a successful call to vm_fault_object() so another call
225  * to vm_fault_object() can be made.
226  */
227 static void
228 _cleanup_successful_fault(struct faultstate *fs, int relock)
229 {
230         /*
231          * We allocated a junk page for a COW operation that did
232          * not occur, the page must be freed.
233          */
234         if (fs->object != fs->first_object) {
235                 KKASSERT(fs->first_shared == 0);
236                 vm_page_free(fs->first_m);
237                 vm_object_pip_wakeup(fs->object);
238                 fs->first_m = NULL;
239         }
240
241         /*
242          * Reset fs->object.
243          */
244         fs->object = fs->first_object;
245         if (relock && fs->lookup_still_valid == FALSE) {
246                 if (fs->map)
247                         vm_map_lock_read(fs->map);
248                 fs->lookup_still_valid = TRUE;
249         }
250 }
251
252 static void
253 _unlock_things(struct faultstate *fs, int dealloc)
254 {
255         _cleanup_successful_fault(fs, 0);
256         if (dealloc) {
257                 /*vm_object_deallocate(fs->first_object);*/
258                 /*fs->first_object = NULL; drop used later on */
259         }
260         unlock_map(fs); 
261         if (fs->vp != NULL) { 
262                 vput(fs->vp);
263                 fs->vp = NULL;
264         }
265 }
266
267 #define unlock_things(fs) _unlock_things(fs, 0)
268 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
269 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
270
271 /*
272  * TRYPAGER 
273  *
274  * Determine if the pager for the current object *might* contain the page.
275  *
276  * We only need to try the pager if this is not a default object (default
277  * objects are zero-fill and have no real pager), and if we are not taking
278  * a wiring fault or if the FS entry is wired.
279  */
280 #define TRYPAGER(fs)    \
281                 (fs->object->type != OBJT_DEFAULT && \
282                 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
283
284 /*
285  * vm_fault:
286  *
287  * Handle a page fault occuring at the given address, requiring the given
288  * permissions, in the map specified.  If successful, the page is inserted
289  * into the associated physical map.
290  *
291  * NOTE: The given address should be truncated to the proper page address.
292  *
293  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
294  * a standard error specifying why the fault is fatal is returned.
295  *
296  * The map in question must be referenced, and remains so.
297  * The caller may hold no locks.
298  * No other requirements.
299  */
300 int
301 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
302 {
303         int result;
304         vm_pindex_t first_pindex;
305         struct faultstate fs;
306         struct lwp *lp;
307         int growstack;
308         int retry = 0;
309         int inherit_prot;
310
311         inherit_prot = fault_type & VM_PROT_NOSYNC;
312         vm_page_pcpu_cache();
313         fs.hardfault = 0;
314         fs.fault_flags = fault_flags;
315         fs.vp = NULL;
316         fs.shared = vm_shared_fault;
317         fs.first_shared = vm_shared_fault;
318         growstack = 1;
319         if (vm_shared_fault)
320                 ++vm_shared_count;
321
322         /*
323          * vm_map interactions
324          */
325         if ((lp = curthread->td_lwp) != NULL)
326                 lp->lwp_flags |= LWP_PAGING;
327         lwkt_gettoken(&map->token);
328
329 RetryFault:
330         /*
331          * Find the vm_map_entry representing the backing store and resolve
332          * the top level object and page index.  This may have the side
333          * effect of executing a copy-on-write on the map entry and/or
334          * creating a shadow object, but will not COW any actual VM pages.
335          *
336          * On success fs.map is left read-locked and various other fields 
337          * are initialized but not otherwise referenced or locked.
338          *
339          * NOTE!  vm_map_lookup will try to upgrade the fault_type to
340          * VM_FAULT_WRITE if the map entry is a virtual page table and also
341          * writable, so we can set the 'A'accessed bit in the virtual page
342          * table entry.
343          */
344         fs.map = map;
345         result = vm_map_lookup(&fs.map, vaddr, fault_type,
346                                &fs.entry, &fs.first_object,
347                                &first_pindex, &fs.first_prot, &fs.wired);
348
349         /*
350          * If the lookup failed or the map protections are incompatible,
351          * the fault generally fails.  However, if the caller is trying
352          * to do a user wiring we have more work to do.
353          */
354         if (result != KERN_SUCCESS) {
355                 if (result != KERN_PROTECTION_FAILURE ||
356                     (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
357                 {
358                         if (result == KERN_INVALID_ADDRESS && growstack &&
359                             map != &kernel_map && curproc != NULL) {
360                                 result = vm_map_growstack(curproc, vaddr);
361                                 if (result == KERN_SUCCESS) {
362                                         growstack = 0;
363                                         ++retry;
364                                         goto RetryFault;
365                                 }
366                                 result = KERN_FAILURE;
367                         }
368                         goto done;
369                 }
370
371                 /*
372                  * If we are user-wiring a r/w segment, and it is COW, then
373                  * we need to do the COW operation.  Note that we don't
374                  * currently COW RO sections now, because it is NOT desirable
375                  * to COW .text.  We simply keep .text from ever being COW'ed
376                  * and take the heat that one cannot debug wired .text sections.
377                  */
378                 result = vm_map_lookup(&fs.map, vaddr,
379                                        VM_PROT_READ|VM_PROT_WRITE|
380                                         VM_PROT_OVERRIDE_WRITE,
381                                        &fs.entry, &fs.first_object,
382                                        &first_pindex, &fs.first_prot,
383                                        &fs.wired);
384                 if (result != KERN_SUCCESS) {
385                         result = KERN_FAILURE;
386                         goto done;
387                 }
388
389                 /*
390                  * If we don't COW now, on a user wire, the user will never
391                  * be able to write to the mapping.  If we don't make this
392                  * restriction, the bookkeeping would be nearly impossible.
393                  *
394                  * XXX We have a shared lock, this will have a MP race but
395                  * I don't see how it can hurt anything.
396                  */
397                 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
398                         fs.entry->max_protection &= ~VM_PROT_WRITE;
399         }
400
401         /*
402          * fs.map is read-locked
403          *
404          * Misc checks.  Save the map generation number to detect races.
405          */
406         fs.map_generation = fs.map->timestamp;
407         fs.lookup_still_valid = TRUE;
408         fs.first_m = NULL;
409         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
410         fs.prot = fs.first_prot;        /* default (used by uksmap) */
411
412         if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) {
413                 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
414                         panic("vm_fault: fault on nofault entry, addr: %p",
415                               (void *)vaddr);
416                 }
417                 if ((fs.entry->eflags & MAP_ENTRY_KSTACK) &&
418                     vaddr >= fs.entry->start &&
419                     vaddr < fs.entry->start + PAGE_SIZE) {
420                         panic("vm_fault: fault on stack guard, addr: %p",
421                               (void *)vaddr);
422                 }
423         }
424
425         /*
426          * A user-kernel shared map has no VM object and bypasses
427          * everything.  We execute the uksmap function with a temporary
428          * fictitious vm_page.  The address is directly mapped with no
429          * management.
430          */
431         if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
432                 struct vm_page fakem;
433
434                 bzero(&fakem, sizeof(fakem));
435                 fakem.pindex = first_pindex;
436                 fakem.flags = PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED;
437                 fakem.valid = VM_PAGE_BITS_ALL;
438                 fakem.pat_mode = VM_MEMATTR_DEFAULT;
439                 if (fs.entry->object.uksmap(fs.entry->aux.dev, &fakem)) {
440                         result = KERN_FAILURE;
441                         unlock_things(&fs);
442                         goto done2;
443                 }
444                 pmap_enter(fs.map->pmap, vaddr, &fakem, fs.prot | inherit_prot,
445                            fs.wired, fs.entry);
446                 goto done_success;
447         }
448
449         /*
450          * A system map entry may return a NULL object.  No object means
451          * no pager means an unrecoverable kernel fault.
452          */
453         if (fs.first_object == NULL) {
454                 panic("vm_fault: unrecoverable fault at %p in entry %p",
455                         (void *)vaddr, fs.entry);
456         }
457
458         /*
459          * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
460          * is set.
461          */
462         if ((curthread->td_flags & TDF_NOFAULT) &&
463             (retry ||
464              fs.first_object->type == OBJT_VNODE ||
465              fs.first_object->backing_object)) {
466                 result = KERN_FAILURE;
467                 unlock_things(&fs);
468                 goto done2;
469         }
470
471         /*
472          * If the entry is wired we cannot change the page protection.
473          */
474         if (fs.wired)
475                 fault_type = fs.first_prot;
476
477         /*
478          * We generally want to avoid unnecessary exclusive modes on backing
479          * and terminal objects because this can seriously interfere with
480          * heavily fork()'d processes (particularly /bin/sh scripts).
481          *
482          * However, we also want to avoid unnecessary retries due to needed
483          * shared->exclusive promotion for common faults.  Exclusive mode is
484          * always needed if any page insertion, rename, or free occurs in an
485          * object (and also indirectly if any I/O is done).
486          *
487          * The main issue here is going to be fs.first_shared.  If the
488          * first_object has a backing object which isn't shadowed and the
489          * process is single-threaded we might as well use an exclusive
490          * lock/chain right off the bat.
491          */
492         if (fs.first_shared && fs.first_object->backing_object &&
493             LIST_EMPTY(&fs.first_object->shadow_head) &&
494             curthread->td_proc && curthread->td_proc->p_nthreads == 1) {
495                 fs.first_shared = 0;
496         }
497
498         /*
499          * swap_pager_unswapped() needs an exclusive object
500          */
501         if (fault_flags & (VM_FAULT_UNSWAP | VM_FAULT_DIRTY)) {
502                 fs.first_shared = 0;
503         }
504
505         /*
506          * Obtain a top-level object lock, shared or exclusive depending
507          * on fs.first_shared.  If a shared lock winds up being insufficient
508          * we will retry with an exclusive lock.
509          *
510          * The vnode pager lock is always shared.
511          */
512         if (fs.first_shared)
513                 vm_object_hold_shared(fs.first_object);
514         else
515                 vm_object_hold(fs.first_object);
516         if (fs.vp == NULL)
517                 fs.vp = vnode_pager_lock(fs.first_object);
518
519         /*
520          * The page we want is at (first_object, first_pindex), but if the
521          * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
522          * page table to figure out the actual pindex.
523          *
524          * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
525          * ONLY
526          */
527         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
528                 result = vm_fault_vpagetable(&fs, &first_pindex,
529                                              fs.entry->aux.master_pde,
530                                              fault_type, 1);
531                 if (result == KERN_TRY_AGAIN) {
532                         vm_object_drop(fs.first_object);
533                         ++retry;
534                         goto RetryFault;
535                 }
536                 if (result != KERN_SUCCESS)
537                         goto done;
538         }
539
540         /*
541          * Now we have the actual (object, pindex), fault in the page.  If
542          * vm_fault_object() fails it will unlock and deallocate the FS
543          * data.   If it succeeds everything remains locked and fs->object
544          * will have an additional PIP count if it is not equal to
545          * fs->first_object
546          *
547          * vm_fault_object will set fs->prot for the pmap operation.  It is
548          * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
549          * page can be safely written.  However, it will force a read-only
550          * mapping for a read fault if the memory is managed by a virtual
551          * page table.
552          *
553          * If the fault code uses the shared object lock shortcut
554          * we must not try to burst (we can't allocate VM pages).
555          */
556         result = vm_fault_object(&fs, first_pindex, fault_type, 1);
557
558         if (debug_fault > 0) {
559                 --debug_fault;
560                 kprintf("VM_FAULT result %d addr=%jx type=%02x flags=%02x "
561                         "fs.m=%p fs.prot=%02x fs.wired=%02x fs.entry=%p\n",
562                         result, (intmax_t)vaddr, fault_type, fault_flags,
563                         fs.m, fs.prot, fs.wired, fs.entry);
564         }
565
566         if (result == KERN_TRY_AGAIN) {
567                 vm_object_drop(fs.first_object);
568                 ++retry;
569                 goto RetryFault;
570         }
571         if (result != KERN_SUCCESS)
572                 goto done;
573
574         /*
575          * On success vm_fault_object() does not unlock or deallocate, and fs.m
576          * will contain a busied page.
577          *
578          * Enter the page into the pmap and do pmap-related adjustments.
579          */
580         KKASSERT(fs.lookup_still_valid == TRUE);
581         vm_page_flag_set(fs.m, PG_REFERENCED);
582         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot | inherit_prot,
583                    fs.wired, fs.entry);
584
585         /*KKASSERT(fs.m->queue == PQ_NONE); page-in op may deactivate page */
586         KKASSERT(fs.m->flags & PG_BUSY);
587
588         /*
589          * If the page is not wired down, then put it where the pageout daemon
590          * can find it.
591          */
592         if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
593                 if (fs.wired)
594                         vm_page_wire(fs.m);
595                 else
596                         vm_page_unwire(fs.m, 1);
597         } else {
598                 vm_page_activate(fs.m);
599         }
600         vm_page_wakeup(fs.m);
601
602         /*
603          * Burst in a few more pages if possible.  The fs.map should still
604          * be locked.  To avoid interlocking against a vnode->getblk
605          * operation we had to be sure to unbusy our primary vm_page above
606          * first.
607          *
608          * A normal burst can continue down backing store, only execute
609          * if we are holding an exclusive lock, otherwise the exclusive
610          * locks the burst code gets might cause excessive SMP collisions.
611          *
612          * A quick burst can be utilized when there is no backing object
613          * (i.e. a shared file mmap).
614          */
615         if ((fault_flags & VM_FAULT_BURST) &&
616             (fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 &&
617             fs.wired == 0) {
618                 if (fs.first_shared == 0 && fs.shared == 0) {
619                         vm_prefault(fs.map->pmap, vaddr,
620                                     fs.entry, fs.prot, fault_flags);
621                 } else {
622                         vm_prefault_quick(fs.map->pmap, vaddr,
623                                           fs.entry, fs.prot, fault_flags);
624                 }
625         }
626
627 done_success:
628         mycpu->gd_cnt.v_vm_faults++;
629         if (curthread->td_lwp)
630                 ++curthread->td_lwp->lwp_ru.ru_minflt;
631
632         /*
633          * Unlock everything, and return
634          */
635         unlock_things(&fs);
636
637         if (curthread->td_lwp) {
638                 if (fs.hardfault) {
639                         curthread->td_lwp->lwp_ru.ru_majflt++;
640                 } else {
641                         curthread->td_lwp->lwp_ru.ru_minflt++;
642                 }
643         }
644
645         /*vm_object_deallocate(fs.first_object);*/
646         /*fs.m = NULL; */
647         /*fs.first_object = NULL; must still drop later */
648
649         result = KERN_SUCCESS;
650 done:
651         if (fs.first_object)
652                 vm_object_drop(fs.first_object);
653 done2:
654         lwkt_reltoken(&map->token);
655         if (lp)
656                 lp->lwp_flags &= ~LWP_PAGING;
657         if (vm_shared_fault && fs.shared == 0)
658                 ++vm_shared_miss;
659         return (result);
660 }
661
662 /*
663  * Fault in the specified virtual address in the current process map, 
664  * returning a held VM page or NULL.  See vm_fault_page() for more 
665  * information.
666  *
667  * No requirements.
668  */
669 vm_page_t
670 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
671 {
672         struct lwp *lp = curthread->td_lwp;
673         vm_page_t m;
674
675         m = vm_fault_page(&lp->lwp_vmspace->vm_map, va, 
676                           fault_type, VM_FAULT_NORMAL, errorp);
677         return(m);
678 }
679
680 /*
681  * Fault in the specified virtual address in the specified map, doing all
682  * necessary manipulation of the object store and all necessary I/O.  Return
683  * a held VM page or NULL, and set *errorp.  The related pmap is not
684  * updated.
685  *
686  * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
687  * and marked PG_REFERENCED as well.
688  *
689  * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
690  * error will be returned.
691  *
692  * No requirements.
693  */
694 vm_page_t
695 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
696               int fault_flags, int *errorp)
697 {
698         vm_pindex_t first_pindex;
699         struct faultstate fs;
700         int result;
701         int retry = 0;
702         vm_prot_t orig_fault_type = fault_type;
703
704         fs.hardfault = 0;
705         fs.fault_flags = fault_flags;
706         KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
707
708         /*
709          * Dive the pmap (concurrency possible).  If we find the
710          * appropriate page we can terminate early and quickly.
711          */
712         fs.m = pmap_fault_page_quick(map->pmap, vaddr, fault_type);
713         if (fs.m) {
714                 *errorp = 0;
715                 return(fs.m);
716         }
717
718         /*
719          * Otherwise take a concurrency hit and do a formal page
720          * fault.
721          */
722         fs.shared = vm_shared_fault;
723         fs.first_shared = vm_shared_fault;
724         fs.vp = NULL;
725         lwkt_gettoken(&map->token);
726
727         /*
728          * swap_pager_unswapped() needs an exclusive object
729          */
730         if (fault_flags & (VM_FAULT_UNSWAP | VM_FAULT_DIRTY)) {
731                 fs.first_shared = 0;
732         }
733
734 RetryFault:
735         /*
736          * Find the vm_map_entry representing the backing store and resolve
737          * the top level object and page index.  This may have the side
738          * effect of executing a copy-on-write on the map entry and/or
739          * creating a shadow object, but will not COW any actual VM pages.
740          *
741          * On success fs.map is left read-locked and various other fields 
742          * are initialized but not otherwise referenced or locked.
743          *
744          * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
745          * if the map entry is a virtual page table and also writable,
746          * so we can set the 'A'accessed bit in the virtual page table entry.
747          */
748         fs.map = map;
749         result = vm_map_lookup(&fs.map, vaddr, fault_type,
750                                &fs.entry, &fs.first_object,
751                                &first_pindex, &fs.first_prot, &fs.wired);
752
753         if (result != KERN_SUCCESS) {
754                 *errorp = result;
755                 fs.m = NULL;
756                 goto done;
757         }
758
759         /*
760          * fs.map is read-locked
761          *
762          * Misc checks.  Save the map generation number to detect races.
763          */
764         fs.map_generation = fs.map->timestamp;
765         fs.lookup_still_valid = TRUE;
766         fs.first_m = NULL;
767         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
768
769         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
770                 panic("vm_fault: fault on nofault entry, addr: %lx",
771                     (u_long)vaddr);
772         }
773
774         /*
775          * A user-kernel shared map has no VM object and bypasses
776          * everything.  We execute the uksmap function with a temporary
777          * fictitious vm_page.  The address is directly mapped with no
778          * management.
779          */
780         if (fs.entry->maptype == VM_MAPTYPE_UKSMAP) {
781                 struct vm_page fakem;
782
783                 bzero(&fakem, sizeof(fakem));
784                 fakem.pindex = first_pindex;
785                 fakem.flags = PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED;
786                 fakem.valid = VM_PAGE_BITS_ALL;
787                 fakem.pat_mode = VM_MEMATTR_DEFAULT;
788                 if (fs.entry->object.uksmap(fs.entry->aux.dev, &fakem)) {
789                         *errorp = KERN_FAILURE;
790                         fs.m = NULL;
791                         unlock_things(&fs);
792                         goto done2;
793                 }
794                 fs.m = PHYS_TO_VM_PAGE(fakem.phys_addr);
795                 vm_page_hold(fs.m);
796
797                 unlock_things(&fs);
798                 *errorp = 0;
799                 goto done;
800         }
801
802
803         /*
804          * A system map entry may return a NULL object.  No object means
805          * no pager means an unrecoverable kernel fault.
806          */
807         if (fs.first_object == NULL) {
808                 panic("vm_fault: unrecoverable fault at %p in entry %p",
809                         (void *)vaddr, fs.entry);
810         }
811
812         /*
813          * Fail here if not a trivial anonymous page fault and TDF_NOFAULT
814          * is set.
815          */
816         if ((curthread->td_flags & TDF_NOFAULT) &&
817             (retry ||
818              fs.first_object->type == OBJT_VNODE ||
819              fs.first_object->backing_object)) {
820                 *errorp = KERN_FAILURE;
821                 unlock_things(&fs);
822                 goto done2;
823         }
824
825         /*
826          * If the entry is wired we cannot change the page protection.
827          */
828         if (fs.wired)
829                 fault_type = fs.first_prot;
830
831         /*
832          * Make a reference to this object to prevent its disposal while we
833          * are messing with it.  Once we have the reference, the map is free
834          * to be diddled.  Since objects reference their shadows (and copies),
835          * they will stay around as well.
836          *
837          * The reference should also prevent an unexpected collapse of the
838          * parent that might move pages from the current object into the
839          * parent unexpectedly, resulting in corruption.
840          *
841          * Bump the paging-in-progress count to prevent size changes (e.g.
842          * truncation operations) during I/O.  This must be done after
843          * obtaining the vnode lock in order to avoid possible deadlocks.
844          */
845         if (fs.first_shared)
846                 vm_object_hold_shared(fs.first_object);
847         else
848                 vm_object_hold(fs.first_object);
849         if (fs.vp == NULL)
850                 fs.vp = vnode_pager_lock(fs.first_object);      /* shared */
851
852         /*
853          * The page we want is at (first_object, first_pindex), but if the
854          * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
855          * page table to figure out the actual pindex.
856          *
857          * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
858          * ONLY
859          */
860         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
861                 result = vm_fault_vpagetable(&fs, &first_pindex,
862                                              fs.entry->aux.master_pde,
863                                              fault_type, 1);
864                 if (result == KERN_TRY_AGAIN) {
865                         vm_object_drop(fs.first_object);
866                         ++retry;
867                         goto RetryFault;
868                 }
869                 if (result != KERN_SUCCESS) {
870                         *errorp = result;
871                         fs.m = NULL;
872                         goto done;
873                 }
874         }
875
876         /*
877          * Now we have the actual (object, pindex), fault in the page.  If
878          * vm_fault_object() fails it will unlock and deallocate the FS
879          * data.   If it succeeds everything remains locked and fs->object
880          * will have an additinal PIP count if it is not equal to
881          * fs->first_object
882          */
883         fs.m = NULL;
884         result = vm_fault_object(&fs, first_pindex, fault_type, 1);
885
886         if (result == KERN_TRY_AGAIN) {
887                 vm_object_drop(fs.first_object);
888                 ++retry;
889                 goto RetryFault;
890         }
891         if (result != KERN_SUCCESS) {
892                 *errorp = result;
893                 fs.m = NULL;
894                 goto done;
895         }
896
897         if ((orig_fault_type & VM_PROT_WRITE) &&
898             (fs.prot & VM_PROT_WRITE) == 0) {
899                 *errorp = KERN_PROTECTION_FAILURE;
900                 unlock_and_deallocate(&fs);
901                 fs.m = NULL;
902                 goto done;
903         }
904
905         /*
906          * DO NOT UPDATE THE PMAP!!!  This function may be called for
907          * a pmap unrelated to the current process pmap, in which case
908          * the current cpu core will not be listed in the pmap's pm_active
909          * mask.  Thus invalidation interlocks will fail to work properly.
910          *
911          * (for example, 'ps' uses procfs to read program arguments from
912          * each process's stack).
913          *
914          * In addition to the above this function will be called to acquire
915          * a page that might already be faulted in, re-faulting it
916          * continuously is a waste of time.
917          *
918          * XXX could this have been the cause of our random seg-fault
919          *     issues?  procfs accesses user stacks.
920          */
921         vm_page_flag_set(fs.m, PG_REFERENCED);
922 #if 0
923         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired, NULL);
924         mycpu->gd_cnt.v_vm_faults++;
925         if (curthread->td_lwp)
926                 ++curthread->td_lwp->lwp_ru.ru_minflt;
927 #endif
928
929         /*
930          * On success vm_fault_object() does not unlock or deallocate, and fs.m
931          * will contain a busied page.  So we must unlock here after having
932          * messed with the pmap.
933          */
934         unlock_things(&fs);
935
936         /*
937          * Return a held page.  We are not doing any pmap manipulation so do
938          * not set PG_MAPPED.  However, adjust the page flags according to
939          * the fault type because the caller may not use a managed pmapping
940          * (so we don't want to lose the fact that the page will be dirtied
941          * if a write fault was specified).
942          */
943         vm_page_hold(fs.m);
944         vm_page_activate(fs.m);
945         if (fault_type & VM_PROT_WRITE)
946                 vm_page_dirty(fs.m);
947
948         if (curthread->td_lwp) {
949                 if (fs.hardfault) {
950                         curthread->td_lwp->lwp_ru.ru_majflt++;
951                 } else {
952                         curthread->td_lwp->lwp_ru.ru_minflt++;
953                 }
954         }
955
956         /*
957          * Unlock everything, and return the held page.
958          */
959         vm_page_wakeup(fs.m);
960         /*vm_object_deallocate(fs.first_object);*/
961         /*fs.first_object = NULL; */
962         *errorp = 0;
963
964 done:
965         if (fs.first_object)
966                 vm_object_drop(fs.first_object);
967 done2:
968         lwkt_reltoken(&map->token);
969         return(fs.m);
970 }
971
972 /*
973  * Fault in the specified (object,offset), dirty the returned page as
974  * needed.  If the requested fault_type cannot be done NULL and an
975  * error is returned.
976  *
977  * A held (but not busied) page is returned.
978  *
979  * The passed in object must be held as specified by the shared
980  * argument.
981  */
982 vm_page_t
983 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
984                      vm_prot_t fault_type, int fault_flags,
985                      int *sharedp, int *errorp)
986 {
987         int result;
988         vm_pindex_t first_pindex;
989         struct faultstate fs;
990         struct vm_map_entry entry;
991
992         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
993         bzero(&entry, sizeof(entry));
994         entry.object.vm_object = object;
995         entry.maptype = VM_MAPTYPE_NORMAL;
996         entry.protection = entry.max_protection = fault_type;
997
998         fs.hardfault = 0;
999         fs.fault_flags = fault_flags;
1000         fs.map = NULL;
1001         fs.shared = vm_shared_fault;
1002         fs.first_shared = *sharedp;
1003         fs.vp = NULL;
1004         KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
1005
1006         /*
1007          * Might require swap block adjustments
1008          */
1009         if (fs.first_shared && (fault_flags & (VM_FAULT_UNSWAP | VM_FAULT_DIRTY))) {
1010                 fs.first_shared = 0;
1011                 vm_object_upgrade(object);
1012         }
1013
1014         /*
1015          * Retry loop as needed (typically for shared->exclusive transitions)
1016          */
1017 RetryFault:
1018         *sharedp = fs.first_shared;
1019         first_pindex = OFF_TO_IDX(offset);
1020         fs.first_object = object;
1021         fs.entry = &entry;
1022         fs.first_prot = fault_type;
1023         fs.wired = 0;
1024         /*fs.map_generation = 0; unused */
1025
1026         /*
1027          * Make a reference to this object to prevent its disposal while we
1028          * are messing with it.  Once we have the reference, the map is free
1029          * to be diddled.  Since objects reference their shadows (and copies),
1030          * they will stay around as well.
1031          *
1032          * The reference should also prevent an unexpected collapse of the
1033          * parent that might move pages from the current object into the
1034          * parent unexpectedly, resulting in corruption.
1035          *
1036          * Bump the paging-in-progress count to prevent size changes (e.g.
1037          * truncation operations) during I/O.  This must be done after
1038          * obtaining the vnode lock in order to avoid possible deadlocks.
1039          */
1040         if (fs.vp == NULL)
1041                 fs.vp = vnode_pager_lock(fs.first_object);
1042
1043         fs.lookup_still_valid = TRUE;
1044         fs.first_m = NULL;
1045         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
1046
1047 #if 0
1048         /* XXX future - ability to operate on VM object using vpagetable */
1049         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1050                 result = vm_fault_vpagetable(&fs, &first_pindex,
1051                                              fs.entry->aux.master_pde,
1052                                              fault_type, 0);
1053                 if (result == KERN_TRY_AGAIN) {
1054                         if (fs.first_shared == 0 && *sharedp)
1055                                 vm_object_upgrade(object);
1056                         goto RetryFault;
1057                 }
1058                 if (result != KERN_SUCCESS) {
1059                         *errorp = result;
1060                         return (NULL);
1061                 }
1062         }
1063 #endif
1064
1065         /*
1066          * Now we have the actual (object, pindex), fault in the page.  If
1067          * vm_fault_object() fails it will unlock and deallocate the FS
1068          * data.   If it succeeds everything remains locked and fs->object
1069          * will have an additinal PIP count if it is not equal to
1070          * fs->first_object
1071          *
1072          * On KERN_TRY_AGAIN vm_fault_object() leaves fs.first_object intact.
1073          * We may have to upgrade its lock to handle the requested fault.
1074          */
1075         result = vm_fault_object(&fs, first_pindex, fault_type, 0);
1076
1077         if (result == KERN_TRY_AGAIN) {
1078                 if (fs.first_shared == 0 && *sharedp)
1079                         vm_object_upgrade(object);
1080                 goto RetryFault;
1081         }
1082         if (result != KERN_SUCCESS) {
1083                 *errorp = result;
1084                 return(NULL);
1085         }
1086
1087         if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
1088                 *errorp = KERN_PROTECTION_FAILURE;
1089                 unlock_and_deallocate(&fs);
1090                 return(NULL);
1091         }
1092
1093         /*
1094          * On success vm_fault_object() does not unlock or deallocate, so we
1095          * do it here.  Note that the returned fs.m will be busied.
1096          */
1097         unlock_things(&fs);
1098
1099         /*
1100          * Return a held page.  We are not doing any pmap manipulation so do
1101          * not set PG_MAPPED.  However, adjust the page flags according to
1102          * the fault type because the caller may not use a managed pmapping
1103          * (so we don't want to lose the fact that the page will be dirtied
1104          * if a write fault was specified).
1105          */
1106         vm_page_hold(fs.m);
1107         vm_page_activate(fs.m);
1108         if ((fault_type & VM_PROT_WRITE) || (fault_flags & VM_FAULT_DIRTY))
1109                 vm_page_dirty(fs.m);
1110         if (fault_flags & VM_FAULT_UNSWAP)
1111                 swap_pager_unswapped(fs.m);
1112
1113         /*
1114          * Indicate that the page was accessed.
1115          */
1116         vm_page_flag_set(fs.m, PG_REFERENCED);
1117
1118         if (curthread->td_lwp) {
1119                 if (fs.hardfault) {
1120                         curthread->td_lwp->lwp_ru.ru_majflt++;
1121                 } else {
1122                         curthread->td_lwp->lwp_ru.ru_minflt++;
1123                 }
1124         }
1125
1126         /*
1127          * Unlock everything, and return the held page.
1128          */
1129         vm_page_wakeup(fs.m);
1130         /*vm_object_deallocate(fs.first_object);*/
1131         /*fs.first_object = NULL; */
1132
1133         *errorp = 0;
1134         return(fs.m);
1135 }
1136
1137 /*
1138  * Translate the virtual page number (first_pindex) that is relative
1139  * to the address space into a logical page number that is relative to the
1140  * backing object.  Use the virtual page table pointed to by (vpte).
1141  *
1142  * This implements an N-level page table.  Any level can terminate the
1143  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
1144  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
1145  */
1146 static
1147 int
1148 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
1149                     vpte_t vpte, int fault_type, int allow_nofault)
1150 {
1151         struct lwbuf *lwb;
1152         struct lwbuf lwb_cache;
1153         int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
1154         int result = KERN_SUCCESS;
1155         vpte_t *ptep;
1156
1157         ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1158         for (;;) {
1159                 /*
1160                  * We cannot proceed if the vpte is not valid, not readable
1161                  * for a read fault, or not writable for a write fault.
1162                  */
1163                 if ((vpte & VPTE_V) == 0) {
1164                         unlock_and_deallocate(fs);
1165                         return (KERN_FAILURE);
1166                 }
1167                 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_RW) == 0) {
1168                         unlock_and_deallocate(fs);
1169                         return (KERN_FAILURE);
1170                 }
1171                 if ((vpte & VPTE_PS) || vshift == 0)
1172                         break;
1173                 KKASSERT(vshift >= VPTE_PAGE_BITS);
1174
1175                 /*
1176                  * Get the page table page.  Nominally we only read the page
1177                  * table, but since we are actively setting VPTE_M and VPTE_A,
1178                  * tell vm_fault_object() that we are writing it. 
1179                  *
1180                  * There is currently no real need to optimize this.
1181                  */
1182                 result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
1183                                          VM_PROT_READ|VM_PROT_WRITE,
1184                                          allow_nofault);
1185                 if (result != KERN_SUCCESS)
1186                         return (result);
1187
1188                 /*
1189                  * Process the returned fs.m and look up the page table
1190                  * entry in the page table page.
1191                  */
1192                 vshift -= VPTE_PAGE_BITS;
1193                 lwb = lwbuf_alloc(fs->m, &lwb_cache);
1194                 ptep = ((vpte_t *)lwbuf_kva(lwb) +
1195                         ((*pindex >> vshift) & VPTE_PAGE_MASK));
1196                 vpte = *ptep;
1197
1198                 /*
1199                  * Page table write-back.  If the vpte is valid for the
1200                  * requested operation, do a write-back to the page table.
1201                  *
1202                  * XXX VPTE_M is not set properly for page directory pages.
1203                  * It doesn't get set in the page directory if the page table
1204                  * is modified during a read access.
1205                  */
1206                 vm_page_activate(fs->m);
1207                 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
1208                     (vpte & VPTE_RW)) {
1209                         if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
1210                                 atomic_set_long(ptep, VPTE_M | VPTE_A);
1211                                 vm_page_dirty(fs->m);
1212                         }
1213                 }
1214                 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V)) {
1215                         if ((vpte & VPTE_A) == 0) {
1216                                 atomic_set_long(ptep, VPTE_A);
1217                                 vm_page_dirty(fs->m);
1218                         }
1219                 }
1220                 lwbuf_free(lwb);
1221                 vm_page_flag_set(fs->m, PG_REFERENCED);
1222                 vm_page_wakeup(fs->m);
1223                 fs->m = NULL;
1224                 cleanup_successful_fault(fs);
1225         }
1226         /*
1227          * Combine remaining address bits with the vpte.
1228          */
1229         /* JG how many bits from each? */
1230         *pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
1231                   (*pindex & ((1L << vshift) - 1));
1232         return (KERN_SUCCESS);
1233 }
1234
1235
1236 /*
1237  * This is the core of the vm_fault code.
1238  *
1239  * Do all operations required to fault-in (fs.first_object, pindex).  Run
1240  * through the shadow chain as necessary and do required COW or virtual
1241  * copy operations.  The caller has already fully resolved the vm_map_entry
1242  * and, if appropriate, has created a copy-on-write layer.  All we need to
1243  * do is iterate the object chain.
1244  *
1245  * On failure (fs) is unlocked and deallocated and the caller may return or
1246  * retry depending on the failure code.  On success (fs) is NOT unlocked or
1247  * deallocated, fs.m will contained a resolved, busied page, and fs.object
1248  * will have an additional PIP count if it is not equal to fs.first_object.
1249  *
1250  * If locks based on fs->first_shared or fs->shared are insufficient,
1251  * clear the appropriate field(s) and return RETRY.  COWs require that
1252  * first_shared be 0, while page allocations (or frees) require that
1253  * shared be 0.  Renames require that both be 0.
1254  *
1255  * fs->first_object must be held on call.
1256  */
1257 static
1258 int
1259 vm_fault_object(struct faultstate *fs, vm_pindex_t first_pindex,
1260                 vm_prot_t fault_type, int allow_nofault)
1261 {
1262         vm_object_t next_object;
1263         vm_pindex_t pindex;
1264         int error;
1265
1266         ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
1267         fs->prot = fs->first_prot;
1268         fs->object = fs->first_object;
1269         pindex = first_pindex;
1270
1271         vm_object_chain_acquire(fs->first_object, fs->shared);
1272         vm_object_pip_add(fs->first_object, 1);
1273
1274         /* 
1275          * If a read fault occurs we try to make the page writable if
1276          * possible.  There are three cases where we cannot make the
1277          * page mapping writable:
1278          *
1279          * (1) The mapping is read-only or the VM object is read-only,
1280          *     fs->prot above will simply not have VM_PROT_WRITE set.
1281          *
1282          * (2) If the mapping is a virtual page table we need to be able
1283          *     to detect writes so we can set VPTE_M in the virtual page
1284          *     table.
1285          *
1286          * (3) If the VM page is read-only or copy-on-write, upgrading would
1287          *     just result in an unnecessary COW fault.
1288          *
1289          * VM_PROT_VPAGED is set if faulting via a virtual page table and
1290          * causes adjustments to the 'M'odify bit to also turn off write
1291          * access to force a re-fault.
1292          */
1293         if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1294                 if ((fault_type & VM_PROT_WRITE) == 0)
1295                         fs->prot &= ~VM_PROT_WRITE;
1296         }
1297
1298         if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
1299             pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
1300                 if ((fault_type & VM_PROT_WRITE) == 0)
1301                         fs->prot &= ~VM_PROT_WRITE;
1302         }
1303
1304         /* vm_object_hold(fs->object); implied b/c object == first_object */
1305
1306         for (;;) {
1307                 /*
1308                  * The entire backing chain from first_object to object
1309                  * inclusive is chainlocked.
1310                  *
1311                  * If the object is dead, we stop here
1312                  */
1313                 if (fs->object->flags & OBJ_DEAD) {
1314                         vm_object_pip_wakeup(fs->first_object);
1315                         vm_object_chain_release_all(fs->first_object,
1316                                                     fs->object);
1317                         if (fs->object != fs->first_object)
1318                                 vm_object_drop(fs->object);
1319                         unlock_and_deallocate(fs);
1320                         return (KERN_PROTECTION_FAILURE);
1321                 }
1322
1323                 /*
1324                  * See if the page is resident.  Wait/Retry if the page is
1325                  * busy (lots of stuff may have changed so we can't continue
1326                  * in that case).
1327                  *
1328                  * We can theoretically allow the soft-busy case on a read
1329                  * fault if the page is marked valid, but since such
1330                  * pages are typically already pmap'd, putting that
1331                  * special case in might be more effort then it is
1332                  * worth.  We cannot under any circumstances mess
1333                  * around with a vm_page_t->busy page except, perhaps,
1334                  * to pmap it.
1335                  */
1336                 fs->m = vm_page_lookup_busy_try(fs->object, pindex,
1337                                                 TRUE, &error);
1338                 if (error) {
1339                         vm_object_pip_wakeup(fs->first_object);
1340                         vm_object_chain_release_all(fs->first_object,
1341                                                     fs->object);
1342                         if (fs->object != fs->first_object)
1343                                 vm_object_drop(fs->object);
1344                         unlock_things(fs);
1345                         vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1346                         mycpu->gd_cnt.v_intrans++;
1347                         /*vm_object_deallocate(fs->first_object);*/
1348                         /*fs->first_object = NULL;*/
1349                         fs->m = NULL;
1350                         return (KERN_TRY_AGAIN);
1351                 }
1352                 if (fs->m) {
1353                         /*
1354                          * The page is busied for us.
1355                          *
1356                          * If reactivating a page from PQ_CACHE we may have
1357                          * to rate-limit.
1358                          */
1359                         int queue = fs->m->queue;
1360                         vm_page_unqueue_nowakeup(fs->m);
1361
1362                         if ((queue - fs->m->pc) == PQ_CACHE && 
1363                             vm_page_count_severe()) {
1364                                 vm_page_activate(fs->m);
1365                                 vm_page_wakeup(fs->m);
1366                                 fs->m = NULL;
1367                                 vm_object_pip_wakeup(fs->first_object);
1368                                 vm_object_chain_release_all(fs->first_object,
1369                                                             fs->object);
1370                                 if (fs->object != fs->first_object)
1371                                         vm_object_drop(fs->object);
1372                                 unlock_and_deallocate(fs);
1373                                 if (allow_nofault == 0 ||
1374                                     (curthread->td_flags & TDF_NOFAULT) == 0) {
1375                                         vm_wait_pfault();
1376                                 }
1377                                 return (KERN_TRY_AGAIN);
1378                         }
1379
1380                         /*
1381                          * If it still isn't completely valid (readable),
1382                          * or if a read-ahead-mark is set on the VM page,
1383                          * jump to readrest, else we found the page and
1384                          * can return.
1385                          *
1386                          * We can release the spl once we have marked the
1387                          * page busy.
1388                          */
1389                         if (fs->m->object != &kernel_object) {
1390                                 if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1391                                     VM_PAGE_BITS_ALL) {
1392                                         goto readrest;
1393                                 }
1394                                 if (fs->m->flags & PG_RAM) {
1395                                         if (debug_cluster)
1396                                                 kprintf("R");
1397                                         vm_page_flag_clear(fs->m, PG_RAM);
1398                                         goto readrest;
1399                                 }
1400                         }
1401                         break; /* break to PAGE HAS BEEN FOUND */
1402                 }
1403
1404                 /*
1405                  * Page is not resident, If this is the search termination
1406                  * or the pager might contain the page, allocate a new page.
1407                  */
1408                 if (TRYPAGER(fs) || fs->object == fs->first_object) {
1409                         /*
1410                          * Allocating, must be exclusive.
1411                          */
1412                         if (fs->object == fs->first_object &&
1413                             fs->first_shared) {
1414                                 fs->first_shared = 0;
1415                                 vm_object_pip_wakeup(fs->first_object);
1416                                 vm_object_chain_release_all(fs->first_object,
1417                                                             fs->object);
1418                                 if (fs->object != fs->first_object)
1419                                         vm_object_drop(fs->object);
1420                                 unlock_and_deallocate(fs);
1421                                 return (KERN_TRY_AGAIN);
1422                         }
1423                         if (fs->object != fs->first_object &&
1424                             fs->shared) {
1425                                 fs->first_shared = 0;
1426                                 fs->shared = 0;
1427                                 vm_object_pip_wakeup(fs->first_object);
1428                                 vm_object_chain_release_all(fs->first_object,
1429                                                             fs->object);
1430                                 if (fs->object != fs->first_object)
1431                                         vm_object_drop(fs->object);
1432                                 unlock_and_deallocate(fs);
1433                                 return (KERN_TRY_AGAIN);
1434                         }
1435
1436                         /*
1437                          * If the page is beyond the object size we fail
1438                          */
1439                         if (pindex >= fs->object->size) {
1440                                 vm_object_pip_wakeup(fs->first_object);
1441                                 vm_object_chain_release_all(fs->first_object,
1442                                                             fs->object);
1443                                 if (fs->object != fs->first_object)
1444                                         vm_object_drop(fs->object);
1445                                 unlock_and_deallocate(fs);
1446                                 return (KERN_PROTECTION_FAILURE);
1447                         }
1448
1449                         /*
1450                          * Allocate a new page for this object/offset pair.
1451                          *
1452                          * It is possible for the allocation to race, so
1453                          * handle the case.
1454                          */
1455                         fs->m = NULL;
1456                         if (!vm_page_count_severe()) {
1457                                 fs->m = vm_page_alloc(fs->object, pindex,
1458                                     ((fs->vp || fs->object->backing_object) ?
1459                                         VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL :
1460                                         VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1461                                         VM_ALLOC_USE_GD | VM_ALLOC_ZERO));
1462                         }
1463                         if (fs->m == NULL) {
1464                                 vm_object_pip_wakeup(fs->first_object);
1465                                 vm_object_chain_release_all(fs->first_object,
1466                                                             fs->object);
1467                                 if (fs->object != fs->first_object)
1468                                         vm_object_drop(fs->object);
1469                                 unlock_and_deallocate(fs);
1470                                 if (allow_nofault == 0 ||
1471                                     (curthread->td_flags & TDF_NOFAULT) == 0) {
1472                                         vm_wait_pfault();
1473                                 }
1474                                 return (KERN_TRY_AGAIN);
1475                         }
1476
1477                         /*
1478                          * Fall through to readrest.  We have a new page which
1479                          * will have to be paged (since m->valid will be 0).
1480                          */
1481                 }
1482
1483 readrest:
1484                 /*
1485                  * We have found an invalid or partially valid page, a
1486                  * page with a read-ahead mark which might be partially or
1487                  * fully valid (and maybe dirty too), or we have allocated
1488                  * a new page.
1489                  *
1490                  * Attempt to fault-in the page if there is a chance that the
1491                  * pager has it, and potentially fault in additional pages
1492                  * at the same time.
1493                  *
1494                  * If TRYPAGER is true then fs.m will be non-NULL and busied
1495                  * for us.
1496                  */
1497                 if (TRYPAGER(fs)) {
1498                         int rv;
1499                         int seqaccess;
1500                         u_char behavior = vm_map_entry_behavior(fs->entry);
1501
1502                         if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1503                                 seqaccess = 0;
1504                         else
1505                                 seqaccess = -1;
1506
1507                         /*
1508                          * Doing I/O may synchronously insert additional
1509                          * pages so we can't be shared at this point either.
1510                          *
1511                          * NOTE: We can't free fs->m here in the allocated
1512                          *       case (fs->object != fs->first_object) as
1513                          *       this would require an exclusively locked
1514                          *       VM object.
1515                          */
1516                         if (fs->object == fs->first_object &&
1517                             fs->first_shared) {
1518                                 vm_page_deactivate(fs->m);
1519                                 vm_page_wakeup(fs->m);
1520                                 fs->m = NULL;
1521                                 fs->first_shared = 0;
1522                                 vm_object_pip_wakeup(fs->first_object);
1523                                 vm_object_chain_release_all(fs->first_object,
1524                                                             fs->object);
1525                                 if (fs->object != fs->first_object)
1526                                         vm_object_drop(fs->object);
1527                                 unlock_and_deallocate(fs);
1528                                 return (KERN_TRY_AGAIN);
1529                         }
1530                         if (fs->object != fs->first_object &&
1531                             fs->shared) {
1532                                 vm_page_deactivate(fs->m);
1533                                 vm_page_wakeup(fs->m);
1534                                 fs->m = NULL;
1535                                 fs->first_shared = 0;
1536                                 fs->shared = 0;
1537                                 vm_object_pip_wakeup(fs->first_object);
1538                                 vm_object_chain_release_all(fs->first_object,
1539                                                             fs->object);
1540                                 if (fs->object != fs->first_object)
1541                                         vm_object_drop(fs->object);
1542                                 unlock_and_deallocate(fs);
1543                                 return (KERN_TRY_AGAIN);
1544                         }
1545
1546                         /*
1547                          * Avoid deadlocking against the map when doing I/O.
1548                          * fs.object and the page is PG_BUSY'd.
1549                          *
1550                          * NOTE: Once unlocked, fs->entry can become stale
1551                          *       so this will NULL it out.
1552                          *
1553                          * NOTE: fs->entry is invalid until we relock the
1554                          *       map and verify that the timestamp has not
1555                          *       changed.
1556                          */
1557                         unlock_map(fs);
1558
1559                         /*
1560                          * Acquire the page data.  We still hold a ref on
1561                          * fs.object and the page has been PG_BUSY's.
1562                          *
1563                          * The pager may replace the page (for example, in
1564                          * order to enter a fictitious page into the
1565                          * object).  If it does so it is responsible for
1566                          * cleaning up the passed page and properly setting
1567                          * the new page PG_BUSY.
1568                          *
1569                          * If we got here through a PG_RAM read-ahead
1570                          * mark the page may be partially dirty and thus
1571                          * not freeable.  Don't bother checking to see
1572                          * if the pager has the page because we can't free
1573                          * it anyway.  We have to depend on the get_page
1574                          * operation filling in any gaps whether there is
1575                          * backing store or not.
1576                          */
1577                         rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1578
1579                         if (rv == VM_PAGER_OK) {
1580                                 /*
1581                                  * Relookup in case pager changed page. Pager
1582                                  * is responsible for disposition of old page
1583                                  * if moved.
1584                                  *
1585                                  * XXX other code segments do relookups too.
1586                                  * It's a bad abstraction that needs to be
1587                                  * fixed/removed.
1588                                  */
1589                                 fs->m = vm_page_lookup(fs->object, pindex);
1590                                 if (fs->m == NULL) {
1591                                         vm_object_pip_wakeup(fs->first_object);
1592                                         vm_object_chain_release_all(
1593                                                 fs->first_object, fs->object);
1594                                         if (fs->object != fs->first_object)
1595                                                 vm_object_drop(fs->object);
1596                                         unlock_and_deallocate(fs);
1597                                         return (KERN_TRY_AGAIN);
1598                                 }
1599                                 ++fs->hardfault;
1600                                 break; /* break to PAGE HAS BEEN FOUND */
1601                         }
1602
1603                         /*
1604                          * Remove the bogus page (which does not exist at this
1605                          * object/offset); before doing so, we must get back
1606                          * our object lock to preserve our invariant.
1607                          *
1608                          * Also wake up any other process that may want to bring
1609                          * in this page.
1610                          *
1611                          * If this is the top-level object, we must leave the
1612                          * busy page to prevent another process from rushing
1613                          * past us, and inserting the page in that object at
1614                          * the same time that we are.
1615                          */
1616                         if (rv == VM_PAGER_ERROR) {
1617                                 if (curproc) {
1618                                         kprintf("vm_fault: pager read error, "
1619                                                 "pid %d (%s)\n",
1620                                                 curproc->p_pid,
1621                                                 curproc->p_comm);
1622                                 } else {
1623                                         kprintf("vm_fault: pager read error, "
1624                                                 "thread %p (%s)\n",
1625                                                 curthread,
1626                                                 curproc->p_comm);
1627                                 }
1628                         }
1629
1630                         /*
1631                          * Data outside the range of the pager or an I/O error
1632                          *
1633                          * The page may have been wired during the pagein,
1634                          * e.g. by the buffer cache, and cannot simply be
1635                          * freed.  Call vnode_pager_freepage() to deal with it.
1636                          *
1637                          * Also note that we cannot free the page if we are
1638                          * holding the related object shared. XXX not sure
1639                          * what to do in that case.
1640                          */
1641                         if (fs->object != fs->first_object) {
1642                                 vnode_pager_freepage(fs->m);
1643                                 fs->m = NULL;
1644                                 /*
1645                                  * XXX - we cannot just fall out at this
1646                                  * point, m has been freed and is invalid!
1647                                  */
1648                         }
1649                         /*
1650                          * XXX - the check for kernel_map is a kludge to work
1651                          * around having the machine panic on a kernel space
1652                          * fault w/ I/O error.
1653                          */
1654                         if (((fs->map != &kernel_map) &&
1655                             (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1656                                 if (fs->m) {
1657                                         if (fs->first_shared) {
1658                                                 vm_page_deactivate(fs->m);
1659                                                 vm_page_wakeup(fs->m);
1660                                         } else {
1661                                                 vnode_pager_freepage(fs->m);
1662                                         }
1663                                         fs->m = NULL;
1664                                 }
1665                                 vm_object_pip_wakeup(fs->first_object);
1666                                 vm_object_chain_release_all(fs->first_object,
1667                                                             fs->object);
1668                                 if (fs->object != fs->first_object)
1669                                         vm_object_drop(fs->object);
1670                                 unlock_and_deallocate(fs);
1671                                 if (rv == VM_PAGER_ERROR)
1672                                         return (KERN_FAILURE);
1673                                 else
1674                                         return (KERN_PROTECTION_FAILURE);
1675                                 /* NOT REACHED */
1676                         }
1677                 }
1678
1679                 /*
1680                  * We get here if the object has a default pager (or unwiring) 
1681                  * or the pager doesn't have the page.
1682                  *
1683                  * fs->first_m will be used for the COW unless we find a
1684                  * deeper page to be mapped read-only, in which case the
1685                  * unlock*(fs) will free first_m.
1686                  */
1687                 if (fs->object == fs->first_object)
1688                         fs->first_m = fs->m;
1689
1690                 /*
1691                  * Move on to the next object.  The chain lock should prevent
1692                  * the backing_object from getting ripped out from under us.
1693                  *
1694                  * The object lock for the next object is governed by
1695                  * fs->shared.
1696                  */
1697                 if ((next_object = fs->object->backing_object) != NULL) {
1698                         if (fs->shared)
1699                                 vm_object_hold_shared(next_object);
1700                         else
1701                                 vm_object_hold(next_object);
1702                         vm_object_chain_acquire(next_object, fs->shared);
1703                         KKASSERT(next_object == fs->object->backing_object);
1704                         pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1705                 }
1706
1707                 if (next_object == NULL) {
1708                         /*
1709                          * If there's no object left, fill the page in the top
1710                          * object with zeros.
1711                          */
1712                         if (fs->object != fs->first_object) {
1713 #if 0
1714                                 if (fs->first_object->backing_object !=
1715                                     fs->object) {
1716                                         vm_object_hold(fs->first_object->backing_object);
1717                                 }
1718 #endif
1719                                 vm_object_chain_release_all(
1720                                         fs->first_object->backing_object,
1721                                         fs->object);
1722 #if 0
1723                                 if (fs->first_object->backing_object !=
1724                                     fs->object) {
1725                                         vm_object_drop(fs->first_object->backing_object);
1726                                 }
1727 #endif
1728                                 vm_object_pip_wakeup(fs->object);
1729                                 vm_object_drop(fs->object);
1730                                 fs->object = fs->first_object;
1731                                 pindex = first_pindex;
1732                                 fs->m = fs->first_m;
1733                         }
1734                         fs->first_m = NULL;
1735
1736                         /*
1737                          * Zero the page if necessary and mark it valid.
1738                          */
1739                         if ((fs->m->flags & PG_ZERO) == 0) {
1740                                 vm_page_zero_fill(fs->m);
1741                         } else {
1742 #ifdef PMAP_DEBUG
1743                                 pmap_page_assertzero(VM_PAGE_TO_PHYS(fs->m));
1744 #endif
1745                                 vm_page_flag_clear(fs->m, PG_ZERO);
1746                                 mycpu->gd_cnt.v_ozfod++;
1747                         }
1748                         mycpu->gd_cnt.v_zfod++;
1749                         fs->m->valid = VM_PAGE_BITS_ALL;
1750                         break;  /* break to PAGE HAS BEEN FOUND */
1751                 }
1752                 if (fs->object != fs->first_object) {
1753                         vm_object_pip_wakeup(fs->object);
1754                         vm_object_lock_swap();
1755                         vm_object_drop(fs->object);
1756                 }
1757                 KASSERT(fs->object != next_object,
1758                         ("object loop %p", next_object));
1759                 fs->object = next_object;
1760                 vm_object_pip_add(fs->object, 1);
1761         }
1762
1763         /*
1764          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1765          * is held.]
1766          *
1767          * object still held.
1768          *
1769          * local shared variable may be different from fs->shared.
1770          *
1771          * If the page is being written, but isn't already owned by the
1772          * top-level object, we have to copy it into a new page owned by the
1773          * top-level object.
1774          */
1775         KASSERT((fs->m->flags & PG_BUSY) != 0,
1776                 ("vm_fault: not busy after main loop"));
1777
1778         if (fs->object != fs->first_object) {
1779                 /*
1780                  * We only really need to copy if we want to write it.
1781                  */
1782                 if (fault_type & VM_PROT_WRITE) {
1783                         /*
1784                          * This allows pages to be virtually copied from a 
1785                          * backing_object into the first_object, where the 
1786                          * backing object has no other refs to it, and cannot
1787                          * gain any more refs.  Instead of a bcopy, we just 
1788                          * move the page from the backing object to the 
1789                          * first object.  Note that we must mark the page 
1790                          * dirty in the first object so that it will go out 
1791                          * to swap when needed.
1792                          */
1793                         if (
1794                                 /*
1795                                  * Must be holding exclusive locks
1796                                  */
1797                                 fs->first_shared == 0 &&
1798                                 fs->shared == 0 &&
1799                                 /*
1800                                  * Map, if present, has not changed
1801                                  */
1802                                 (fs->map == NULL ||
1803                                 fs->map_generation == fs->map->timestamp) &&
1804                                 /*
1805                                  * Only one shadow object
1806                                  */
1807                                 (fs->object->shadow_count == 1) &&
1808                                 /*
1809                                  * No COW refs, except us
1810                                  */
1811                                 (fs->object->ref_count == 1) &&
1812                                 /*
1813                                  * No one else can look this object up
1814                                  */
1815                                 (fs->object->handle == NULL) &&
1816                                 /*
1817                                  * No other ways to look the object up
1818                                  */
1819                                 ((fs->object->type == OBJT_DEFAULT) ||
1820                                  (fs->object->type == OBJT_SWAP)) &&
1821                                 /*
1822                                  * We don't chase down the shadow chain
1823                                  */
1824                                 (fs->object == fs->first_object->backing_object) &&
1825
1826                                 /*
1827                                  * grab the lock if we need to
1828                                  */
1829                                 (fs->lookup_still_valid ||
1830                                  fs->map == NULL ||
1831                                  lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1832                             ) {
1833                                 /*
1834                                  * (first_m) and (m) are both busied.  We have
1835                                  * move (m) into (first_m)'s object/pindex
1836                                  * in an atomic fashion, then free (first_m).
1837                                  *
1838                                  * first_object is held so second remove
1839                                  * followed by the rename should wind
1840                                  * up being atomic.  vm_page_free() might
1841                                  * block so we don't do it until after the
1842                                  * rename.
1843                                  */
1844                                 fs->lookup_still_valid = 1;
1845                                 vm_page_protect(fs->first_m, VM_PROT_NONE);
1846                                 vm_page_remove(fs->first_m);
1847                                 vm_page_rename(fs->m, fs->first_object,
1848                                                first_pindex);
1849                                 vm_page_free(fs->first_m);
1850                                 fs->first_m = fs->m;
1851                                 fs->m = NULL;
1852                                 mycpu->gd_cnt.v_cow_optim++;
1853                         } else {
1854                                 /*
1855                                  * Oh, well, lets copy it.
1856                                  *
1857                                  * Why are we unmapping the original page
1858                                  * here?  Well, in short, not all accessors
1859                                  * of user memory go through the pmap.  The
1860                                  * procfs code doesn't have access user memory
1861                                  * via a local pmap, so vm_fault_page*()
1862                                  * can't call pmap_enter().  And the umtx*()
1863                                  * code may modify the COW'd page via a DMAP
1864                                  * or kernel mapping and not via the pmap,
1865                                  * leaving the original page still mapped
1866                                  * read-only into the pmap.
1867                                  *
1868                                  * So we have to remove the page from at
1869                                  * least the current pmap if it is in it.
1870                                  * Just remove it from all pmaps.
1871                                  */
1872                                 KKASSERT(fs->first_shared == 0);
1873                                 vm_page_copy(fs->m, fs->first_m);
1874                                 vm_page_protect(fs->m, VM_PROT_NONE);
1875                                 vm_page_event(fs->m, VMEVENT_COW);
1876                         }
1877
1878                         /*
1879                          * We no longer need the old page or object.
1880                          */
1881                         if (fs->m)
1882                                 release_page(fs);
1883
1884                         /*
1885                          * We intend to revert to first_object, undo the
1886                          * chain lock through to that.
1887                          */
1888 #if 0
1889                         if (fs->first_object->backing_object != fs->object)
1890                                 vm_object_hold(fs->first_object->backing_object);
1891 #endif
1892                         vm_object_chain_release_all(
1893                                         fs->first_object->backing_object,
1894                                         fs->object);
1895 #if 0
1896                         if (fs->first_object->backing_object != fs->object)
1897                                 vm_object_drop(fs->first_object->backing_object);
1898 #endif
1899
1900                         /*
1901                          * fs->object != fs->first_object due to above 
1902                          * conditional
1903                          */
1904                         vm_object_pip_wakeup(fs->object);
1905                         vm_object_drop(fs->object);
1906
1907                         /*
1908                          * Only use the new page below...
1909                          */
1910                         mycpu->gd_cnt.v_cow_faults++;
1911                         fs->m = fs->first_m;
1912                         fs->object = fs->first_object;
1913                         pindex = first_pindex;
1914                 } else {
1915                         /*
1916                          * If it wasn't a write fault avoid having to copy
1917                          * the page by mapping it read-only.
1918                          */
1919                         fs->prot &= ~VM_PROT_WRITE;
1920                 }
1921         }
1922
1923         /*
1924          * Relock the map if necessary, then check the generation count.
1925          * relock_map() will update fs->timestamp to account for the
1926          * relocking if necessary.
1927          *
1928          * If the count has changed after relocking then all sorts of
1929          * crap may have happened and we have to retry.
1930          *
1931          * NOTE: The relock_map() can fail due to a deadlock against
1932          *       the vm_page we are holding BUSY.
1933          */
1934         if (fs->lookup_still_valid == FALSE && fs->map) {
1935                 if (relock_map(fs) ||
1936                     fs->map->timestamp != fs->map_generation) {
1937                         release_page(fs);
1938                         vm_object_pip_wakeup(fs->first_object);
1939                         vm_object_chain_release_all(fs->first_object,
1940                                                     fs->object);
1941                         if (fs->object != fs->first_object)
1942                                 vm_object_drop(fs->object);
1943                         unlock_and_deallocate(fs);
1944                         return (KERN_TRY_AGAIN);
1945                 }
1946         }
1947
1948         /*
1949          * If the fault is a write, we know that this page is being
1950          * written NOW so dirty it explicitly to save on pmap_is_modified()
1951          * calls later.
1952          *
1953          * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1954          * if the page is already dirty to prevent data written with
1955          * the expectation of being synced from not being synced.
1956          * Likewise if this entry does not request NOSYNC then make
1957          * sure the page isn't marked NOSYNC.  Applications sharing
1958          * data should use the same flags to avoid ping ponging.
1959          *
1960          * Also tell the backing pager, if any, that it should remove
1961          * any swap backing since the page is now dirty.
1962          */
1963         vm_page_activate(fs->m);
1964         if (fs->prot & VM_PROT_WRITE) {
1965                 vm_object_set_writeable_dirty(fs->m->object);
1966                 vm_set_nosync(fs->m, fs->entry);
1967                 if (fs->fault_flags & VM_FAULT_DIRTY) {
1968                         vm_page_dirty(fs->m);
1969                         swap_pager_unswapped(fs->m);
1970                 }
1971         }
1972
1973         vm_object_pip_wakeup(fs->first_object);
1974         vm_object_chain_release_all(fs->first_object, fs->object);
1975         if (fs->object != fs->first_object)
1976                 vm_object_drop(fs->object);
1977
1978         /*
1979          * Page had better still be busy.  We are still locked up and 
1980          * fs->object will have another PIP reference if it is not equal
1981          * to fs->first_object.
1982          */
1983         KASSERT(fs->m->flags & PG_BUSY,
1984                 ("vm_fault: page %p not busy!", fs->m));
1985
1986         /*
1987          * Sanity check: page must be completely valid or it is not fit to
1988          * map into user space.  vm_pager_get_pages() ensures this.
1989          */
1990         if (fs->m->valid != VM_PAGE_BITS_ALL) {
1991                 vm_page_zero_invalid(fs->m, TRUE);
1992                 kprintf("Warning: page %p partially invalid on fault\n", fs->m);
1993         }
1994         vm_page_flag_clear(fs->m, PG_ZERO);
1995
1996         return (KERN_SUCCESS);
1997 }
1998
1999 /*
2000  * Hold each of the physical pages that are mapped by the specified range of
2001  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
2002  * and allow the specified types of access, "prot".  If all of the implied
2003  * pages are successfully held, then the number of held pages is returned
2004  * together with pointers to those pages in the array "ma".  However, if any
2005  * of the pages cannot be held, -1 is returned.
2006  */
2007 int
2008 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
2009     vm_prot_t prot, vm_page_t *ma, int max_count)
2010 {
2011         vm_offset_t start, end;
2012         int i, npages, error;
2013
2014         start = trunc_page(addr);
2015         end = round_page(addr + len);
2016
2017         npages = howmany(end - start, PAGE_SIZE);
2018
2019         if (npages > max_count)
2020                 return -1;
2021
2022         for (i = 0; i < npages; i++) {
2023                 // XXX error handling
2024                 ma[i] = vm_fault_page_quick(start + (i * PAGE_SIZE),
2025                         prot,
2026                         &error);
2027         }
2028
2029         return npages;
2030 }
2031
2032 /*
2033  * Wire down a range of virtual addresses in a map.  The entry in question
2034  * should be marked in-transition and the map must be locked.  We must
2035  * release the map temporarily while faulting-in the page to avoid a
2036  * deadlock.  Note that the entry may be clipped while we are blocked but
2037  * will never be freed.
2038  *
2039  * No requirements.
2040  */
2041 int
2042 vm_fault_wire(vm_map_t map, vm_map_entry_t entry,
2043               boolean_t user_wire, int kmflags)
2044 {
2045         boolean_t fictitious;
2046         vm_offset_t start;
2047         vm_offset_t end;
2048         vm_offset_t va;
2049         vm_paddr_t pa;
2050         vm_page_t m;
2051         pmap_t pmap;
2052         int rv;
2053         int wire_prot;
2054         int fault_flags;
2055
2056         lwkt_gettoken(&map->token);
2057
2058         if (user_wire) {
2059                 wire_prot = VM_PROT_READ;
2060                 fault_flags = VM_FAULT_USER_WIRE;
2061         } else {
2062                 wire_prot = VM_PROT_READ | VM_PROT_WRITE;
2063                 fault_flags = VM_FAULT_CHANGE_WIRING;
2064         }
2065         if (kmflags & KM_NOTLBSYNC)
2066                 wire_prot |= VM_PROT_NOSYNC;
2067
2068         pmap = vm_map_pmap(map);
2069         start = entry->start;
2070         end = entry->end;
2071         switch(entry->maptype) {
2072         case VM_MAPTYPE_NORMAL:
2073         case VM_MAPTYPE_VPAGETABLE:
2074                 fictitious = entry->object.vm_object &&
2075                             ((entry->object.vm_object->type == OBJT_DEVICE) ||
2076                              (entry->object.vm_object->type == OBJT_MGTDEVICE));
2077                 break;
2078         case VM_MAPTYPE_UKSMAP:
2079                 fictitious = TRUE;
2080                 break;
2081         default:
2082                 fictitious = FALSE;
2083                 break;
2084         }
2085
2086         if (entry->eflags & MAP_ENTRY_KSTACK)
2087                 start += PAGE_SIZE;
2088         map->timestamp++;
2089         vm_map_unlock(map);
2090
2091         /*
2092          * We simulate a fault to get the page and enter it in the physical
2093          * map.
2094          */
2095         for (va = start; va < end; va += PAGE_SIZE) {
2096                 rv = vm_fault(map, va, wire_prot, fault_flags);
2097                 if (rv) {
2098                         while (va > start) {
2099                                 va -= PAGE_SIZE;
2100                                 if ((pa = pmap_extract(pmap, va)) == 0)
2101                                         continue;
2102                                 pmap_change_wiring(pmap, va, FALSE, entry);
2103                                 if (!fictitious) {
2104                                         m = PHYS_TO_VM_PAGE(pa);
2105                                         vm_page_busy_wait(m, FALSE, "vmwrpg");
2106                                         vm_page_unwire(m, 1);
2107                                         vm_page_wakeup(m);
2108                                 }
2109                         }
2110                         goto done;
2111                 }
2112         }
2113         rv = KERN_SUCCESS;
2114 done:
2115         vm_map_lock(map);
2116         lwkt_reltoken(&map->token);
2117         return (rv);
2118 }
2119
2120 /*
2121  * Unwire a range of virtual addresses in a map.  The map should be
2122  * locked.
2123  */
2124 void
2125 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
2126 {
2127         boolean_t fictitious;
2128         vm_offset_t start;
2129         vm_offset_t end;
2130         vm_offset_t va;
2131         vm_paddr_t pa;
2132         vm_page_t m;
2133         pmap_t pmap;
2134
2135         lwkt_gettoken(&map->token);
2136
2137         pmap = vm_map_pmap(map);
2138         start = entry->start;
2139         end = entry->end;
2140         fictitious = entry->object.vm_object &&
2141                         ((entry->object.vm_object->type == OBJT_DEVICE) ||
2142                          (entry->object.vm_object->type == OBJT_MGTDEVICE));
2143         if (entry->eflags & MAP_ENTRY_KSTACK)
2144                 start += PAGE_SIZE;
2145
2146         /*
2147          * Since the pages are wired down, we must be able to get their
2148          * mappings from the physical map system.
2149          */
2150         for (va = start; va < end; va += PAGE_SIZE) {
2151                 pa = pmap_extract(pmap, va);
2152                 if (pa != 0) {
2153                         pmap_change_wiring(pmap, va, FALSE, entry);
2154                         if (!fictitious) {
2155                                 m = PHYS_TO_VM_PAGE(pa);
2156                                 vm_page_busy_wait(m, FALSE, "vmwupg");
2157                                 vm_page_unwire(m, 1);
2158                                 vm_page_wakeup(m);
2159                         }
2160                 }
2161         }
2162         lwkt_reltoken(&map->token);
2163 }
2164
2165 /*
2166  * Copy all of the pages from a wired-down map entry to another.
2167  *
2168  * The source and destination maps must be locked for write.
2169  * The source and destination maps token must be held
2170  * The source map entry must be wired down (or be a sharing map
2171  * entry corresponding to a main map entry that is wired down).
2172  *
2173  * No other requirements.
2174  *
2175  * XXX do segment optimization
2176  */
2177 void
2178 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
2179                     vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
2180 {
2181         vm_object_t dst_object;
2182         vm_object_t src_object;
2183         vm_ooffset_t dst_offset;
2184         vm_ooffset_t src_offset;
2185         vm_prot_t prot;
2186         vm_offset_t vaddr;
2187         vm_page_t dst_m;
2188         vm_page_t src_m;
2189
2190         src_object = src_entry->object.vm_object;
2191         src_offset = src_entry->offset;
2192
2193         /*
2194          * Create the top-level object for the destination entry. (Doesn't
2195          * actually shadow anything - we copy the pages directly.)
2196          */
2197         vm_map_entry_allocate_object(dst_entry);
2198         dst_object = dst_entry->object.vm_object;
2199
2200         prot = dst_entry->max_protection;
2201
2202         /*
2203          * Loop through all of the pages in the entry's range, copying each
2204          * one from the source object (it should be there) to the destination
2205          * object.
2206          */
2207         vm_object_hold(src_object);
2208         vm_object_hold(dst_object);
2209         for (vaddr = dst_entry->start, dst_offset = 0;
2210             vaddr < dst_entry->end;
2211             vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
2212
2213                 /*
2214                  * Allocate a page in the destination object
2215                  */
2216                 do {
2217                         dst_m = vm_page_alloc(dst_object,
2218                                               OFF_TO_IDX(dst_offset),
2219                                               VM_ALLOC_NORMAL);
2220                         if (dst_m == NULL) {
2221                                 vm_wait(0);
2222                         }
2223                 } while (dst_m == NULL);
2224
2225                 /*
2226                  * Find the page in the source object, and copy it in.
2227                  * (Because the source is wired down, the page will be in
2228                  * memory.)
2229                  */
2230                 src_m = vm_page_lookup(src_object,
2231                                        OFF_TO_IDX(dst_offset + src_offset));
2232                 if (src_m == NULL)
2233                         panic("vm_fault_copy_wired: page missing");
2234
2235                 vm_page_copy(src_m, dst_m);
2236                 vm_page_event(src_m, VMEVENT_COW);
2237
2238                 /*
2239                  * Enter it in the pmap...
2240                  */
2241
2242                 vm_page_flag_clear(dst_m, PG_ZERO);
2243                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE, dst_entry);
2244
2245                 /*
2246                  * Mark it no longer busy, and put it on the active list.
2247                  */
2248                 vm_page_activate(dst_m);
2249                 vm_page_wakeup(dst_m);
2250         }
2251         vm_object_drop(dst_object);
2252         vm_object_drop(src_object);
2253 }
2254
2255 #if 0
2256
2257 /*
2258  * This routine checks around the requested page for other pages that
2259  * might be able to be faulted in.  This routine brackets the viable
2260  * pages for the pages to be paged in.
2261  *
2262  * Inputs:
2263  *      m, rbehind, rahead
2264  *
2265  * Outputs:
2266  *  marray (array of vm_page_t), reqpage (index of requested page)
2267  *
2268  * Return value:
2269  *  number of pages in marray
2270  */
2271 static int
2272 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
2273                           vm_page_t *marray, int *reqpage)
2274 {
2275         int i,j;
2276         vm_object_t object;
2277         vm_pindex_t pindex, startpindex, endpindex, tpindex;
2278         vm_page_t rtm;
2279         int cbehind, cahead;
2280
2281         object = m->object;
2282         pindex = m->pindex;
2283
2284         /*
2285          * we don't fault-ahead for device pager
2286          */
2287         if ((object->type == OBJT_DEVICE) ||
2288             (object->type == OBJT_MGTDEVICE)) {
2289                 *reqpage = 0;
2290                 marray[0] = m;
2291                 return 1;
2292         }
2293
2294         /*
2295          * if the requested page is not available, then give up now
2296          */
2297         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
2298                 *reqpage = 0;   /* not used by caller, fix compiler warn */
2299                 return 0;
2300         }
2301
2302         if ((cbehind == 0) && (cahead == 0)) {
2303                 *reqpage = 0;
2304                 marray[0] = m;
2305                 return 1;
2306         }
2307
2308         if (rahead > cahead) {
2309                 rahead = cahead;
2310         }
2311
2312         if (rbehind > cbehind) {
2313                 rbehind = cbehind;
2314         }
2315
2316         /*
2317          * Do not do any readahead if we have insufficient free memory.
2318          *
2319          * XXX code was broken disabled before and has instability
2320          * with this conditonal fixed, so shortcut for now.
2321          */
2322         if (burst_fault == 0 || vm_page_count_severe()) {
2323                 marray[0] = m;
2324                 *reqpage = 0;
2325                 return 1;
2326         }
2327
2328         /*
2329          * scan backward for the read behind pages -- in memory 
2330          *
2331          * Assume that if the page is not found an interrupt will not
2332          * create it.  Theoretically interrupts can only remove (busy)
2333          * pages, not create new associations.
2334          */
2335         if (pindex > 0) {
2336                 if (rbehind > pindex) {
2337                         rbehind = pindex;
2338                         startpindex = 0;
2339                 } else {
2340                         startpindex = pindex - rbehind;
2341                 }
2342
2343                 vm_object_hold(object);
2344                 for (tpindex = pindex; tpindex > startpindex; --tpindex) {
2345                         if (vm_page_lookup(object, tpindex - 1))
2346                                 break;
2347                 }
2348
2349                 i = 0;
2350                 while (tpindex < pindex) {
2351                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2352                                                              VM_ALLOC_NULL_OK);
2353                         if (rtm == NULL) {
2354                                 for (j = 0; j < i; j++) {
2355                                         vm_page_free(marray[j]);
2356                                 }
2357                                 vm_object_drop(object);
2358                                 marray[0] = m;
2359                                 *reqpage = 0;
2360                                 return 1;
2361                         }
2362                         marray[i] = rtm;
2363                         ++i;
2364                         ++tpindex;
2365                 }
2366                 vm_object_drop(object);
2367         } else {
2368                 i = 0;
2369         }
2370
2371         /*
2372          * Assign requested page
2373          */
2374         marray[i] = m;
2375         *reqpage = i;
2376         ++i;
2377
2378         /*
2379          * Scan forwards for read-ahead pages
2380          */
2381         tpindex = pindex + 1;
2382         endpindex = tpindex + rahead;
2383         if (endpindex > object->size)
2384                 endpindex = object->size;
2385
2386         vm_object_hold(object);
2387         while (tpindex < endpindex) {
2388                 if (vm_page_lookup(object, tpindex))
2389                         break;
2390                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2391                                                      VM_ALLOC_NULL_OK);
2392                 if (rtm == NULL)
2393                         break;
2394                 marray[i] = rtm;
2395                 ++i;
2396                 ++tpindex;
2397         }
2398         vm_object_drop(object);
2399
2400         return (i);
2401 }
2402
2403 #endif
2404
2405 /*
2406  * vm_prefault() provides a quick way of clustering pagefaults into a
2407  * processes address space.  It is a "cousin" of pmap_object_init_pt,
2408  * except it runs at page fault time instead of mmap time.
2409  *
2410  * vm.fast_fault        Enables pre-faulting zero-fill pages
2411  *
2412  * vm.prefault_pages    Number of pages (1/2 negative, 1/2 positive) to
2413  *                      prefault.  Scan stops in either direction when
2414  *                      a page is found to already exist.
2415  *
2416  * This code used to be per-platform pmap_prefault().  It is now
2417  * machine-independent and enhanced to also pre-fault zero-fill pages
2418  * (see vm.fast_fault) as well as make them writable, which greatly
2419  * reduces the number of page faults programs incur.
2420  *
2421  * Application performance when pre-faulting zero-fill pages is heavily
2422  * dependent on the application.  Very tiny applications like /bin/echo
2423  * lose a little performance while applications of any appreciable size
2424  * gain performance.  Prefaulting multiple pages also reduces SMP
2425  * congestion and can improve SMP performance significantly.
2426  *
2427  * NOTE!  prot may allow writing but this only applies to the top level
2428  *        object.  If we wind up mapping a page extracted from a backing
2429  *        object we have to make sure it is read-only.
2430  *
2431  * NOTE!  The caller has already handled any COW operations on the
2432  *        vm_map_entry via the normal fault code.  Do NOT call this
2433  *        shortcut unless the normal fault code has run on this entry.
2434  *
2435  * The related map must be locked.
2436  * No other requirements.
2437  */
2438 static int vm_prefault_pages = 8;
2439 SYSCTL_INT(_vm, OID_AUTO, prefault_pages, CTLFLAG_RW, &vm_prefault_pages, 0,
2440            "Maximum number of pages to pre-fault");
2441 static int vm_fast_fault = 1;
2442 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0,
2443            "Burst fault zero-fill regions");
2444
2445 /*
2446  * Set PG_NOSYNC if the map entry indicates so, but only if the page
2447  * is not already dirty by other means.  This will prevent passive
2448  * filesystem syncing as well as 'sync' from writing out the page.
2449  */
2450 static void
2451 vm_set_nosync(vm_page_t m, vm_map_entry_t entry)
2452 {
2453         if (entry->eflags & MAP_ENTRY_NOSYNC) {
2454                 if (m->dirty == 0)
2455                         vm_page_flag_set(m, PG_NOSYNC);
2456         } else {
2457                 vm_page_flag_clear(m, PG_NOSYNC);
2458         }
2459 }
2460
2461 static void
2462 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot,
2463             int fault_flags)
2464 {
2465         struct lwp *lp;
2466         vm_page_t m;
2467         vm_offset_t addr;
2468         vm_pindex_t index;
2469         vm_pindex_t pindex;
2470         vm_object_t object;
2471         int pprot;
2472         int i;
2473         int noneg;
2474         int nopos;
2475         int maxpages;
2476
2477         /*
2478          * Get stable max count value, disabled if set to 0
2479          */
2480         maxpages = vm_prefault_pages;
2481         cpu_ccfence();
2482         if (maxpages <= 0)
2483                 return;
2484
2485         /*
2486          * We do not currently prefault mappings that use virtual page
2487          * tables.  We do not prefault foreign pmaps.
2488          */
2489         if (entry->maptype != VM_MAPTYPE_NORMAL)
2490                 return;
2491         lp = curthread->td_lwp;
2492         if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2493                 return;
2494
2495         /*
2496          * Limit pre-fault count to 1024 pages.
2497          */
2498         if (maxpages > 1024)
2499                 maxpages = 1024;
2500
2501         object = entry->object.vm_object;
2502         KKASSERT(object != NULL);
2503         KKASSERT(object == entry->object.vm_object);
2504         vm_object_hold(object);
2505         vm_object_chain_acquire(object, 0);
2506
2507         noneg = 0;
2508         nopos = 0;
2509         for (i = 0; i < maxpages; ++i) {
2510                 vm_object_t lobject;
2511                 vm_object_t nobject;
2512                 int allocated = 0;
2513                 int error;
2514
2515                 /*
2516                  * This can eat a lot of time on a heavily contended
2517                  * machine so yield on the tick if needed.
2518                  */
2519                 if ((i & 7) == 7)
2520                         lwkt_yield();
2521
2522                 /*
2523                  * Calculate the page to pre-fault, stopping the scan in
2524                  * each direction separately if the limit is reached.
2525                  */
2526                 if (i & 1) {
2527                         if (noneg)
2528                                 continue;
2529                         addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2530                 } else {
2531                         if (nopos)
2532                                 continue;
2533                         addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2534                 }
2535                 if (addr < entry->start) {
2536                         noneg = 1;
2537                         if (noneg && nopos)
2538                                 break;
2539                         continue;
2540                 }
2541                 if (addr >= entry->end) {
2542                         nopos = 1;
2543                         if (noneg && nopos)
2544                                 break;
2545                         continue;
2546                 }
2547
2548                 /*
2549                  * Skip pages already mapped, and stop scanning in that
2550                  * direction.  When the scan terminates in both directions
2551                  * we are done.
2552                  */
2553                 if (pmap_prefault_ok(pmap, addr) == 0) {
2554                         if (i & 1)
2555                                 noneg = 1;
2556                         else
2557                                 nopos = 1;
2558                         if (noneg && nopos)
2559                                 break;
2560                         continue;
2561                 }
2562
2563                 /*
2564                  * Follow the VM object chain to obtain the page to be mapped
2565                  * into the pmap.
2566                  *
2567                  * If we reach the terminal object without finding a page
2568                  * and we determine it would be advantageous, then allocate
2569                  * a zero-fill page for the base object.  The base object
2570                  * is guaranteed to be OBJT_DEFAULT for this case.
2571                  *
2572                  * In order to not have to check the pager via *haspage*()
2573                  * we stop if any non-default object is encountered.  e.g.
2574                  * a vnode or swap object would stop the loop.
2575                  */
2576                 index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2577                 lobject = object;
2578                 pindex = index;
2579                 pprot = prot;
2580
2581                 KKASSERT(lobject == entry->object.vm_object);
2582                 /*vm_object_hold(lobject); implied */
2583
2584                 while ((m = vm_page_lookup_busy_try(lobject, pindex,
2585                                                     TRUE, &error)) == NULL) {
2586                         if (lobject->type != OBJT_DEFAULT)
2587                                 break;
2588                         if (lobject->backing_object == NULL) {
2589                                 if (vm_fast_fault == 0)
2590                                         break;
2591                                 if ((prot & VM_PROT_WRITE) == 0 ||
2592                                     vm_page_count_min(0)) {
2593                                         break;
2594                                 }
2595
2596                                 /*
2597                                  * NOTE: Allocated from base object
2598                                  */
2599                                 m = vm_page_alloc(object, index,
2600                                                   VM_ALLOC_NORMAL |
2601                                                   VM_ALLOC_ZERO |
2602                                                   VM_ALLOC_USE_GD |
2603                                                   VM_ALLOC_NULL_OK);
2604                                 if (m == NULL)
2605                                         break;
2606                                 allocated = 1;
2607                                 pprot = prot;
2608                                 /* lobject = object .. not needed */
2609                                 break;
2610                         }
2611                         if (lobject->backing_object_offset & PAGE_MASK)
2612                                 break;
2613                         nobject = lobject->backing_object;
2614                         vm_object_hold(nobject);
2615                         KKASSERT(nobject == lobject->backing_object);
2616                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2617                         if (lobject != object) {
2618                                 vm_object_lock_swap();
2619                                 vm_object_drop(lobject);
2620                         }
2621                         lobject = nobject;
2622                         pprot &= ~VM_PROT_WRITE;
2623                         vm_object_chain_acquire(lobject, 0);
2624                 }
2625
2626                 /*
2627                  * NOTE: A non-NULL (m) will be associated with lobject if
2628                  *       it was found there, otherwise it is probably a
2629                  *       zero-fill page associated with the base object.
2630                  *
2631                  * Give-up if no page is available.
2632                  */
2633                 if (m == NULL) {
2634                         if (lobject != object) {
2635 #if 0
2636                                 if (object->backing_object != lobject)
2637                                         vm_object_hold(object->backing_object);
2638 #endif
2639                                 vm_object_chain_release_all(
2640                                         object->backing_object, lobject);
2641 #if 0
2642                                 if (object->backing_object != lobject)
2643                                         vm_object_drop(object->backing_object);
2644 #endif
2645                                 vm_object_drop(lobject);
2646                         }
2647                         break;
2648                 }
2649
2650                 /*
2651                  * The object must be marked dirty if we are mapping a
2652                  * writable page.  m->object is either lobject or object,
2653                  * both of which are still held.  Do this before we
2654                  * potentially drop the object.
2655                  */
2656                 if (pprot & VM_PROT_WRITE)
2657                         vm_object_set_writeable_dirty(m->object);
2658
2659                 /*
2660                  * Do not conditionalize on PG_RAM.  If pages are present in
2661                  * the VM system we assume optimal caching.  If caching is
2662                  * not optimal the I/O gravy train will be restarted when we
2663                  * hit an unavailable page.  We do not want to try to restart
2664                  * the gravy train now because we really don't know how much
2665                  * of the object has been cached.  The cost for restarting
2666                  * the gravy train should be low (since accesses will likely
2667                  * be I/O bound anyway).
2668                  */
2669                 if (lobject != object) {
2670 #if 0
2671                         if (object->backing_object != lobject)
2672                                 vm_object_hold(object->backing_object);
2673 #endif
2674                         vm_object_chain_release_all(object->backing_object,
2675                                                     lobject);
2676 #if 0
2677                         if (object->backing_object != lobject)
2678                                 vm_object_drop(object->backing_object);
2679 #endif
2680                         vm_object_drop(lobject);
2681                 }
2682
2683                 /*
2684                  * Enter the page into the pmap if appropriate.  If we had
2685                  * allocated the page we have to place it on a queue.  If not
2686                  * we just have to make sure it isn't on the cache queue
2687                  * (pages on the cache queue are not allowed to be mapped).
2688                  */
2689                 if (allocated) {
2690                         /*
2691                          * Page must be zerod.
2692                          */
2693                         if ((m->flags & PG_ZERO) == 0) {
2694                                 vm_page_zero_fill(m);
2695                         } else {
2696 #ifdef PMAP_DEBUG
2697                                 pmap_page_assertzero(
2698                                                 VM_PAGE_TO_PHYS(m));
2699 #endif
2700                                 vm_page_flag_clear(m, PG_ZERO);
2701                                 mycpu->gd_cnt.v_ozfod++;
2702                         }
2703                         mycpu->gd_cnt.v_zfod++;
2704                         m->valid = VM_PAGE_BITS_ALL;
2705
2706                         /*
2707                          * Handle dirty page case
2708                          */
2709                         if (pprot & VM_PROT_WRITE)
2710                                 vm_set_nosync(m, entry);
2711                         pmap_enter(pmap, addr, m, pprot, 0, entry);
2712                         mycpu->gd_cnt.v_vm_faults++;
2713                         if (curthread->td_lwp)
2714                                 ++curthread->td_lwp->lwp_ru.ru_minflt;
2715                         vm_page_deactivate(m);
2716                         if (pprot & VM_PROT_WRITE) {
2717                                 /*vm_object_set_writeable_dirty(m->object);*/
2718                                 vm_set_nosync(m, entry);
2719                                 if (fault_flags & VM_FAULT_DIRTY) {
2720                                         vm_page_dirty(m);
2721                                         /*XXX*/
2722                                         swap_pager_unswapped(m);
2723                                 }
2724                         }
2725                         vm_page_wakeup(m);
2726                 } else if (error) {
2727                         /* couldn't busy page, no wakeup */
2728                 } else if (
2729                     ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2730                     (m->flags & PG_FICTITIOUS) == 0) {
2731                         /*
2732                          * A fully valid page not undergoing soft I/O can
2733                          * be immediately entered into the pmap.
2734                          */
2735                         if ((m->queue - m->pc) == PQ_CACHE)
2736                                 vm_page_deactivate(m);
2737                         if (pprot & VM_PROT_WRITE) {
2738                                 /*vm_object_set_writeable_dirty(m->object);*/
2739                                 vm_set_nosync(m, entry);
2740                                 if (fault_flags & VM_FAULT_DIRTY) {
2741                                         vm_page_dirty(m);
2742                                         /*XXX*/
2743                                         swap_pager_unswapped(m);
2744                                 }
2745                         }
2746                         if (pprot & VM_PROT_WRITE)
2747                                 vm_set_nosync(m, entry);
2748                         pmap_enter(pmap, addr, m, pprot, 0, entry);
2749                         mycpu->gd_cnt.v_vm_faults++;
2750                         if (curthread->td_lwp)
2751                                 ++curthread->td_lwp->lwp_ru.ru_minflt;
2752                         vm_page_wakeup(m);
2753                 } else {
2754                         vm_page_wakeup(m);
2755                 }
2756         }
2757         vm_object_chain_release(object);
2758         vm_object_drop(object);
2759 }
2760
2761 /*
2762  * Object can be held shared
2763  */
2764 static void
2765 vm_prefault_quick(pmap_t pmap, vm_offset_t addra,
2766                   vm_map_entry_t entry, int prot, int fault_flags)
2767 {
2768         struct lwp *lp;
2769         vm_page_t m;
2770         vm_offset_t addr;
2771         vm_pindex_t pindex;
2772         vm_object_t object;
2773         int i;
2774         int noneg;
2775         int nopos;
2776         int maxpages;
2777
2778         /*
2779          * Get stable max count value, disabled if set to 0
2780          */
2781         maxpages = vm_prefault_pages;
2782         cpu_ccfence();
2783         if (maxpages <= 0)
2784                 return;
2785
2786         /*
2787          * We do not currently prefault mappings that use virtual page
2788          * tables.  We do not prefault foreign pmaps.
2789          */
2790         if (entry->maptype != VM_MAPTYPE_NORMAL)
2791                 return;
2792         lp = curthread->td_lwp;
2793         if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2794                 return;
2795         object = entry->object.vm_object;
2796         if (object->backing_object != NULL)
2797                 return;
2798         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
2799
2800         /*
2801          * Limit pre-fault count to 1024 pages.
2802          */
2803         if (maxpages > 1024)
2804                 maxpages = 1024;
2805
2806         noneg = 0;
2807         nopos = 0;
2808         for (i = 0; i < maxpages; ++i) {
2809                 int error;
2810
2811                 /*
2812                  * Calculate the page to pre-fault, stopping the scan in
2813                  * each direction separately if the limit is reached.
2814                  */
2815                 if (i & 1) {
2816                         if (noneg)
2817                                 continue;
2818                         addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2819                 } else {
2820                         if (nopos)
2821                                 continue;
2822                         addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2823                 }
2824                 if (addr < entry->start) {
2825                         noneg = 1;
2826                         if (noneg && nopos)
2827                                 break;
2828                         continue;
2829                 }
2830                 if (addr >= entry->end) {
2831                         nopos = 1;
2832                         if (noneg && nopos)
2833                                 break;
2834                         continue;
2835                 }
2836
2837                 /*
2838                  * Skip pages already mapped, and stop scanning in that
2839                  * direction.  When the scan terminates in both directions
2840                  * we are done.
2841                  */
2842                 if (pmap_prefault_ok(pmap, addr) == 0) {
2843                         if (i & 1)
2844                                 noneg = 1;
2845                         else
2846                                 nopos = 1;
2847                         if (noneg && nopos)
2848                                 break;
2849                         continue;
2850                 }
2851
2852                 /*
2853                  * Follow the VM object chain to obtain the page to be mapped
2854                  * into the pmap.  This version of the prefault code only
2855                  * works with terminal objects.
2856                  *
2857                  * WARNING!  We cannot call swap_pager_unswapped() with a
2858                  *           shared token.
2859                  */
2860                 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2861
2862                 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2863                 if (m == NULL || error)
2864                         continue;
2865
2866                 if (((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2867                     (m->flags & PG_FICTITIOUS) == 0 &&
2868                     ((m->flags & PG_SWAPPED) == 0 ||
2869                      (prot & VM_PROT_WRITE) == 0 ||
2870                      (fault_flags & VM_FAULT_DIRTY) == 0)) {
2871                         /*
2872                          * A fully valid page not undergoing soft I/O can
2873                          * be immediately entered into the pmap.
2874                          */
2875                         if ((m->queue - m->pc) == PQ_CACHE)
2876                                 vm_page_deactivate(m);
2877                         if (prot & VM_PROT_WRITE) {
2878                                 vm_object_set_writeable_dirty(m->object);
2879                                 vm_set_nosync(m, entry);
2880                                 if (fault_flags & VM_FAULT_DIRTY) {
2881                                         vm_page_dirty(m);
2882                                         /*XXX*/
2883                                         swap_pager_unswapped(m);
2884                                 }
2885                         }
2886                         pmap_enter(pmap, addr, m, prot, 0, entry);
2887                         mycpu->gd_cnt.v_vm_faults++;
2888                         if (curthread->td_lwp)
2889                                 ++curthread->td_lwp->lwp_ru.ru_minflt;
2890                 }
2891                 vm_page_wakeup(m);
2892         }
2893 }