Merge from vendor branch BIND:
[dragonfly.git] / sys / vm / vm_fault.c
1 /*
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  *
69  * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
70  * $DragonFly: src/sys/vm/vm_fault.c,v 1.18 2004/10/12 19:29:34 dillon Exp $
71  */
72
73 /*
74  *      Page fault handling module.
75  */
76
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/proc.h>
80 #include <sys/vnode.h>
81 #include <sys/resourcevar.h>
82 #include <sys/vmmeter.h>
83
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <sys/lock.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_kern.h>
93 #include <vm/vm_pager.h>
94 #include <vm/vnode_pager.h>
95 #include <vm/vm_extern.h>
96
97 #include <sys/thread2.h>
98 #include <vm/vm_page2.h>
99
100 static int vm_fault_additional_pages (vm_page_t, int,
101                                           int, vm_page_t *, int *);
102
103 #define VM_FAULT_READ_AHEAD 8
104 #define VM_FAULT_READ_BEHIND 7
105 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
106
107 struct faultstate {
108         vm_page_t m;
109         vm_object_t object;
110         vm_pindex_t pindex;
111         vm_page_t first_m;
112         vm_object_t     first_object;
113         vm_pindex_t first_pindex;
114         vm_map_t map;
115         vm_map_entry_t entry;
116         int lookup_still_valid;
117         struct vnode *vp;
118 };
119
120 static __inline void
121 release_page(struct faultstate *fs)
122 {
123         vm_page_wakeup(fs->m);
124         vm_page_deactivate(fs->m);
125         fs->m = NULL;
126 }
127
128 static __inline void
129 unlock_map(struct faultstate *fs)
130 {
131         if (fs->lookup_still_valid) {
132                 vm_map_lookup_done(fs->map, fs->entry, 0);
133                 fs->lookup_still_valid = FALSE;
134         }
135 }
136
137 static void
138 _unlock_things(struct faultstate *fs, int dealloc)
139 {
140         vm_object_pip_wakeup(fs->object);
141         if (fs->object != fs->first_object) {
142                 vm_page_free(fs->first_m);
143                 vm_object_pip_wakeup(fs->first_object);
144                 fs->first_m = NULL;
145         }
146         if (dealloc) {
147                 vm_object_deallocate(fs->first_object);
148         }
149         unlock_map(fs); 
150         if (fs->vp != NULL) { 
151                 vput(fs->vp);
152                 fs->vp = NULL;
153         }
154 }
155
156 #define unlock_things(fs) _unlock_things(fs, 0)
157 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
158
159 /*
160  * TRYPAGER - used by vm_fault to calculate whether the pager for the
161  *            current object *might* contain the page.
162  *
163  *            default objects are zero-fill, there is no real pager.
164  */
165
166 #define TRYPAGER        (fs.object->type != OBJT_DEFAULT && \
167                         (((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
168
169 /*
170  *      vm_fault:
171  *
172  *      Handle a page fault occurring at the given address,
173  *      requiring the given permissions, in the map specified.
174  *      If successful, the page is inserted into the
175  *      associated physical map.
176  *
177  *      NOTE: the given address should be truncated to the
178  *      proper page address.
179  *
180  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
181  *      a standard error specifying why the fault is fatal is returned.
182  *
183  *
184  *      The map in question must be referenced, and remains so.
185  *      Caller may hold no locks.
186  */
187 int
188 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
189 {
190         vm_prot_t prot;
191         int result;
192         boolean_t wired;
193         int map_generation;
194         vm_object_t next_object;
195         vm_page_t marray[VM_FAULT_READ];
196         int hardfault;
197         int faultcount;
198         struct faultstate fs;
199
200         mycpu->gd_cnt.v_vm_faults++;
201         hardfault = 0;
202
203 RetryFault:
204         /*
205          * Find the backing store object and offset into it to begin the
206          * search.
207          */
208         fs.map = map;
209         if ((result = vm_map_lookup(&fs.map, vaddr,
210                 fault_type, &fs.entry, &fs.first_object,
211                 &fs.first_pindex, &prot, &wired)) != KERN_SUCCESS) {
212                 if ((result != KERN_PROTECTION_FAILURE) ||
213                         ((fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)) {
214                         return result;
215                 }
216
217                 /*
218                  * If we are user-wiring a r/w segment, and it is COW, then
219                  * we need to do the COW operation.  Note that we don't COW
220                  * currently RO sections now, because it is NOT desirable
221                  * to COW .text.  We simply keep .text from ever being COW'ed
222                  * and take the heat that one cannot debug wired .text sections.
223                  */
224                 result = vm_map_lookup(&fs.map, vaddr,
225                         VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
226                         &fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
227                 if (result != KERN_SUCCESS) {
228                         return result;
229                 }
230
231                 /*
232                  * If we don't COW now, on a user wire, the user will never
233                  * be able to write to the mapping.  If we don't make this
234                  * restriction, the bookkeeping would be nearly impossible.
235                  */
236                 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
237                         fs.entry->max_protection &= ~VM_PROT_WRITE;
238         }
239
240         map_generation = fs.map->timestamp;
241
242         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
243                 panic("vm_fault: fault on nofault entry, addr: %lx",
244                     (u_long)vaddr);
245         }
246
247         /*
248          * Make a reference to this object to prevent its disposal while we
249          * are messing with it.  Once we have the reference, the map is free
250          * to be diddled.  Since objects reference their shadows (and copies),
251          * they will stay around as well.
252          *
253          * Bump the paging-in-progress count to prevent size changes (e.g.
254          * truncation operations) during I/O.  This must be done after
255          * obtaining the vnode lock in order to avoid possible deadlocks.
256          */
257         vm_object_reference(fs.first_object);
258         fs.vp = vnode_pager_lock(fs.first_object);
259         vm_object_pip_add(fs.first_object, 1);
260
261         if ((fault_type & VM_PROT_WRITE) &&
262                 (fs.first_object->type == OBJT_VNODE)) {
263                 vm_freeze_copyopts(fs.first_object,
264                         fs.first_pindex, fs.first_pindex + 1);
265         }
266
267         fs.lookup_still_valid = TRUE;
268
269         if (wired)
270                 fault_type = prot;
271
272         fs.first_m = NULL;
273
274         /*
275          * Search for the page at object/offset.
276          */
277
278         fs.object = fs.first_object;
279         fs.pindex = fs.first_pindex;
280
281         while (TRUE) {
282                 /*
283                  * If the object is dead, we stop here
284                  */
285
286                 if (fs.object->flags & OBJ_DEAD) {
287                         unlock_and_deallocate(&fs);
288                         return (KERN_PROTECTION_FAILURE);
289                 }
290
291                 /*
292                  * See if page is resident.  spl protection is required
293                  * to avoid an interrupt unbusy/free race against our
294                  * lookup.  We must hold the protection through a page
295                  * allocation or busy.
296                  */
297                 crit_enter();
298                 fs.m = vm_page_lookup(fs.object, fs.pindex);
299                 if (fs.m != NULL) {
300                         int queue;
301                         /*
302                          * Wait/Retry if the page is busy.  We have to do this
303                          * if the page is busy via either PG_BUSY or 
304                          * vm_page_t->busy because the vm_pager may be using
305                          * vm_page_t->busy for pageouts ( and even pageins if
306                          * it is the vnode pager ), and we could end up trying
307                          * to pagein and pageout the same page simultaneously.
308                          *
309                          * We can theoretically allow the busy case on a read
310                          * fault if the page is marked valid, but since such
311                          * pages are typically already pmap'd, putting that
312                          * special case in might be more effort then it is 
313                          * worth.  We cannot under any circumstances mess
314                          * around with a vm_page_t->busy page except, perhaps,
315                          * to pmap it.
316                          */
317                         if ((fs.m->flags & PG_BUSY) || fs.m->busy) {
318                                 unlock_things(&fs);
319                                 vm_page_sleep_busy(fs.m, TRUE, "vmpfw");
320                                 mycpu->gd_cnt.v_intrans++;
321                                 vm_object_deallocate(fs.first_object);
322                                 crit_exit();
323                                 goto RetryFault;
324                         }
325
326                         queue = fs.m->queue;
327                         vm_page_unqueue_nowakeup(fs.m);
328
329                         if ((queue - fs.m->pc) == PQ_CACHE && vm_page_count_severe()) {
330                                 vm_page_activate(fs.m);
331                                 unlock_and_deallocate(&fs);
332                                 vm_waitpfault();
333                                 crit_exit();
334                                 goto RetryFault;
335                         }
336
337                         /*
338                          * Mark page busy for other processes, and the 
339                          * pagedaemon.  If it still isn't completely valid
340                          * (readable), jump to readrest, else break-out ( we
341                          * found the page ).
342                          *
343                          * We can release the spl once we have marked the
344                          * page busy.
345                          */
346
347                         vm_page_busy(fs.m);
348                         crit_exit();
349
350                         if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
351                                 fs.m->object != kernel_object && fs.m->object != kmem_object) {
352                                 goto readrest;
353                         }
354
355                         break;
356                 }
357
358                 /*
359                  * Page is not resident, If this is the search termination
360                  * or the pager might contain the page, allocate a new page.
361                  *
362                  * note: we are still in splvm().
363                  */
364
365                 if (TRYPAGER || fs.object == fs.first_object) {
366                         if (fs.pindex >= fs.object->size) {
367                                 crit_exit();
368                                 unlock_and_deallocate(&fs);
369                                 return (KERN_PROTECTION_FAILURE);
370                         }
371
372                         /*
373                          * Allocate a new page for this object/offset pair.
374                          */
375                         fs.m = NULL;
376                         if (!vm_page_count_severe()) {
377                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
378                                     (fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
379                         }
380                         if (fs.m == NULL) {
381                                 crit_exit();
382                                 unlock_and_deallocate(&fs);
383                                 vm_waitpfault();
384                                 goto RetryFault;
385                         }
386                 }
387                 crit_exit();
388
389 readrest:
390                 /*
391                  * We have found a valid page or we have allocated a new page.
392                  * The page thus may not be valid or may not be entirely 
393                  * valid.
394                  *
395                  * Attempt to fault-in the page if there is a chance that the
396                  * pager has it, and potentially fault in additional pages
397                  * at the same time.
398                  *
399                  * We are NOT in splvm here and if TRYPAGER is true then
400                  * fs.m will be non-NULL and will be PG_BUSY for us.
401                  */
402
403                 if (TRYPAGER) {
404                         int rv;
405                         int reqpage;
406                         int ahead, behind;
407                         u_char behavior = vm_map_entry_behavior(fs.entry);
408
409                         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
410                                 ahead = 0;
411                                 behind = 0;
412                         } else {
413                                 behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
414                                 if (behind > VM_FAULT_READ_BEHIND)
415                                         behind = VM_FAULT_READ_BEHIND;
416
417                                 ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
418                                 if (ahead > VM_FAULT_READ_AHEAD)
419                                         ahead = VM_FAULT_READ_AHEAD;
420                         }
421
422                         if ((fs.first_object->type != OBJT_DEVICE) &&
423                             (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
424                                 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
425                                 fs.pindex >= fs.entry->lastr &&
426                                 fs.pindex < fs.entry->lastr + VM_FAULT_READ))
427                         ) {
428                                 vm_pindex_t firstpindex, tmppindex;
429
430                                 if (fs.first_pindex < 2 * VM_FAULT_READ)
431                                         firstpindex = 0;
432                                 else
433                                         firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
434
435                                 /*
436                                  * note: partially valid pages cannot be 
437                                  * included in the lookahead - NFS piecemeal
438                                  * writes will barf on it badly.
439                                  *
440                                  * spl protection is required to avoid races
441                                  * between the lookup and an interrupt
442                                  * unbusy/free sequence occuring prior to
443                                  * our busy check.
444                                  */
445                                 crit_enter();
446                                 for (tmppindex = fs.first_pindex - 1;
447                                     tmppindex >= firstpindex;
448                                     --tmppindex
449                                 ) {
450                                         vm_page_t mt;
451                                         mt = vm_page_lookup( fs.first_object, tmppindex);
452                                         if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
453                                                 break;
454                                         if (mt->busy ||
455                                                 (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
456                                                 mt->hold_count ||
457                                                 mt->wire_count) 
458                                                 continue;
459                                         if (mt->dirty == 0)
460                                                 vm_page_test_dirty(mt);
461                                         if (mt->dirty) {
462                                                 vm_page_protect(mt, VM_PROT_NONE);
463                                                 vm_page_deactivate(mt);
464                                         } else {
465                                                 vm_page_cache(mt);
466                                         }
467                                 }
468                                 crit_exit();
469
470                                 ahead += behind;
471                                 behind = 0;
472                         }
473
474                         /*
475                          * now we find out if any other pages should be paged
476                          * in at this time this routine checks to see if the
477                          * pages surrounding this fault reside in the same
478                          * object as the page for this fault.  If they do,
479                          * then they are faulted in also into the object.  The
480                          * array "marray" returned contains an array of
481                          * vm_page_t structs where one of them is the
482                          * vm_page_t passed to the routine.  The reqpage
483                          * return value is the index into the marray for the
484                          * vm_page_t passed to the routine.
485                          *
486                          * fs.m plus the additional pages are PG_BUSY'd.
487                          */
488                         faultcount = vm_fault_additional_pages(
489                             fs.m, behind, ahead, marray, &reqpage);
490
491                         /*
492                          * update lastr imperfectly (we do not know how much
493                          * getpages will actually read), but good enough.
494                          */
495                         fs.entry->lastr = fs.pindex + faultcount - behind;
496
497                         /*
498                          * Call the pager to retrieve the data, if any, after
499                          * releasing the lock on the map.  We hold a ref on
500                          * fs.object and the pages are PG_BUSY'd.
501                          */
502                         unlock_map(&fs);
503
504                         rv = faultcount ?
505                             vm_pager_get_pages(fs.object, marray, faultcount,
506                                 reqpage) : VM_PAGER_FAIL;
507
508                         if (rv == VM_PAGER_OK) {
509                                 /*
510                                  * Found the page. Leave it busy while we play
511                                  * with it.
512                                  */
513
514                                 /*
515                                  * Relookup in case pager changed page. Pager
516                                  * is responsible for disposition of old page
517                                  * if moved.
518                                  *
519                                  * XXX other code segments do relookups too.
520                                  * It's a bad abstraction that needs to be
521                                  * fixed/removed.
522                                  */
523                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
524                                 if (fs.m == NULL) {
525                                         unlock_and_deallocate(&fs);
526                                         goto RetryFault;
527                                 }
528
529                                 hardfault++;
530                                 break; /* break to PAGE HAS BEEN FOUND */
531                         }
532                         /*
533                          * Remove the bogus page (which does not exist at this
534                          * object/offset); before doing so, we must get back
535                          * our object lock to preserve our invariant.
536                          *
537                          * Also wake up any other process that may want to bring
538                          * in this page.
539                          *
540                          * If this is the top-level object, we must leave the
541                          * busy page to prevent another process from rushing
542                          * past us, and inserting the page in that object at
543                          * the same time that we are.
544                          */
545
546                         if (rv == VM_PAGER_ERROR)
547                                 printf("vm_fault: pager read error, pid %d (%s)\n",
548                                     curproc->p_pid, curproc->p_comm);
549                         /*
550                          * Data outside the range of the pager or an I/O error
551                          */
552                         /*
553                          * XXX - the check for kernel_map is a kludge to work
554                          * around having the machine panic on a kernel space
555                          * fault w/ I/O error.
556                          */
557                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
558                                 (rv == VM_PAGER_BAD)) {
559                                 vm_page_free(fs.m);
560                                 fs.m = NULL;
561                                 unlock_and_deallocate(&fs);
562                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
563                         }
564                         if (fs.object != fs.first_object) {
565                                 vm_page_free(fs.m);
566                                 fs.m = NULL;
567                                 /*
568                                  * XXX - we cannot just fall out at this
569                                  * point, m has been freed and is invalid!
570                                  */
571                         }
572                 }
573
574                 /*
575                  * We get here if the object has default pager (or unwiring) 
576                  * or the pager doesn't have the page.
577                  */
578                 if (fs.object == fs.first_object)
579                         fs.first_m = fs.m;
580
581                 /*
582                  * Move on to the next object.  Lock the next object before
583                  * unlocking the current one.
584                  */
585
586                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
587                 next_object = fs.object->backing_object;
588                 if (next_object == NULL) {
589                         /*
590                          * If there's no object left, fill the page in the top
591                          * object with zeros.
592                          */
593                         if (fs.object != fs.first_object) {
594                                 vm_object_pip_wakeup(fs.object);
595
596                                 fs.object = fs.first_object;
597                                 fs.pindex = fs.first_pindex;
598                                 fs.m = fs.first_m;
599                         }
600                         fs.first_m = NULL;
601
602                         /*
603                          * Zero the page if necessary and mark it valid.
604                          */
605                         if ((fs.m->flags & PG_ZERO) == 0) {
606                                 vm_page_zero_fill(fs.m);
607                         } else {
608                                 mycpu->gd_cnt.v_ozfod++;
609                         }
610                         mycpu->gd_cnt.v_zfod++;
611                         fs.m->valid = VM_PAGE_BITS_ALL;
612                         break;  /* break to PAGE HAS BEEN FOUND */
613                 } else {
614                         if (fs.object != fs.first_object) {
615                                 vm_object_pip_wakeup(fs.object);
616                         }
617                         KASSERT(fs.object != next_object, ("object loop %p", next_object));
618                         fs.object = next_object;
619                         vm_object_pip_add(fs.object, 1);
620                 }
621         }
622
623         KASSERT((fs.m->flags & PG_BUSY) != 0,
624             ("vm_fault: not busy after main loop"));
625
626         /*
627          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
628          * is held.]
629          */
630
631         /*
632          * If the page is being written, but isn't already owned by the
633          * top-level object, we have to copy it into a new page owned by the
634          * top-level object.
635          */
636
637         if (fs.object != fs.first_object) {
638                 /*
639                  * We only really need to copy if we want to write it.
640                  */
641
642                 if (fault_type & VM_PROT_WRITE) {
643                         /*
644                          * This allows pages to be virtually copied from a 
645                          * backing_object into the first_object, where the 
646                          * backing object has no other refs to it, and cannot
647                          * gain any more refs.  Instead of a bcopy, we just 
648                          * move the page from the backing object to the 
649                          * first object.  Note that we must mark the page 
650                          * dirty in the first object so that it will go out 
651                          * to swap when needed.
652                          */
653                         if (map_generation == fs.map->timestamp &&
654                                 /*
655                                  * Only one shadow object
656                                  */
657                                 (fs.object->shadow_count == 1) &&
658                                 /*
659                                  * No COW refs, except us
660                                  */
661                                 (fs.object->ref_count == 1) &&
662                                 /*
663                                  * No one else can look this object up
664                                  */
665                                 (fs.object->handle == NULL) &&
666                                 /*
667                                  * No other ways to look the object up
668                                  */
669                                 ((fs.object->type == OBJT_DEFAULT) ||
670                                  (fs.object->type == OBJT_SWAP)) &&
671                                 /*
672                                  * We don't chase down the shadow chain
673                                  */
674                                 (fs.object == fs.first_object->backing_object) &&
675
676                                 /*
677                                  * grab the lock if we need to
678                                  */
679                                 (fs.lookup_still_valid ||
680                                  lockmgr(&fs.map->lock, LK_EXCLUSIVE|LK_NOWAIT, NULL, curthread) == 0)
681                             ) {
682                                 
683                                 fs.lookup_still_valid = 1;
684                                 /*
685                                  * get rid of the unnecessary page
686                                  */
687                                 vm_page_protect(fs.first_m, VM_PROT_NONE);
688                                 vm_page_free(fs.first_m);
689                                 fs.first_m = NULL;
690
691                                 /*
692                                  * grab the page and put it into the 
693                                  * process'es object.  The page is 
694                                  * automatically made dirty.
695                                  */
696                                 vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
697                                 fs.first_m = fs.m;
698                                 vm_page_busy(fs.first_m);
699                                 fs.m = NULL;
700                                 mycpu->gd_cnt.v_cow_optim++;
701                         } else {
702                                 /*
703                                  * Oh, well, lets copy it.
704                                  */
705                                 vm_page_copy(fs.m, fs.first_m);
706                         }
707
708                         if (fs.m) {
709                                 /*
710                                  * We no longer need the old page or object.
711                                  */
712                                 release_page(&fs);
713                         }
714
715                         /*
716                          * fs.object != fs.first_object due to above 
717                          * conditional
718                          */
719
720                         vm_object_pip_wakeup(fs.object);
721
722                         /*
723                          * Only use the new page below...
724                          */
725
726                         mycpu->gd_cnt.v_cow_faults++;
727                         fs.m = fs.first_m;
728                         fs.object = fs.first_object;
729                         fs.pindex = fs.first_pindex;
730
731                 } else {
732                         prot &= ~VM_PROT_WRITE;
733                 }
734         }
735
736         /*
737          * We must verify that the maps have not changed since our last
738          * lookup.
739          */
740
741         if (!fs.lookup_still_valid &&
742                 (fs.map->timestamp != map_generation)) {
743                 vm_object_t retry_object;
744                 vm_pindex_t retry_pindex;
745                 vm_prot_t retry_prot;
746
747                 /*
748                  * Since map entries may be pageable, make sure we can take a
749                  * page fault on them.
750                  */
751
752                 /*
753                  * Unlock vnode before the lookup to avoid deadlock.   E.G.
754                  * avoid a deadlock between the inode and exec_map that can
755                  * occur due to locks being obtained in different orders.
756                  */
757
758                 if (fs.vp != NULL) {
759                         vput(fs.vp);
760                         fs.vp = NULL;
761                 }
762                 
763                 if (fs.map->infork) {
764                         release_page(&fs);
765                         unlock_and_deallocate(&fs);
766                         goto RetryFault;
767                 }
768
769                 /*
770                  * To avoid trying to write_lock the map while another process
771                  * has it read_locked (in vm_map_wire), we do not try for
772                  * write permission.  If the page is still writable, we will
773                  * get write permission.  If it is not, or has been marked
774                  * needs_copy, we enter the mapping without write permission,
775                  * and will merely take another fault.
776                  */
777                 result = vm_map_lookup(&fs.map, vaddr, fault_type & ~VM_PROT_WRITE,
778                     &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
779                 map_generation = fs.map->timestamp;
780
781                 /*
782                  * If we don't need the page any longer, put it on the active
783                  * list (the easiest thing to do here).  If no one needs it,
784                  * pageout will grab it eventually.
785                  */
786
787                 if (result != KERN_SUCCESS) {
788                         release_page(&fs);
789                         unlock_and_deallocate(&fs);
790                         return (result);
791                 }
792                 fs.lookup_still_valid = TRUE;
793
794                 if ((retry_object != fs.first_object) ||
795                     (retry_pindex != fs.first_pindex)) {
796                         release_page(&fs);
797                         unlock_and_deallocate(&fs);
798                         goto RetryFault;
799                 }
800                 /*
801                  * Check whether the protection has changed or the object has
802                  * been copied while we left the map unlocked. Changing from
803                  * read to write permission is OK - we leave the page
804                  * write-protected, and catch the write fault. Changing from
805                  * write to read permission means that we can't mark the page
806                  * write-enabled after all.
807                  */
808                 prot &= retry_prot;
809         }
810
811         /*
812          * Put this page into the physical map. We had to do the unlock above
813          * because pmap_enter may cause other faults.   We don't put the page
814          * back on the active queue until later so that the page-out daemon
815          * won't find us (yet).
816          */
817
818         if (prot & VM_PROT_WRITE) {
819                 vm_page_flag_set(fs.m, PG_WRITEABLE);
820                 vm_object_set_writeable_dirty(fs.m->object);
821
822                 /*
823                  * If the fault is a write, we know that this page is being
824                  * written NOW so dirty it explicitly to save on 
825                  * pmap_is_modified() calls later.
826                  *
827                  * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
828                  * if the page is already dirty to prevent data written with
829                  * the expectation of being synced from not being synced.
830                  * Likewise if this entry does not request NOSYNC then make
831                  * sure the page isn't marked NOSYNC.  Applications sharing
832                  * data should use the same flags to avoid ping ponging.
833                  *
834                  * Also tell the backing pager, if any, that it should remove
835                  * any swap backing since the page is now dirty.
836                  */
837                 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
838                         if (fs.m->dirty == 0)
839                                 vm_page_flag_set(fs.m, PG_NOSYNC);
840                 } else {
841                         vm_page_flag_clear(fs.m, PG_NOSYNC);
842                 }
843                 if (fault_flags & VM_FAULT_DIRTY) {
844                         crit_enter();
845                         vm_page_dirty(fs.m);
846                         vm_pager_page_unswapped(fs.m);
847                         crit_exit();
848                 }
849         }
850
851         /*
852          * Page had better still be busy
853          */
854
855         KASSERT(fs.m->flags & PG_BUSY,
856                 ("vm_fault: page %p not busy!", fs.m));
857
858         unlock_things(&fs);
859
860         /*
861          * Sanity check: page must be completely valid or it is not fit to
862          * map into user space.  vm_pager_get_pages() ensures this.
863          */
864
865         if (fs.m->valid != VM_PAGE_BITS_ALL) {
866                 vm_page_zero_invalid(fs.m, TRUE);
867                 printf("Warning: page %p partially invalid on fault\n", fs.m);
868         }
869
870         pmap_enter(fs.map->pmap, vaddr, fs.m, prot, wired);
871
872         if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
873                 pmap_prefault(fs.map->pmap, vaddr, fs.entry);
874         }
875
876         vm_page_flag_clear(fs.m, PG_ZERO);
877         vm_page_flag_set(fs.m, PG_MAPPED|PG_REFERENCED);
878         if (fault_flags & VM_FAULT_HOLD)
879                 vm_page_hold(fs.m);
880
881         /*
882          * If the page is not wired down, then put it where the pageout daemon
883          * can find it.
884          */
885
886         if (fault_flags & VM_FAULT_WIRE_MASK) {
887                 if (wired)
888                         vm_page_wire(fs.m);
889                 else
890                         vm_page_unwire(fs.m, 1);
891         } else {
892                 vm_page_activate(fs.m);
893         }
894
895         if (curproc && (curproc->p_flag & P_INMEM) && curproc->p_stats) {
896                 if (hardfault) {
897                         curproc->p_stats->p_ru.ru_majflt++;
898                 } else {
899                         curproc->p_stats->p_ru.ru_minflt++;
900                 }
901         }
902
903         /*
904          * Unlock everything, and return
905          */
906
907         vm_page_wakeup(fs.m);
908         vm_object_deallocate(fs.first_object);
909
910         return (KERN_SUCCESS);
911
912 }
913
914 /*
915  * quick version of vm_fault
916  */
917 int
918 vm_fault_quick(caddr_t v, int prot)
919 {
920         int r;
921
922         if (prot & VM_PROT_WRITE)
923                 r = subyte(v, fubyte(v));
924         else
925                 r = fubyte(v);
926         return(r);
927 }
928
929 /*
930  * Wire down a range of virtual addresses in a map.  The entry in question
931  * should be marked in-transition and the map must be locked.  We must
932  * release the map temporarily while faulting-in the page to avoid a
933  * deadlock.  Note that the entry may be clipped while we are blocked but
934  * will never be freed.
935  */
936 int
937 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire)
938 {
939         boolean_t fictitious;
940         vm_offset_t start;
941         vm_offset_t end;
942         vm_offset_t va;
943         vm_paddr_t pa;
944         pmap_t pmap;
945         int rv;
946
947         pmap = vm_map_pmap(map);
948         start = entry->start;
949         end = entry->end;
950         fictitious = entry->object.vm_object &&
951                         (entry->object.vm_object->type == OBJT_DEVICE);
952
953         vm_map_unlock(map);
954         map->timestamp++;
955
956         /*
957          * We simulate a fault to get the page and enter it in the physical
958          * map.
959          */
960         for (va = start; va < end; va += PAGE_SIZE) {
961                 if (user_wire) {
962                         rv = vm_fault(map, va, VM_PROT_READ, 
963                                         VM_FAULT_USER_WIRE);
964                 } else {
965                         rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
966                                         VM_FAULT_CHANGE_WIRING);
967                 }
968                 if (rv) {
969                         while (va > start) {
970                                 va -= PAGE_SIZE;
971                                 if ((pa = pmap_extract(pmap, va)) == 0)
972                                         continue;
973                                 pmap_change_wiring(pmap, va, FALSE);
974                                 if (!fictitious)
975                                         vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
976                         }
977                         vm_map_lock(map);
978                         return (rv);
979                 }
980         }
981         vm_map_lock(map);
982         return (KERN_SUCCESS);
983 }
984
985 /*
986  * Unwire a range of virtual addresses in a map.  The map should be
987  * locked.
988  */
989 void
990 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
991 {
992         boolean_t fictitious;
993         vm_offset_t start;
994         vm_offset_t end;
995         vm_offset_t va;
996         vm_paddr_t pa;
997         pmap_t pmap;
998
999         pmap = vm_map_pmap(map);
1000         start = entry->start;
1001         end = entry->end;
1002         fictitious = entry->object.vm_object &&
1003                         (entry->object.vm_object->type == OBJT_DEVICE);
1004
1005         /*
1006          * Since the pages are wired down, we must be able to get their
1007          * mappings from the physical map system.
1008          */
1009         for (va = start; va < end; va += PAGE_SIZE) {
1010                 pa = pmap_extract(pmap, va);
1011                 if (pa != 0) {
1012                         pmap_change_wiring(pmap, va, FALSE);
1013                         if (!fictitious)
1014                                 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1015                 }
1016         }
1017 }
1018
1019 /*
1020  *      Routine:
1021  *              vm_fault_copy_entry
1022  *      Function:
1023  *              Copy all of the pages from a wired-down map entry to another.
1024  *
1025  *      In/out conditions:
1026  *              The source and destination maps must be locked for write.
1027  *              The source map entry must be wired down (or be a sharing map
1028  *              entry corresponding to a main map entry that is wired down).
1029  */
1030
1031 void
1032 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1033     vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
1034 {
1035         vm_object_t dst_object;
1036         vm_object_t src_object;
1037         vm_ooffset_t dst_offset;
1038         vm_ooffset_t src_offset;
1039         vm_prot_t prot;
1040         vm_offset_t vaddr;
1041         vm_page_t dst_m;
1042         vm_page_t src_m;
1043
1044 #ifdef  lint
1045         src_map++;
1046 #endif  /* lint */
1047
1048         src_object = src_entry->object.vm_object;
1049         src_offset = src_entry->offset;
1050
1051         /*
1052          * Create the top-level object for the destination entry. (Doesn't
1053          * actually shadow anything - we copy the pages directly.)
1054          */
1055         dst_object = vm_object_allocate(OBJT_DEFAULT,
1056             (vm_size_t) OFF_TO_IDX(dst_entry->end - dst_entry->start));
1057
1058         dst_entry->object.vm_object = dst_object;
1059         dst_entry->offset = 0;
1060
1061         prot = dst_entry->max_protection;
1062
1063         /*
1064          * Loop through all of the pages in the entry's range, copying each
1065          * one from the source object (it should be there) to the destination
1066          * object.
1067          */
1068         for (vaddr = dst_entry->start, dst_offset = 0;
1069             vaddr < dst_entry->end;
1070             vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1071
1072                 /*
1073                  * Allocate a page in the destination object
1074                  */
1075                 do {
1076                         dst_m = vm_page_alloc(dst_object,
1077                                 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1078                         if (dst_m == NULL) {
1079                                 vm_wait();
1080                         }
1081                 } while (dst_m == NULL);
1082
1083                 /*
1084                  * Find the page in the source object, and copy it in.
1085                  * (Because the source is wired down, the page will be in
1086                  * memory.)
1087                  */
1088                 src_m = vm_page_lookup(src_object,
1089                         OFF_TO_IDX(dst_offset + src_offset));
1090                 if (src_m == NULL)
1091                         panic("vm_fault_copy_wired: page missing");
1092
1093                 vm_page_copy(src_m, dst_m);
1094
1095                 /*
1096                  * Enter it in the pmap...
1097                  */
1098
1099                 vm_page_flag_clear(dst_m, PG_ZERO);
1100                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1101                 vm_page_flag_set(dst_m, PG_WRITEABLE|PG_MAPPED);
1102
1103                 /*
1104                  * Mark it no longer busy, and put it on the active list.
1105                  */
1106                 vm_page_activate(dst_m);
1107                 vm_page_wakeup(dst_m);
1108         }
1109 }
1110
1111
1112 /*
1113  * This routine checks around the requested page for other pages that
1114  * might be able to be faulted in.  This routine brackets the viable
1115  * pages for the pages to be paged in.
1116  *
1117  * Inputs:
1118  *      m, rbehind, rahead
1119  *
1120  * Outputs:
1121  *  marray (array of vm_page_t), reqpage (index of requested page)
1122  *
1123  * Return value:
1124  *  number of pages in marray
1125  */
1126 static int
1127 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
1128     vm_page_t *marray, int *reqpage)
1129 {
1130         int i,j;
1131         vm_object_t object;
1132         vm_pindex_t pindex, startpindex, endpindex, tpindex;
1133         vm_page_t rtm;
1134         int cbehind, cahead;
1135
1136         object = m->object;
1137         pindex = m->pindex;
1138
1139         /*
1140          * we don't fault-ahead for device pager
1141          */
1142         if (object->type == OBJT_DEVICE) {
1143                 *reqpage = 0;
1144                 marray[0] = m;
1145                 return 1;
1146         }
1147
1148         /*
1149          * if the requested page is not available, then give up now
1150          */
1151
1152         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1153                 return 0;
1154         }
1155
1156         if ((cbehind == 0) && (cahead == 0)) {
1157                 *reqpage = 0;
1158                 marray[0] = m;
1159                 return 1;
1160         }
1161
1162         if (rahead > cahead) {
1163                 rahead = cahead;
1164         }
1165
1166         if (rbehind > cbehind) {
1167                 rbehind = cbehind;
1168         }
1169
1170         /*
1171          * try to do any readahead that we might have free pages for.
1172          */
1173         if ((rahead + rbehind) >
1174                 ((vmstats.v_free_count + vmstats.v_cache_count) - vmstats.v_free_reserved)) {
1175                 pagedaemon_wakeup();
1176                 marray[0] = m;
1177                 *reqpage = 0;
1178                 return 1;
1179         }
1180
1181         /*
1182          * scan backward for the read behind pages -- in memory 
1183          *
1184          * Assume that if the page is not found an interrupt will not
1185          * create it.  Theoretically interrupts can only remove (busy)
1186          * pages, not create new associations.
1187          */
1188         if (pindex > 0) {
1189                 if (rbehind > pindex) {
1190                         rbehind = pindex;
1191                         startpindex = 0;
1192                 } else {
1193                         startpindex = pindex - rbehind;
1194                 }
1195
1196                 crit_enter();
1197                 for ( tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) {
1198                         if (vm_page_lookup( object, tpindex)) {
1199                                 startpindex = tpindex + 1;
1200                                 break;
1201                         }
1202                         if (tpindex == 0)
1203                                 break;
1204                 }
1205
1206                 for(i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
1207
1208                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1209                         if (rtm == NULL) {
1210                                 crit_exit();
1211                                 for (j = 0; j < i; j++) {
1212                                         vm_page_free(marray[j]);
1213                                 }
1214                                 marray[0] = m;
1215                                 *reqpage = 0;
1216                                 return 1;
1217                         }
1218
1219                         marray[i] = rtm;
1220                 }
1221                 crit_exit();
1222         } else {
1223                 startpindex = 0;
1224                 i = 0;
1225         }
1226
1227         marray[i] = m;
1228         /* page offset of the required page */
1229         *reqpage = i;
1230
1231         tpindex = pindex + 1;
1232         i++;
1233
1234         /*
1235          * scan forward for the read ahead pages
1236          */
1237         endpindex = tpindex + rahead;
1238         if (endpindex > object->size)
1239                 endpindex = object->size;
1240
1241         crit_enter();
1242         for( ; tpindex < endpindex; i++, tpindex++) {
1243
1244                 if (vm_page_lookup(object, tpindex)) {
1245                         break;
1246                 }
1247
1248                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1249                 if (rtm == NULL) {
1250                         break;
1251                 }
1252
1253                 marray[i] = rtm;
1254         }
1255         crit_exit();
1256
1257         /* return number of bytes of pages */
1258         return i;
1259 }