69f3c4183faa83c017620a7fc3264ce5ed7790f3
[dragonfly.git] / sys / vfs / hammer2 / hammer2_freemap.c
1 /*
2  * Copyright (c) 2011-2014 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * by Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/fcntl.h>
39 #include <sys/buf.h>
40 #include <sys/proc.h>
41 #include <sys/namei.h>
42 #include <sys/mount.h>
43 #include <sys/vnode.h>
44 #include <sys/mountctl.h>
45
46 #include "hammer2.h"
47
48 #define FREEMAP_DEBUG   0
49
50 struct hammer2_fiterate {
51         hammer2_off_t   bpref;
52         hammer2_off_t   bnext;
53         int             loops;
54 };
55
56 typedef struct hammer2_fiterate hammer2_fiterate_t;
57
58 static int hammer2_freemap_try_alloc(hammer2_trans_t *trans,
59                         hammer2_chain_t **parentp, hammer2_blockref_t *bref,
60                         int radix, hammer2_fiterate_t *iter);
61 static void hammer2_freemap_init(hammer2_trans_t *trans, hammer2_dev_t *hmp,
62                         hammer2_key_t key, hammer2_chain_t *chain);
63 static int hammer2_bmap_alloc(hammer2_trans_t *trans, hammer2_dev_t *hmp,
64                         hammer2_bmap_data_t *bmap, uint16_t class,
65                         int n, int radix, hammer2_key_t *basep);
66 static int hammer2_freemap_iterate(hammer2_trans_t *trans,
67                         hammer2_chain_t **parentp, hammer2_chain_t **chainp,
68                         hammer2_fiterate_t *iter);
69
70 static __inline
71 int
72 hammer2_freemapradix(int radix)
73 {
74         return(radix);
75 }
76
77 /*
78  * Calculate the device offset for the specified FREEMAP_NODE or FREEMAP_LEAF
79  * bref.  Return a combined media offset and physical size radix.  Freemap
80  * chains use fixed storage offsets in the 4MB reserved area at the
81  * beginning of each 2GB zone
82  *
83  * Rotate between four possibilities.  Theoretically this means we have three
84  * good freemaps in case of a crash which we can use as a base for the fixup
85  * scan at mount-time.
86  */
87 #define H2FMBASE(key, radix)    ((key) & ~(((hammer2_off_t)1 << (radix)) - 1))
88 #define H2FMSHIFT(radix)        ((hammer2_off_t)1 << (radix))
89
90 static
91 int
92 hammer2_freemap_reserve(hammer2_trans_t *trans, hammer2_chain_t *chain,
93                         int radix)
94 {
95         hammer2_blockref_t *bref = &chain->bref;
96         hammer2_off_t off;
97         int index;
98         size_t bytes;
99
100         /*
101          * Physical allocation size -> radix.  Typically either 256 for
102          * a level 0 freemap leaf or 65536 for a level N freemap node.
103          *
104          * NOTE: A 256 byte bitmap represents 256 x 8 x 1024 = 2MB of storage.
105          *       Do not use hammer2_allocsize() here as it has a min cap.
106          */
107         bytes = 1 << radix;
108
109         /*
110          * Calculate block selection index 0..7 of current block.  If this
111          * is the first allocation of the block (verses a modification of an
112          * existing block), we use index 0, otherwise we use the next rotating
113          * index.
114          */
115         if ((bref->data_off & ~HAMMER2_OFF_MASK_RADIX) == 0) {
116                 index = 0;
117         } else {
118                 off = bref->data_off & ~HAMMER2_OFF_MASK_RADIX &
119                       (((hammer2_off_t)1 <<
120                         HAMMER2_FREEMAP_LEVEL1_RADIX) - 1);
121                 off = off / HAMMER2_PBUFSIZE;
122                 KKASSERT(off >= HAMMER2_ZONE_FREEMAP_00 &&
123                          off < HAMMER2_ZONE_FREEMAP_END);
124                 index = (int)(off - HAMMER2_ZONE_FREEMAP_00) / 4;
125                 KKASSERT(index >= 0 && index < HAMMER2_NFREEMAPS);
126                 if (++index == HAMMER2_NFREEMAPS)
127                         index = 0;
128         }
129
130         /*
131          * Calculate the block offset of the reserved block.  This will
132          * point into the 4MB reserved area at the base of the appropriate
133          * 2GB zone, once added to the FREEMAP_x selection above.
134          */
135         switch(bref->keybits) {
136         /* case HAMMER2_FREEMAP_LEVEL5_RADIX: not applicable */
137         case HAMMER2_FREEMAP_LEVEL4_RADIX:      /* 2EB */
138                 KKASSERT(bref->type == HAMMER2_BREF_TYPE_FREEMAP_NODE);
139                 KKASSERT(bytes == HAMMER2_FREEMAP_LEVELN_PSIZE);
140                 off = H2FMBASE(bref->key, HAMMER2_FREEMAP_LEVEL4_RADIX) +
141                       (index * 4 + HAMMER2_ZONE_FREEMAP_00 +
142                        HAMMER2_ZONEFM_LEVEL4) * HAMMER2_PBUFSIZE;
143                 break;
144         case HAMMER2_FREEMAP_LEVEL3_RADIX:      /* 2PB */
145                 KKASSERT(bref->type == HAMMER2_BREF_TYPE_FREEMAP_NODE);
146                 KKASSERT(bytes == HAMMER2_FREEMAP_LEVELN_PSIZE);
147                 off = H2FMBASE(bref->key, HAMMER2_FREEMAP_LEVEL3_RADIX) +
148                       (index * 4 + HAMMER2_ZONE_FREEMAP_00 +
149                        HAMMER2_ZONEFM_LEVEL3) * HAMMER2_PBUFSIZE;
150                 break;
151         case HAMMER2_FREEMAP_LEVEL2_RADIX:      /* 2TB */
152                 KKASSERT(bref->type == HAMMER2_BREF_TYPE_FREEMAP_NODE);
153                 KKASSERT(bytes == HAMMER2_FREEMAP_LEVELN_PSIZE);
154                 off = H2FMBASE(bref->key, HAMMER2_FREEMAP_LEVEL2_RADIX) +
155                       (index * 4 + HAMMER2_ZONE_FREEMAP_00 +
156                        HAMMER2_ZONEFM_LEVEL2) * HAMMER2_PBUFSIZE;
157                 break;
158         case HAMMER2_FREEMAP_LEVEL1_RADIX:      /* 2GB */
159                 KKASSERT(bref->type == HAMMER2_BREF_TYPE_FREEMAP_LEAF);
160                 KKASSERT(bytes == HAMMER2_FREEMAP_LEVELN_PSIZE);
161                 off = H2FMBASE(bref->key, HAMMER2_FREEMAP_LEVEL1_RADIX) +
162                       (index * 4 + HAMMER2_ZONE_FREEMAP_00 +
163                        HAMMER2_ZONEFM_LEVEL1) * HAMMER2_PBUFSIZE;
164                 break;
165         default:
166                 panic("freemap: bad radix(2) %p %d\n", bref, bref->keybits);
167                 /* NOT REACHED */
168                 off = (hammer2_off_t)-1;
169                 break;
170         }
171         bref->data_off = off | radix;
172 #if FREEMAP_DEBUG
173         kprintf("FREEMAP BLOCK TYPE %d %016jx/%d DATA_OFF=%016jx\n",
174                 bref->type, bref->key, bref->keybits, bref->data_off);
175 #endif
176         return (0);
177 }
178
179 /*
180  * Normal freemap allocator
181  *
182  * Use available hints to allocate space using the freemap.  Create missing
183  * freemap infrastructure on-the-fly as needed (including marking initial
184  * allocations using the iterator as allocated, instantiating new 2GB zones,
185  * and dealing with the end-of-media edge case).
186  *
187  * ip and bpref are only used as a heuristic to determine locality of
188  * reference.  bref->key may also be used heuristically.
189  */
190 int
191 hammer2_freemap_alloc(hammer2_trans_t *trans, hammer2_chain_t *chain,
192                       size_t bytes)
193 {
194         hammer2_dev_t *hmp = chain->hmp;
195         hammer2_blockref_t *bref = &chain->bref;
196         hammer2_chain_t *parent;
197         int radix;
198         int error;
199         unsigned int hindex;
200         hammer2_fiterate_t iter;
201
202         /*
203          * Validate the allocation size.  It must be a power of 2.
204          *
205          * For now require that the caller be aware of the minimum
206          * allocation (1K).
207          */
208         radix = hammer2_getradix(bytes);
209         KKASSERT((size_t)1 << radix == bytes);
210
211         if (bref->type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
212             bref->type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
213                 /*
214                  * Freemap blocks themselves are assigned from the reserve
215                  * area, not allocated from the freemap.
216                  */
217                 error = hammer2_freemap_reserve(trans, chain, radix);
218                 return error;
219         }
220
221         KKASSERT(bytes >= HAMMER2_ALLOC_MIN && bytes <= HAMMER2_ALLOC_MAX);
222
223         if (trans->flags & (HAMMER2_TRANS_ISFLUSH | HAMMER2_TRANS_PREFLUSH))
224                 ++trans->sync_xid;
225
226         /*
227          * Calculate the starting point for our allocation search.
228          *
229          * Each freemap leaf is dedicated to a specific freemap_radix.
230          * The freemap_radix can be more fine-grained than the device buffer
231          * radix which results in inodes being grouped together in their
232          * own segment, terminal-data (16K or less) and initial indirect
233          * block being grouped together, and then full-indirect and full-data
234          * blocks (64K) being grouped together.
235          *
236          * The single most important aspect of this is the inode grouping
237          * because that is what allows 'find' and 'ls' and other filesystem
238          * topology operations to run fast.
239          */
240 #if 0
241         if (bref->data_off & ~HAMMER2_OFF_MASK_RADIX)
242                 bpref = bref->data_off & ~HAMMER2_OFF_MASK_RADIX;
243         else if (trans->tmp_bpref)
244                 bpref = trans->tmp_bpref;
245         else if (trans->tmp_ip)
246                 bpref = trans->tmp_ip->chain->bref.data_off;
247         else
248 #endif
249         /*
250          * Heuristic tracking index.  We would like one for each distinct
251          * bref type if possible.  heur_freemap[] has room for two classes
252          * for each type.  At a minimum we have to break-up our heuristic
253          * by device block sizes.
254          */
255         hindex = hammer2_devblkradix(radix) - HAMMER2_MINIORADIX;
256         KKASSERT(hindex < HAMMER2_FREEMAP_HEUR_NRADIX);
257         hindex += bref->type * HAMMER2_FREEMAP_HEUR_NRADIX;
258         hindex &= HAMMER2_FREEMAP_HEUR_TYPES * HAMMER2_FREEMAP_HEUR_NRADIX - 1;
259         KKASSERT(hindex < HAMMER2_FREEMAP_HEUR);
260
261         iter.bpref = hmp->heur_freemap[hindex];
262
263         /*
264          * Make sure bpref is in-bounds.  It's ok if bpref covers a zone's
265          * reserved area, the try code will iterate past it.
266          */
267         if (iter.bpref > hmp->voldata.volu_size)
268                 iter.bpref = hmp->voldata.volu_size - 1;
269
270         /*
271          * Iterate the freemap looking for free space before and after.
272          */
273         parent = &hmp->fchain;
274         hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
275         error = EAGAIN;
276         iter.bnext = iter.bpref;
277         iter.loops = 0;
278
279         while (error == EAGAIN) {
280                 error = hammer2_freemap_try_alloc(trans, &parent, bref,
281                                                   radix, &iter);
282         }
283         hmp->heur_freemap[hindex] = iter.bnext;
284         hammer2_chain_unlock(parent);
285
286         if (trans->flags & (HAMMER2_TRANS_ISFLUSH | HAMMER2_TRANS_PREFLUSH))
287                 --trans->sync_xid;
288
289         return (error);
290 }
291
292 static int
293 hammer2_freemap_try_alloc(hammer2_trans_t *trans, hammer2_chain_t **parentp,
294                           hammer2_blockref_t *bref, int radix,
295                           hammer2_fiterate_t *iter)
296 {
297         hammer2_dev_t *hmp = (*parentp)->hmp;
298         hammer2_off_t l0size;
299         hammer2_off_t l1size;
300         hammer2_off_t l1mask;
301         hammer2_key_t key_dummy;
302         hammer2_chain_t *chain;
303         hammer2_off_t key;
304         size_t bytes;
305         uint16_t class;
306         int error = 0;
307         int cache_index = -1;
308
309         /*
310          * Calculate the number of bytes being allocated, the number
311          * of contiguous bits of bitmap being allocated, and the bitmap
312          * mask.
313          *
314          * WARNING! cpu hardware may mask bits == 64 -> 0 and blow up the
315          *          mask calculation.
316          */
317         bytes = (size_t)1 << radix;
318         class = (bref->type << 8) | hammer2_devblkradix(radix);
319
320         /*
321          * Lookup the level1 freemap chain, creating and initializing one
322          * if necessary.  Intermediate levels will be created automatically
323          * when necessary by hammer2_chain_create().
324          */
325         key = H2FMBASE(iter->bnext, HAMMER2_FREEMAP_LEVEL1_RADIX);
326         l0size = H2FMSHIFT(HAMMER2_FREEMAP_LEVEL0_RADIX);
327         l1size = H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX);
328         l1mask = l1size - 1;
329
330         chain = hammer2_chain_lookup(parentp, &key_dummy, key, key + l1mask,
331                                      &cache_index,
332                                      HAMMER2_LOOKUP_ALWAYS |
333                                      HAMMER2_LOOKUP_MATCHIND);
334
335         if (chain == NULL) {
336                 /*
337                  * Create the missing leaf, be sure to initialize
338                  * the auxillary freemap tracking information in
339                  * the bref.check.freemap structure.
340                  */
341 #if 0
342                 kprintf("freemap create L1 @ %016jx bpref %016jx\n",
343                         key, iter->bpref);
344 #endif
345                 error = hammer2_chain_create(trans, parentp, &chain, hmp->spmp,
346                                      key, HAMMER2_FREEMAP_LEVEL1_RADIX,
347                                      HAMMER2_BREF_TYPE_FREEMAP_LEAF,
348                                      HAMMER2_FREEMAP_LEVELN_PSIZE,
349                                      0);
350                 KKASSERT(error == 0);
351                 if (error == 0) {
352                         hammer2_chain_modify(trans, chain, 0);
353                         bzero(&chain->data->bmdata[0],
354                               HAMMER2_FREEMAP_LEVELN_PSIZE);
355                         chain->bref.check.freemap.bigmask = (uint32_t)-1;
356                         chain->bref.check.freemap.avail = l1size;
357                         /* bref.methods should already be inherited */
358
359                         hammer2_freemap_init(trans, hmp, key, chain);
360                 }
361         } else if ((chain->bref.check.freemap.bigmask & (1 << radix)) == 0) {
362                 /*
363                  * Already flagged as not having enough space
364                  */
365                 error = ENOSPC;
366         } else {
367                 /*
368                  * Modify existing chain to setup for adjustment.
369                  */
370                 hammer2_chain_modify(trans, chain, 0);
371         }
372
373         /*
374          * Scan 2MB entries.
375          */
376         if (error == 0) {
377                 hammer2_bmap_data_t *bmap;
378                 hammer2_key_t base_key;
379                 int count;
380                 int start;
381                 int n;
382
383                 KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF);
384                 start = (int)((iter->bnext - key) >>
385                               HAMMER2_FREEMAP_LEVEL0_RADIX);
386                 KKASSERT(start >= 0 && start < HAMMER2_FREEMAP_COUNT);
387                 hammer2_chain_modify(trans, chain, 0);
388
389                 error = ENOSPC;
390                 for (count = 0; count < HAMMER2_FREEMAP_COUNT; ++count) {
391                         int availchk;
392
393                         if (start + count >= HAMMER2_FREEMAP_COUNT &&
394                             start - count < 0) {
395                                 break;
396                         }
397
398                         /*
399                          * Calculate bmap pointer
400                          *
401                          * NOTE: bmap pointer is invalid if n >= FREEMAP_COUNT.
402                          */
403                         n = start + count;
404                         bmap = &chain->data->bmdata[n];
405
406                         if (n >= HAMMER2_FREEMAP_COUNT) {
407                                 availchk = 0;
408                         } else if (bmap->avail) {
409                                 availchk = 1;
410                         } else if (radix < HAMMER2_FREEMAP_BLOCK_RADIX &&
411                                   (bmap->linear & HAMMER2_FREEMAP_BLOCK_MASK)) {
412                                 availchk = 1;
413                         } else {
414                                 availchk = 0;
415                         }
416
417                         if (availchk &&
418                             (bmap->class == 0 || bmap->class == class)) {
419                                 base_key = key + n * l0size;
420                                 error = hammer2_bmap_alloc(trans, hmp, bmap,
421                                                            class, n, radix,
422                                                            &base_key);
423                                 if (error != ENOSPC) {
424                                         key = base_key;
425                                         break;
426                                 }
427                         }
428
429                         /*
430                          * Must recalculate after potentially having called
431                          * hammer2_bmap_alloc() above in case chain was
432                          * reallocated.
433                          *
434                          * NOTE: bmap pointer is invalid if n < 0.
435                          */
436                         n = start - count;
437                         bmap = &chain->data->bmdata[n];
438                         if (n < 0) {
439                                 availchk = 0;
440                         } else if (bmap->avail) {
441                                 availchk = 1;
442                         } else if (radix < HAMMER2_FREEMAP_BLOCK_RADIX &&
443                                   (bmap->linear & HAMMER2_FREEMAP_BLOCK_MASK)) {
444                                 availchk = 1;
445                         } else {
446                                 availchk = 0;
447                         }
448
449                         if (availchk &&
450                             (bmap->class == 0 || bmap->class == class)) {
451                                 base_key = key + n * l0size;
452                                 error = hammer2_bmap_alloc(trans, hmp, bmap,
453                                                            class, n, radix,
454                                                            &base_key);
455                                 if (error != ENOSPC) {
456                                         key = base_key;
457                                         break;
458                                 }
459                         }
460                 }
461                 if (error == ENOSPC)
462                         chain->bref.check.freemap.bigmask &= ~(1 << radix);
463                 /* XXX also scan down from original count */
464         }
465
466         if (error == 0) {
467                 /*
468                  * Assert validity.  Must be beyond the static allocator used
469                  * by newfs_hammer2 (and thus also beyond the aux area),
470                  * not go past the volume size, and must not be in the
471                  * reserved segment area for a zone.
472                  */
473                 KKASSERT(key >= hmp->voldata.allocator_beg &&
474                          key + bytes <= hmp->voldata.volu_size);
475                 KKASSERT((key & HAMMER2_ZONE_MASK64) >= HAMMER2_ZONE_SEG);
476                 bref->data_off = key | radix;
477
478 #if 0
479                 kprintf("alloc cp=%p %016jx %016jx using %016jx\n",
480                         chain,
481                         bref->key, bref->data_off, chain->bref.data_off);
482 #endif
483         } else if (error == ENOSPC) {
484                 /*
485                  * Return EAGAIN with next iteration in iter->bnext, or
486                  * return ENOSPC if the allocation map has been exhausted.
487                  */
488                 error = hammer2_freemap_iterate(trans, parentp, &chain, iter);
489         }
490
491         /*
492          * Cleanup
493          */
494         if (chain)
495                 hammer2_chain_unlock(chain);
496         return (error);
497 }
498
499 /*
500  * Allocate (1<<radix) bytes from the bmap whos base data offset is (*basep).
501  *
502  * If the linear iterator is mid-block we use it directly (the bitmap should
503  * already be marked allocated), otherwise we search for a block in the bitmap
504  * that fits the allocation request.
505  *
506  * A partial bitmap allocation sets the minimum bitmap granularity (16KB)
507  * to fully allocated and adjusts the linear allocator to allow the
508  * remaining space to be allocated.
509  */
510 static
511 int
512 hammer2_bmap_alloc(hammer2_trans_t *trans, hammer2_dev_t *hmp,
513                    hammer2_bmap_data_t *bmap,
514                    uint16_t class, int n, int radix, hammer2_key_t *basep)
515 {
516         hammer2_io_t *dio;
517         size_t size;
518         size_t bgsize;
519         int bmradix;
520         uint32_t bmmask;
521         int offset;
522         int error;
523         int i;
524         int j;
525
526         /*
527          * Take into account 2-bits per block when calculating bmradix.
528          */
529         size = (size_t)1 << radix;
530
531         if (radix <= HAMMER2_FREEMAP_BLOCK_RADIX) {
532                 bmradix = 2;
533                 /* (16K) 2 bits per allocation block */
534         } else {
535                 bmradix = 2 << (radix - HAMMER2_FREEMAP_BLOCK_RADIX);
536                 /* (32K-256K) 4, 8, 16, 32 bits per allocation block */
537         }
538
539         /*
540          * Use the linear iterator to pack small allocations, otherwise
541          * fall-back to finding a free 16KB chunk.  The linear iterator
542          * is only valid when *NOT* on a freemap chunking boundary (16KB).
543          * If it is the bitmap must be scanned.  It can become invalid
544          * once we pack to the boundary.  We adjust it after a bitmap
545          * allocation only for sub-16KB allocations (so the perfectly good
546          * previous value can still be used for fragments when 16KB+
547          * allocations are made).
548          *
549          * Beware of hardware artifacts when bmradix == 32 (intermediate
550          * result can wind up being '1' instead of '0' if hardware masks
551          * bit-count & 31).
552          *
553          * NOTE: j needs to be even in the j= calculation.  As an artifact
554          *       of the /2 division, our bitmask has to clear bit 0.
555          *
556          * NOTE: TODO this can leave little unallocatable fragments lying
557          *       around.
558          */
559         if (((uint32_t)bmap->linear & HAMMER2_FREEMAP_BLOCK_MASK) + size <=
560             HAMMER2_FREEMAP_BLOCK_SIZE &&
561             (bmap->linear & HAMMER2_FREEMAP_BLOCK_MASK) &&
562             bmap->linear < HAMMER2_SEGSIZE) {
563                 KKASSERT(bmap->linear >= 0 &&
564                          bmap->linear + size <= HAMMER2_SEGSIZE &&
565                          (bmap->linear & (HAMMER2_ALLOC_MIN - 1)) == 0);
566                 offset = bmap->linear;
567                 i = offset / (HAMMER2_SEGSIZE / 8);
568                 j = (offset / (HAMMER2_FREEMAP_BLOCK_SIZE / 2)) & 30;
569                 bmmask = (bmradix == 32) ?
570                          0xFFFFFFFFU : (1 << bmradix) - 1;
571                 bmmask <<= j;
572                 bmap->linear = offset + size;
573         } else {
574                 for (i = 0; i < 8; ++i) {
575                         bmmask = (bmradix == 32) ?
576                                  0xFFFFFFFFU : (1 << bmradix) - 1;
577                         for (j = 0; j < 32; j += bmradix) {
578                                 if ((bmap->bitmap[i] & bmmask) == 0)
579                                         goto success;
580                                 bmmask <<= bmradix;
581                         }
582                 }
583                 /*fragments might remain*/
584                 /*KKASSERT(bmap->avail == 0);*/
585                 return (ENOSPC);
586 success:
587                 offset = i * (HAMMER2_SEGSIZE / 8) +
588                          (j * (HAMMER2_FREEMAP_BLOCK_SIZE / 2));
589                 if (size & HAMMER2_FREEMAP_BLOCK_MASK)
590                         bmap->linear = offset + size;
591         }
592
593         KKASSERT(i >= 0 && i < 8);      /* 8 x 16 -> 128 x 16K -> 2MB */
594
595         /*
596          * Optimize the buffer cache to avoid unnecessary read-before-write
597          * operations.
598          *
599          * The device block size could be larger than the allocation size
600          * so the actual bitmap test is somewhat more involved.  We have
601          * to use a compatible buffer size for this operation.
602          */
603         if ((bmap->bitmap[i] & bmmask) == 0 &&
604             hammer2_devblksize(size) != size) {
605                 size_t psize = hammer2_devblksize(size);
606                 hammer2_off_t pmask = (hammer2_off_t)psize - 1;
607                 int pbmradix = 2 << (hammer2_devblkradix(radix) -
608                                      HAMMER2_FREEMAP_BLOCK_RADIX);
609                 uint32_t pbmmask;
610                 int pradix = hammer2_getradix(psize);
611
612                 pbmmask = (pbmradix == 32) ? 0xFFFFFFFFU : (1 << pbmradix) - 1;
613                 while ((pbmmask & bmmask) == 0)
614                         pbmmask <<= pbmradix;
615
616 #if 0
617                 kprintf("%016jx mask %08x %08x %08x (%zd/%zd)\n",
618                         *basep + offset, bmap->bitmap[i],
619                         pbmmask, bmmask, size, psize);
620 #endif
621
622                 if ((bmap->bitmap[i] & pbmmask) == 0) {
623                         error = hammer2_io_newq(hmp,
624                                                 (*basep + (offset & ~pmask)) |
625                                                  pradix,
626                                                 psize, &dio);
627                         hammer2_io_bqrelse(&dio);
628                 }
629         }
630
631 #if 0
632         /*
633          * When initializing a new inode segment also attempt to initialize
634          * an adjacent segment.  Be careful not to index beyond the array
635          * bounds.
636          *
637          * We do this to try to localize inode accesses to improve
638          * directory scan rates.  XXX doesn't improve scan rates.
639          */
640         if (size == HAMMER2_INODE_BYTES) {
641                 if (n & 1) {
642                         if (bmap[-1].radix == 0 && bmap[-1].avail)
643                                 bmap[-1].radix = radix;
644                 } else {
645                         if (bmap[1].radix == 0 && bmap[1].avail)
646                                 bmap[1].radix = radix;
647                 }
648         }
649 #endif
650         /*
651          * Calculate the bitmap-granular change in bgsize for the volume
652          * header.  We cannot use the fine-grained change here because
653          * the bulkfree code can't undo it.  If the bitmap element is already
654          * marked allocated it has already been accounted for.
655          */
656         if (radix < HAMMER2_FREEMAP_BLOCK_RADIX) {
657                 if (bmap->bitmap[i] & bmmask)
658                         bgsize = 0;
659                 else
660                         bgsize = HAMMER2_FREEMAP_BLOCK_SIZE;
661         } else {
662                 bgsize = size;
663         }
664
665         /*
666          * Adjust the bitmap, set the class (it might have been 0),
667          * and available bytes, update the allocation offset (*basep)
668          * from the L0 base to the actual offset.
669          *
670          * avail must reflect the bitmap-granular availability.  The allocator
671          * tests will also check the linear iterator.
672          */
673         bmap->bitmap[i] |= bmmask;
674         bmap->class = class;
675         bmap->avail -= bgsize;
676         *basep += offset;
677
678         /*
679          * Adjust the volume header's allocator_free parameter.  This
680          * parameter has to be fixed up by bulkfree which has no way to
681          * figure out sub-16K chunking, so it must be adjusted by the
682          * bitmap-granular size.
683          */
684         if (bgsize) {
685                 hammer2_voldata_lock(hmp);
686                 hammer2_voldata_modify(hmp);
687                 hmp->voldata.allocator_free -= bgsize;
688                 hammer2_voldata_unlock(hmp);
689         }
690
691         return(0);
692 }
693
694 static
695 void
696 hammer2_freemap_init(hammer2_trans_t *trans, hammer2_dev_t *hmp,
697                      hammer2_key_t key, hammer2_chain_t *chain)
698 {
699         hammer2_off_t l1size;
700         hammer2_off_t lokey;
701         hammer2_off_t hikey;
702         hammer2_bmap_data_t *bmap;
703         int count;
704
705         l1size = H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX);
706
707         /*
708          * Calculate the portion of the 2GB map that should be initialized
709          * as free.  Portions below or after will be initialized as allocated.
710          * SEGMASK-align the areas so we don't have to worry about sub-scans
711          * or endianess when using memset.
712          *
713          * (1) Ensure that all statically allocated space from newfs_hammer2
714          *     is marked allocated.
715          *
716          * (2) Ensure that the reserved area is marked allocated (typically
717          *     the first 4MB of the 2GB area being represented).
718          *
719          * (3) Ensure that any trailing space at the end-of-volume is marked
720          *     allocated.
721          *
722          * WARNING! It is possible for lokey to be larger than hikey if the
723          *          entire 2GB segment is within the static allocation.
724          */
725         lokey = (hmp->voldata.allocator_beg + HAMMER2_SEGMASK64) &
726                 ~HAMMER2_SEGMASK64;
727
728         if (lokey < H2FMBASE(key, HAMMER2_FREEMAP_LEVEL1_RADIX) +
729                   HAMMER2_ZONE_SEG64) {
730                 lokey = H2FMBASE(key, HAMMER2_FREEMAP_LEVEL1_RADIX) +
731                         HAMMER2_ZONE_SEG64;
732         }
733
734         hikey = key + H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX);
735         if (hikey > hmp->voldata.volu_size) {
736                 hikey = hmp->voldata.volu_size & ~HAMMER2_SEGMASK64;
737         }
738
739         chain->bref.check.freemap.avail =
740                 H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX);
741         bmap = &chain->data->bmdata[0];
742
743         for (count = 0; count < HAMMER2_FREEMAP_COUNT; ++count) {
744                 if (key < lokey || key >= hikey) {
745                         memset(bmap->bitmap, -1,
746                                sizeof(bmap->bitmap));
747                         bmap->avail = 0;
748                         bmap->linear = HAMMER2_SEGSIZE;
749                         chain->bref.check.freemap.avail -=
750                                 H2FMSHIFT(HAMMER2_FREEMAP_LEVEL0_RADIX);
751                 } else {
752                         bmap->avail = H2FMSHIFT(HAMMER2_FREEMAP_LEVEL0_RADIX);
753                 }
754                 key += H2FMSHIFT(HAMMER2_FREEMAP_LEVEL0_RADIX);
755                 ++bmap;
756         }
757 }
758
759 /*
760  * The current Level 1 freemap has been exhausted, iterate to the next
761  * one, return ENOSPC if no freemaps remain.
762  *
763  * XXX this should rotate back to the beginning to handle freed-up space
764  * XXX or use intermediate entries to locate free space. TODO
765  */
766 static int
767 hammer2_freemap_iterate(hammer2_trans_t *trans, hammer2_chain_t **parentp,
768                         hammer2_chain_t **chainp, hammer2_fiterate_t *iter)
769 {
770         hammer2_dev_t *hmp = (*parentp)->hmp;
771
772         iter->bnext &= ~(H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX) - 1);
773         iter->bnext += H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX);
774         if (iter->bnext >= hmp->voldata.volu_size) {
775                 iter->bnext = 0;
776                 if (++iter->loops == 2)
777                         return (ENOSPC);
778         }
779         return(EAGAIN);
780 }
781
782 /*
783  * Adjust the bit-pattern for data in the freemap bitmap according to
784  * (how).  This code is called from on-mount recovery to fixup (mark
785  * as allocated) blocks whos freemap upates might not have been committed
786  * in the last crash and is used by the bulk freemap scan to stage frees.
787  *
788  * XXX currently disabled when how == 0 (the normal real-time case).  At
789  * the moment we depend on the bulk freescan to actually free blocks.  It
790  * will still call this routine with a non-zero how to stage possible frees
791  * and to do the actual free.
792  */
793 void
794 hammer2_freemap_adjust(hammer2_trans_t *trans, hammer2_dev_t *hmp,
795                        hammer2_blockref_t *bref, int how)
796 {
797         hammer2_off_t data_off = bref->data_off;
798         hammer2_chain_t *chain;
799         hammer2_chain_t *parent;
800         hammer2_bmap_data_t *bmap;
801         hammer2_key_t key;
802         hammer2_key_t key_dummy;
803         hammer2_off_t l0size;
804         hammer2_off_t l1size;
805         hammer2_off_t l1mask;
806         uint32_t *bitmap;
807         const uint32_t bmmask00 = 0;
808         uint32_t bmmask01;
809         uint32_t bmmask10;
810         uint32_t bmmask11;
811         size_t bytes;
812         uint16_t class;
813         int radix;
814         int start;
815         int count;
816         int modified = 0;
817         int cache_index = -1;
818         int error;
819
820         KKASSERT(how == HAMMER2_FREEMAP_DORECOVER);
821
822         radix = (int)data_off & HAMMER2_OFF_MASK_RADIX;
823         data_off &= ~HAMMER2_OFF_MASK_RADIX;
824         KKASSERT(radix <= HAMMER2_RADIX_MAX);
825
826         bytes = (size_t)1 << radix;
827         class = (bref->type << 8) | hammer2_devblkradix(radix);
828
829         /*
830          * We can't adjust thre freemap for data allocations made by
831          * newfs_hammer2.
832          */
833         if (data_off < hmp->voldata.allocator_beg)
834                 return;
835
836         KKASSERT((data_off & HAMMER2_ZONE_MASK64) >= HAMMER2_ZONE_SEG);
837
838         /*
839          * Lookup the level1 freemap chain.  The chain must exist.
840          */
841         key = H2FMBASE(data_off, HAMMER2_FREEMAP_LEVEL1_RADIX);
842         l0size = H2FMSHIFT(HAMMER2_FREEMAP_LEVEL0_RADIX);
843         l1size = H2FMSHIFT(HAMMER2_FREEMAP_LEVEL1_RADIX);
844         l1mask = l1size - 1;
845
846         parent = &hmp->fchain;
847         hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
848
849         chain = hammer2_chain_lookup(&parent, &key_dummy, key, key + l1mask,
850                                      &cache_index,
851                                      HAMMER2_LOOKUP_ALWAYS |
852                                      HAMMER2_LOOKUP_MATCHIND);
853
854         /*
855          * Stop early if we are trying to free something but no leaf exists.
856          */
857         if (chain == NULL && how != HAMMER2_FREEMAP_DORECOVER) {
858                 kprintf("hammer2_freemap_adjust: %016jx: no chain\n",
859                         (intmax_t)bref->data_off);
860                 goto done;
861         }
862
863         /*
864          * Create any missing leaf(s) if we are doing a recovery (marking
865          * the block(s) as being allocated instead of being freed).  Be sure
866          * to initialize the auxillary freemap tracking info in the
867          * bref.check.freemap structure.
868          */
869         if (chain == NULL && how == HAMMER2_FREEMAP_DORECOVER) {
870                 error = hammer2_chain_create(trans, &parent, &chain, hmp->spmp,
871                                      key, HAMMER2_FREEMAP_LEVEL1_RADIX,
872                                      HAMMER2_BREF_TYPE_FREEMAP_LEAF,
873                                      HAMMER2_FREEMAP_LEVELN_PSIZE,
874                                      0);
875
876                 if (hammer2_debug & 0x0040) {
877                         kprintf("fixup create chain %p %016jx:%d\n",
878                                 chain, chain->bref.key, chain->bref.keybits);
879                 }
880
881                 if (error == 0) {
882                         hammer2_chain_modify(trans, chain, 0);
883                         bzero(&chain->data->bmdata[0],
884                               HAMMER2_FREEMAP_LEVELN_PSIZE);
885                         chain->bref.check.freemap.bigmask = (uint32_t)-1;
886                         chain->bref.check.freemap.avail = l1size;
887                         /* bref.methods should already be inherited */
888
889                         hammer2_freemap_init(trans, hmp, key, chain);
890                 }
891                 /* XXX handle error */
892         }
893
894 #if FREEMAP_DEBUG
895         kprintf("FREEMAP ADJUST TYPE %d %016jx/%d DATA_OFF=%016jx\n",
896                 chain->bref.type, chain->bref.key,
897                 chain->bref.keybits, chain->bref.data_off);
898 #endif
899
900         /*
901          * Calculate the bitmask (runs in 2-bit pairs).
902          */
903         start = ((int)(data_off >> HAMMER2_FREEMAP_BLOCK_RADIX) & 15) * 2;
904         bmmask01 = 1 << start;
905         bmmask10 = 2 << start;
906         bmmask11 = 3 << start;
907
908         /*
909          * Fixup the bitmap.  Partial blocks cannot be fully freed unless
910          * a bulk scan is able to roll them up.
911          */
912         if (radix < HAMMER2_FREEMAP_BLOCK_RADIX) {
913                 count = 1;
914                 if (how == HAMMER2_FREEMAP_DOREALFREE)
915                         how = HAMMER2_FREEMAP_DOMAYFREE;
916         } else {
917                 count = 1 << (radix - HAMMER2_FREEMAP_BLOCK_RADIX);
918         }
919
920         /*
921          * [re]load the bmap and bitmap pointers.  Each bmap entry covers
922          * a 2MB swath.  The bmap itself (LEVEL1) covers 2GB.
923          *
924          * Be sure to reset the linear iterator to ensure that the adjustment
925          * is not ignored.
926          */
927 again:
928         bmap = &chain->data->bmdata[(int)(data_off >> HAMMER2_SEGRADIX) &
929                                     (HAMMER2_FREEMAP_COUNT - 1)];
930         bitmap = &bmap->bitmap[(int)(data_off >> (HAMMER2_SEGRADIX - 3)) & 7];
931
932         if (modified)
933                 bmap->linear = 0;
934
935         while (count) {
936                 KKASSERT(bmmask11);
937                 if (how == HAMMER2_FREEMAP_DORECOVER) {
938                         /*
939                          * Recovery request, mark as allocated.
940                          */
941                         if ((*bitmap & bmmask11) != bmmask11) {
942                                 if (modified == 0) {
943                                         hammer2_chain_modify(trans, chain, 0);
944                                         modified = 1;
945                                         goto again;
946                                 }
947                                 if ((*bitmap & bmmask11) == bmmask00) {
948                                         bmap->avail -=
949                                                 HAMMER2_FREEMAP_BLOCK_SIZE;
950                                 }
951                                 if (bmap->class == 0)
952                                         bmap->class = class;
953                                 *bitmap |= bmmask11;
954                                 if (hammer2_debug & 0x0040) {
955                                         kprintf("hammer2_freemap_recover: "
956                                                 "fixup type=%02x "
957                                                 "block=%016jx/%zd\n",
958                                                 bref->type, data_off, bytes);
959                                 }
960                         } else {
961                                 /*
962                                 kprintf("hammer2_freemap_recover:  good "
963                                         "type=%02x block=%016jx/%zd\n",
964                                         bref->type, data_off, bytes);
965                                 */
966                         }
967                 }
968 #if 0
969                 /*
970                  * XXX this stuff doesn't work, avail is miscalculated and
971                  * code 10 means something else now.
972                  */
973                 else if ((*bitmap & bmmask11) == bmmask11) {
974                         /*
975                          * Mayfree/Realfree request and bitmap is currently
976                          * marked as being fully allocated.
977                          */
978                         if (!modified) {
979                                 hammer2_chain_modify(trans, chain, 0);
980                                 modified = 1;
981                                 goto again;
982                         }
983                         if (how == HAMMER2_FREEMAP_DOREALFREE)
984                                 *bitmap &= ~bmmask11;
985                         else
986                                 *bitmap = (*bitmap & ~bmmask11) | bmmask10;
987                 } else if ((*bitmap & bmmask11) == bmmask10) {
988                         /*
989                          * Mayfree/Realfree request and bitmap is currently
990                          * marked as being possibly freeable.
991                          */
992                         if (how == HAMMER2_FREEMAP_DOREALFREE) {
993                                 if (!modified) {
994                                         hammer2_chain_modify(trans, chain, 0);
995                                         modified = 1;
996                                         goto again;
997                                 }
998                                 *bitmap &= ~bmmask11;
999                         }
1000                 } else {
1001                         /*
1002                          * 01 - Not implemented, currently illegal state
1003                          * 00 - Not allocated at all, illegal free.
1004                          */
1005                         panic("hammer2_freemap_adjust: "
1006                               "Illegal state %08x(%08x)",
1007                               *bitmap, *bitmap & bmmask11);
1008                 }
1009 #endif
1010                 --count;
1011                 bmmask01 <<= 2;
1012                 bmmask10 <<= 2;
1013                 bmmask11 <<= 2;
1014         }
1015         if (how == HAMMER2_FREEMAP_DOREALFREE && modified) {
1016                 bmap->avail += 1 << radix;
1017                 KKASSERT(bmap->avail <= HAMMER2_SEGSIZE);
1018                 if (bmap->avail == HAMMER2_SEGSIZE &&
1019                     bmap->bitmap[0] == 0 &&
1020                     bmap->bitmap[1] == 0 &&
1021                     bmap->bitmap[2] == 0 &&
1022                     bmap->bitmap[3] == 0 &&
1023                     bmap->bitmap[4] == 0 &&
1024                     bmap->bitmap[5] == 0 &&
1025                     bmap->bitmap[6] == 0 &&
1026                     bmap->bitmap[7] == 0) {
1027                         key = H2FMBASE(data_off, HAMMER2_FREEMAP_LEVEL0_RADIX);
1028                         kprintf("Freeseg %016jx\n", (intmax_t)key);
1029                         bmap->class = 0;
1030                 }
1031         }
1032
1033         /*
1034          * chain->bref.check.freemap.bigmask (XXX)
1035          *
1036          * Setting bigmask is a hint to the allocation code that there might
1037          * be something allocatable.  We also set this in recovery... it
1038          * doesn't hurt and we might want to use the hint for other validation
1039          * operations later on.
1040          */
1041         if (modified)
1042                 chain->bref.check.freemap.bigmask |= 1 << radix;
1043
1044         hammer2_chain_unlock(chain);
1045 done:
1046         hammer2_chain_unlock(parent);
1047 }
1048
1049 /*
1050  * Validate the freemap, in three stages.
1051  *
1052  * stage-1      ALLOCATED     -> POSSIBLY FREE
1053  *              POSSIBLY FREE -> POSSIBLY FREE (type corrected)
1054  *
1055  *      This transitions bitmap entries from ALLOCATED to POSSIBLY FREE.
1056  *      The POSSIBLY FREE state does not mean that a block is actually free
1057  *      and may be transitioned back to ALLOCATED in stage-2.
1058  *
1059  *      This is typically done during normal filesystem operations when
1060  *      something is deleted or a block is replaced.
1061  *
1062  *      This is done by bulkfree in-bulk after a memory-bounded meta-data
1063  *      scan to try to determine what might be freeable.
1064  *
1065  *      This can be done unconditionally through a freemap scan when the
1066  *      intention is to brute-force recover the proper state of the freemap.
1067  *
1068  * stage-2      POSSIBLY FREE -> ALLOCATED      (scan metadata topology)
1069  *
1070  *      This is done by bulkfree during a meta-data scan to ensure that
1071  *      all blocks still actually allocated by the filesystem are marked
1072  *      as such.
1073  *
1074  *      NOTE! Live filesystem transitions to POSSIBLY FREE can occur while
1075  *            the bulkfree stage-2 and stage-3 is running.  The live filesystem
1076  *            will use the alternative POSSIBLY FREE type (2) to prevent
1077  *            stage-3 from improperly transitioning unvetted possibly-free
1078  *            blocks to FREE.
1079  *
1080  * stage-3      POSSIBLY FREE (type 1) -> FREE  (scan freemap)
1081  *
1082  *      This is done by bulkfree to finalize POSSIBLY FREE states.
1083  *
1084  */