Merge from vendor branch FILE:
[dragonfly.git] / sys / netproto / 802_11 / wlan / ieee80211_output.c
1 /*
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * Alternatively, this software may be distributed under the terms of the
18  * GNU General Public License ("GPL") version 2 as published by the Free
19  * Software Foundation.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
26  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
30  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  *
32  * $FreeBSD: src/sys/net80211/ieee80211_output.c,v 1.26.2.8 2006/09/02 15:06:04 sam Exp $
33  * $DragonFly: src/sys/netproto/802_11/wlan/ieee80211_output.c,v 1.21 2007/05/07 14:12:16 sephe Exp $
34  */
35
36 #include "opt_inet.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h> 
40 #include <sys/mbuf.h>   
41 #include <sys/kernel.h>
42 #include <sys/endian.h>
43
44 #include <sys/socket.h>
45  
46 #include <net/bpf.h>
47 #include <net/ethernet.h>
48 #include <net/if.h>
49 #include <net/if_arp.h>
50 #include <net/if_llc.h>
51 #include <net/if_media.h>
52 #include <net/vlan/if_vlan_var.h>
53
54 #include <netproto/802_11/ieee80211_var.h>
55
56 #ifdef INET
57 #include <netinet/in.h> 
58 #include <netinet/if_ether.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/ip.h>
61 #endif
62
63 #ifdef IEEE80211_DEBUG
64 /*
65  * Decide if an outbound management frame should be
66  * printed when debugging is enabled.  This filters some
67  * of the less interesting frames that come frequently
68  * (e.g. beacons).
69  */
70 static __inline int
71 doprint(struct ieee80211com *ic, int subtype)
72 {
73         switch (subtype) {
74         case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
75                 return (ic->ic_opmode == IEEE80211_M_IBSS);
76         }
77         return 1;
78 }
79 #endif
80
81 /*
82  * Set the direction field and address fields of an outgoing
83  * non-QoS frame.  Note this should be called early on in
84  * constructing a frame as it sets i_fc[1]; other bits can
85  * then be or'd in.
86  */
87 static void
88 ieee80211_send_setup(struct ieee80211com *ic,
89         struct ieee80211_node *ni,
90         struct ieee80211_frame *wh,
91         int type,
92         const uint8_t sa[IEEE80211_ADDR_LEN],
93         const uint8_t da[IEEE80211_ADDR_LEN],
94         const uint8_t bssid[IEEE80211_ADDR_LEN])
95 {
96 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh)
97
98         wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
99         if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
100                 switch (ic->ic_opmode) {
101                 case IEEE80211_M_STA:
102                         wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
103                         IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
104                         IEEE80211_ADDR_COPY(wh->i_addr2, sa);
105                         IEEE80211_ADDR_COPY(wh->i_addr3, da);
106                         break;
107                 case IEEE80211_M_IBSS:
108                 case IEEE80211_M_AHDEMO:
109                         wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
110                         IEEE80211_ADDR_COPY(wh->i_addr1, da);
111                         IEEE80211_ADDR_COPY(wh->i_addr2, sa);
112                         IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
113                         break;
114                 case IEEE80211_M_HOSTAP:
115                         wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
116                         IEEE80211_ADDR_COPY(wh->i_addr1, da);
117                         IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
118                         IEEE80211_ADDR_COPY(wh->i_addr3, sa);
119                         break;
120                 case IEEE80211_M_MONITOR:       /* NB: to quiet compiler */
121                         break;
122                 }
123         } else {
124                 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
125                 IEEE80211_ADDR_COPY(wh->i_addr1, da);
126                 IEEE80211_ADDR_COPY(wh->i_addr2, sa);
127                 IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
128         }
129         *(uint16_t *)&wh->i_dur[0] = 0;
130         /* NB: use non-QoS tid */
131         *(uint16_t *)&wh->i_seq[0] =
132             htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
133         ni->ni_txseqs[0]++;
134 #undef WH4
135 }
136
137 /*
138  * Send a management frame to the specified node.  The node pointer
139  * must have a reference as the pointer will be passed to the driver
140  * and potentially held for a long time.  If the frame is successfully
141  * dispatched to the driver, then it is responsible for freeing the
142  * reference (and potentially free'ing up any associated storage).
143  */
144 static int
145 ieee80211_mgmt_output(struct ieee80211com *ic, struct ieee80211_node *ni,
146     struct mbuf *m, int type, int timer, int encrypt)
147 {
148         struct ifnet *ifp = ic->ic_ifp;
149         struct ieee80211_frame *wh;
150
151         KASSERT(ni != NULL, ("null node"));
152
153         /*
154          * Yech, hack alert!  We want to pass the node down to the
155          * driver's start routine.  If we don't do so then the start
156          * routine must immediately look it up again and that can
157          * cause a lock order reversal if, for example, this frame
158          * is being sent because the station is being timedout and
159          * the frame being sent is a DEAUTH message.  We could stick
160          * this in an m_tag and tack that on to the mbuf.  However
161          * that's rather expensive to do for every frame so instead
162          * we stuff it in the rcvif field since outbound frames do
163          * not (presently) use this.
164          */
165         M_PREPEND(m, sizeof(struct ieee80211_frame), MB_DONTWAIT);
166         if (m == NULL)
167                 return ENOMEM;
168         KASSERT(m->m_pkthdr.rcvif == NULL, ("rcvif not null"));
169         m->m_pkthdr.rcvif = (void *)ni;
170
171         wh = mtod(m, struct ieee80211_frame *);
172         ieee80211_send_setup(ic, ni, wh,
173                 IEEE80211_FC0_TYPE_MGT | type,
174                 ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid);
175         if (encrypt) {
176                 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
177                         "[%6D] encrypting frame (%s)\n",
178                         wh->i_addr1, ":", __func__);
179                 wh->i_fc[1] |= IEEE80211_FC1_WEP;
180         }
181 #ifdef IEEE80211_DEBUG
182         /* avoid printing too many frames */
183         if ((ieee80211_msg_debug(ic) && doprint(ic, type)) ||
184             ieee80211_msg_dumppkts(ic)) {
185                 kprintf("[%6D] send %s on channel %u\n",
186                     wh->i_addr1, ":",
187                     ieee80211_mgt_subtype_name[
188                         (type & IEEE80211_FC0_SUBTYPE_MASK) >>
189                                 IEEE80211_FC0_SUBTYPE_SHIFT],
190                     ieee80211_chan2ieee(ic, ic->ic_curchan));
191         }
192 #endif
193         IEEE80211_NODE_STAT(ni, tx_mgmt);
194         IF_ENQUEUE(&ic->ic_mgtq, m);
195         if (timer) {
196                 /*
197                  * Set the mgt frame timeout.
198                  */
199                 ic->ic_mgt_timer = timer;
200                 ifp->if_timer = 1;
201         }
202         ifp->if_start(ifp);
203         return 0;
204 }
205
206 /*
207  * Send a null data frame to the specified node.
208  *
209  * NB: the caller is assumed to have setup a node reference
210  *     for use; this is necessary to deal with a race condition
211  *     when probing for inactive stations.
212  */
213 int
214 ieee80211_send_nulldata(struct ieee80211_node *ni)
215 {
216         struct ieee80211com *ic = ni->ni_ic;
217         struct ifnet *ifp = ic->ic_ifp;
218         struct mbuf *m;
219         struct ieee80211_frame *wh;
220
221         MGETHDR(m, MB_DONTWAIT, MT_HEADER);
222         if (m == NULL) {
223                 /* XXX debug msg */
224                 ic->ic_stats.is_tx_nobuf++;
225                 ieee80211_unref_node(&ni);
226                 return ENOMEM;
227         }
228         m->m_pkthdr.rcvif = (void *) ni;
229
230         wh = mtod(m, struct ieee80211_frame *);
231         ieee80211_send_setup(ic, ni, wh,
232                 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
233                 ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid);
234         /* NB: power management bit is never sent by an AP */
235         if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
236             ic->ic_opmode != IEEE80211_M_HOSTAP)
237                 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
238         m->m_len = m->m_pkthdr.len = sizeof(struct ieee80211_frame);
239
240         IEEE80211_NODE_STAT(ni, tx_data);
241
242         IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
243             "[%s] send null data frame on channel %u, pwr mgt %s\n",
244             ni->ni_macaddr, ":",
245             ieee80211_chan2ieee(ic, ic->ic_curchan),
246             wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
247
248         IF_ENQUEUE(&ic->ic_mgtq, m);            /* cheat */
249         ifp->if_start(ifp);
250         return 0;
251 }
252
253 /* 
254  * Assign priority to a frame based on any vlan tag assigned
255  * to the station and/or any Diffserv setting in an IP header.
256  * Finally, if an ACM policy is setup (in station mode) it's
257  * applied.
258  */
259 int
260 ieee80211_classify(struct ieee80211com *ic, struct mbuf *m, struct ieee80211_node *ni)
261 {
262         int v_wme_ac = 0, d_wme_ac, ac;
263 #ifdef INET
264         struct ether_header *eh;
265 #endif
266
267         if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
268                 ac = WME_AC_BE;
269                 goto done;
270         }
271
272 #ifdef FREEBSD_VLAN
273         /* 
274          * If node has a vlan tag then all traffic
275          * to it must have a matching tag.
276          */
277         v_wme_ac = 0;
278         if (ni->ni_vlan != 0) {
279                 struct m_tag *mtag = VLAN_OUTPUT_TAG(ic->ic_ifp, m);
280                 if (mtag == NULL) {
281                         IEEE80211_NODE_STAT(ni, tx_novlantag);
282                         return 1;
283                 }
284                 if (EVL_VLANOFTAG(VLAN_TAG_VALUE(mtag)) !=
285                     EVL_VLANOFTAG(ni->ni_vlan)) {
286                         IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
287                         return 1;
288                 }
289                 /* map vlan priority to AC */
290                 switch (EVL_PRIOFTAG(ni->ni_vlan)) {
291                 case 1:
292                 case 2:
293                         v_wme_ac = WME_AC_BK;
294                         break;
295                 case 0:
296                 case 3:
297                         v_wme_ac = WME_AC_BE;
298                         break;
299                 case 4:
300                 case 5:
301                         v_wme_ac = WME_AC_VI;
302                         break;
303                 case 6:
304                 case 7:
305                         v_wme_ac = WME_AC_VO;
306                         break;
307                 }
308         }
309 #endif  /* FREEBSD_VLAN */
310
311 #ifdef INET
312         eh = mtod(m, struct ether_header *);
313         if (eh->ether_type == htons(ETHERTYPE_IP)) {
314                 const struct ip *ip = (struct ip *)
315                         (mtod(m, uint8_t *) + sizeof (*eh));
316                 /*
317                  * IP frame, map the TOS field.
318                  */
319                 switch (ip->ip_tos) {
320                 case 0x08:
321                 case 0x20:
322                         d_wme_ac = WME_AC_BK;   /* background */
323                         break;
324                 case 0x28:
325                 case 0xa0:
326                         d_wme_ac = WME_AC_VI;   /* video */
327                         break;
328                 case 0x30:                      /* voice */
329                 case 0xe0:
330                 case 0x88:                      /* XXX UPSD */
331                 case 0xb8:
332                         d_wme_ac = WME_AC_VO;
333                         break;
334                 default:
335                         d_wme_ac = WME_AC_BE;
336                         break;
337                 }
338         } else {
339 #endif /* INET */
340                 d_wme_ac = WME_AC_BE;
341 #ifdef INET
342         }
343 #endif
344         /*
345          * Use highest priority AC.
346          */
347         if (v_wme_ac > d_wme_ac)
348                 ac = v_wme_ac;
349         else
350                 ac = d_wme_ac;
351
352         /*
353          * Apply ACM policy.
354          */
355         if (ic->ic_opmode == IEEE80211_M_STA) {
356                 static const int acmap[4] = {
357                         WME_AC_BK,      /* WME_AC_BE */
358                         WME_AC_BK,      /* WME_AC_BK */
359                         WME_AC_BE,      /* WME_AC_VI */
360                         WME_AC_VI,      /* WME_AC_VO */
361                 };
362                 while (ac != WME_AC_BK &&
363                     ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
364                         ac = acmap[ac];
365         }
366 done:
367         M_WME_SETAC(m, ac);
368         return 0;
369 }
370
371 /*
372  * Insure there is sufficient contiguous space to encapsulate the
373  * 802.11 data frame.  If room isn't already there, arrange for it.
374  * Drivers and cipher modules assume we have done the necessary work
375  * and fail rudely if they don't find the space they need.
376  */
377 static struct mbuf *
378 ieee80211_mbuf_adjust(struct ieee80211com *ic, int hdrsize,
379         struct ieee80211_key *key, struct mbuf *m)
380 {
381 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc))
382         int needed_space = hdrsize;
383
384         if (key != NULL) {
385                 /* XXX belongs in crypto code? */
386                 if ((key->wk_flags & IEEE80211_KEY_NOHDR) == 0)
387                         needed_space += key->wk_cipher->ic_header;
388                 /* XXX frags */
389                 /*
390                  * When crypto is being done in the host we must insure
391                  * the data are writable for the cipher routines; clone
392                  * a writable mbuf chain.
393                  * XXX handle SWMIC specially
394                  */
395                 if (key->wk_flags & (IEEE80211_KEY_SWCRYPT|IEEE80211_KEY_SWMIC)) {
396                         m = ieee80211_mbuf_clone(m, MB_DONTWAIT);
397                         if (m == NULL) {
398                                 IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT,
399                                     "%s: cannot get writable mbuf\n", __func__);
400                                 ic->ic_stats.is_tx_nobuf++; /* XXX new stat */
401                                 return NULL;
402                         }
403                 }
404         }
405         /*
406          * We know we are called just before stripping an Ethernet
407          * header and prepending an LLC header.  This means we know
408          * there will be
409          *      sizeof(struct ether_header) - sizeof(struct llc)
410          * bytes recovered to which we need additional space for the
411          * 802.11 header and any crypto header.
412          */
413         /* XXX check trailing space and copy instead? */
414         if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
415                 struct mbuf *n = m_gethdr(MB_DONTWAIT, m->m_type);
416                 if (n == NULL) {
417                         IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT,
418                             "%s: cannot expand storage\n", __func__);
419                         ic->ic_stats.is_tx_nobuf++;
420                         m_freem(m);
421                         return NULL;
422                 }
423                 KASSERT(needed_space <= MHLEN,
424                     ("not enough room, need %u got %zu\n", needed_space, MHLEN));
425                 /*
426                  * Setup new mbuf to have leading space to prepend the
427                  * 802.11 header and any crypto header bits that are
428                  * required (the latter are added when the driver calls
429                  * back to ieee80211_crypto_encap to do crypto encapsulation).
430                  */
431                 /* NB: must be first 'cuz it clobbers m_data */
432                 m_move_pkthdr(n, m);
433                 n->m_len = 0;                   /* NB: m_gethdr does not set */
434                 n->m_data += needed_space;
435                 /*
436                  * Pull up Ethernet header to create the expected layout.
437                  * We could use m_pullup but that's overkill (i.e. we don't
438                  * need the actual data) and it cannot fail so do it inline
439                  * for speed.
440                  */
441                 /* NB: struct ether_header is known to be contiguous */
442                 n->m_len += sizeof(struct ether_header);
443                 m->m_len -= sizeof(struct ether_header);
444                 m->m_data += sizeof(struct ether_header);
445                 /*
446                  * Replace the head of the chain.
447                  */
448                 n->m_next = m;
449                 m = n;
450         }
451         return m;
452 #undef TO_BE_RECLAIMED
453 }
454
455 #define KEY_UNDEFINED(k)        ((k).wk_cipher == &ieee80211_cipher_none)
456 /*
457  * Return the transmit key to use in sending a unicast frame.
458  * If a unicast key is set we use that.  When no unicast key is set
459  * we fall back to the default transmit key.
460  */ 
461 static __inline struct ieee80211_key *
462 ieee80211_crypto_getucastkey(struct ieee80211com *ic, struct ieee80211_node *ni)
463 {
464         if (KEY_UNDEFINED(ni->ni_ucastkey)) {
465                 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE ||
466                     KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey]))
467                         return NULL;
468                 return &ic->ic_nw_keys[ic->ic_def_txkey];
469         } else {
470                 return &ni->ni_ucastkey;
471         }
472 }
473
474 /*
475  * Return the transmit key to use in sending a multicast frame.
476  * Multicast traffic always uses the group key which is installed as
477  * the default tx key.
478  */ 
479 static __inline struct ieee80211_key *
480 ieee80211_crypto_getmcastkey(struct ieee80211com *ic, struct ieee80211_node *ni)
481 {
482         if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE ||
483             KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey]))
484                 return NULL;
485         return &ic->ic_nw_keys[ic->ic_def_txkey];
486 }
487
488 /*
489  * Encapsulate an outbound data frame.  The mbuf chain is updated.
490  * If an error is encountered NULL is returned.  The caller is required
491  * to provide a node reference and pullup the ethernet header in the
492  * first mbuf.
493  */
494 struct mbuf *
495 ieee80211_encap(struct ieee80211com *ic, struct mbuf *m,
496         struct ieee80211_node *ni)
497 {
498         struct ether_header eh;
499         struct ieee80211_frame *wh;
500         struct ieee80211_key *key;
501         struct llc *llc;
502         int hdrsize, datalen, addqos;
503
504         KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
505         memcpy(&eh, mtod(m, caddr_t), sizeof(struct ether_header));
506
507         /*
508          * Insure space for additional headers.  First identify
509          * transmit key to use in calculating any buffer adjustments
510          * required.  This is also used below to do privacy
511          * encapsulation work.  Then calculate the 802.11 header
512          * size and any padding required by the driver.
513          *
514          * Note key may be NULL if we fall back to the default
515          * transmit key and that is not set.  In that case the
516          * buffer may not be expanded as needed by the cipher
517          * routines, but they will/should discard it.
518          */
519         if (ic->ic_flags & IEEE80211_F_PRIVACY) {
520                 if (ic->ic_opmode == IEEE80211_M_STA ||
521                     !IEEE80211_IS_MULTICAST(eh.ether_dhost))
522                         key = ieee80211_crypto_getucastkey(ic, ni);
523                 else
524                         key = ieee80211_crypto_getmcastkey(ic, ni);
525                 if (key == NULL && eh.ether_type != htons(ETHERTYPE_PAE)) {
526                         IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
527                             "[%6D] no default transmit key (%s) deftxkey %u\n",
528                             eh.ether_dhost, ":", __func__,
529                             ic->ic_def_txkey);
530                         ic->ic_stats.is_tx_nodefkey++;
531                 }
532         } else
533                 key = NULL;
534         /* XXX 4-address format */
535         /*
536          * XXX Some ap's don't handle QoS-encapsulated EAPOL
537          * frames so suppress use.  This may be an issue if other
538          * ap's require all data frames to be QoS-encapsulated
539          * once negotiated in which case we'll need to make this
540          * configurable.
541          */
542         addqos = (ni->ni_flags & IEEE80211_NODE_QOS) &&
543                  eh.ether_type != htons(ETHERTYPE_PAE);
544         if (addqos)
545                 hdrsize = sizeof(struct ieee80211_qosframe);
546         else
547                 hdrsize = sizeof(struct ieee80211_frame);
548         if (ic->ic_flags & IEEE80211_F_DATAPAD)
549                 hdrsize = roundup(hdrsize, sizeof(uint32_t));
550         m = ieee80211_mbuf_adjust(ic, hdrsize, key, m);
551         if (m == NULL) {
552                 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */
553                 goto bad;
554         }
555
556         /* NB: this could be optimized because of ieee80211_mbuf_adjust */
557         m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
558         llc = mtod(m, struct llc *);
559         llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
560         llc->llc_control = LLC_UI;
561         llc->llc_snap.org_code[0] = 0;
562         llc->llc_snap.org_code[1] = 0;
563         llc->llc_snap.org_code[2] = 0;
564         llc->llc_snap.ether_type = eh.ether_type;
565         datalen = m->m_pkthdr.len;              /* NB: w/o 802.11 header */
566
567         M_PREPEND(m, hdrsize, MB_DONTWAIT);
568         if (m == NULL) {
569                 ic->ic_stats.is_tx_nobuf++;
570                 goto bad;
571         }
572         wh = mtod(m, struct ieee80211_frame *);
573         wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
574         *(uint16_t *)wh->i_dur = 0;
575         switch (ic->ic_opmode) {
576         case IEEE80211_M_STA:
577                 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
578                 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
579                 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
580                 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
581                 break;
582         case IEEE80211_M_IBSS:
583         case IEEE80211_M_AHDEMO:
584                 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
585                 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
586                 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
587                 /*
588                  * NB: always use the bssid from ic_bss as the
589                  *     neighbor's may be stale after an ibss merge
590                  */
591                 IEEE80211_ADDR_COPY(wh->i_addr3, ic->ic_bss->ni_bssid);
592                 break;
593         case IEEE80211_M_HOSTAP:
594                 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
595                 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
596                 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
597                 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
598                 break;
599         case IEEE80211_M_MONITOR:
600                 goto bad;
601         }
602         if (m->m_flags & M_MORE_DATA)
603                 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
604         if (addqos) {
605                 struct ieee80211_qosframe *qwh =
606                         (struct ieee80211_qosframe *) wh;
607                 int ac, tid;
608
609                 ac = M_WME_GETAC(m);
610                 /* map from access class/queue to 11e header priorty value */
611                 tid = WME_AC_TO_TID(ac);
612                 qwh->i_qos[0] = tid & IEEE80211_QOS_TID;
613                 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
614                         qwh->i_qos[0] |= 1 << IEEE80211_QOS_ACKPOLICY_S;
615                 qwh->i_qos[1] = 0;
616                 qwh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
617
618                 *(uint16_t *)wh->i_seq =
619                     htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT);
620                 ni->ni_txseqs[tid]++;
621         } else {
622                 *(uint16_t *)wh->i_seq =
623                     htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
624                 ni->ni_txseqs[0]++;
625         }
626         if (key != NULL) {
627                 /*
628                  * IEEE 802.1X: send EAPOL frames always in the clear.
629                  * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
630                  */
631                 if (eh.ether_type != htons(ETHERTYPE_PAE) ||
632                     ((ic->ic_flags & IEEE80211_F_WPA) &&
633                      (ic->ic_opmode == IEEE80211_M_STA ?
634                       !KEY_UNDEFINED(*key) : !KEY_UNDEFINED(ni->ni_ucastkey)))) {
635                         wh->i_fc[1] |= IEEE80211_FC1_WEP;
636                         /* XXX do fragmentation */
637                         if (!ieee80211_crypto_enmic(ic, key, m, 0)) {
638                                 IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT,
639                                     "[%6D] enmic failed, discard frame\n",
640                                     eh.ether_dhost, ":");
641                                 ic->ic_stats.is_crypto_enmicfail++;
642                                 goto bad;
643                         }
644                 }
645         }
646
647         IEEE80211_NODE_STAT(ni, tx_data);
648         if (IEEE80211_IS_MULTICAST(wh->i_addr1))
649                 IEEE80211_NODE_STAT(ni, tx_mcast);
650         else
651                 IEEE80211_NODE_STAT(ni, tx_ucast);
652         IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
653
654         return m;
655 bad:
656         if (m != NULL)
657                 m_freem(m);
658         return NULL;
659 }
660
661 /*
662  * Add a supported rates element id to a frame.
663  */
664 uint8_t *
665 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
666 {
667         int nrates;
668
669         *frm++ = IEEE80211_ELEMID_RATES;
670         nrates = rs->rs_nrates;
671         if (nrates > IEEE80211_RATE_SIZE)
672                 nrates = IEEE80211_RATE_SIZE;
673         *frm++ = nrates;
674         memcpy(frm, rs->rs_rates, nrates);
675         return frm + nrates;
676 }
677
678 /*
679  * Add an extended supported rates element id to a frame.
680  */
681 uint8_t *
682 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
683 {
684         /*
685          * Add an extended supported rates element if operating in 11g mode.
686          */
687         if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
688                 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
689                 *frm++ = IEEE80211_ELEMID_XRATES;
690                 *frm++ = nrates;
691                 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
692                 frm += nrates;
693         }
694         return frm;
695 }
696
697 /* 
698  * Add an ssid elemet to a frame.
699  */
700 uint8_t *
701 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
702 {
703         *frm++ = IEEE80211_ELEMID_SSID;
704         *frm++ = len;
705         memcpy(frm, ssid, len);
706         return frm + len;
707 }
708
709 /*
710  * Add an erp element to a frame.
711  */
712 static uint8_t *
713 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
714 {
715         uint8_t erp;
716
717         *frm++ = IEEE80211_ELEMID_ERP;
718         *frm++ = 1;
719         erp = 0;
720         if (ic->ic_nonerpsta != 0)
721                 erp |= IEEE80211_ERP_NON_ERP_PRESENT;
722         if (ic->ic_flags & IEEE80211_F_USEPROT)
723                 erp |= IEEE80211_ERP_USE_PROTECTION;
724         if (ic->ic_flags & IEEE80211_F_USEBARKER)
725                 erp |= IEEE80211_ERP_LONG_PREAMBLE;
726         *frm++ = erp;
727         return frm;
728 }
729
730 static uint8_t *
731 ieee80211_setup_wpa_ie(struct ieee80211com *ic, uint8_t *ie)
732 {
733 #define WPA_OUI_BYTES           0x00, 0x50, 0xf2
734 #define ADDSHORT(frm, v) do {                   \
735         frm[0] = (v) & 0xff;                    \
736         frm[1] = (v) >> 8;                      \
737         frm += 2;                               \
738 } while (0)
739 #define ADDSELECTOR(frm, sel) do {              \
740         memcpy(frm, sel, 4);                    \
741         frm += 4;                               \
742 } while (0)
743         static const uint8_t oui[4] = { WPA_OUI_BYTES, WPA_OUI_TYPE };
744         static const uint8_t cipher_suite[][4] = {
745                 { WPA_OUI_BYTES, WPA_CSE_WEP40 },       /* NB: 40-bit */
746                 { WPA_OUI_BYTES, WPA_CSE_TKIP },
747                 { 0x00, 0x00, 0x00, 0x00 },             /* XXX WRAP */
748                 { WPA_OUI_BYTES, WPA_CSE_CCMP },
749                 { 0x00, 0x00, 0x00, 0x00 },             /* XXX CKIP */
750                 { WPA_OUI_BYTES, WPA_CSE_NULL },
751         };
752         static const uint8_t wep104_suite[4] =
753                 { WPA_OUI_BYTES, WPA_CSE_WEP104 };
754         static const uint8_t key_mgt_unspec[4] =
755                 { WPA_OUI_BYTES, WPA_ASE_8021X_UNSPEC };
756         static const uint8_t key_mgt_psk[4] =
757                 { WPA_OUI_BYTES, WPA_ASE_8021X_PSK };
758         const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn;
759         uint8_t *frm = ie;
760         uint8_t *selcnt;
761
762         *frm++ = IEEE80211_ELEMID_VENDOR;
763         *frm++ = 0;                             /* length filled in below */
764         memcpy(frm, oui, sizeof(oui));          /* WPA OUI */
765         frm += sizeof(oui);
766         ADDSHORT(frm, WPA_VERSION);
767
768         /* XXX filter out CKIP */
769
770         /* multicast cipher */
771         if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP &&
772             rsn->rsn_mcastkeylen >= 13)
773                 ADDSELECTOR(frm, wep104_suite);
774         else
775                 ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]);
776
777         /* unicast cipher list */
778         selcnt = frm;
779         ADDSHORT(frm, 0);                       /* selector count */
780         if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) {
781                 selcnt[0]++;
782                 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]);
783         }
784         if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) {
785                 selcnt[0]++;
786                 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]);
787         }
788
789         /* authenticator selector list */
790         selcnt = frm;
791         ADDSHORT(frm, 0);                       /* selector count */
792         if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) {
793                 selcnt[0]++;
794                 ADDSELECTOR(frm, key_mgt_unspec);
795         }
796         if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) {
797                 selcnt[0]++;
798                 ADDSELECTOR(frm, key_mgt_psk);
799         }
800
801         /* optional capabilities */
802         if (rsn->rsn_caps != 0 && rsn->rsn_caps != RSN_CAP_PREAUTH)
803                 ADDSHORT(frm, rsn->rsn_caps);
804
805         /* calculate element length */
806         ie[1] = frm - ie - 2;
807         KASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa),
808                 ("WPA IE too big, %u > %zu",
809                 ie[1]+2, sizeof(struct ieee80211_ie_wpa)));
810         return frm;
811 #undef ADDSHORT
812 #undef ADDSELECTOR
813 #undef WPA_OUI_BYTES
814 }
815
816 static uint8_t *
817 ieee80211_setup_rsn_ie(struct ieee80211com *ic, uint8_t *ie)
818 {
819 #define RSN_OUI_BYTES           0x00, 0x0f, 0xac
820 #define ADDSHORT(frm, v) do {                   \
821         frm[0] = (v) & 0xff;                    \
822         frm[1] = (v) >> 8;                      \
823         frm += 2;                               \
824 } while (0)
825 #define ADDSELECTOR(frm, sel) do {              \
826         memcpy(frm, sel, 4);                    \
827         frm += 4;                               \
828 } while (0)
829         static const uint8_t cipher_suite[][4] = {
830                 { RSN_OUI_BYTES, RSN_CSE_WEP40 },       /* NB: 40-bit */
831                 { RSN_OUI_BYTES, RSN_CSE_TKIP },
832                 { RSN_OUI_BYTES, RSN_CSE_WRAP },
833                 { RSN_OUI_BYTES, RSN_CSE_CCMP },
834                 { 0x00, 0x00, 0x00, 0x00 },             /* XXX CKIP */
835                 { RSN_OUI_BYTES, RSN_CSE_NULL },
836         };
837         static const uint8_t wep104_suite[4] =
838                 { RSN_OUI_BYTES, RSN_CSE_WEP104 };
839         static const uint8_t key_mgt_unspec[4] =
840                 { RSN_OUI_BYTES, RSN_ASE_8021X_UNSPEC };
841         static const uint8_t key_mgt_psk[4] =
842                 { RSN_OUI_BYTES, RSN_ASE_8021X_PSK };
843         const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn;
844         uint8_t *frm = ie;
845         uint8_t *selcnt;
846
847         *frm++ = IEEE80211_ELEMID_RSN;
848         *frm++ = 0;                             /* length filled in below */
849         ADDSHORT(frm, RSN_VERSION);
850
851         /* XXX filter out CKIP */
852
853         /* multicast cipher */
854         if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP &&
855             rsn->rsn_mcastkeylen >= 13)
856                 ADDSELECTOR(frm, wep104_suite);
857         else
858                 ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]);
859
860         /* unicast cipher list */
861         selcnt = frm;
862         ADDSHORT(frm, 0);                       /* selector count */
863         if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) {
864                 selcnt[0]++;
865                 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]);
866         }
867         if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) {
868                 selcnt[0]++;
869                 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]);
870         }
871
872         /* authenticator selector list */
873         selcnt = frm;
874         ADDSHORT(frm, 0);                       /* selector count */
875         if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) {
876                 selcnt[0]++;
877                 ADDSELECTOR(frm, key_mgt_unspec);
878         }
879         if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) {
880                 selcnt[0]++;
881                 ADDSELECTOR(frm, key_mgt_psk);
882         }
883
884         /* optional capabilities */
885         ADDSHORT(frm, rsn->rsn_caps);
886         /* XXX PMKID */
887
888         /* calculate element length */
889         ie[1] = frm - ie - 2;
890         KASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa),
891                 ("RSN IE too big, %u > %zu",
892                 ie[1]+2, sizeof(struct ieee80211_ie_wpa)));
893         return frm;
894 #undef ADDSELECTOR
895 #undef ADDSHORT
896 #undef RSN_OUI_BYTES
897 }
898
899 /*
900  * Add a WPA/RSN element to a frame.
901  */
902 static uint8_t *
903 ieee80211_add_wpa(uint8_t *frm, struct ieee80211com *ic)
904 {
905
906         KASSERT(ic->ic_flags & IEEE80211_F_WPA, ("no WPA/RSN!"));
907         if (ic->ic_flags & IEEE80211_F_WPA2)
908                 frm = ieee80211_setup_rsn_ie(ic, frm);
909         if (ic->ic_flags & IEEE80211_F_WPA1)
910                 frm = ieee80211_setup_wpa_ie(ic, frm);
911         return frm;
912 }
913
914 #define WME_OUI_BYTES           0x00, 0x50, 0xf2
915 /*
916  * Add a WME information element to a frame.
917  */
918 static uint8_t *
919 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
920 {
921         static const struct ieee80211_wme_info info = {
922                 .wme_id         = IEEE80211_ELEMID_VENDOR,
923                 .wme_len        = sizeof(struct ieee80211_wme_info) - 2,
924                 .wme_oui        = { WME_OUI_BYTES },
925                 .wme_type       = WME_OUI_TYPE,
926                 .wme_subtype    = WME_INFO_OUI_SUBTYPE,
927                 .wme_version    = WME_VERSION,
928                 .wme_info       = 0,
929         };
930         memcpy(frm, &info, sizeof(info));
931         return frm + sizeof(info); 
932 }
933
934 /*
935  * Add a WME parameters element to a frame.
936  */
937 static uint8_t *
938 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
939 {
940 #define SM(_v, _f)      (((_v) << _f##_S) & _f)
941 #define ADDSHORT(frm, v) do {                   \
942         frm[0] = (v) & 0xff;                    \
943         frm[1] = (v) >> 8;                      \
944         frm += 2;                               \
945 } while (0)
946         /* NB: this works 'cuz a param has an info at the front */
947         static const struct ieee80211_wme_info param = {
948                 .wme_id         = IEEE80211_ELEMID_VENDOR,
949                 .wme_len        = sizeof(struct ieee80211_wme_param) - 2,
950                 .wme_oui        = { WME_OUI_BYTES },
951                 .wme_type       = WME_OUI_TYPE,
952                 .wme_subtype    = WME_PARAM_OUI_SUBTYPE,
953                 .wme_version    = WME_VERSION,
954         };
955         int i;
956
957         memcpy(frm, &param, sizeof(param));
958         frm += __offsetof(struct ieee80211_wme_info, wme_info);
959         *frm++ = wme->wme_bssChanParams.cap_info;       /* AC info */
960         *frm++ = 0;                                     /* reserved field */
961         for (i = 0; i < WME_NUM_AC; i++) {
962                 const struct wmeParams *ac =
963                        &wme->wme_bssChanParams.cap_wmeParams[i];
964                 *frm++ = SM(i, WME_PARAM_ACI)
965                        | SM(ac->wmep_acm, WME_PARAM_ACM)
966                        | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
967                        ;
968                 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
969                        | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
970                        ;
971                 ADDSHORT(frm, ac->wmep_txopLimit);
972         }
973         return frm;
974 #undef SM
975 #undef ADDSHORT
976 }
977 #undef WME_OUI_BYTES
978
979 /*
980  * Send a probe request frame with the specified ssid
981  * and any optional information element data.
982  */
983 int
984 ieee80211_send_probereq(struct ieee80211_node *ni,
985         const uint8_t sa[IEEE80211_ADDR_LEN],
986         const uint8_t da[IEEE80211_ADDR_LEN],
987         const uint8_t bssid[IEEE80211_ADDR_LEN],
988         const uint8_t *ssid, size_t ssidlen,
989         const void *optie, size_t optielen)
990 {
991         struct ieee80211com *ic = ni->ni_ic;
992         struct ifnet *ifp = ic->ic_ifp;
993         enum ieee80211_phymode mode;
994         struct ieee80211_frame *wh;
995         struct ieee80211_rateset rs;
996         struct mbuf *m;
997         uint8_t *frm;
998
999         /*
1000          * Hold a reference on the node so it doesn't go away until after
1001          * the xmit is complete all the way in the driver.  On error we
1002          * will remove our reference.
1003          */
1004         IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE,
1005                 "ieee80211_ref_node (%s:%u) %p<%6D> refcnt %d\n",
1006                 __func__, __LINE__,
1007                 ni, ni->ni_macaddr, ":",
1008                 ieee80211_node_refcnt(ni) + 1);
1009         ieee80211_ref_node(ni);
1010
1011         /*
1012          * prreq frame format
1013          *      [tlv] ssid
1014          *      [tlv] supported rates
1015          *      [tlv] extended supported rates
1016          *      [tlv] user-specified ie's
1017          */
1018         m = ieee80211_getmgtframe(&frm,
1019                  2 + IEEE80211_NWID_LEN
1020                + 2 + IEEE80211_RATE_SIZE
1021                + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1022                + (optie != NULL ? optielen : 0)
1023         );
1024         if (m == NULL) {
1025                 ic->ic_stats.is_tx_nobuf++;
1026                 ieee80211_free_node(ni);
1027                 return ENOMEM;
1028         }
1029
1030         frm = ieee80211_add_ssid(frm, ssid, ssidlen);
1031
1032         /*
1033          * XXX
1034          * Clear basic rates.
1035          *
1036          * Though according to 802.11 standard: MSB of each supported rate
1037          * octet in (Extended) Supported Rates ie of probe requests should
1038          * be ignored, some HostAP implementations still check it ...
1039          */
1040         mode = ieee80211_chan2mode(ic, ic->ic_curchan);
1041         rs = ic->ic_sup_rates[mode];
1042         ieee80211_set_basicrates(&rs, IEEE80211_MODE_AUTO, 0);
1043         frm = ieee80211_add_rates(frm, &rs);
1044         frm = ieee80211_add_xrates(frm, &rs);
1045
1046         if (optie != NULL) {
1047                 memcpy(frm, optie, optielen);
1048                 frm += optielen;
1049         }
1050         m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
1051
1052         M_PREPEND(m, sizeof(struct ieee80211_frame), MB_DONTWAIT);
1053         if (m == NULL)
1054                 return ENOMEM;
1055         KASSERT(m->m_pkthdr.rcvif == NULL, ("rcvif not null"));
1056         m->m_pkthdr.rcvif = (void *)ni;
1057
1058         wh = mtod(m, struct ieee80211_frame *);
1059         ieee80211_send_setup(ic, ni, wh,
1060                 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
1061                 sa, da, bssid);
1062         /* XXX power management? */
1063
1064         IEEE80211_NODE_STAT(ni, tx_probereq);
1065         IEEE80211_NODE_STAT(ni, tx_mgmt);
1066
1067         IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
1068             "[%6D] send probe req on channel %u\n",
1069             wh->i_addr1, ":",
1070             ieee80211_chan2ieee(ic, ic->ic_curchan));
1071
1072         IF_ENQUEUE(&ic->ic_mgtq, m);
1073         ifp->if_start(ifp);
1074         return 0;
1075 }
1076
1077 /*
1078  * Calculate capability information for mgt frames.
1079  */
1080 static uint16_t
1081 getcapinfo(struct ieee80211com *ic, struct ieee80211_channel *chan)
1082 {
1083         uint16_t capinfo;
1084
1085         KASSERT(ic->ic_opmode != IEEE80211_M_STA, ("station mode"));
1086
1087         if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1088                 capinfo = IEEE80211_CAPINFO_ESS;
1089         else if (ic->ic_opmode == IEEE80211_M_IBSS)
1090                 capinfo = IEEE80211_CAPINFO_IBSS;
1091         else
1092                 capinfo = 0;
1093         if (ic->ic_flags & IEEE80211_F_PRIVACY)
1094                 capinfo |= IEEE80211_CAPINFO_PRIVACY;
1095         if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1096                 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1097                         capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1098                 if (ic->ic_caps_ext & IEEE80211_CEXT_PBCC)
1099                         capinfo |= IEEE80211_CAPINFO_PBCC;
1100         }
1101         if (ic->ic_flags & IEEE80211_F_SHSLOT)
1102                 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1103         return capinfo;
1104 }
1105
1106 static struct mbuf *
1107 _ieee80211_probe_resp_alloc(struct ieee80211com *ic, struct ieee80211_node *ni)
1108 {
1109         const struct ieee80211_rateset *rs;
1110         uint16_t capinfo;
1111         struct mbuf *m;
1112         uint8_t *frm;
1113         int pktlen;
1114
1115         /*
1116          * probe response frame format
1117          *      [8] time stamp
1118          *      [2] beacon interval
1119          *      [2] cabability information
1120          *      [tlv] ssid
1121          *      [tlv] supported rates
1122          *      [tlv] parameter set (FH/DS)
1123          *      [4] parameter set (IBSS)
1124          *      [tlv] extended rate phy (ERP)
1125          *      [tlv] extended supported rates
1126          *      [tlv] WPA
1127          *      [tlv] WME (optional)
1128          */
1129         KKASSERT(ic->ic_curmode != IEEE80211_MODE_AUTO);
1130         rs = &ic->ic_sup_rates[ic->ic_curmode];
1131         pktlen =  8                                     /* time stamp */
1132                 + sizeof(uint16_t)                      /* beacon interval */
1133                 + sizeof(uint16_t)                      /* capabilities */
1134                 + 2 + ni->ni_esslen                     /* ssid */
1135                 + 2 + IEEE80211_RATE_SIZE               /* supported rates */
1136                 + 2 + 5 /* max(5,1) */                  /* DS/FH parameters */
1137                 + 2 + 2                                 /* IBSS parameters */
1138                 + 2 + 1                                 /* ERP */
1139                 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1140                 /* XXX !WPA1+WPA2 fits w/o a cluster */
1141                 + (ic->ic_flags & IEEE80211_F_WPA ?     /* WPA 1+2 */
1142                         2*sizeof(struct ieee80211_ie_wpa) : 0)
1143                 + sizeof(struct ieee80211_wme_param);   /* WME */
1144
1145         m = ieee80211_getmgtframe(&frm, pktlen);
1146         if (m == NULL) {
1147                 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
1148                         "%s: cannot get buf; size %u\n", __func__, pktlen);
1149                 ic->ic_stats.is_tx_nobuf++;
1150                 return NULL;
1151         }
1152
1153         memset(frm, 0, 8);      /* timestamp should be filled later */
1154         frm += 8;
1155         *(uint16_t *)frm = htole16(ni->ni_intval);
1156         frm += 2;
1157         capinfo = getcapinfo(ic, ni->ni_chan);
1158         *(uint16_t *)frm = htole16(capinfo);
1159         frm += 2;
1160
1161         frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
1162         frm = ieee80211_add_rates(frm, rs);
1163
1164         if (ic->ic_phytype == IEEE80211_T_FH) {
1165                 *frm++ = IEEE80211_ELEMID_FHPARMS;
1166                 *frm++ = 5;
1167                 *frm++ = ni->ni_fhdwell & 0x00ff;
1168                 *frm++ = (ni->ni_fhdwell >> 8) & 0x00ff;
1169                 *frm++ = IEEE80211_FH_CHANSET(
1170                     ieee80211_chan2ieee(ic, ni->ni_chan));
1171                 *frm++ = IEEE80211_FH_CHANPAT(
1172                     ieee80211_chan2ieee(ic, ni->ni_chan));
1173                 *frm++ = ni->ni_fhindex;
1174         } else {
1175                 *frm++ = IEEE80211_ELEMID_DSPARMS;
1176                 *frm++ = 1;
1177                 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
1178         }
1179
1180         if (ic->ic_opmode == IEEE80211_M_IBSS) {
1181                 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
1182                 *frm++ = 2;
1183                 *frm++ = 0; *frm++ = 0;         /* TODO: ATIM window */
1184         }
1185         if (ic->ic_flags & IEEE80211_F_WPA)
1186                 frm = ieee80211_add_wpa(frm, ic);
1187         if (ic->ic_curmode == IEEE80211_MODE_11G)
1188                 frm = ieee80211_add_erp(frm, ic);
1189         frm = ieee80211_add_xrates(frm, rs);
1190         if (ic->ic_flags & IEEE80211_F_WME)
1191                 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
1192         m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
1193         KKASSERT(m->m_len <= pktlen);
1194
1195         return m;
1196 }
1197
1198 /*
1199  * Send a management frame.  The node is for the destination (or ic_bss
1200  * when in station mode).  Nodes other than ic_bss have their reference
1201  * count bumped to reflect our use for an indeterminant time.
1202  */
1203 int
1204 ieee80211_send_mgmt(struct ieee80211com *ic, struct ieee80211_node *ni,
1205         int type, int arg)
1206 {
1207 #define senderr(_x, _v) do { ic->ic_stats._v++; ret = _x; goto bad; } while (0)
1208         struct mbuf *m;
1209         uint8_t *frm;
1210         uint16_t capinfo;
1211         int has_challenge, is_shared_key, ret, timer, status, encrypt;
1212         const struct ieee80211_rateset *rs;
1213
1214         KASSERT(ni != NULL, ("null node"));
1215
1216         /*
1217          * Hold a reference on the node so it doesn't go away until after
1218          * the xmit is complete all the way in the driver.  On error we
1219          * will remove our reference.
1220          */
1221         IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE,
1222                 "ieee80211_ref_node (%s:%u) %p<%6D> refcnt %d\n",
1223                 __func__, __LINE__,
1224                 ni, ni->ni_macaddr, ":",
1225                 ieee80211_node_refcnt(ni) + 1);
1226         ieee80211_ref_node(ni);
1227
1228         encrypt = 0;
1229         timer = 0;
1230         switch (type) {
1231         case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
1232                 m = _ieee80211_probe_resp_alloc(ic, ic->ic_bss);
1233                 if (m == NULL) {
1234                         /* NB: Statistics have been updated. */
1235                         ret = ENOMEM;
1236                         goto bad;
1237                 }
1238                 break;
1239
1240         case IEEE80211_FC0_SUBTYPE_AUTH:
1241                 status = arg >> 16;
1242                 arg &= 0xffff;
1243                 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
1244                     arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
1245                     ni->ni_challenge != NULL);
1246
1247                 /*
1248                  * Deduce whether we're doing open authentication or
1249                  * shared key authentication.  We do the latter if
1250                  * we're in the middle of a shared key authentication
1251                  * handshake or if we're initiating an authentication
1252                  * request and configured to use shared key.
1253                  */
1254                 is_shared_key = has_challenge ||
1255                      arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
1256                      (arg == IEEE80211_AUTH_SHARED_REQUEST &&
1257                       ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED);
1258
1259                 m = ieee80211_getmgtframe(&frm,
1260                           3 * sizeof(uint16_t)
1261                         + (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
1262                                 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
1263                 );
1264                 if (m == NULL)
1265                         senderr(ENOMEM, is_tx_nobuf);
1266
1267                 ((uint16_t *)frm)[0] =
1268                     (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
1269                                     : htole16(IEEE80211_AUTH_ALG_OPEN);
1270                 ((uint16_t *)frm)[1] = htole16(arg);    /* sequence number */
1271                 ((uint16_t *)frm)[2] = htole16(status);/* status */
1272
1273                 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
1274                         ((uint16_t *)frm)[3] =
1275                             htole16((IEEE80211_CHALLENGE_LEN << 8) |
1276                             IEEE80211_ELEMID_CHALLENGE);
1277                         memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
1278                             IEEE80211_CHALLENGE_LEN);
1279                         m->m_pkthdr.len = m->m_len =
1280                                 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
1281                         if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
1282                                 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
1283                                     "[%6D] request encrypt frame (%s)\n",
1284                                     ni->ni_macaddr, ":", __func__);
1285                                 encrypt = 1;    /* WEP-encrypt, please */
1286                         }
1287                 } else
1288                         m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
1289
1290                 /* XXX not right for shared key */
1291                 if (status == IEEE80211_STATUS_SUCCESS)
1292                         IEEE80211_NODE_STAT(ni, tx_auth);
1293                 else
1294                         IEEE80211_NODE_STAT(ni, tx_auth_fail);
1295
1296                 if (ic->ic_opmode == IEEE80211_M_STA)
1297                         timer = IEEE80211_TRANS_WAIT;
1298                 break;
1299
1300         case IEEE80211_FC0_SUBTYPE_DEAUTH:
1301                 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH,
1302                         "[%6D] send station deauthenticate (reason %d)\n",
1303                         ni->ni_macaddr, ":", arg);
1304                 m = ieee80211_getmgtframe(&frm, sizeof(uint16_t));
1305                 if (m == NULL)
1306                         senderr(ENOMEM, is_tx_nobuf);
1307                 *(uint16_t *)frm = htole16(arg);        /* reason */
1308                 m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
1309
1310                 IEEE80211_NODE_STAT(ni, tx_deauth);
1311                 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
1312
1313                 ieee80211_node_unauthorize(ni);         /* port closed */
1314                 break;
1315
1316         case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
1317         case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
1318                 /*
1319                  * asreq frame format
1320                  *      [2] capability information
1321                  *      [2] listen interval
1322                  *      [6*] current AP address (reassoc only)
1323                  *      [tlv] ssid
1324                  *      [tlv] supported rates
1325                  *      [tlv] extended supported rates
1326                  *      [tlv] WME
1327                  *      [tlv] user-specified ie's
1328                  */
1329                 m = ieee80211_getmgtframe(&frm,
1330                          sizeof(uint16_t)
1331                        + sizeof(uint16_t)
1332                        + IEEE80211_ADDR_LEN
1333                        + 2 + IEEE80211_NWID_LEN
1334                        + 2 + IEEE80211_RATE_SIZE
1335                        + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1336                        + sizeof(struct ieee80211_wme_info)
1337                        + (ic->ic_opt_ie != NULL ? ic->ic_opt_ie_len : 0)
1338                 );
1339                 if (m == NULL)
1340                         senderr(ENOMEM, is_tx_nobuf);
1341
1342                 KASSERT(ic->ic_opmode == IEEE80211_M_STA,
1343                     ("wrong mode %u", ic->ic_opmode));
1344                 capinfo = IEEE80211_CAPINFO_ESS;
1345                 if (ic->ic_flags & IEEE80211_F_PRIVACY)
1346                         capinfo |= IEEE80211_CAPINFO_PRIVACY;
1347                 /*
1348                  * NB: Some 11a AP's reject the request when
1349                  *     short premable or PBCC modulation is set.
1350                  */
1351                 if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
1352                         if (ic->ic_caps & IEEE80211_C_SHPREAMBLE)
1353                                 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1354                         if (ic->ic_caps_ext & IEEE80211_CEXT_PBCC)
1355                                 capinfo |= IEEE80211_CAPINFO_PBCC;
1356                 }
1357                 if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan) &&
1358                     (ic->ic_caps & IEEE80211_C_SHSLOT))
1359                         capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1360                 *(uint16_t *)frm = htole16(capinfo);
1361                 frm += 2;
1362
1363                 KKASSERT(ic->ic_bss->ni_intval != 0);
1364                 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
1365                                                    ic->ic_bss->ni_intval));
1366                 frm += 2;
1367
1368                 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
1369                         IEEE80211_ADDR_COPY(frm, ic->ic_bss->ni_bssid);
1370                         frm += IEEE80211_ADDR_LEN;
1371                 }
1372
1373                 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
1374
1375                 rs = &ic->ic_sup_rates[ieee80211_chan2mode(ic, ni->ni_chan)];
1376                 frm = ieee80211_add_rates(frm, rs);
1377                 frm = ieee80211_add_xrates(frm, rs);
1378
1379                 if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL)
1380                         frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
1381                 if (ic->ic_opt_ie != NULL) {
1382                         memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len);
1383                         frm += ic->ic_opt_ie_len;
1384                 }
1385                 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
1386
1387                 timer = IEEE80211_TRANS_WAIT;
1388                 break;
1389
1390         case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
1391         case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
1392                 /*
1393                  * asreq frame format
1394                  *      [2] capability information
1395                  *      [2] status
1396                  *      [2] association ID
1397                  *      [tlv] supported rates
1398                  *      [tlv] extended supported rates
1399                  *      [tlv] WME (if enabled and STA enabled)
1400                  */
1401                 m = ieee80211_getmgtframe(&frm,
1402                          sizeof(uint16_t)
1403                        + sizeof(uint16_t)
1404                        + sizeof(uint16_t)
1405                        + 2 + IEEE80211_RATE_SIZE
1406                        + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1407                        + sizeof(struct ieee80211_wme_param)
1408                 );
1409                 if (m == NULL)
1410                         senderr(ENOMEM, is_tx_nobuf);
1411
1412                 capinfo = getcapinfo(ic, ic->ic_curchan);
1413                 *(uint16_t *)frm = htole16(capinfo);
1414                 frm += 2;
1415
1416                 *(uint16_t *)frm = htole16(arg);        /* status */
1417                 frm += 2;
1418
1419                 if (arg == IEEE80211_STATUS_SUCCESS) {
1420                         *(uint16_t *)frm = htole16(ni->ni_associd);
1421                         IEEE80211_NODE_STAT(ni, tx_assoc);
1422                 } else
1423                         IEEE80211_NODE_STAT(ni, tx_assoc_fail);
1424                 frm += 2;
1425
1426                 KKASSERT(ic->ic_curmode != IEEE80211_MODE_AUTO);
1427                 rs = &ic->ic_sup_rates[ic->ic_curmode];
1428                 frm = ieee80211_add_rates(frm, rs);
1429                 frm = ieee80211_add_xrates(frm, rs);
1430                 if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL)
1431                         frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
1432                 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
1433                 break;
1434
1435         case IEEE80211_FC0_SUBTYPE_DISASSOC:
1436                 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ASSOC,
1437                         "[%6D] send station disassociate (reason %d)\n",
1438                         ni->ni_macaddr, ":", arg);
1439                 m = ieee80211_getmgtframe(&frm, sizeof(uint16_t));
1440                 if (m == NULL)
1441                         senderr(ENOMEM, is_tx_nobuf);
1442                 *(uint16_t *)frm = htole16(arg);        /* reason */
1443                 m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
1444
1445                 IEEE80211_NODE_STAT(ni, tx_disassoc);
1446                 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
1447                 break;
1448
1449         default:
1450                 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
1451                         "[%6D] invalid mgmt frame type %u\n",
1452                         ni->ni_macaddr, ":", type);
1453                 senderr(EINVAL, is_tx_unknownmgt);
1454                 /* NOTREACHED */
1455         }
1456         ret = ieee80211_mgmt_output(ic, ni, m, type, timer, encrypt);
1457         if (ret != 0) {
1458 bad:
1459                 ieee80211_free_node(ni);
1460         }
1461         return ret;
1462 #undef senderr
1463 }
1464
1465 /*
1466  * Allocate a probe response frame and fillin the appropriate bits.
1467  */
1468 struct mbuf *
1469 ieee80211_probe_resp_alloc(struct ieee80211com *ic, struct ieee80211_node *ni)
1470 {
1471         struct ieee80211_frame *wh;
1472         struct mbuf *m;
1473
1474         m = _ieee80211_probe_resp_alloc(ic, ni);
1475         if (m == NULL)
1476                 return NULL;
1477
1478         M_PREPEND(m, sizeof(struct ieee80211_frame), MB_DONTWAIT);
1479         KASSERT(m != NULL, ("no space for 802.11 header?"));
1480
1481         wh = mtod(m, struct ieee80211_frame *);
1482         wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
1483                       IEEE80211_FC0_SUBTYPE_PROBE_RESP;
1484         wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1485         *(uint16_t *)wh->i_dur = 0;
1486         bzero(wh->i_addr1, sizeof(wh->i_addr1));
1487         IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
1488         IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
1489         *(uint16_t *)wh->i_seq = 0;
1490
1491         return m;
1492 }
1493
1494 /*
1495  * Allocate a beacon frame and fillin the appropriate bits.
1496  */
1497 struct mbuf *
1498 ieee80211_beacon_alloc(struct ieee80211com *ic, struct ieee80211_node *ni,
1499         struct ieee80211_beacon_offsets *bo)
1500 {
1501         struct ifnet *ifp = ic->ic_ifp;
1502         struct ieee80211_frame *wh;
1503         struct mbuf *m;
1504         int pktlen;
1505         uint8_t *frm, *efrm;
1506         uint16_t capinfo;
1507         const struct ieee80211_rateset *rs;
1508
1509         /*
1510          * beacon frame format
1511          *      [8] time stamp
1512          *      [2] beacon interval
1513          *      [2] cabability information
1514          *      [tlv] ssid
1515          *      [tlv] supported rates
1516          *      [3] parameter set (DS)
1517          *      [tlv] parameter set (IBSS/TIM)
1518          *      [tlv] extended rate phy (ERP)
1519          *      [tlv] extended supported rates
1520          *      [tlv] WME parameters
1521          *      [tlv] WPA/RSN parameters
1522          * XXX Vendor-specific OIDs (e.g. Atheros)
1523          * NB: we allocate the max space required for the TIM bitmap.
1524          */
1525         KKASSERT(ic->ic_curmode != IEEE80211_MODE_AUTO);
1526         rs = &ic->ic_sup_rates[ic->ic_curmode];
1527         pktlen =   8                                    /* time stamp */
1528                  + sizeof(uint16_t)                     /* beacon interval */
1529                  + sizeof(uint16_t)                     /* capabilities */
1530                  + 2 + ni->ni_esslen                    /* ssid */
1531                  + 2 + IEEE80211_RATE_SIZE              /* supported rates */
1532                  + 2 + 1                                /* DS parameters */
1533                  + 2 + 4 + ic->ic_tim_len               /* DTIM/IBSSPARMS */
1534                  + 2 + 1                                /* ERP */
1535                  + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1536                  + (ic->ic_caps & IEEE80211_C_WME ?     /* WME */
1537                         sizeof(struct ieee80211_wme_param) : 0)
1538                  + (ic->ic_caps & IEEE80211_C_WPA ?     /* WPA 1+2 */
1539                         2*sizeof(struct ieee80211_ie_wpa) : 0)
1540                  ;
1541         m = ieee80211_getmgtframe(&frm, pktlen);
1542         if (m == NULL) {
1543                 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
1544                         "%s: cannot get buf; size %u\n", __func__, pktlen);
1545                 ic->ic_stats.is_tx_nobuf++;
1546                 return NULL;
1547         }
1548
1549         memset(frm, 0, 8);      /* XXX timestamp is set by hardware/driver */
1550         frm += 8;
1551         *(uint16_t *)frm = htole16(ni->ni_intval);
1552         frm += 2;
1553         capinfo = getcapinfo(ic, ni->ni_chan);
1554         bo->bo_caps = (uint16_t *)frm;
1555         *(uint16_t *)frm = htole16(capinfo);
1556         frm += 2;
1557         *frm++ = IEEE80211_ELEMID_SSID;
1558         if ((ic->ic_flags & IEEE80211_F_HIDESSID) == 0) {
1559                 *frm++ = ni->ni_esslen;
1560                 memcpy(frm, ni->ni_essid, ni->ni_esslen);
1561                 frm += ni->ni_esslen;
1562         } else
1563                 *frm++ = 0;
1564         frm = ieee80211_add_rates(frm, rs);
1565         if (ic->ic_curmode != IEEE80211_MODE_FH) {
1566                 *frm++ = IEEE80211_ELEMID_DSPARMS;
1567                 *frm++ = 1;
1568                 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
1569         }
1570         bo->bo_tim = frm;
1571         if (ic->ic_opmode == IEEE80211_M_IBSS) {
1572                 *frm++ = IEEE80211_ELEMID_IBSSPARMS;
1573                 *frm++ = 2;
1574                 *frm++ = 0; *frm++ = 0;         /* TODO: ATIM window */
1575                 bo->bo_tim_len = 0;
1576         } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1577                 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
1578
1579                 tie->tim_ie = IEEE80211_ELEMID_TIM;
1580                 tie->tim_len = 4;       /* length */
1581                 tie->tim_count = 0;     /* DTIM count */ 
1582                 tie->tim_period = ic->ic_dtim_period;   /* DTIM period */
1583                 tie->tim_bitctl = 0;    /* bitmap control */
1584                 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */
1585                 frm += sizeof(struct ieee80211_tim_ie);
1586                 bo->bo_tim_len = 1;
1587         }
1588         bo->bo_trailer = frm;
1589         if (ic->ic_flags & IEEE80211_F_WME) {
1590                 bo->bo_wme = frm;
1591                 frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
1592                 ic->ic_flags &= ~IEEE80211_F_WMEUPDATE;
1593         }
1594         if (ic->ic_flags & IEEE80211_F_WPA)
1595                 frm = ieee80211_add_wpa(frm, ic);
1596         if (ic->ic_curmode == IEEE80211_MODE_11G) {
1597                 bo->bo_erp = frm;
1598                 frm = ieee80211_add_erp(frm, ic);
1599         }
1600         efrm = ieee80211_add_xrates(frm, rs);
1601         bo->bo_trailer_len = efrm - bo->bo_trailer;
1602         m->m_pkthdr.len = m->m_len = efrm - mtod(m, uint8_t *);
1603         KKASSERT(m->m_len <= pktlen);
1604
1605         M_PREPEND(m, sizeof(struct ieee80211_frame), MB_DONTWAIT);
1606         KASSERT(m != NULL, ("no space for 802.11 header?"));
1607         wh = mtod(m, struct ieee80211_frame *);
1608         wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
1609             IEEE80211_FC0_SUBTYPE_BEACON;
1610         wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1611         *(uint16_t *)wh->i_dur = 0;
1612         IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
1613         IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
1614         IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
1615         *(uint16_t *)wh->i_seq = 0;
1616
1617         return m;
1618 }
1619
1620 /*
1621  * Update the dynamic parts of a beacon frame based on the current state.
1622  */
1623 int
1624 ieee80211_beacon_update(struct ieee80211com *ic, struct ieee80211_node *ni,
1625         struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
1626 {
1627         int len_changed = 0;
1628         uint16_t capinfo;
1629
1630         ASSERT_SERIALIZED(ic->ic_ifp->if_serializer);
1631
1632         /* XXX faster to recalculate entirely or just changes? */
1633         capinfo = getcapinfo(ic, ni->ni_chan);
1634         *bo->bo_caps = htole16(capinfo);
1635
1636         if (ic->ic_flags & IEEE80211_F_WME) {
1637                 struct ieee80211_wme_state *wme = &ic->ic_wme;
1638
1639                 /*
1640                  * Check for agressive mode change.  When there is
1641                  * significant high priority traffic in the BSS
1642                  * throttle back BE traffic by using conservative
1643                  * parameters.  Otherwise BE uses agressive params
1644                  * to optimize performance of legacy/non-QoS traffic.
1645                  */
1646                 if (wme->wme_flags & WME_F_AGGRMODE) {
1647                         if (wme->wme_hipri_traffic >
1648                             wme->wme_hipri_switch_thresh) {
1649                                 IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME,
1650                                     "%s: traffic %u, disable aggressive mode\n",
1651                                     __func__, wme->wme_hipri_traffic);
1652                                 wme->wme_flags &= ~WME_F_AGGRMODE;
1653                                 ieee80211_wme_updateparams(ic);
1654                                 wme->wme_hipri_traffic =
1655                                         wme->wme_hipri_switch_hysteresis;
1656                         } else
1657                                 wme->wme_hipri_traffic = 0;
1658                 } else {
1659                         if (wme->wme_hipri_traffic <=
1660                             wme->wme_hipri_switch_thresh) {
1661                                 IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME,
1662                                     "%s: traffic %u, enable aggressive mode\n",
1663                                     __func__, wme->wme_hipri_traffic);
1664                                 wme->wme_flags |= WME_F_AGGRMODE;
1665                                 ieee80211_wme_updateparams(ic);
1666                                 wme->wme_hipri_traffic = 0;
1667                         } else
1668                                 wme->wme_hipri_traffic =
1669                                         wme->wme_hipri_switch_hysteresis;
1670                 }
1671                 if (ic->ic_flags & IEEE80211_F_WMEUPDATE) {
1672                         (void) ieee80211_add_wme_param(bo->bo_wme, wme);
1673                         ic->ic_flags &= ~IEEE80211_F_WMEUPDATE;
1674                 }
1675         }
1676
1677         if (ic->ic_opmode == IEEE80211_M_HOSTAP) {      /* NB: no IBSS support*/
1678                 struct ieee80211_tim_ie *tie =
1679                         (struct ieee80211_tim_ie *) bo->bo_tim;
1680                 if (ic->ic_flags & IEEE80211_F_TIMUPDATE) {
1681                         u_int timlen, timoff, i;
1682                         /* 
1683                          * ATIM/DTIM needs updating.  If it fits in the
1684                          * current space allocated then just copy in the
1685                          * new bits.  Otherwise we need to move any trailing
1686                          * data to make room.  Note that we know there is
1687                          * contiguous space because ieee80211_beacon_allocate
1688                          * insures there is space in the mbuf to write a
1689                          * maximal-size virtual bitmap (based on ic_max_aid).
1690                          */
1691                         /*
1692                          * Calculate the bitmap size and offset, copy any
1693                          * trailer out of the way, and then copy in the
1694                          * new bitmap and update the information element.
1695                          * Note that the tim bitmap must contain at least
1696                          * one byte and any offset must be even.
1697                          */
1698                         if (ic->ic_ps_pending != 0) {
1699                                 timoff = 128;           /* impossibly large */
1700                                 for (i = 0; i < ic->ic_tim_len; i++)
1701                                         if (ic->ic_tim_bitmap[i]) {
1702                                                 timoff = i &~ 1;
1703                                                 break;
1704                                         }
1705                                 KASSERT(timoff != 128, ("tim bitmap empty!"));
1706                                 for (i = ic->ic_tim_len-1; i >= timoff; i--)
1707                                         if (ic->ic_tim_bitmap[i])
1708                                                 break;
1709                                 timlen = 1 + (i - timoff);
1710                         } else {
1711                                 timoff = 0;
1712                                 timlen = 1;
1713                         }
1714                         if (timlen != bo->bo_tim_len) {
1715                                 /* copy up/down trailer */
1716                                 int adjust = tie->tim_bitmap+timlen
1717                                            - bo->bo_trailer;
1718                                 ovbcopy(bo->bo_trailer, bo->bo_trailer+adjust,
1719                                         bo->bo_trailer_len);
1720                                 bo->bo_trailer += adjust;
1721                                 bo->bo_wme += adjust;
1722                                 bo->bo_erp += adjust;
1723                                 bo->bo_tim_len = timlen;
1724
1725                                 /* update information element */
1726                                 tie->tim_len = 3 + timlen;
1727                                 tie->tim_bitctl = timoff;
1728                                 len_changed = 1;
1729                         }
1730                         memcpy(tie->tim_bitmap, ic->ic_tim_bitmap + timoff,
1731                                 bo->bo_tim_len);
1732
1733                         ic->ic_flags &= ~IEEE80211_F_TIMUPDATE;
1734
1735                         IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER,
1736                                 "%s: TIM updated, pending %u, off %u, len %u\n",
1737                                 __func__, ic->ic_ps_pending, timoff, timlen);
1738                 }
1739                 /* count down DTIM period */
1740                 if (tie->tim_count == 0)
1741                         tie->tim_count = tie->tim_period - 1;
1742                 else
1743                         tie->tim_count--;
1744                 /* update state for buffered multicast frames on DTIM */
1745                 if (mcast && tie->tim_count == 0)
1746                         tie->tim_bitctl |= 1;
1747                 else
1748                         tie->tim_bitctl &= ~1;
1749                 if (ic->ic_flags_ext & IEEE80211_FEXT_ERPUPDATE) {
1750                         /*
1751                          * ERP element needs updating.
1752                          */
1753                         (void) ieee80211_add_erp(bo->bo_erp, ic);
1754                         ic->ic_flags_ext &= ~IEEE80211_FEXT_ERPUPDATE;
1755                 }
1756         }
1757
1758         return len_changed;
1759 }
1760
1761 /*
1762  * Save an outbound packet for a node in power-save sleep state.
1763  * The new packet is placed on the node's saved queue, and the TIM
1764  * is changed, if necessary.
1765  */
1766 void
1767 ieee80211_pwrsave(struct ieee80211com *ic, struct ieee80211_node *ni, 
1768                   struct mbuf *m)
1769 {
1770         int qlen, age;
1771
1772         ASSERT_SERIALIZED(ic->ic_ifp->if_serializer);
1773
1774         if (IF_QFULL(&ni->ni_savedq)) {
1775                 IF_DROP(&ni->ni_savedq);
1776                 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
1777                         "[%6D] pwr save q overflow, drops %d (size %d)\n",
1778                         ni->ni_macaddr, ":",
1779                         ni->ni_savedq.ifq_drops, IEEE80211_PS_MAX_QUEUE);
1780 #ifdef IEEE80211_DEBUG
1781                 if (ieee80211_msg_dumppkts(ic))
1782                         ieee80211_dump_pkt(mtod(m, caddr_t), m->m_len, -1, -1);
1783 #endif
1784                 m_freem(m);
1785                 return;
1786         }
1787         /*
1788          * Tag the frame with it's expiry time and insert
1789          * it in the queue.  The aging interval is 4 times
1790          * the listen interval specified by the station. 
1791          * Frames that sit around too long are reclaimed
1792          * using this information.
1793          */
1794         /* TU -> secs.  XXX handle overflow? */
1795         age = IEEE80211_TU_TO_MS((ni->ni_intval * ic->ic_bintval) << 2) / 1000;
1796         _IEEE80211_NODE_SAVEQ_ENQUEUE(ni, m, qlen, age);
1797
1798         IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER,
1799                 "[%6D] save frame with age %d, %u now queued\n",
1800                 ni->ni_macaddr, ":", age, qlen);
1801
1802         if (qlen == 1)
1803                 ic->ic_set_tim(ni, 1);
1804 }
1805
1806 uint8_t
1807 ieee80211_ack_rate(struct ieee80211_node *ni, uint8_t rate)
1808 {
1809         const struct ieee80211_rateset *rs = &ni->ni_rates;
1810         uint8_t ack_rate = 0;
1811         enum ieee80211_modtype modtype;
1812         int i;
1813
1814         rate &= IEEE80211_RATE_VAL;
1815
1816         modtype = ieee80211_rate2modtype(rate);
1817
1818         for (i = 0; i < rs->rs_nrates; ++i) {
1819                 uint8_t rate1 = IEEE80211_RS_RATE(rs, i);
1820
1821                 if (rate1 > rate) {
1822                         if (ack_rate != 0)
1823                                 return ack_rate;
1824                         else
1825                                 break;
1826                 }
1827
1828                 if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) &&
1829                     ieee80211_rate2modtype(rate1) == modtype)
1830                         ack_rate = rate1;
1831         }
1832
1833         switch (rate) {
1834         /* CCK */
1835         case 2:
1836         case 4:
1837         case 11:
1838         case 22:
1839                 ack_rate = rate;
1840                 break;
1841
1842         /* PBCC */
1843         case 44:
1844                 ack_rate = 22;
1845                 break;
1846
1847         /* OFDM */
1848         case 12:
1849         case 18:
1850                 ack_rate = 12;
1851                 break;
1852         case 24:
1853         case 36:
1854                 ack_rate = 24;
1855                 break;
1856         case 48:
1857         case 72:
1858         case 96:
1859         case 108:
1860                 ack_rate = 48;
1861                 break;
1862         default:
1863                 panic("unsupported rate %d\n", rate);
1864         }
1865         return ack_rate;
1866 }
1867
1868 /* IEEE Std 802.11a-1999, page 9, table 79 */
1869 #define IEEE80211_OFDM_SYM_TIME                 4
1870 #define IEEE80211_OFDM_PREAMBLE_TIME            16
1871 #define IEEE80211_OFDM_SIGNAL_TIME              4
1872 /* IEEE Std 802.11g-2003, page 44 */
1873 #define IEEE80211_OFDM_SIGNAL_EXT_TIME          6
1874
1875 /* IEEE Std 802.11a-1999, page 7, figure 107 */
1876 #define IEEE80211_OFDM_PLCP_SERVICE_NBITS       16
1877 #define IEEE80211_OFDM_TAIL_NBITS               6
1878
1879 #define IEEE80211_OFDM_NBITS(frmlen) \
1880         (IEEE80211_OFDM_PLCP_SERVICE_NBITS + \
1881          ((frmlen) * NBBY) + \
1882          IEEE80211_OFDM_TAIL_NBITS)
1883
1884 #define IEEE80211_OFDM_NBITS_PER_SYM(kbps) \
1885         (((kbps) * IEEE80211_OFDM_SYM_TIME) / 1000)
1886
1887 #define IEEE80211_OFDM_NSYMS(kbps, frmlen) \
1888         howmany(IEEE80211_OFDM_NBITS((frmlen)), \
1889                 IEEE80211_OFDM_NBITS_PER_SYM((kbps)))
1890
1891 #define IEEE80211_OFDM_TXTIME(kbps, frmlen) \
1892         (IEEE80211_OFDM_PREAMBLE_TIME + \
1893          IEEE80211_OFDM_SIGNAL_TIME + \
1894          (IEEE80211_OFDM_NSYMS((kbps), (frmlen)) * IEEE80211_OFDM_SYM_TIME))
1895
1896 /* IEEE Std 802.11b-1999, page 28, subclause 18.3.4 */
1897 #define IEEE80211_CCK_PREAMBLE_LEN      144
1898 #define IEEE80211_CCK_PLCP_HDR_TIME     48
1899 #define IEEE80211_CCK_SHPREAMBLE_LEN    72
1900 #define IEEE80211_CCK_SHPLCP_HDR_TIME   24
1901
1902 #define IEEE80211_CCK_NBITS(frmlen)     ((frmlen) * NBBY)
1903 #define IEEE80211_CCK_TXTIME(kbps, frmlen) \
1904         (((IEEE80211_CCK_NBITS((frmlen)) * 1000) + (kbps) - 1) / (kbps))
1905
1906 uint16_t
1907 ieee80211_txtime(struct ieee80211_node *ni, u_int len, uint8_t rs_rate,
1908                  uint32_t flags)
1909 {
1910         struct ieee80211com *ic = ni->ni_ic;
1911         enum ieee80211_modtype modtype;
1912         uint16_t txtime;
1913         int rate;
1914
1915         rs_rate &= IEEE80211_RATE_VAL;
1916
1917         rate = rs_rate * 500;   /* ieee80211 rate -> kbps */
1918
1919         modtype = ieee80211_rate2modtype(rs_rate);
1920         if (modtype == IEEE80211_MODTYPE_OFDM) {
1921                 /*
1922                  * IEEE Std 802.11a-1999, page 37, equation (29)
1923                  * IEEE Std 802.11g-2003, page 44, equation (42)
1924                  */
1925                 txtime = IEEE80211_OFDM_TXTIME(rate, len);
1926                 if (ic->ic_curmode == IEEE80211_MODE_11G)
1927                         txtime += IEEE80211_OFDM_SIGNAL_EXT_TIME;
1928         } else {
1929                 /*
1930                  * IEEE Std 802.11b-1999, page 28, subclause 18.3.4
1931                  * IEEE Std 802.11g-2003, page 45, equation (43)
1932                  */
1933                 if (modtype == IEEE80211_MODTYPE_PBCC)
1934                         ++len;
1935                 txtime = IEEE80211_CCK_TXTIME(rate, len);
1936
1937                 /*
1938                  * Short preamble is not applicable for DS 1Mbits/s
1939                  */
1940                 if (rs_rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) {
1941                         txtime += IEEE80211_CCK_SHPREAMBLE_LEN +
1942                                   IEEE80211_CCK_SHPLCP_HDR_TIME;
1943                 } else {
1944                         txtime += IEEE80211_CCK_PREAMBLE_LEN +
1945                                   IEEE80211_CCK_PLCP_HDR_TIME;
1946                 }
1947         }
1948         return txtime;
1949 }