Sync with FreeBSD. This adds read-only support for zip and ISO9660.
[dragonfly.git] / contrib / gdb-6.2.1 / bfd / section.c
1 /* Object file "section" support for the BFD library.
2    Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3    2000, 2001, 2002, 2003, 2004
4    Free Software Foundation, Inc.
5    Written by Cygnus Support.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
22
23 /*
24 SECTION
25         Sections
26
27         The raw data contained within a BFD is maintained through the
28         section abstraction.  A single BFD may have any number of
29         sections.  It keeps hold of them by pointing to the first;
30         each one points to the next in the list.
31
32         Sections are supported in BFD in <<section.c>>.
33
34 @menu
35 @* Section Input::
36 @* Section Output::
37 @* typedef asection::
38 @* section prototypes::
39 @end menu
40
41 INODE
42 Section Input, Section Output, Sections, Sections
43 SUBSECTION
44         Section input
45
46         When a BFD is opened for reading, the section structures are
47         created and attached to the BFD.
48
49         Each section has a name which describes the section in the
50         outside world---for example, <<a.out>> would contain at least
51         three sections, called <<.text>>, <<.data>> and <<.bss>>.
52
53         Names need not be unique; for example a COFF file may have several
54         sections named <<.data>>.
55
56         Sometimes a BFD will contain more than the ``natural'' number of
57         sections. A back end may attach other sections containing
58         constructor data, or an application may add a section (using
59         <<bfd_make_section>>) to the sections attached to an already open
60         BFD. For example, the linker creates an extra section
61         <<COMMON>> for each input file's BFD to hold information about
62         common storage.
63
64         The raw data is not necessarily read in when
65         the section descriptor is created. Some targets may leave the
66         data in place until a <<bfd_get_section_contents>> call is
67         made. Other back ends may read in all the data at once.  For
68         example, an S-record file has to be read once to determine the
69         size of the data. An IEEE-695 file doesn't contain raw data in
70         sections, but data and relocation expressions intermixed, so
71         the data area has to be parsed to get out the data and
72         relocations.
73
74 INODE
75 Section Output, typedef asection, Section Input, Sections
76
77 SUBSECTION
78         Section output
79
80         To write a new object style BFD, the various sections to be
81         written have to be created. They are attached to the BFD in
82         the same way as input sections; data is written to the
83         sections using <<bfd_set_section_contents>>.
84
85         Any program that creates or combines sections (e.g., the assembler
86         and linker) must use the <<asection>> fields <<output_section>> and
87         <<output_offset>> to indicate the file sections to which each
88         section must be written.  (If the section is being created from
89         scratch, <<output_section>> should probably point to the section
90         itself and <<output_offset>> should probably be zero.)
91
92         The data to be written comes from input sections attached
93         (via <<output_section>> pointers) to
94         the output sections.  The output section structure can be
95         considered a filter for the input section: the output section
96         determines the vma of the output data and the name, but the
97         input section determines the offset into the output section of
98         the data to be written.
99
100         E.g., to create a section "O", starting at 0x100, 0x123 long,
101         containing two subsections, "A" at offset 0x0 (i.e., at vma
102         0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
103         structures would look like:
104
105 |   section name          "A"
106 |     output_offset   0x00
107 |     size            0x20
108 |     output_section ----------->  section name    "O"
109 |                             |    vma             0x100
110 |   section name          "B" |    size            0x123
111 |     output_offset   0x20    |
112 |     size            0x103   |
113 |     output_section  --------|
114
115 SUBSECTION
116         Link orders
117
118         The data within a section is stored in a @dfn{link_order}.
119         These are much like the fixups in <<gas>>.  The link_order
120         abstraction allows a section to grow and shrink within itself.
121
122         A link_order knows how big it is, and which is the next
123         link_order and where the raw data for it is; it also points to
124         a list of relocations which apply to it.
125
126         The link_order is used by the linker to perform relaxing on
127         final code.  The compiler creates code which is as big as
128         necessary to make it work without relaxing, and the user can
129         select whether to relax.  Sometimes relaxing takes a lot of
130         time.  The linker runs around the relocations to see if any
131         are attached to data which can be shrunk, if so it does it on
132         a link_order by link_order basis.
133
134 */
135
136 #include "bfd.h"
137 #include "sysdep.h"
138 #include "libbfd.h"
139 #include "bfdlink.h"
140
141 /*
142 DOCDD
143 INODE
144 typedef asection, section prototypes, Section Output, Sections
145 SUBSECTION
146         typedef asection
147
148         Here is the section structure:
149
150 CODE_FRAGMENT
151 .
152 .{* This structure is used for a comdat section, as in PE.  A comdat
153 .   section is associated with a particular symbol.  When the linker
154 .   sees a comdat section, it keeps only one of the sections with a
155 .   given name and associated with a given symbol.  *}
156 .
157 .struct bfd_comdat_info
158 .{
159 .  {* The name of the symbol associated with a comdat section.  *}
160 .  const char *name;
161 .
162 .  {* The local symbol table index of the symbol associated with a
163 .     comdat section.  This is only meaningful to the object file format
164 .     specific code; it is not an index into the list returned by
165 .     bfd_canonicalize_symtab.  *}
166 .  long symbol;
167 .};
168 .
169 .typedef struct bfd_section
170 .{
171 .  {* The name of the section; the name isn't a copy, the pointer is
172 .     the same as that passed to bfd_make_section.  *}
173 .  const char *name;
174 .
175 .  {* A unique sequence number.  *}
176 .  int id;
177 .
178 .  {* Which section in the bfd; 0..n-1 as sections are created in a bfd.  *}
179 .  int index;
180 .
181 .  {* The next section in the list belonging to the BFD, or NULL.  *}
182 .  struct bfd_section *next;
183 .
184 .  {* The field flags contains attributes of the section. Some
185 .     flags are read in from the object file, and some are
186 .     synthesized from other information.  *}
187 .  flagword flags;
188 .
189 .#define SEC_NO_FLAGS   0x000
190 .
191 .  {* Tells the OS to allocate space for this section when loading.
192 .     This is clear for a section containing debug information only.  *}
193 .#define SEC_ALLOC      0x001
194 .
195 .  {* Tells the OS to load the section from the file when loading.
196 .     This is clear for a .bss section.  *}
197 .#define SEC_LOAD       0x002
198 .
199 .  {* The section contains data still to be relocated, so there is
200 .     some relocation information too.  *}
201 .#define SEC_RELOC      0x004
202 .
203 .  {* ELF reserves 4 processor specific bits and 8 operating system
204 .     specific bits in sh_flags; at present we can get away with just
205 .     one in communicating between the assembler and BFD, but this
206 .     isn't a good long-term solution.  *}
207 .#define SEC_ARCH_BIT_0 0x008
208 .
209 .  {* A signal to the OS that the section contains read only data.  *}
210 .#define SEC_READONLY   0x010
211 .
212 .  {* The section contains code only.  *}
213 .#define SEC_CODE       0x020
214 .
215 .  {* The section contains data only.  *}
216 .#define SEC_DATA       0x040
217 .
218 .  {* The section will reside in ROM.  *}
219 .#define SEC_ROM        0x080
220 .
221 .  {* The section contains constructor information. This section
222 .     type is used by the linker to create lists of constructors and
223 .     destructors used by <<g++>>. When a back end sees a symbol
224 .     which should be used in a constructor list, it creates a new
225 .     section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
226 .     the symbol to it, and builds a relocation. To build the lists
227 .     of constructors, all the linker has to do is catenate all the
228 .     sections called <<__CTOR_LIST__>> and relocate the data
229 .     contained within - exactly the operations it would peform on
230 .     standard data.  *}
231 .#define SEC_CONSTRUCTOR 0x100
232 .
233 .  {* The section has contents - a data section could be
234 .     <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
235 .     <<SEC_HAS_CONTENTS>>  *}
236 .#define SEC_HAS_CONTENTS 0x200
237 .
238 .  {* An instruction to the linker to not output the section
239 .     even if it has information which would normally be written.  *}
240 .#define SEC_NEVER_LOAD 0x400
241 .
242 .  {* The section is a COFF shared library section.  This flag is
243 .     only for the linker.  If this type of section appears in
244 .     the input file, the linker must copy it to the output file
245 .     without changing the vma or size.  FIXME: Although this
246 .     was originally intended to be general, it really is COFF
247 .     specific (and the flag was renamed to indicate this).  It
248 .     might be cleaner to have some more general mechanism to
249 .     allow the back end to control what the linker does with
250 .     sections.  *}
251 .#define SEC_COFF_SHARED_LIBRARY 0x800
252 .
253 .  {* The section contains thread local data.  *}
254 .#define SEC_THREAD_LOCAL 0x1000
255 .
256 .  {* The section has GOT references.  This flag is only for the
257 .     linker, and is currently only used by the elf32-hppa back end.
258 .     It will be set if global offset table references were detected
259 .     in this section, which indicate to the linker that the section
260 .     contains PIC code, and must be handled specially when doing a
261 .     static link.  *}
262 .#define SEC_HAS_GOT_REF 0x4000
263 .
264 .  {* The section contains common symbols (symbols may be defined
265 .     multiple times, the value of a symbol is the amount of
266 .     space it requires, and the largest symbol value is the one
267 .     used).  Most targets have exactly one of these (which we
268 .     translate to bfd_com_section_ptr), but ECOFF has two.  *}
269 .#define SEC_IS_COMMON 0x8000
270 .
271 .  {* The section contains only debugging information.  For
272 .     example, this is set for ELF .debug and .stab sections.
273 .     strip tests this flag to see if a section can be
274 .     discarded.  *}
275 .#define SEC_DEBUGGING 0x10000
276 .
277 .  {* The contents of this section are held in memory pointed to
278 .     by the contents field.  This is checked by bfd_get_section_contents,
279 .     and the data is retrieved from memory if appropriate.  *}
280 .#define SEC_IN_MEMORY 0x20000
281 .
282 .  {* The contents of this section are to be excluded by the
283 .     linker for executable and shared objects unless those
284 .     objects are to be further relocated.  *}
285 .#define SEC_EXCLUDE 0x40000
286 .
287 .  {* The contents of this section are to be sorted based on the sum of
288 .     the symbol and addend values specified by the associated relocation
289 .     entries.  Entries without associated relocation entries will be
290 .     appended to the end of the section in an unspecified order.  *}
291 .#define SEC_SORT_ENTRIES 0x80000
292 .
293 .  {* When linking, duplicate sections of the same name should be
294 .     discarded, rather than being combined into a single section as
295 .     is usually done.  This is similar to how common symbols are
296 .     handled.  See SEC_LINK_DUPLICATES below.  *}
297 .#define SEC_LINK_ONCE 0x100000
298 .
299 .  {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
300 .     should handle duplicate sections.  *}
301 .#define SEC_LINK_DUPLICATES 0x600000
302 .
303 .  {* This value for SEC_LINK_DUPLICATES means that duplicate
304 .     sections with the same name should simply be discarded.  *}
305 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
306 .
307 .  {* This value for SEC_LINK_DUPLICATES means that the linker
308 .     should warn if there are any duplicate sections, although
309 .     it should still only link one copy.  *}
310 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x200000
311 .
312 .  {* This value for SEC_LINK_DUPLICATES means that the linker
313 .     should warn if any duplicate sections are a different size.  *}
314 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x400000
315 .
316 .  {* This value for SEC_LINK_DUPLICATES means that the linker
317 .     should warn if any duplicate sections contain different
318 .     contents.  *}
319 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS 0x600000
320 .
321 .  {* This section was created by the linker as part of dynamic
322 .     relocation or other arcane processing.  It is skipped when
323 .     going through the first-pass output, trusting that someone
324 .     else up the line will take care of it later.  *}
325 .#define SEC_LINKER_CREATED 0x800000
326 .
327 .  {* This section should not be subject to garbage collection.  *}
328 .#define SEC_KEEP 0x1000000
329 .
330 .  {* This section contains "short" data, and should be placed
331 .     "near" the GP.  *}
332 .#define SEC_SMALL_DATA 0x2000000
333 .
334 .  {* This section contains data which may be shared with other
335 .     executables or shared objects.  *}
336 .#define SEC_SHARED 0x4000000
337 .
338 .  {* When a section with this flag is being linked, then if the size of
339 .     the input section is less than a page, it should not cross a page
340 .     boundary.  If the size of the input section is one page or more, it
341 .     should be aligned on a page boundary.  *}
342 .#define SEC_BLOCK 0x8000000
343 .
344 .  {* Conditionally link this section; do not link if there are no
345 .     references found to any symbol in the section.  *}
346 .#define SEC_CLINK 0x10000000
347 .
348 .  {* Attempt to merge identical entities in the section.
349 .     Entity size is given in the entsize field.  *}
350 .#define SEC_MERGE 0x20000000
351 .
352 .  {* If given with SEC_MERGE, entities to merge are zero terminated
353 .     strings where entsize specifies character size instead of fixed
354 .     size entries.  *}
355 .#define SEC_STRINGS 0x40000000
356 .
357 .  {* This section contains data about section groups.  *}
358 .#define SEC_GROUP 0x80000000
359 .
360 .  {*  End of section flags.  *}
361 .
362 .  {* Some internal packed boolean fields.  *}
363 .
364 .  {* See the vma field.  *}
365 .  unsigned int user_set_vma : 1;
366 .
367 .  {* A mark flag used by some of the linker backends.  *}
368 .  unsigned int linker_mark : 1;
369 .
370 .  {* Another mark flag used by some of the linker backends.  Set for
371 .     output sections that have an input section.  *}
372 .  unsigned int linker_has_input : 1;
373 .
374 .  {* A mark flag used by some linker backends for garbage collection.  *}
375 .  unsigned int gc_mark : 1;
376 .
377 .  {* The following flags are used by the ELF linker. *}
378 .
379 .  {* Mark sections which have been allocated to segments.  *}
380 .  unsigned int segment_mark : 1;
381 .
382 .  {* Type of sec_info information.  *}
383 .  unsigned int sec_info_type:3;
384 .#define ELF_INFO_TYPE_NONE      0
385 .#define ELF_INFO_TYPE_STABS     1
386 .#define ELF_INFO_TYPE_MERGE     2
387 .#define ELF_INFO_TYPE_EH_FRAME  3
388 .#define ELF_INFO_TYPE_JUST_SYMS 4
389 .
390 .  {* Nonzero if this section uses RELA relocations, rather than REL.  *}
391 .  unsigned int use_rela_p:1;
392 .
393 .  {* Bits used by various backends.  *}
394 .
395 .  {* Nonzero if this section has TLS related relocations.  *}
396 .  unsigned int has_tls_reloc:1;
397 .
398 .  {* Nonzero if this section has a gp reloc.  *}
399 .  unsigned int has_gp_reloc:1;
400 .
401 .  {* Nonzero if this section needs the relax finalize pass.  *}
402 .  unsigned int need_finalize_relax:1;
403 .
404 .  {* Whether relocations have been processed.  *}
405 .  unsigned int reloc_done : 1;
406 .
407 .  {* End of internal packed boolean fields.  *}
408 .
409 .  {*  The virtual memory address of the section - where it will be
410 .      at run time.  The symbols are relocated against this.  The
411 .      user_set_vma flag is maintained by bfd; if it's not set, the
412 .      backend can assign addresses (for example, in <<a.out>>, where
413 .      the default address for <<.data>> is dependent on the specific
414 .      target and various flags).  *}
415 .  bfd_vma vma;
416 .
417 .  {*  The load address of the section - where it would be in a
418 .      rom image; really only used for writing section header
419 .      information.  *}
420 .  bfd_vma lma;
421 .
422 .  {* The size of the section in octets, as it will be output.
423 .     Contains a value even if the section has no contents (e.g., the
424 .     size of <<.bss>>).  *}
425 .  bfd_size_type size;
426 .
427 .  {* For input sections, the original size on disk of the section, in
428 .     octets.  This field is used by the linker relaxation code.  It is
429 .     currently only set for sections where the linker relaxation scheme
430 .     doesn't cache altered section and reloc contents (stabs, eh_frame,
431 .     SEC_MERGE, some coff relaxing targets), and thus the original size
432 .     needs to be kept to read the section multiple times.
433 .     For output sections, rawsize holds the section size calculated on
434 .     a previous linker relaxation pass.  *}
435 .  bfd_size_type rawsize;
436 .
437 .  {* If this section is going to be output, then this value is the
438 .     offset in *bytes* into the output section of the first byte in the
439 .     input section (byte ==> smallest addressable unit on the
440 .     target).  In most cases, if this was going to start at the
441 .     100th octet (8-bit quantity) in the output section, this value
442 .     would be 100.  However, if the target byte size is 16 bits
443 .     (bfd_octets_per_byte is "2"), this value would be 50.  *}
444 .  bfd_vma output_offset;
445 .
446 .  {* The output section through which to map on output.  *}
447 .  struct bfd_section *output_section;
448 .
449 .  {* The alignment requirement of the section, as an exponent of 2 -
450 .     e.g., 3 aligns to 2^3 (or 8).  *}
451 .  unsigned int alignment_power;
452 .
453 .  {* If an input section, a pointer to a vector of relocation
454 .     records for the data in this section.  *}
455 .  struct reloc_cache_entry *relocation;
456 .
457 .  {* If an output section, a pointer to a vector of pointers to
458 .     relocation records for the data in this section.  *}
459 .  struct reloc_cache_entry **orelocation;
460 .
461 .  {* The number of relocation records in one of the above.  *}
462 .  unsigned reloc_count;
463 .
464 .  {* Information below is back end specific - and not always used
465 .     or updated.  *}
466 .
467 .  {* File position of section data.  *}
468 .  file_ptr filepos;
469 .
470 .  {* File position of relocation info.  *}
471 .  file_ptr rel_filepos;
472 .
473 .  {* File position of line data.  *}
474 .  file_ptr line_filepos;
475 .
476 .  {* Pointer to data for applications.  *}
477 .  void *userdata;
478 .
479 .  {* If the SEC_IN_MEMORY flag is set, this points to the actual
480 .     contents.  *}
481 .  unsigned char *contents;
482 .
483 .  {* Attached line number information.  *}
484 .  alent *lineno;
485 .
486 .  {* Number of line number records.  *}
487 .  unsigned int lineno_count;
488 .
489 .  {* Entity size for merging purposes.  *}
490 .  unsigned int entsize;
491 .
492 .  {* Optional information about a COMDAT entry; NULL if not COMDAT.  *}
493 .  struct bfd_comdat_info *comdat;
494 .
495 .  {* Points to the kept section if this section is a link-once section,
496 .     and is discarded.  *}
497 .  struct bfd_section *kept_section;
498 .
499 .  {* When a section is being output, this value changes as more
500 .     linenumbers are written out.  *}
501 .  file_ptr moving_line_filepos;
502 .
503 .  {* What the section number is in the target world.  *}
504 .  int target_index;
505 .
506 .  void *used_by_bfd;
507 .
508 .  {* If this is a constructor section then here is a list of the
509 .     relocations created to relocate items within it.  *}
510 .  struct relent_chain *constructor_chain;
511 .
512 .  {* The BFD which owns the section.  *}
513 .  bfd *owner;
514 .
515 .  {* A symbol which points at this section only.  *}
516 .  struct bfd_symbol *symbol;
517 .  struct bfd_symbol **symbol_ptr_ptr;
518 .
519 .  struct bfd_link_order *link_order_head;
520 .  struct bfd_link_order *link_order_tail;
521 .} asection;
522 .
523 .{* These sections are global, and are managed by BFD.  The application
524 .   and target back end are not permitted to change the values in
525 .   these sections.  New code should use the section_ptr macros rather
526 .   than referring directly to the const sections.  The const sections
527 .   may eventually vanish.  *}
528 .#define BFD_ABS_SECTION_NAME "*ABS*"
529 .#define BFD_UND_SECTION_NAME "*UND*"
530 .#define BFD_COM_SECTION_NAME "*COM*"
531 .#define BFD_IND_SECTION_NAME "*IND*"
532 .
533 .{* The absolute section.  *}
534 .extern asection bfd_abs_section;
535 .#define bfd_abs_section_ptr ((asection *) &bfd_abs_section)
536 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
537 .{* Pointer to the undefined section.  *}
538 .extern asection bfd_und_section;
539 .#define bfd_und_section_ptr ((asection *) &bfd_und_section)
540 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
541 .{* Pointer to the common section.  *}
542 .extern asection bfd_com_section;
543 .#define bfd_com_section_ptr ((asection *) &bfd_com_section)
544 .{* Pointer to the indirect section.  *}
545 .extern asection bfd_ind_section;
546 .#define bfd_ind_section_ptr ((asection *) &bfd_ind_section)
547 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
548 .
549 .#define bfd_is_const_section(SEC)              \
550 . (   ((SEC) == bfd_abs_section_ptr)            \
551 .  || ((SEC) == bfd_und_section_ptr)            \
552 .  || ((SEC) == bfd_com_section_ptr)            \
553 .  || ((SEC) == bfd_ind_section_ptr))
554 .
555 .extern const struct bfd_symbol * const bfd_abs_symbol;
556 .extern const struct bfd_symbol * const bfd_com_symbol;
557 .extern const struct bfd_symbol * const bfd_und_symbol;
558 .extern const struct bfd_symbol * const bfd_ind_symbol;
559 .
560 .{* Macros to handle insertion and deletion of a bfd's sections.  These
561 .   only handle the list pointers, ie. do not adjust section_count,
562 .   target_index etc.  *}
563 .#define bfd_section_list_remove(ABFD, PS) \
564 .  do                                                   \
565 .    {                                                  \
566 .      asection **_ps = PS;                             \
567 .      asection *_s = *_ps;                             \
568 .      *_ps = _s->next;                                 \
569 .      if (_s->next == NULL)                            \
570 .        (ABFD)->section_tail = _ps;                    \
571 .    }                                                  \
572 .  while (0)
573 .#define bfd_section_list_insert(ABFD, PS, S) \
574 .  do                                                   \
575 .    {                                                  \
576 .      asection **_ps = PS;                             \
577 .      asection *_s = S;                                \
578 .      _s->next = *_ps;                                 \
579 .      *_ps = _s;                                       \
580 .      if (_s->next == NULL)                            \
581 .        (ABFD)->section_tail = &_s->next;              \
582 .    }                                                  \
583 .  while (0)
584 .
585 */
586
587 /* We use a macro to initialize the static asymbol structures because
588    traditional C does not permit us to initialize a union member while
589    gcc warns if we don't initialize it.  */
590  /* the_bfd, name, value, attr, section [, udata] */
591 #ifdef __STDC__
592 #define GLOBAL_SYM_INIT(NAME, SECTION) \
593   { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION, { 0 }}
594 #else
595 #define GLOBAL_SYM_INIT(NAME, SECTION) \
596   { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION }
597 #endif
598
599 /* These symbols are global, not specific to any BFD.  Therefore, anything
600    that tries to change them is broken, and should be repaired.  */
601
602 static const asymbol global_syms[] =
603 {
604   GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, &bfd_com_section),
605   GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, &bfd_und_section),
606   GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, &bfd_abs_section),
607   GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, &bfd_ind_section)
608 };
609
610 #define STD_SECTION(SEC, FLAGS, SYM, NAME, IDX)                         \
611   const asymbol * const SYM = (asymbol *) &global_syms[IDX];            \
612   asection SEC =                                                        \
613     /* name, id,  index, next, flags, user_set_vma,                  */ \
614     { NAME,  IDX, 0,     NULL, FLAGS, 0,                                \
615                                                                         \
616     /* linker_mark, linker_has_input, gc_mark, segment_mark,         */ \
617        0,           0,                1,       0,                       \
618                                                                         \
619     /* sec_info_type, use_rela_p, has_tls_reloc, has_gp_reloc,       */ \
620        0,             0,          0,             0,                     \
621                                                                         \
622     /* need_finalize_relax, reloc_done,                              */ \
623        0,                   0,                                          \
624                                                                         \
625     /* vma, lma, size, rawsize                                       */ \
626        0,   0,   0,    0,                                               \
627                                                                         \
628     /* output_offset, output_section,              alignment_power,  */ \
629        0,             (struct bfd_section *) &SEC, 0,                   \
630                                                                         \
631     /* relocation, orelocation, reloc_count, filepos, rel_filepos,   */ \
632        NULL,       NULL,        0,           0,       0,                \
633                                                                         \
634     /* line_filepos, userdata, contents, lineno, lineno_count,       */ \
635        0,            NULL,     NULL,     NULL,   0,                     \
636                                                                         \
637     /* entsize, comdat, kept_section, moving_line_filepos,           */ \
638        0,       NULL,   NULL,         0,                                \
639                                                                         \
640     /* target_index, used_by_bfd, constructor_chain, owner,          */ \
641        0,            NULL,        NULL,              NULL,              \
642                                                                         \
643     /* symbol,                                                       */ \
644        (struct bfd_symbol *) &global_syms[IDX],                         \
645                                                                         \
646     /* symbol_ptr_ptr,                                               */ \
647        (struct bfd_symbol **) &SYM,                                     \
648                                                                         \
649     /* link_order_head, link_order_tail                              */ \
650        NULL,            NULL                                            \
651     }
652
653 STD_SECTION (bfd_com_section, SEC_IS_COMMON, bfd_com_symbol,
654              BFD_COM_SECTION_NAME, 0);
655 STD_SECTION (bfd_und_section, 0, bfd_und_symbol, BFD_UND_SECTION_NAME, 1);
656 STD_SECTION (bfd_abs_section, 0, bfd_abs_symbol, BFD_ABS_SECTION_NAME, 2);
657 STD_SECTION (bfd_ind_section, 0, bfd_ind_symbol, BFD_IND_SECTION_NAME, 3);
658 #undef STD_SECTION
659
660 struct section_hash_entry
661 {
662   struct bfd_hash_entry root;
663   asection section;
664 };
665
666 /* Initialize an entry in the section hash table.  */
667
668 struct bfd_hash_entry *
669 bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
670                           struct bfd_hash_table *table,
671                           const char *string)
672 {
673   /* Allocate the structure if it has not already been allocated by a
674      subclass.  */
675   if (entry == NULL)
676     {
677       entry = (struct bfd_hash_entry *)
678         bfd_hash_allocate (table, sizeof (struct section_hash_entry));
679       if (entry == NULL)
680         return entry;
681     }
682
683   /* Call the allocation method of the superclass.  */
684   entry = bfd_hash_newfunc (entry, table, string);
685   if (entry != NULL)
686     memset (&((struct section_hash_entry *) entry)->section, 0,
687             sizeof (asection));
688
689   return entry;
690 }
691
692 #define section_hash_lookup(table, string, create, copy) \
693   ((struct section_hash_entry *) \
694    bfd_hash_lookup ((table), (string), (create), (copy)))
695
696 /* Initializes a new section.  NEWSECT->NAME is already set.  */
697
698 static asection *
699 bfd_section_init (bfd *abfd, asection *newsect)
700 {
701   static int section_id = 0x10;  /* id 0 to 3 used by STD_SECTION.  */
702
703   newsect->id = section_id;
704   newsect->index = abfd->section_count;
705   newsect->owner = abfd;
706
707   /* Create a symbol whose only job is to point to this section.  This
708      is useful for things like relocs which are relative to the base
709      of a section.  */
710   newsect->symbol = bfd_make_empty_symbol (abfd);
711   if (newsect->symbol == NULL)
712     return NULL;
713
714   newsect->symbol->name = newsect->name;
715   newsect->symbol->value = 0;
716   newsect->symbol->section = newsect;
717   newsect->symbol->flags = BSF_SECTION_SYM;
718
719   newsect->symbol_ptr_ptr = &newsect->symbol;
720
721   if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
722     return NULL;
723
724   section_id++;
725   abfd->section_count++;
726   *abfd->section_tail = newsect;
727   abfd->section_tail = &newsect->next;
728   return newsect;
729 }
730
731 /*
732 DOCDD
733 INODE
734 section prototypes,  , typedef asection, Sections
735 SUBSECTION
736         Section prototypes
737
738 These are the functions exported by the section handling part of BFD.
739 */
740
741 /*
742 FUNCTION
743         bfd_section_list_clear
744
745 SYNOPSIS
746         void bfd_section_list_clear (bfd *);
747
748 DESCRIPTION
749         Clears the section list, and also resets the section count and
750         hash table entries.
751 */
752
753 void
754 bfd_section_list_clear (bfd *abfd)
755 {
756   abfd->sections = NULL;
757   abfd->section_tail = &abfd->sections;
758   abfd->section_count = 0;
759   memset (abfd->section_htab.table, 0,
760           abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
761 }
762
763 /*
764 FUNCTION
765         bfd_get_section_by_name
766
767 SYNOPSIS
768         asection *bfd_get_section_by_name (bfd *abfd, const char *name);
769
770 DESCRIPTION
771         Run through @var{abfd} and return the one of the
772         <<asection>>s whose name matches @var{name}, otherwise <<NULL>>.
773         @xref{Sections}, for more information.
774
775         This should only be used in special cases; the normal way to process
776         all sections of a given name is to use <<bfd_map_over_sections>> and
777         <<strcmp>> on the name (or better yet, base it on the section flags
778         or something else) for each section.
779 */
780
781 asection *
782 bfd_get_section_by_name (bfd *abfd, const char *name)
783 {
784   struct section_hash_entry *sh;
785
786   sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
787   if (sh != NULL)
788     return &sh->section;
789
790   return NULL;
791 }
792
793 /*
794 FUNCTION
795         bfd_get_section_by_name_if
796
797 SYNOPSIS
798         asection *bfd_get_section_by_name_if
799           (bfd *abfd,
800            const char *name,
801            bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
802            void *obj);
803
804 DESCRIPTION
805         Call the provided function @var{func} for each section
806         attached to the BFD @var{abfd} whose name matches @var{name},
807         passing @var{obj} as an argument. The function will be called
808         as if by
809
810 |       func (abfd, the_section, obj);
811
812         It returns the first section for which @var{func} returns true,
813         otherwise <<NULL>>.
814
815 */
816
817 asection *
818 bfd_get_section_by_name_if (bfd *abfd, const char *name,
819                             bfd_boolean (*operation) (bfd *,
820                                                       asection *,
821                                                       void *),
822                             void *user_storage)
823 {
824   struct section_hash_entry *sh;
825   unsigned long hash;
826
827   sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
828   if (sh == NULL)
829     return NULL;
830
831   hash = sh->root.hash;
832   do
833     {
834       if ((*operation) (abfd, &sh->section, user_storage))
835         return &sh->section;
836       sh = (struct section_hash_entry *) sh->root.next;
837     }
838   while (sh != NULL && sh->root.hash == hash
839          && strcmp (sh->root.string, name) == 0);
840
841   return NULL;
842 }
843
844 /*
845 FUNCTION
846         bfd_get_unique_section_name
847
848 SYNOPSIS
849         char *bfd_get_unique_section_name
850           (bfd *abfd, const char *templat, int *count);
851
852 DESCRIPTION
853         Invent a section name that is unique in @var{abfd} by tacking
854         a dot and a digit suffix onto the original @var{templat}.  If
855         @var{count} is non-NULL, then it specifies the first number
856         tried as a suffix to generate a unique name.  The value
857         pointed to by @var{count} will be incremented in this case.
858 */
859
860 char *
861 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
862 {
863   int num;
864   unsigned int len;
865   char *sname;
866
867   len = strlen (templat);
868   sname = bfd_malloc (len + 8);
869   if (sname == NULL)
870     return NULL;
871   memcpy (sname, templat, len);
872   num = 1;
873   if (count != NULL)
874     num = *count;
875
876   do
877     {
878       /* If we have a million sections, something is badly wrong.  */
879       if (num > 999999)
880         abort ();
881       sprintf (sname + len, ".%d", num++);
882     }
883   while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
884
885   if (count != NULL)
886     *count = num;
887   return sname;
888 }
889
890 /*
891 FUNCTION
892         bfd_make_section_old_way
893
894 SYNOPSIS
895         asection *bfd_make_section_old_way (bfd *abfd, const char *name);
896
897 DESCRIPTION
898         Create a new empty section called @var{name}
899         and attach it to the end of the chain of sections for the
900         BFD @var{abfd}. An attempt to create a section with a name which
901         is already in use returns its pointer without changing the
902         section chain.
903
904         It has the funny name since this is the way it used to be
905         before it was rewritten....
906
907         Possible errors are:
908         o <<bfd_error_invalid_operation>> -
909         If output has already started for this BFD.
910         o <<bfd_error_no_memory>> -
911         If memory allocation fails.
912
913 */
914
915 asection *
916 bfd_make_section_old_way (bfd *abfd, const char *name)
917 {
918   struct section_hash_entry *sh;
919   asection *newsect;
920
921   if (abfd->output_has_begun)
922     {
923       bfd_set_error (bfd_error_invalid_operation);
924       return NULL;
925     }
926
927   if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
928     return bfd_abs_section_ptr;
929
930   if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
931     return bfd_com_section_ptr;
932
933   if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
934     return bfd_und_section_ptr;
935
936   if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
937     return bfd_ind_section_ptr;
938
939   sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
940   if (sh == NULL)
941     return NULL;
942
943   newsect = &sh->section;
944   if (newsect->name != NULL)
945     {
946       /* Section already exists.  */
947       return newsect;
948     }
949
950   newsect->name = name;
951   return bfd_section_init (abfd, newsect);
952 }
953
954 /*
955 FUNCTION
956         bfd_make_section_anyway
957
958 SYNOPSIS
959         asection *bfd_make_section_anyway (bfd *abfd, const char *name);
960
961 DESCRIPTION
962    Create a new empty section called @var{name} and attach it to the end of
963    the chain of sections for @var{abfd}.  Create a new section even if there
964    is already a section with that name.
965
966    Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
967    o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
968    o <<bfd_error_no_memory>> - If memory allocation fails.
969 */
970
971 sec_ptr
972 bfd_make_section_anyway (bfd *abfd, const char *name)
973 {
974   struct section_hash_entry *sh;
975   asection *newsect;
976
977   if (abfd->output_has_begun)
978     {
979       bfd_set_error (bfd_error_invalid_operation);
980       return NULL;
981     }
982
983   sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
984   if (sh == NULL)
985     return NULL;
986
987   newsect = &sh->section;
988   if (newsect->name != NULL)
989     {
990       /* We are making a section of the same name.  Put it in the
991          section hash table.  Even though we can't find it directly by a
992          hash lookup, we'll be able to find the section by traversing
993          sh->root.next quicker than looking at all the bfd sections.  */
994       struct section_hash_entry *new_sh;
995       new_sh = (struct section_hash_entry *)
996         bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
997       if (new_sh == NULL)
998         return NULL;
999
1000       new_sh->root = sh->root;
1001       sh->root.next = &new_sh->root;
1002       newsect = &new_sh->section;
1003     }
1004
1005   newsect->name = name;
1006   return bfd_section_init (abfd, newsect);
1007 }
1008
1009 /*
1010 FUNCTION
1011         bfd_make_section
1012
1013 SYNOPSIS
1014         asection *bfd_make_section (bfd *, const char *name);
1015
1016 DESCRIPTION
1017    Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1018    bfd_set_error ()) without changing the section chain if there is already a
1019    section named @var{name}.  If there is an error, return <<NULL>> and set
1020    <<bfd_error>>.
1021 */
1022
1023 asection *
1024 bfd_make_section (bfd *abfd, const char *name)
1025 {
1026   struct section_hash_entry *sh;
1027   asection *newsect;
1028
1029   if (abfd->output_has_begun)
1030     {
1031       bfd_set_error (bfd_error_invalid_operation);
1032       return NULL;
1033     }
1034
1035   if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1036       || strcmp (name, BFD_COM_SECTION_NAME) == 0
1037       || strcmp (name, BFD_UND_SECTION_NAME) == 0
1038       || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1039     return NULL;
1040
1041   sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1042   if (sh == NULL)
1043     return NULL;
1044
1045   newsect = &sh->section;
1046   if (newsect->name != NULL)
1047     {
1048       /* Section already exists.  */
1049       return NULL;
1050     }
1051
1052   newsect->name = name;
1053   return bfd_section_init (abfd, newsect);
1054 }
1055
1056 /*
1057 FUNCTION
1058         bfd_set_section_flags
1059
1060 SYNOPSIS
1061         bfd_boolean bfd_set_section_flags
1062           (bfd *abfd, asection *sec, flagword flags);
1063
1064 DESCRIPTION
1065         Set the attributes of the section @var{sec} in the BFD
1066         @var{abfd} to the value @var{flags}. Return <<TRUE>> on success,
1067         <<FALSE>> on error. Possible error returns are:
1068
1069         o <<bfd_error_invalid_operation>> -
1070         The section cannot have one or more of the attributes
1071         requested. For example, a .bss section in <<a.out>> may not
1072         have the <<SEC_HAS_CONTENTS>> field set.
1073
1074 */
1075
1076 bfd_boolean
1077 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED,
1078                        sec_ptr section,
1079                        flagword flags)
1080 {
1081 #if 0
1082   /* If you try to copy a text section from an input file (where it
1083      has the SEC_CODE flag set) to an output file, this loses big if
1084      the bfd_applicable_section_flags (abfd) doesn't have the SEC_CODE
1085      set - which it doesn't, at least not for a.out.  FIXME */
1086
1087   if ((flags & bfd_applicable_section_flags (abfd)) != flags)
1088     {
1089       bfd_set_error (bfd_error_invalid_operation);
1090       return FALSE;
1091     }
1092 #endif
1093
1094   section->flags = flags;
1095   return TRUE;
1096 }
1097
1098 /*
1099 FUNCTION
1100         bfd_map_over_sections
1101
1102 SYNOPSIS
1103         void bfd_map_over_sections
1104           (bfd *abfd,
1105            void (*func) (bfd *abfd, asection *sect, void *obj),
1106            void *obj);
1107
1108 DESCRIPTION
1109         Call the provided function @var{func} for each section
1110         attached to the BFD @var{abfd}, passing @var{obj} as an
1111         argument. The function will be called as if by
1112
1113 |       func (abfd, the_section, obj);
1114
1115         This is the preferred method for iterating over sections; an
1116         alternative would be to use a loop:
1117
1118 |          section *p;
1119 |          for (p = abfd->sections; p != NULL; p = p->next)
1120 |             func (abfd, p, ...)
1121
1122 */
1123
1124 void
1125 bfd_map_over_sections (bfd *abfd,
1126                        void (*operation) (bfd *, asection *, void *),
1127                        void *user_storage)
1128 {
1129   asection *sect;
1130   unsigned int i = 0;
1131
1132   for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1133     (*operation) (abfd, sect, user_storage);
1134
1135   if (i != abfd->section_count) /* Debugging */
1136     abort ();
1137 }
1138
1139 /*
1140 FUNCTION
1141         bfd_sections_find_if
1142
1143 SYNOPSIS
1144         asection *bfd_sections_find_if
1145           (bfd *abfd,
1146            bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
1147            void *obj);
1148
1149 DESCRIPTION
1150         Call the provided function @var{func} for each section
1151         attached to the BFD @var{abfd}, passing @var{obj} as an
1152         argument. The function will be called as if by
1153
1154 |       func (abfd, the_section, obj);
1155
1156         It returns the first section for which @var{func} returns true.
1157
1158 */
1159
1160 asection *
1161 bfd_sections_find_if (bfd *abfd,
1162                       bfd_boolean (*operation) (bfd *, asection *, void *),
1163                       void *user_storage)
1164 {
1165   asection *sect;
1166
1167   for (sect = abfd->sections; sect != NULL; sect = sect->next)
1168     if ((*operation) (abfd, sect, user_storage))
1169       break;
1170
1171   return sect;
1172 }
1173
1174 /*
1175 FUNCTION
1176         bfd_set_section_size
1177
1178 SYNOPSIS
1179         bfd_boolean bfd_set_section_size
1180           (bfd *abfd, asection *sec, bfd_size_type val);
1181
1182 DESCRIPTION
1183         Set @var{sec} to the size @var{val}. If the operation is
1184         ok, then <<TRUE>> is returned, else <<FALSE>>.
1185
1186         Possible error returns:
1187         o <<bfd_error_invalid_operation>> -
1188         Writing has started to the BFD, so setting the size is invalid.
1189
1190 */
1191
1192 bfd_boolean
1193 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val)
1194 {
1195   /* Once you've started writing to any section you cannot create or change
1196      the size of any others.  */
1197
1198   if (abfd->output_has_begun)
1199     {
1200       bfd_set_error (bfd_error_invalid_operation);
1201       return FALSE;
1202     }
1203
1204   ptr->size = val;
1205   return TRUE;
1206 }
1207
1208 /*
1209 FUNCTION
1210         bfd_set_section_contents
1211
1212 SYNOPSIS
1213         bfd_boolean bfd_set_section_contents
1214           (bfd *abfd, asection *section, const void *data,
1215            file_ptr offset, bfd_size_type count);
1216
1217 DESCRIPTION
1218         Sets the contents of the section @var{section} in BFD
1219         @var{abfd} to the data starting in memory at @var{data}. The
1220         data is written to the output section starting at offset
1221         @var{offset} for @var{count} octets.
1222
1223         Normally <<TRUE>> is returned, else <<FALSE>>. Possible error
1224         returns are:
1225         o <<bfd_error_no_contents>> -
1226         The output section does not have the <<SEC_HAS_CONTENTS>>
1227         attribute, so nothing can be written to it.
1228         o and some more too
1229
1230         This routine is front end to the back end function
1231         <<_bfd_set_section_contents>>.
1232
1233 */
1234
1235 bfd_boolean
1236 bfd_set_section_contents (bfd *abfd,
1237                           sec_ptr section,
1238                           const void *location,
1239                           file_ptr offset,
1240                           bfd_size_type count)
1241 {
1242   bfd_size_type sz;
1243
1244   if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS))
1245     {
1246       bfd_set_error (bfd_error_no_contents);
1247       return FALSE;
1248     }
1249
1250   sz = section->size;
1251   if ((bfd_size_type) offset > sz
1252       || count > sz
1253       || offset + count > sz
1254       || count != (size_t) count)
1255     {
1256       bfd_set_error (bfd_error_bad_value);
1257       return FALSE;
1258     }
1259
1260   switch (abfd->direction)
1261     {
1262     case read_direction:
1263     case no_direction:
1264       bfd_set_error (bfd_error_invalid_operation);
1265       return FALSE;
1266
1267     case write_direction:
1268       break;
1269
1270     case both_direction:
1271       /* File is opened for update. `output_has_begun' some time ago when
1272            the file was created.  Do not recompute sections sizes or alignments
1273            in _bfd_set_section_content.  */
1274       abfd->output_has_begun = TRUE;
1275       break;
1276     }
1277
1278   /* Record a copy of the data in memory if desired.  */
1279   if (section->contents
1280       && location != section->contents + offset)
1281     memcpy (section->contents + offset, location, (size_t) count);
1282
1283   if (BFD_SEND (abfd, _bfd_set_section_contents,
1284                 (abfd, section, location, offset, count)))
1285     {
1286       abfd->output_has_begun = TRUE;
1287       return TRUE;
1288     }
1289
1290   return FALSE;
1291 }
1292
1293 /*
1294 FUNCTION
1295         bfd_get_section_contents
1296
1297 SYNOPSIS
1298         bfd_boolean bfd_get_section_contents
1299           (bfd *abfd, asection *section, void *location, file_ptr offset,
1300            bfd_size_type count);
1301
1302 DESCRIPTION
1303         Read data from @var{section} in BFD @var{abfd}
1304         into memory starting at @var{location}. The data is read at an
1305         offset of @var{offset} from the start of the input section,
1306         and is read for @var{count} bytes.
1307
1308         If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1309         flag set are requested or if the section does not have the
1310         <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1311         with zeroes. If no errors occur, <<TRUE>> is returned, else
1312         <<FALSE>>.
1313
1314 */
1315 bfd_boolean
1316 bfd_get_section_contents (bfd *abfd,
1317                           sec_ptr section,
1318                           void *location,
1319                           file_ptr offset,
1320                           bfd_size_type count)
1321 {
1322   bfd_size_type sz;
1323
1324   if (section->flags & SEC_CONSTRUCTOR)
1325     {
1326       memset (location, 0, (size_t) count);
1327       return TRUE;
1328     }
1329
1330   sz = section->rawsize ? section->rawsize : section->size;
1331   if ((bfd_size_type) offset > sz
1332       || count > sz
1333       || offset + count > sz
1334       || count != (size_t) count)
1335     {
1336       bfd_set_error (bfd_error_bad_value);
1337       return FALSE;
1338     }
1339
1340   if (count == 0)
1341     /* Don't bother.  */
1342     return TRUE;
1343
1344   if ((section->flags & SEC_HAS_CONTENTS) == 0)
1345     {
1346       memset (location, 0, (size_t) count);
1347       return TRUE;
1348     }
1349
1350   if ((section->flags & SEC_IN_MEMORY) != 0)
1351     {
1352       memcpy (location, section->contents + offset, (size_t) count);
1353       return TRUE;
1354     }
1355
1356   return BFD_SEND (abfd, _bfd_get_section_contents,
1357                    (abfd, section, location, offset, count));
1358 }
1359
1360 /*
1361 FUNCTION
1362         bfd_malloc_and_get_section
1363
1364 SYNOPSIS
1365         bfd_boolean bfd_malloc_and_get_section
1366           (bfd *abfd, asection *section, bfd_byte **buf);
1367
1368 DESCRIPTION
1369         Read all data from @var{section} in BFD @var{abfd}
1370         into a buffer, *@var{buf}, malloc'd by this function.
1371 */
1372
1373 bfd_boolean
1374 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1375 {
1376   bfd_size_type sz = sec->rawsize ? sec->rawsize : sec->size;
1377   bfd_byte *p = NULL;
1378
1379   *buf = p;
1380   if (sz == 0)
1381     return TRUE;
1382
1383   p = bfd_malloc (sec->rawsize > sec->size ? sec->rawsize : sec->size);
1384   if (p == NULL)
1385     return FALSE;
1386   *buf = p;
1387
1388   return bfd_get_section_contents (abfd, sec, p, 0, sz);
1389 }
1390 /*
1391 FUNCTION
1392         bfd_copy_private_section_data
1393
1394 SYNOPSIS
1395         bfd_boolean bfd_copy_private_section_data
1396           (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1397
1398 DESCRIPTION
1399         Copy private section information from @var{isec} in the BFD
1400         @var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1401         Return <<TRUE>> on success, <<FALSE>> on error.  Possible error
1402         returns are:
1403
1404         o <<bfd_error_no_memory>> -
1405         Not enough memory exists to create private data for @var{osec}.
1406
1407 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1408 .     BFD_SEND (obfd, _bfd_copy_private_section_data, \
1409 .               (ibfd, isection, obfd, osection))
1410 */
1411
1412 /*
1413 FUNCTION
1414         _bfd_strip_section_from_output
1415
1416 SYNOPSIS
1417         void _bfd_strip_section_from_output
1418           (struct bfd_link_info *info, asection *section);
1419
1420 DESCRIPTION
1421         Remove @var{section} from the output.  If the output section
1422         becomes empty, remove it from the output bfd.
1423
1424         This function won't actually do anything except twiddle flags
1425         if called too late in the linking process, when it's not safe
1426         to remove sections.
1427 */
1428 void
1429 _bfd_strip_section_from_output (struct bfd_link_info *info, asection *s)
1430 {
1431   asection *os;
1432   asection *is;
1433   bfd *abfd;
1434
1435   s->flags |= SEC_EXCLUDE;
1436
1437   /* If the section wasn't assigned to an output section, or the
1438      section has been discarded by the linker script, there's nothing
1439      more to do.  */
1440   os = s->output_section;
1441   if (os == NULL || os->owner == NULL)
1442     return;
1443
1444   /* If the output section has other (non-excluded) input sections, we
1445      can't remove it.  */
1446   for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
1447     for (is = abfd->sections; is != NULL; is = is->next)
1448       if (is->output_section == os && (is->flags & SEC_EXCLUDE) == 0)
1449         return;
1450
1451   /* If the output section is empty, flag it for removal too.
1452      See ldlang.c:strip_excluded_output_sections for the action.  */
1453   os->flags |= SEC_EXCLUDE;
1454 }
1455
1456 /*
1457 FUNCTION
1458         bfd_generic_is_group_section
1459
1460 SYNOPSIS
1461         bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1462
1463 DESCRIPTION
1464         Returns TRUE if @var{sec} is a member of a group.
1465 */
1466
1467 bfd_boolean
1468 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1469                               const asection *sec ATTRIBUTE_UNUSED)
1470 {
1471   return FALSE;
1472 }
1473
1474 /*
1475 FUNCTION
1476         bfd_generic_discard_group
1477
1478 SYNOPSIS
1479         bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1480
1481 DESCRIPTION
1482         Remove all members of @var{group} from the output.
1483 */
1484
1485 bfd_boolean
1486 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1487                            asection *group ATTRIBUTE_UNUSED)
1488 {
1489   return TRUE;
1490 }