* Use id(1) instead of grep(1) to detect the presence of the smmsp
[dragonfly.git] / lib / libcalendar / calendar.c
1 /*-
2  * Copyright (c) 1997 Wolfgang Helbig
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/lib/libcalendar/calendar.c,v 1.3 1999/08/28 00:04:03 peter Exp $
27  * $DragonFly: src/lib/libcalendar/calendar.c,v 1.2 2003/06/17 04:26:48 dillon Exp $
28  */
29
30 #include "calendar.h"
31
32 #ifndef NULL
33 #define NULL 0
34 #endif
35
36 /*
37  * For each month tabulate the number of days elapsed in a year before the
38  * month. This assumes the internal date representation, where a year
39  * starts on March 1st. So we don't need a special table for leap years.
40  * But we do need a special table for the year 1582, since 10 days are
41  * deleted in October. This is month1s for the switch from Julian to
42  * Gregorian calendar.
43  */
44 static int const month1[] =
45     {0, 31, 61, 92, 122, 153, 184, 214, 245, 275, 306, 337}; 
46    /*  M   A   M   J    J    A    S    O    N    D    J */
47 static int const month1s[]=
48     {0, 31, 61, 92, 122, 153, 184, 214, 235, 265, 296, 327}; 
49
50 typedef struct date date;
51
52 /* The last day of Julian calendar, in internal and ndays representation */
53 static int nswitch;     /* The last day of Julian calendar */
54 static date jiswitch = {1582, 7, 3};
55
56 static date     *date2idt(date *idt, date *dt);
57 static date     *idt2date(date *dt, date *idt);
58 static int       ndaysji(date *idt);
59 static int       ndaysgi(date *idt);
60 static int       firstweek(int year);
61
62 /*
63  * Compute the Julian date from the number of days elapsed since
64  * March 1st of year zero.
65  */
66 date *
67 jdate(int ndays, date *dt)
68 {
69         date    idt;            /* Internal date representation */
70         int     r;              /* hold the rest of days */
71
72         /*
73          * Compute the year by starting with an approximation not smaller
74          * than the answer and using linear search for the greatest
75          * year which does not begin after ndays.
76          */
77         idt.y = ndays / 365;
78         idt.m = 0;
79         idt.d = 0;
80         while ((r = ndaysji(&idt)) > ndays)
81                 idt.y--;
82         
83         /*
84          * Set r to the days left in the year and compute the month by
85          * linear search as the largest month that does not begin after r
86          * days.
87          */
88         r = ndays - r;
89         for (idt.m = 11; month1[idt.m] > r; idt.m--)
90                 ;
91
92         /* Compute the days left in the month */
93         idt.d = r - month1[idt.m];
94
95         /* return external representation of the date */
96         return (idt2date(dt, &idt));
97 }
98
99 /*
100  * Return the number of days since March 1st of the year zero.
101  * The date is given according to Julian calendar.
102  */
103 int
104 ndaysj(date *dt)
105 {
106         date    idt;            /* Internal date representation */
107
108         if (date2idt(&idt, dt) == NULL)
109                 return (-1);
110         else
111                 return (ndaysji(&idt));
112 }
113
114 /*
115  * Same as above, where the Julian date is given in internal notation.
116  * This formula shows the beauty of this notation.
117  */
118 static int
119 ndaysji(date * idt)
120 {
121
122         return (idt->d + month1[idt->m] + idt->y * 365 + idt->y / 4);
123 }
124
125 /*
126  * Compute the date according to the Gregorian calendar from the number of
127  * days since March 1st, year zero. The date computed will be Julian if it
128  * is older than 1582-10-05. This is the reverse of the function ndaysg().
129  */
130 date   *
131 gdate(int ndays, date *dt)
132 {
133         int const *montht;      /* month-table */
134         date    idt;            /* for internal date representation */
135         int     r;              /* holds the rest of days */
136
137         /*
138          * Compute the year by starting with an approximation not smaller
139          * than the answer and search linearly for the greatest year not
140          * starting after ndays.
141          */
142         idt.y = ndays / 365;
143         idt.m = 0;
144         idt.d = 0;
145         while ((r = ndaysgi(&idt)) > ndays)
146                 idt.y--;
147
148         /*
149          * Set ndays to the number of days left and compute by linear
150          * search the greatest month which does not start after ndays. We
151          * use the table month1 which provides for each month the number
152          * of days that elapsed in the year before that month. Here the
153          * year 1582 is special, as 10 days are left out in October to
154          * resynchronize the calendar with the earth's orbit. October 4th
155          * 1582 is followed by October 15th 1582. We use the "switch"
156          * table month1s for this year.
157          */
158         ndays = ndays - r;
159         if (idt.y == 1582)
160                 montht = month1s;
161         else
162                 montht = month1;
163
164         for (idt.m = 11; montht[idt.m] > ndays; idt.m--)
165                 ;
166
167         idt.d = ndays - montht[idt.m]; /* the rest is the day in month */
168
169         /* Advance ten days deleted from October if after switch in Oct 1582 */
170         if (idt.y == jiswitch.y && idt.m == jiswitch.m && jiswitch.d < idt.d)
171                 idt.d += 10;
172
173         /* return external representation of found date */
174         return (idt2date(dt, &idt));
175 }
176
177 /*
178  * Return the number of days since March 1st of the year zero. The date is
179  * assumed Gregorian if younger than 1582-10-04 and Julian otherwise. This
180  * is the reverse of gdate.
181  */
182 int
183 ndaysg(date *dt)
184 {
185         date    idt;            /* Internal date representation */
186
187         if (date2idt(&idt, dt) == NULL)
188                 return (-1);
189         return (ndaysgi(&idt));
190 }
191
192 /*
193  * Same as above, but with the Gregorian date given in internal
194  * representation.
195  */
196 static int
197 ndaysgi(date *idt)
198 {
199         int     nd;             /* Number of days--return value */
200
201         /* Cache nswitch if not already done */
202         if (nswitch == 0)
203                 nswitch = ndaysji(&jiswitch);
204
205         /*
206          * Assume Julian calendar and adapt to Gregorian if necessary, i. e.
207          * younger than nswitch. Gregori deleted
208          * the ten days from Oct 5th to Oct 14th 1582.
209          * Thereafter years which are multiples of 100 and not multiples
210          * of 400 were not leap years anymore.
211          * This makes the average length of a year
212          * 365d +.25d - .01d + .0025d = 365.2425d. But the tropical
213          * year measures 365.2422d. So in 10000/3 years we are
214          * again one day ahead of the earth. Sigh :-)
215          * (d is the average length of a day and tropical year is the
216          * time from one spring point to the next.)
217          */
218         if ((nd = ndaysji(idt)) == -1)
219                 return (-1);
220         if (idt->y >= 1600)
221                 nd = (nd - 10 - (idt->y - 1600) / 100 + (idt->y - 1600) / 400);
222         else if (nd > nswitch)
223                 nd -= 10;
224         return (nd);
225 }
226
227 /*
228  * Compute the week number from the number of days since March 1st year 0.
229  * The weeks are numbered per year starting with 1. If the first
230  * week of a year includes at least four days of that year it is week 1,
231  * otherwise it gets the number of the last week of the previous year.
232  * The variable y will be filled with the year that contains the greater
233  * part of the week.
234  */
235 int
236 week(int nd, int *y)
237 {
238         date    dt;
239         int     fw;             /* 1st day of week 1 of previous, this and
240                                  * next year */
241         gdate(nd, &dt);
242         for (*y = dt.y + 1; nd < (fw = firstweek(*y)); (*y)--)
243                 ;
244         return ((nd - fw) / 7 + 1);
245 }
246                 
247 /* return the first day of week 1 of year y */
248 static int
249 firstweek(int y)
250 {
251         date idt;
252         int nd, wd;
253
254         idt.y = y - 1;   /* internal representation of y-1-1 */
255         idt.m = 10;
256         idt.d = 0;
257
258         nd = ndaysgi(&idt);
259         /*
260          * If more than 3 days of this week are in the preceding year, the
261          * next week is week 1 (and the next monday is the answer),
262          * otherwise this week is week 1 and the last monday is the
263          * answer.
264          */
265         if ((wd = weekday(nd)) > 3)
266                 return (nd - wd + 7);
267         else
268                 return (nd - wd);
269 }
270
271 /* return the weekday (Mo = 0 .. Su = 6) */
272 int
273 weekday(int nd)
274 {
275         date dmondaygi = {1997, 8, 16}; /* Internal repr. of 1997-11-17 */
276         static int nmonday;             /* ... which is a monday        */ 
277
278         /* Cache the daynumber of one monday */
279         if (nmonday == 0)
280                 nmonday = ndaysgi(&dmondaygi);
281
282         /* return (nd - nmonday) modulo 7 which is the weekday */
283         nd = (nd - nmonday) % 7;
284         if (nd < 0)
285                 return (nd + 7);
286         else
287                 return (nd);
288 }
289
290 /*
291  * Convert a date to internal date representation: The year starts on
292  * March 1st, month and day numbering start at zero. E. g. March 1st of
293  * year zero is written as y=0, m=0, d=0.
294  */
295 static date *
296 date2idt(date *idt, date *dt)
297 {
298
299         idt->d = dt->d - 1;
300         if (dt->m > 2) {
301                 idt->m = dt->m - 3;
302                 idt->y = dt->y;
303         } else {
304                 idt->m = dt->m + 9;
305                 idt->y = dt->y - 1;
306         }
307         if (idt->m < 0 || idt->m > 11 || idt->y < 0)
308                 return (NULL);
309         else
310                 return idt;
311 }
312
313 /* Reverse of date2idt */
314 static date *
315 idt2date(date *dt, date *idt)
316 {
317
318         dt->d = idt->d + 1;
319         if (idt->m < 10) {
320                 dt->m = idt->m + 3;
321                 dt->y = idt->y;
322         } else {
323                 dt->m = idt->m - 9;
324                 dt->y = idt->y + 1;
325         }
326         if (dt->m < 1)
327                 return (NULL);
328         else
329                 return (dt);
330 }