* Use id(1) instead of grep(1) to detect the presence of the smmsp
[dragonfly.git] / sys / kern / lwkt_thread.c
1 /*
2  * Copyright (c) 2003 Matthew Dillon <dillon@backplane.com>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $DragonFly: src/sys/kern/lwkt_thread.c,v 1.47 2003/12/30 03:19:02 dillon Exp $
27  */
28
29 /*
30  * Each cpu in a system has its own self-contained light weight kernel
31  * thread scheduler, which means that generally speaking we only need
32  * to use a critical section to avoid problems.  Foreign thread 
33  * scheduling is queued via (async) IPIs.
34  *
35  * NOTE: on UP machines smp_active is defined to be 0.  On SMP machines
36  * smp_active is 0 prior to SMP activation, then it is 1.  The LWKT module
37  * uses smp_active to optimize UP builds and to avoid sending IPIs during
38  * early boot (primarily interrupt and network thread initialization).
39  */
40
41 #ifdef _KERNEL
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/kernel.h>
46 #include <sys/proc.h>
47 #include <sys/rtprio.h>
48 #include <sys/queue.h>
49 #include <sys/thread2.h>
50 #include <sys/sysctl.h>
51 #include <sys/kthread.h>
52 #include <machine/cpu.h>
53 #include <sys/lock.h>
54
55 #include <vm/vm.h>
56 #include <vm/vm_param.h>
57 #include <vm/vm_kern.h>
58 #include <vm/vm_object.h>
59 #include <vm/vm_page.h>
60 #include <vm/vm_map.h>
61 #include <vm/vm_pager.h>
62 #include <vm/vm_extern.h>
63 #include <vm/vm_zone.h>
64
65 #include <machine/stdarg.h>
66 #include <machine/ipl.h>
67 #include <machine/smp.h>
68
69 #define THREAD_STACK    (UPAGES * PAGE_SIZE)
70
71 #else
72
73 #include <sys/stdint.h>
74 #include <libcaps/thread.h>
75 #include <sys/thread.h>
76 #include <sys/msgport.h>
77 #include <sys/errno.h>
78 #include <libcaps/globaldata.h>
79 #include <sys/thread2.h>
80 #include <sys/msgport2.h>
81 #include <stdio.h>
82 #include <stdlib.h>
83 #include <string.h>
84 #include <machine/cpufunc.h>
85 #include <machine/lock.h>
86
87 #endif
88
89 static int untimely_switch = 0;
90 #ifdef INVARIANTS
91 static int token_debug = 0;
92 #endif
93 static __int64_t switch_count = 0;
94 static __int64_t preempt_hit = 0;
95 static __int64_t preempt_miss = 0;
96 static __int64_t preempt_weird = 0;
97 #ifdef SMP
98 static __int64_t ipiq_count = 0;
99 static __int64_t ipiq_fifofull = 0;
100 #endif
101
102 #ifdef _KERNEL
103
104 SYSCTL_INT(_lwkt, OID_AUTO, untimely_switch, CTLFLAG_RW, &untimely_switch, 0, "");
105 #ifdef INVARIANTS
106 SYSCTL_INT(_lwkt, OID_AUTO, token_debug, CTLFLAG_RW, &token_debug, 0, "");
107 #endif
108 SYSCTL_QUAD(_lwkt, OID_AUTO, switch_count, CTLFLAG_RW, &switch_count, 0, "");
109 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_hit, CTLFLAG_RW, &preempt_hit, 0, "");
110 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_miss, CTLFLAG_RW, &preempt_miss, 0, "");
111 SYSCTL_QUAD(_lwkt, OID_AUTO, preempt_weird, CTLFLAG_RW, &preempt_weird, 0, "");
112 #ifdef SMP
113 SYSCTL_QUAD(_lwkt, OID_AUTO, ipiq_count, CTLFLAG_RW, &ipiq_count, 0, "");
114 SYSCTL_QUAD(_lwkt, OID_AUTO, ipiq_fifofull, CTLFLAG_RW, &ipiq_fifofull, 0, "");
115 #endif
116
117 #endif
118
119 /*
120  * These helper procedures handle the runq, they can only be called from
121  * within a critical section.
122  *
123  * WARNING!  Prior to SMP being brought up it is possible to enqueue and
124  * dequeue threads belonging to other cpus, so be sure to use td->td_gd
125  * instead of 'mycpu' when referencing the globaldata structure.   Once
126  * SMP live enqueuing and dequeueing only occurs on the current cpu.
127  */
128 static __inline
129 void
130 _lwkt_dequeue(thread_t td)
131 {
132     if (td->td_flags & TDF_RUNQ) {
133         int nq = td->td_pri & TDPRI_MASK;
134         struct globaldata *gd = td->td_gd;
135
136         td->td_flags &= ~TDF_RUNQ;
137         TAILQ_REMOVE(&gd->gd_tdrunq[nq], td, td_threadq);
138         /* runqmask is passively cleaned up by the switcher */
139     }
140 }
141
142 static __inline
143 void
144 _lwkt_enqueue(thread_t td)
145 {
146     if ((td->td_flags & TDF_RUNQ) == 0) {
147         int nq = td->td_pri & TDPRI_MASK;
148         struct globaldata *gd = td->td_gd;
149
150         td->td_flags |= TDF_RUNQ;
151         TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], td, td_threadq);
152         gd->gd_runqmask |= 1 << nq;
153     }
154 }
155
156 static __inline
157 int
158 _lwkt_wantresched(thread_t ntd, thread_t cur)
159 {
160     return((ntd->td_pri & TDPRI_MASK) > (cur->td_pri & TDPRI_MASK));
161 }
162
163 #ifdef _KERNEL
164
165 /*
166  * LWKTs operate on a per-cpu basis
167  *
168  * WARNING!  Called from early boot, 'mycpu' may not work yet.
169  */
170 void
171 lwkt_gdinit(struct globaldata *gd)
172 {
173     int i;
174
175     for (i = 0; i < sizeof(gd->gd_tdrunq)/sizeof(gd->gd_tdrunq[0]); ++i)
176         TAILQ_INIT(&gd->gd_tdrunq[i]);
177     gd->gd_runqmask = 0;
178     TAILQ_INIT(&gd->gd_tdallq);
179 }
180
181 #endif /* _KERNEL */
182
183 /*
184  * Initialize a thread wait structure prior to first use.
185  *
186  * NOTE!  called from low level boot code, we cannot do anything fancy!
187  */
188 void
189 lwkt_init_wait(lwkt_wait_t w)
190 {
191     TAILQ_INIT(&w->wa_waitq);
192 }
193
194 /*
195  * Create a new thread.  The thread must be associated with a process context
196  * or LWKT start address before it can be scheduled.  If the target cpu is
197  * -1 the thread will be created on the current cpu.
198  *
199  * If you intend to create a thread without a process context this function
200  * does everything except load the startup and switcher function.
201  */
202 thread_t
203 lwkt_alloc_thread(struct thread *td, int cpu)
204 {
205     void *stack;
206     int flags = 0;
207
208     if (td == NULL) {
209         crit_enter();
210         if (mycpu->gd_tdfreecount > 0) {
211             --mycpu->gd_tdfreecount;
212             td = TAILQ_FIRST(&mycpu->gd_tdfreeq);
213             KASSERT(td != NULL && (td->td_flags & TDF_RUNNING) == 0,
214                 ("lwkt_alloc_thread: unexpected NULL or corrupted td"));
215             TAILQ_REMOVE(&mycpu->gd_tdfreeq, td, td_threadq);
216             crit_exit();
217             stack = td->td_kstack;
218             flags = td->td_flags & (TDF_ALLOCATED_STACK|TDF_ALLOCATED_THREAD);
219         } else {
220             crit_exit();
221 #ifdef _KERNEL
222             td = zalloc(thread_zone);
223 #else
224             td = malloc(sizeof(struct thread));
225 #endif
226             td->td_kstack = NULL;
227             flags |= TDF_ALLOCATED_THREAD;
228         }
229     }
230     if ((stack = td->td_kstack) == NULL) {
231 #ifdef _KERNEL
232         stack = (void *)kmem_alloc(kernel_map, THREAD_STACK);
233 #else
234         stack = libcaps_alloc_stack(THREAD_STACK);
235 #endif
236         flags |= TDF_ALLOCATED_STACK;
237     }
238     if (cpu < 0)
239         lwkt_init_thread(td, stack, flags, mycpu);
240     else
241         lwkt_init_thread(td, stack, flags, globaldata_find(cpu));
242     return(td);
243 }
244
245 #ifdef _KERNEL
246
247 /*
248  * Initialize a preexisting thread structure.  This function is used by
249  * lwkt_alloc_thread() and also used to initialize the per-cpu idlethread.
250  *
251  * All threads start out in a critical section at a priority of
252  * TDPRI_KERN_DAEMON.  Higher level code will modify the priority as
253  * appropriate.  This function may send an IPI message when the 
254  * requested cpu is not the current cpu and consequently gd_tdallq may
255  * not be initialized synchronously from the point of view of the originating
256  * cpu.
257  *
258  * NOTE! we have to be careful in regards to creating threads for other cpus
259  * if SMP has not yet been activated.
260  */
261 static void
262 lwkt_init_thread_remote(void *arg)
263 {
264     thread_t td = arg;
265
266     TAILQ_INSERT_TAIL(&td->td_gd->gd_tdallq, td, td_allq);
267 }
268
269 void
270 lwkt_init_thread(thread_t td, void *stack, int flags, struct globaldata *gd)
271 {
272     bzero(td, sizeof(struct thread));
273     td->td_kstack = stack;
274     td->td_flags |= flags;
275     td->td_gd = gd;
276     td->td_pri = TDPRI_KERN_DAEMON + TDPRI_CRIT;
277     lwkt_initport(&td->td_msgport, td);
278     pmap_init_thread(td);
279     if (smp_active == 0 || gd == mycpu) {
280         crit_enter();
281         TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq);
282         crit_exit();
283     } else {
284         lwkt_send_ipiq(gd->gd_cpuid, lwkt_init_thread_remote, td);
285     }
286 }
287
288 #endif /* _KERNEL */
289
290 void
291 lwkt_set_comm(thread_t td, const char *ctl, ...)
292 {
293     __va_list va;
294
295     __va_start(va, ctl);
296     vsnprintf(td->td_comm, sizeof(td->td_comm), ctl, va);
297     __va_end(va);
298 }
299
300 void
301 lwkt_hold(thread_t td)
302 {
303     ++td->td_refs;
304 }
305
306 void
307 lwkt_rele(thread_t td)
308 {
309     KKASSERT(td->td_refs > 0);
310     --td->td_refs;
311 }
312
313 #ifdef _KERNEL
314
315 void
316 lwkt_wait_free(thread_t td)
317 {
318     while (td->td_refs)
319         tsleep(td, 0, "tdreap", hz);
320 }
321
322 #endif
323
324 void
325 lwkt_free_thread(thread_t td)
326 {
327     struct globaldata *gd = mycpu;
328
329     KASSERT((td->td_flags & TDF_RUNNING) == 0,
330         ("lwkt_free_thread: did not exit! %p", td));
331
332     crit_enter();
333     TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);
334     if (gd->gd_tdfreecount < CACHE_NTHREADS &&
335         (td->td_flags & TDF_ALLOCATED_THREAD)
336     ) {
337         ++gd->gd_tdfreecount;
338         TAILQ_INSERT_HEAD(&gd->gd_tdfreeq, td, td_threadq);
339         crit_exit();
340     } else {
341         crit_exit();
342         if (td->td_kstack && (td->td_flags & TDF_ALLOCATED_STACK)) {
343 #ifdef _KERNEL
344             kmem_free(kernel_map, (vm_offset_t)td->td_kstack, THREAD_STACK);
345 #else
346             libcaps_free_stack(td->td_kstack, THREAD_STACK);
347 #endif
348             /* gd invalid */
349             td->td_kstack = NULL;
350         }
351         if (td->td_flags & TDF_ALLOCATED_THREAD) {
352 #ifdef _KERNEL
353             zfree(thread_zone, td);
354 #else
355             free(td);
356 #endif
357         }
358     }
359 }
360
361
362 /*
363  * Switch to the next runnable lwkt.  If no LWKTs are runnable then 
364  * switch to the idlethread.  Switching must occur within a critical
365  * section to avoid races with the scheduling queue.
366  *
367  * We always have full control over our cpu's run queue.  Other cpus
368  * that wish to manipulate our queue must use the cpu_*msg() calls to
369  * talk to our cpu, so a critical section is all that is needed and
370  * the result is very, very fast thread switching.
371  *
372  * The LWKT scheduler uses a fixed priority model and round-robins at
373  * each priority level.  User process scheduling is a totally
374  * different beast and LWKT priorities should not be confused with
375  * user process priorities.
376  *
377  * The MP lock may be out of sync with the thread's td_mpcount.  lwkt_switch()
378  * cleans it up.  Note that the td_switch() function cannot do anything that
379  * requires the MP lock since the MP lock will have already been setup for
380  * the target thread (not the current thread).  It's nice to have a scheduler
381  * that does not need the MP lock to work because it allows us to do some
382  * really cool high-performance MP lock optimizations.
383  */
384
385 void
386 lwkt_switch(void)
387 {
388     struct globaldata *gd;
389     thread_t td = curthread;
390     thread_t ntd;
391 #ifdef SMP
392     int mpheld;
393 #endif
394
395     /*
396      * Switching from within a 'fast' (non thread switched) interrupt is
397      * illegal.
398      */
399     if (mycpu->gd_intr_nesting_level && panicstr == NULL) {
400         panic("lwkt_switch: cannot switch from within a fast interrupt, yet\n");
401     }
402
403     /*
404      * Passive release (used to transition from user to kernel mode
405      * when we block or switch rather then when we enter the kernel).
406      * This function is NOT called if we are switching into a preemption
407      * or returning from a preemption.  Typically this causes us to lose
408      * our P_CURPROC designation (if we have one) and become a true LWKT
409      * thread, and may also hand P_CURPROC to another process and schedule
410      * its thread.
411      */
412     if (td->td_release)
413             td->td_release(td);
414
415     crit_enter();
416     ++switch_count;
417
418 #ifdef SMP
419     /*
420      * td_mpcount cannot be used to determine if we currently hold the
421      * MP lock because get_mplock() will increment it prior to attempting
422      * to get the lock, and switch out if it can't.  Our ownership of 
423      * the actual lock will remain stable while we are in a critical section
424      * (but, of course, another cpu may own or release the lock so the
425      * actual value of mp_lock is not stable).
426      */
427     mpheld = MP_LOCK_HELD();
428 #endif
429     if ((ntd = td->td_preempted) != NULL) {
430         /*
431          * We had preempted another thread on this cpu, resume the preempted
432          * thread.  This occurs transparently, whether the preempted thread
433          * was scheduled or not (it may have been preempted after descheduling
434          * itself). 
435          *
436          * We have to setup the MP lock for the original thread after backing
437          * out the adjustment that was made to curthread when the original
438          * was preempted.
439          */
440         KKASSERT(ntd->td_flags & TDF_PREEMPT_LOCK);
441 #ifdef SMP
442         if (ntd->td_mpcount && mpheld == 0) {
443             panic("MPLOCK NOT HELD ON RETURN: %p %p %d %d\n",
444                td, ntd, td->td_mpcount, ntd->td_mpcount);
445         }
446         if (ntd->td_mpcount) {
447             td->td_mpcount -= ntd->td_mpcount;
448             KKASSERT(td->td_mpcount >= 0);
449         }
450 #endif
451         ntd->td_flags |= TDF_PREEMPT_DONE;
452         /* YYY release mp lock on switchback if original doesn't need it */
453     } else {
454         /*
455          * Priority queue / round-robin at each priority.  Note that user
456          * processes run at a fixed, low priority and the user process
457          * scheduler deals with interactions between user processes
458          * by scheduling and descheduling them from the LWKT queue as
459          * necessary.
460          *
461          * We have to adjust the MP lock for the target thread.  If we 
462          * need the MP lock and cannot obtain it we try to locate a
463          * thread that does not need the MP lock.
464          */
465         gd = mycpu;
466 again:
467         if (gd->gd_runqmask) {
468             int nq = bsrl(gd->gd_runqmask);
469             if ((ntd = TAILQ_FIRST(&gd->gd_tdrunq[nq])) == NULL) {
470                 gd->gd_runqmask &= ~(1 << nq);
471                 goto again;
472             }
473 #ifdef SMP
474             if (ntd->td_mpcount && mpheld == 0 && !cpu_try_mplock()) {
475                 /*
476                  * Target needs MP lock and we couldn't get it, try
477                  * to locate a thread which does not need the MP lock
478                  * to run.  If we cannot locate a thread spin in idle.
479                  */
480                 u_int32_t rqmask = gd->gd_runqmask;
481                 while (rqmask) {
482                     TAILQ_FOREACH(ntd, &gd->gd_tdrunq[nq], td_threadq) {
483                         if (ntd->td_mpcount == 0)
484                             break;
485                     }
486                     if (ntd)
487                         break;
488                     rqmask &= ~(1 << nq);
489                     nq = bsrl(rqmask);
490                 }
491                 if (ntd == NULL) {
492                     ntd = &gd->gd_idlethread;
493                     ntd->td_flags |= TDF_IDLE_NOHLT;
494                 } else {
495                     TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
496                     TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
497                 }
498             } else {
499                 TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
500                 TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
501             }
502 #else
503             TAILQ_REMOVE(&gd->gd_tdrunq[nq], ntd, td_threadq);
504             TAILQ_INSERT_TAIL(&gd->gd_tdrunq[nq], ntd, td_threadq);
505 #endif
506         } else {
507             /*
508              * We have nothing to run but only let the idle loop halt
509              * the cpu if there are no pending interrupts.
510              */
511             ntd = &gd->gd_idlethread;
512             if (gd->gd_reqflags & RQF_IDLECHECK_MASK)
513                 ntd->td_flags |= TDF_IDLE_NOHLT;
514         }
515     }
516     KASSERT(ntd->td_pri >= TDPRI_CRIT,
517         ("priority problem in lwkt_switch %d %d", td->td_pri, ntd->td_pri));
518
519     /*
520      * Do the actual switch.  If the new target does not need the MP lock
521      * and we are holding it, release the MP lock.  If the new target requires
522      * the MP lock we have already acquired it for the target.
523      */
524 #ifdef SMP
525     if (ntd->td_mpcount == 0 ) {
526         if (MP_LOCK_HELD())
527             cpu_rel_mplock();
528     } else {
529         ASSERT_MP_LOCK_HELD();
530     }
531 #endif
532     if (td != ntd) {
533         td->td_switch(ntd);
534     }
535
536     crit_exit();
537 }
538
539 /*
540  * Switch if another thread has a higher priority.  Do not switch to other
541  * threads at the same priority.
542  */
543 void
544 lwkt_maybe_switch()
545 {
546     struct globaldata *gd = mycpu;
547     struct thread *td = gd->gd_curthread;
548
549     if ((td->td_pri & TDPRI_MASK) < bsrl(gd->gd_runqmask)) {
550         lwkt_switch();
551     }
552 }
553
554 /*
555  * Request that the target thread preempt the current thread.  Preemption
556  * only works under a specific set of conditions:
557  *
558  *      - We are not preempting ourselves
559  *      - The target thread is owned by the current cpu
560  *      - We are not currently being preempted
561  *      - The target is not currently being preempted
562  *      - We are able to satisfy the target's MP lock requirements (if any).
563  *
564  * THE CALLER OF LWKT_PREEMPT() MUST BE IN A CRITICAL SECTION.  Typically
565  * this is called via lwkt_schedule() through the td_preemptable callback.
566  * critpri is the managed critical priority that we should ignore in order
567  * to determine whether preemption is possible (aka usually just the crit
568  * priority of lwkt_schedule() itself).
569  *
570  * XXX at the moment we run the target thread in a critical section during
571  * the preemption in order to prevent the target from taking interrupts
572  * that *WE* can't.  Preemption is strictly limited to interrupt threads
573  * and interrupt-like threads, outside of a critical section, and the
574  * preempted source thread will be resumed the instant the target blocks
575  * whether or not the source is scheduled (i.e. preemption is supposed to
576  * be as transparent as possible).
577  *
578  * The target thread inherits our MP count (added to its own) for the
579  * duration of the preemption in order to preserve the atomicy of the
580  * MP lock during the preemption.  Therefore, any preempting targets must be
581  * careful in regards to MP assertions.  Note that the MP count may be
582  * out of sync with the physical mp_lock, but we do not have to preserve
583  * the original ownership of the lock if it was out of synch (that is, we
584  * can leave it synchronized on return).
585  */
586 void
587 lwkt_preempt(thread_t ntd, int critpri)
588 {
589     struct globaldata *gd = mycpu;
590     thread_t td = gd->gd_curthread;
591 #ifdef SMP
592     int mpheld;
593     int savecnt;
594 #endif
595
596     /*
597      * The caller has put us in a critical section.  We can only preempt
598      * if the caller of the caller was not in a critical section (basically
599      * a local interrupt), as determined by the 'critpri' parameter.   If
600      * we are unable to preempt 
601      *
602      * YYY The target thread must be in a critical section (else it must
603      * inherit our critical section?  I dunno yet).
604      */
605     KASSERT(ntd->td_pri >= TDPRI_CRIT, ("BADCRIT0 %d", ntd->td_pri));
606
607     need_resched();
608     if (!_lwkt_wantresched(ntd, td)) {
609         ++preempt_miss;
610         return;
611     }
612     if ((td->td_pri & ~TDPRI_MASK) > critpri) {
613         ++preempt_miss;
614         return;
615     }
616 #ifdef SMP
617     if (ntd->td_gd != gd) {
618         ++preempt_miss;
619         return;
620     }
621 #endif
622     if (td == ntd || ((td->td_flags | ntd->td_flags) & TDF_PREEMPT_LOCK)) {
623         ++preempt_weird;
624         return;
625     }
626     if (ntd->td_preempted) {
627         ++preempt_hit;
628         return;
629     }
630 #ifdef SMP
631     /*
632      * note: an interrupt might have occured just as we were transitioning
633      * to or from the MP lock.  In this case td_mpcount will be pre-disposed
634      * (non-zero) but not actually synchronized with the actual state of the
635      * lock.  We can use it to imply an MP lock requirement for the
636      * preemption but we cannot use it to test whether we hold the MP lock
637      * or not.
638      */
639     savecnt = td->td_mpcount;
640     mpheld = MP_LOCK_HELD();
641     ntd->td_mpcount += td->td_mpcount;
642     if (mpheld == 0 && ntd->td_mpcount && !cpu_try_mplock()) {
643         ntd->td_mpcount -= td->td_mpcount;
644         ++preempt_miss;
645         return;
646     }
647 #endif
648
649     ++preempt_hit;
650     ntd->td_preempted = td;
651     td->td_flags |= TDF_PREEMPT_LOCK;
652     td->td_switch(ntd);
653     KKASSERT(ntd->td_preempted && (td->td_flags & TDF_PREEMPT_DONE));
654 #ifdef SMP
655     KKASSERT(savecnt == td->td_mpcount);
656     mpheld = MP_LOCK_HELD();
657     if (mpheld && td->td_mpcount == 0)
658         cpu_rel_mplock();
659     else if (mpheld == 0 && td->td_mpcount)
660         panic("lwkt_preempt(): MP lock was not held through");
661 #endif
662     ntd->td_preempted = NULL;
663     td->td_flags &= ~(TDF_PREEMPT_LOCK|TDF_PREEMPT_DONE);
664 }
665
666 /*
667  * Yield our thread while higher priority threads are pending.  This is
668  * typically called when we leave a critical section but it can be safely
669  * called while we are in a critical section.
670  *
671  * This function will not generally yield to equal priority threads but it
672  * can occur as a side effect.  Note that lwkt_switch() is called from
673  * inside the critical section to prevent its own crit_exit() from reentering
674  * lwkt_yield_quick().
675  *
676  * gd_reqflags indicates that *something* changed, e.g. an interrupt or softint
677  * came along but was blocked and made pending.
678  *
679  * (self contained on a per cpu basis)
680  */
681 void
682 lwkt_yield_quick(void)
683 {
684     globaldata_t gd = mycpu;
685     thread_t td = gd->gd_curthread;
686
687     /*
688      * gd_reqflags is cleared in splz if the cpl is 0.  If we were to clear
689      * it with a non-zero cpl then we might not wind up calling splz after
690      * a task switch when the critical section is exited even though the
691      * new task could accept the interrupt.
692      *
693      * XXX from crit_exit() only called after last crit section is released.
694      * If called directly will run splz() even if in a critical section.
695      *
696      * td_nest_count prevent deep nesting via splz() or doreti().  Note that
697      * except for this special case, we MUST call splz() here to handle any
698      * pending ints, particularly after we switch, or we might accidently
699      * halt the cpu with interrupts pending.
700      */
701     if (gd->gd_reqflags && td->td_nest_count < 2)
702         splz();
703
704     /*
705      * YYY enabling will cause wakeup() to task-switch, which really
706      * confused the old 4.x code.  This is a good way to simulate
707      * preemption and MP without actually doing preemption or MP, because a
708      * lot of code assumes that wakeup() does not block.
709      */
710     if (untimely_switch && td->td_nest_count == 0 &&
711         gd->gd_intr_nesting_level == 0
712     ) {
713         crit_enter();
714         /*
715          * YYY temporary hacks until we disassociate the userland scheduler
716          * from the LWKT scheduler.
717          */
718         if (td->td_flags & TDF_RUNQ) {
719             lwkt_switch();              /* will not reenter yield function */
720         } else {
721             lwkt_schedule_self();       /* make sure we are scheduled */
722             lwkt_switch();              /* will not reenter yield function */
723             lwkt_deschedule_self();     /* make sure we are descheduled */
724         }
725         crit_exit_noyield(td);
726     }
727 }
728
729 /*
730  * This implements a normal yield which, unlike _quick, will yield to equal
731  * priority threads as well.  Note that gd_reqflags tests will be handled by
732  * the crit_exit() call in lwkt_switch().
733  *
734  * (self contained on a per cpu basis)
735  */
736 void
737 lwkt_yield(void)
738 {
739     lwkt_schedule_self();
740     lwkt_switch();
741 }
742
743 /*
744  * Schedule a thread to run.  As the current thread we can always safely
745  * schedule ourselves, and a shortcut procedure is provided for that
746  * function.
747  *
748  * (non-blocking, self contained on a per cpu basis)
749  */
750 void
751 lwkt_schedule_self(void)
752 {
753     thread_t td = curthread;
754
755     crit_enter();
756     KASSERT(td->td_wait == NULL, ("lwkt_schedule_self(): td_wait not NULL!"));
757     _lwkt_enqueue(td);
758 #ifdef _KERNEL
759     if (td->td_proc && td->td_proc->p_stat == SSLEEP)
760         panic("SCHED SELF PANIC");
761 #endif
762     crit_exit();
763 }
764
765 /*
766  * Generic schedule.  Possibly schedule threads belonging to other cpus and
767  * deal with threads that might be blocked on a wait queue.
768  *
769  * YYY this is one of the best places to implement load balancing code.
770  * Load balancing can be accomplished by requesting other sorts of actions
771  * for the thread in question.
772  */
773 void
774 lwkt_schedule(thread_t td)
775 {
776 #ifdef  INVARIANTS
777     if ((td->td_flags & TDF_PREEMPT_LOCK) == 0 && td->td_proc 
778         && td->td_proc->p_stat == SSLEEP
779     ) {
780         printf("PANIC schedule curtd = %p (%d %d) target %p (%d %d)\n",
781             curthread,
782             curthread->td_proc ? curthread->td_proc->p_pid : -1,
783             curthread->td_proc ? curthread->td_proc->p_stat : -1,
784             td,
785             td->td_proc ? curthread->td_proc->p_pid : -1,
786             td->td_proc ? curthread->td_proc->p_stat : -1
787         );
788         panic("SCHED PANIC");
789     }
790 #endif
791     crit_enter();
792     if (td == curthread) {
793         _lwkt_enqueue(td);
794     } else {
795         lwkt_wait_t w;
796
797         /*
798          * If the thread is on a wait list we have to send our scheduling
799          * request to the owner of the wait structure.  Otherwise we send
800          * the scheduling request to the cpu owning the thread.  Races
801          * are ok, the target will forward the message as necessary (the
802          * message may chase the thread around before it finally gets
803          * acted upon).
804          *
805          * (remember, wait structures use stable storage)
806          */
807         if ((w = td->td_wait) != NULL) {
808             if (lwkt_trytoken(&w->wa_token)) {
809                 TAILQ_REMOVE(&w->wa_waitq, td, td_threadq);
810                 --w->wa_count;
811                 td->td_wait = NULL;
812                 if (smp_active == 0 || td->td_gd == mycpu) {
813                     _lwkt_enqueue(td);
814                     if (td->td_preemptable) {
815                         td->td_preemptable(td, TDPRI_CRIT*2); /* YYY +token */
816                     } else if (_lwkt_wantresched(td, curthread)) {
817                         need_resched();
818                     }
819                 } else {
820                     lwkt_send_ipiq(td->td_gd->gd_cpuid, (ipifunc_t)lwkt_schedule, td);
821                 }
822                 lwkt_reltoken(&w->wa_token);
823             } else {
824                 lwkt_send_ipiq(w->wa_token.t_cpu, (ipifunc_t)lwkt_schedule, td);
825             }
826         } else {
827             /*
828              * If the wait structure is NULL and we own the thread, there
829              * is no race (since we are in a critical section).  If we
830              * do not own the thread there might be a race but the
831              * target cpu will deal with it.
832              */
833             if (smp_active == 0 || td->td_gd == mycpu) {
834                 _lwkt_enqueue(td);
835                 if (td->td_preemptable) {
836                     td->td_preemptable(td, TDPRI_CRIT);
837                 } else if (_lwkt_wantresched(td, curthread)) {
838                     need_resched();
839                 }
840             } else {
841                 lwkt_send_ipiq(td->td_gd->gd_cpuid, (ipifunc_t)lwkt_schedule, td);
842             }
843         }
844     }
845     crit_exit();
846 }
847
848 /*
849  * Managed acquisition.  This code assumes that the MP lock is held for
850  * the tdallq operation and that the thread has been descheduled from its
851  * original cpu.  We also have to wait for the thread to be entirely switched
852  * out on its original cpu (this is usually fast enough that we never loop)
853  * since the LWKT system does not have to hold the MP lock while switching
854  * and the target may have released it before switching.
855  */
856 void
857 lwkt_acquire(thread_t td)
858 {
859     struct globaldata *gd;
860
861     gd = td->td_gd;
862     KKASSERT((td->td_flags & TDF_RUNQ) == 0);
863     while (td->td_flags & TDF_RUNNING)  /* XXX spin */
864         ;
865     if (gd != mycpu) {
866         crit_enter();
867         TAILQ_REMOVE(&gd->gd_tdallq, td, td_allq);      /* protected by BGL */
868         gd = mycpu;
869         td->td_gd = gd;
870         TAILQ_INSERT_TAIL(&gd->gd_tdallq, td, td_allq); /* protected by BGL */
871         crit_exit();
872     }
873 }
874
875 /*
876  * Deschedule a thread.
877  *
878  * (non-blocking, self contained on a per cpu basis)
879  */
880 void
881 lwkt_deschedule_self(void)
882 {
883     thread_t td = curthread;
884
885     crit_enter();
886     KASSERT(td->td_wait == NULL, ("lwkt_schedule_self(): td_wait not NULL!"));
887     _lwkt_dequeue(td);
888     crit_exit();
889 }
890
891 /*
892  * Generic deschedule.  Descheduling threads other then your own should be
893  * done only in carefully controlled circumstances.  Descheduling is 
894  * asynchronous.  
895  *
896  * This function may block if the cpu has run out of messages.
897  */
898 void
899 lwkt_deschedule(thread_t td)
900 {
901     crit_enter();
902     if (td == curthread) {
903         _lwkt_dequeue(td);
904     } else {
905         if (td->td_gd == mycpu) {
906             _lwkt_dequeue(td);
907         } else {
908             lwkt_send_ipiq(td->td_gd->gd_cpuid, (ipifunc_t)lwkt_deschedule, td);
909         }
910     }
911     crit_exit();
912 }
913
914 /*
915  * Set the target thread's priority.  This routine does not automatically
916  * switch to a higher priority thread, LWKT threads are not designed for
917  * continuous priority changes.  Yield if you want to switch.
918  *
919  * We have to retain the critical section count which uses the high bits
920  * of the td_pri field.  The specified priority may also indicate zero or
921  * more critical sections by adding TDPRI_CRIT*N.
922  */
923 void
924 lwkt_setpri(thread_t td, int pri)
925 {
926     KKASSERT(pri >= 0);
927     KKASSERT(td->td_gd == mycpu);
928     crit_enter();
929     if (td->td_flags & TDF_RUNQ) {
930         _lwkt_dequeue(td);
931         td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
932         _lwkt_enqueue(td);
933     } else {
934         td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
935     }
936     crit_exit();
937 }
938
939 void
940 lwkt_setpri_self(int pri)
941 {
942     thread_t td = curthread;
943
944     KKASSERT(pri >= 0 && pri <= TDPRI_MAX);
945     crit_enter();
946     if (td->td_flags & TDF_RUNQ) {
947         _lwkt_dequeue(td);
948         td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
949         _lwkt_enqueue(td);
950     } else {
951         td->td_pri = (td->td_pri & ~TDPRI_MASK) + pri;
952     }
953     crit_exit();
954 }
955
956 struct proc *
957 lwkt_preempted_proc(void)
958 {
959     thread_t td = curthread;
960     while (td->td_preempted)
961         td = td->td_preempted;
962     return(td->td_proc);
963 }
964
965 typedef struct lwkt_gettoken_req {
966     lwkt_token_t tok;
967     int cpu;
968 } lwkt_gettoken_req;
969
970 #if 0
971
972 /*
973  * This function deschedules the current thread and blocks on the specified
974  * wait queue.  We obtain ownership of the wait queue in order to block
975  * on it.  A generation number is used to interlock the wait queue in case
976  * it gets signalled while we are blocked waiting on the token.
977  *
978  * Note: alternatively we could dequeue our thread and then message the
979  * target cpu owning the wait queue.  YYY implement as sysctl.
980  *
981  * Note: wait queue signals normally ping-pong the cpu as an optimization.
982  */
983
984 void
985 lwkt_block(lwkt_wait_t w, const char *wmesg, int *gen)
986 {
987     thread_t td = curthread;
988
989     lwkt_gettoken(&w->wa_token);
990     if (w->wa_gen == *gen) {
991         _lwkt_dequeue(td);
992         TAILQ_INSERT_TAIL(&w->wa_waitq, td, td_threadq);
993         ++w->wa_count;
994         td->td_wait = w;
995         td->td_wmesg = wmesg;
996 again:
997         lwkt_switch();
998         lwkt_regettoken(&w->wa_token);
999         if (td->td_wmesg != NULL) {
1000             _lwkt_dequeue(td);
1001             goto again;
1002         }
1003     }
1004     /* token might be lost, doesn't matter for gen update */
1005     *gen = w->wa_gen;
1006     lwkt_reltoken(&w->wa_token);
1007 }
1008
1009 /*
1010  * Signal a wait queue.  We gain ownership of the wait queue in order to
1011  * signal it.  Once a thread is removed from the wait queue we have to
1012  * deal with the cpu owning the thread.
1013  *
1014  * Note: alternatively we could message the target cpu owning the wait
1015  * queue.  YYY implement as sysctl.
1016  */
1017 void
1018 lwkt_signal(lwkt_wait_t w, int count)
1019 {
1020     thread_t td;
1021     int count;
1022
1023     lwkt_gettoken(&w->wa_token);
1024     ++w->wa_gen;
1025     if (count < 0)
1026         count = w->wa_count;
1027     while ((td = TAILQ_FIRST(&w->wa_waitq)) != NULL && count) {
1028         --count;
1029         --w->wa_count;
1030         TAILQ_REMOVE(&w->wa_waitq, td, td_threadq);
1031         td->td_wait = NULL;
1032         td->td_wmesg = NULL;
1033         if (td->td_gd == mycpu) {
1034             _lwkt_enqueue(td);
1035         } else {
1036             lwkt_send_ipiq(td->td_gd->gd_cpuid, (ipifunc_t)lwkt_schedule, td);
1037         }
1038         lwkt_regettoken(&w->wa_token);
1039     }
1040     lwkt_reltoken(&w->wa_token);
1041 }
1042
1043 #endif
1044
1045 /*
1046  * Acquire ownership of a token
1047  *
1048  * Acquire ownership of a token.  The token may have spl and/or critical
1049  * section side effects, depending on its purpose.  These side effects
1050  * guarentee that you will maintain ownership of the token as long as you
1051  * do not block.  If you block you may lose access to the token (but you
1052  * must still release it even if you lose your access to it).
1053  *
1054  * YYY for now we use a critical section to prevent IPIs from taking away
1055  * a token, but do we really only need to disable IPIs ?
1056  *
1057  * YYY certain tokens could be made to act like mutexes when performance
1058  * would be better (e.g. t_cpu == -1).  This is not yet implemented.
1059  *
1060  * YYY the tokens replace 4.x's simplelocks for the most part, but this
1061  * means that 4.x does not expect a switch so for now we cannot switch
1062  * when waiting for an IPI to be returned.  
1063  *
1064  * YYY If the token is owned by another cpu we may have to send an IPI to
1065  * it and then block.   The IPI causes the token to be given away to the
1066  * requesting cpu, unless it has already changed hands.  Since only the
1067  * current cpu can give away a token it owns we do not need a memory barrier.
1068  * This needs serious optimization.
1069  */
1070
1071 #ifdef SMP
1072
1073 static
1074 void
1075 lwkt_gettoken_remote(void *arg)
1076 {
1077     lwkt_gettoken_req *req = arg;
1078     if (req->tok->t_cpu == mycpu->gd_cpuid) {
1079 #ifdef INVARIANTS
1080         if (token_debug)
1081             printf("GT(%d,%d) ", req->tok->t_cpu, req->cpu);
1082 #endif
1083         req->tok->t_cpu = req->cpu;
1084         req->tok->t_reqcpu = req->cpu;  /* YYY leave owned by target cpu */
1085         /* else set reqcpu to point to current cpu for release */
1086     }
1087 }
1088
1089 #endif
1090
1091 int
1092 lwkt_gettoken(lwkt_token_t tok)
1093 {
1094     /*
1095      * Prevent preemption so the token can't be taken away from us once
1096      * we gain ownership of it.  Use a synchronous request which might
1097      * block.  The request will be forwarded as necessary playing catchup
1098      * to the token.
1099      */
1100
1101     crit_enter();
1102 #ifdef INVARIANTS
1103     if (curthread->td_pri > 1800) {
1104         printf("lwkt_gettoken: %p called from %p: crit sect nesting warning\n",
1105             tok, ((int **)&tok)[-1]);
1106     }
1107     if (curthread->td_pri > 2000) {
1108         curthread->td_pri = 1000;
1109         panic("too HIGH!");
1110     }
1111 #endif
1112 #ifdef SMP
1113     while (tok->t_cpu != mycpu->gd_cpuid) {
1114         struct lwkt_gettoken_req req;
1115         int seq;
1116         int dcpu;
1117
1118         req.cpu = mycpu->gd_cpuid;
1119         req.tok = tok;
1120         dcpu = (volatile int)tok->t_cpu;
1121         KKASSERT(dcpu >= 0 && dcpu < ncpus);
1122 #ifdef INVARIANTS
1123         if (token_debug)
1124             printf("REQT%d ", dcpu);
1125 #endif
1126         seq = lwkt_send_ipiq(dcpu, lwkt_gettoken_remote, &req);
1127         lwkt_wait_ipiq(dcpu, seq);
1128 #ifdef INVARIANTS
1129         if (token_debug)
1130             printf("REQR%d ", tok->t_cpu);
1131 #endif
1132     }
1133 #endif
1134     /*
1135      * leave us in a critical section on return.  This will be undone
1136      * by lwkt_reltoken().  Bump the generation number.
1137      */
1138     return(++tok->t_gen);
1139 }
1140
1141 /*
1142  * Attempt to acquire ownership of a token.  Returns 1 on success, 0 on
1143  * failure.
1144  */
1145 int
1146 lwkt_trytoken(lwkt_token_t tok)
1147 {
1148     crit_enter();
1149 #ifdef SMP
1150     if (tok->t_cpu != mycpu->gd_cpuid) {
1151         crit_exit();
1152         return(0);
1153     } 
1154 #endif
1155     /* leave us in the critical section */
1156     ++tok->t_gen;
1157     return(1);
1158 }
1159
1160 /*
1161  * Release your ownership of a token.  Releases must occur in reverse
1162  * order to aquisitions, eventually so priorities can be unwound properly
1163  * like SPLs.  At the moment the actual implemention doesn't care.
1164  *
1165  * We can safely hand a token that we own to another cpu without notifying
1166  * it, but once we do we can't get it back without requesting it (unless
1167  * the other cpu hands it back to us before we check).
1168  *
1169  * We might have lost the token, so check that.
1170  *
1171  * Return the token's generation number.  The number is useful to callers
1172  * who may want to know if the token was stolen during potential blockages.
1173  */
1174 int
1175 lwkt_reltoken(lwkt_token_t tok)
1176 {
1177     int gen;
1178
1179     if (tok->t_cpu == mycpu->gd_cpuid) {
1180         tok->t_cpu = tok->t_reqcpu;
1181     }
1182     gen = tok->t_gen;
1183     crit_exit();
1184     return(gen);
1185 }
1186
1187 /*
1188  * Reacquire a token that might have been lost.  0 is returned if the 
1189  * generation has not changed (nobody stole the token from us), -1 is 
1190  * returned otherwise.  The token is reacquired regardless but the
1191  * generation number is not bumped further if we already own the token.
1192  *
1193  * For efficiency we inline the best-case situation for lwkt_regettoken()
1194  * (i.e .we still own the token).
1195  */
1196 int
1197 lwkt_gentoken(lwkt_token_t tok, int *gen)
1198 {
1199     if (tok->t_cpu == mycpu->gd_cpuid && tok->t_gen == *gen)
1200         return(0);
1201     *gen = lwkt_regettoken(tok);
1202     return(-1);
1203 }
1204
1205 /*
1206  * Re-acquire a token that might have been lost.   The generation number
1207  * is bumped and returned regardless of whether the token had been lost
1208  * or not (because we only have cpu granularity we have to bump the token
1209  * either way).
1210  */
1211 int
1212 lwkt_regettoken(lwkt_token_t tok)
1213 {
1214     /* assert we are in a critical section */
1215     if (tok->t_cpu != mycpu->gd_cpuid) {
1216 #ifdef SMP
1217         while (tok->t_cpu != mycpu->gd_cpuid) {
1218             struct lwkt_gettoken_req req;
1219             int seq;
1220             int dcpu;
1221
1222             req.cpu = mycpu->gd_cpuid;
1223             req.tok = tok;
1224             dcpu = (volatile int)tok->t_cpu;
1225             KKASSERT(dcpu >= 0 && dcpu < ncpus);
1226 #ifdef INVARIANTS
1227             if (token_debug)
1228                 printf("REQT%d ", dcpu);
1229 #endif
1230             seq = lwkt_send_ipiq(dcpu, lwkt_gettoken_remote, &req);
1231             lwkt_wait_ipiq(dcpu, seq);
1232 #ifdef INVARIATNS
1233             if (token_debug)
1234                 printf("REQR%d ", tok->t_cpu);
1235 #endif
1236         }
1237 #endif
1238     }
1239     ++tok->t_gen;
1240     return(tok->t_gen);
1241 }
1242
1243 void
1244 lwkt_inittoken(lwkt_token_t tok)
1245 {
1246     /*
1247      * Zero structure and set cpu owner and reqcpu to cpu 0.
1248      */
1249     bzero(tok, sizeof(*tok));
1250 }
1251
1252 /*
1253  * Create a kernel process/thread/whatever.  It shares it's address space
1254  * with proc0 - ie: kernel only.
1255  *
1256  * NOTE!  By default new threads are created with the MP lock held.  A 
1257  * thread which does not require the MP lock should release it by calling
1258  * rel_mplock() at the start of the new thread.
1259  */
1260 int
1261 lwkt_create(void (*func)(void *), void *arg,
1262     struct thread **tdp, thread_t template, int tdflags, int cpu,
1263     const char *fmt, ...)
1264 {
1265     thread_t td;
1266     __va_list ap;
1267
1268     td = lwkt_alloc_thread(template, cpu);
1269     if (tdp)
1270         *tdp = td;
1271     cpu_set_thread_handler(td, lwkt_exit, func, arg);
1272     td->td_flags |= TDF_VERBOSE | tdflags;
1273 #ifdef SMP
1274     td->td_mpcount = 1;
1275 #endif
1276
1277     /*
1278      * Set up arg0 for 'ps' etc
1279      */
1280     __va_start(ap, fmt);
1281     vsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1282     __va_end(ap);
1283
1284     /*
1285      * Schedule the thread to run
1286      */
1287     if ((td->td_flags & TDF_STOPREQ) == 0)
1288         lwkt_schedule(td);
1289     else
1290         td->td_flags &= ~TDF_STOPREQ;
1291     return 0;
1292 }
1293
1294 /*
1295  * kthread_* is specific to the kernel and is not needed by userland.
1296  */
1297 #ifdef _KERNEL
1298
1299 /*
1300  * Destroy an LWKT thread.   Warning!  This function is not called when
1301  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1302  * uses a different reaping mechanism.
1303  */
1304 void
1305 lwkt_exit(void)
1306 {
1307     thread_t td = curthread;
1308
1309     if (td->td_flags & TDF_VERBOSE)
1310         printf("kthread %p %s has exited\n", td, td->td_comm);
1311     crit_enter();
1312     lwkt_deschedule_self();
1313     ++mycpu->gd_tdfreecount;
1314     TAILQ_INSERT_TAIL(&mycpu->gd_tdfreeq, td, td_threadq);
1315     cpu_thread_exit();
1316 }
1317
1318 /*
1319  * Create a kernel process/thread/whatever.  It shares it's address space
1320  * with proc0 - ie: kernel only.  5.x compatible.
1321  *
1322  * NOTE!  By default kthreads are created with the MP lock held.  A
1323  * thread which does not require the MP lock should release it by calling
1324  * rel_mplock() at the start of the new thread.
1325  */
1326 int
1327 kthread_create(void (*func)(void *), void *arg,
1328     struct thread **tdp, const char *fmt, ...)
1329 {
1330     thread_t td;
1331     __va_list ap;
1332
1333     td = lwkt_alloc_thread(NULL, -1);
1334     if (tdp)
1335         *tdp = td;
1336     cpu_set_thread_handler(td, kthread_exit, func, arg);
1337     td->td_flags |= TDF_VERBOSE;
1338 #ifdef SMP
1339     td->td_mpcount = 1;
1340 #endif
1341
1342     /*
1343      * Set up arg0 for 'ps' etc
1344      */
1345     __va_start(ap, fmt);
1346     vsnprintf(td->td_comm, sizeof(td->td_comm), fmt, ap);
1347     __va_end(ap);
1348
1349     /*
1350      * Schedule the thread to run
1351      */
1352     lwkt_schedule(td);
1353     return 0;
1354 }
1355
1356 /*
1357  * Destroy an LWKT thread.   Warning!  This function is not called when
1358  * a process exits, cpu_proc_exit() directly calls cpu_thread_exit() and
1359  * uses a different reaping mechanism.
1360  *
1361  * XXX duplicates lwkt_exit()
1362  */
1363 void
1364 kthread_exit(void)
1365 {
1366     lwkt_exit();
1367 }
1368
1369 #endif /* _KERNEL */
1370
1371 void
1372 crit_panic(void)
1373 {
1374     thread_t td = curthread;
1375     int lpri = td->td_pri;
1376
1377     td->td_pri = 0;
1378     panic("td_pri is/would-go negative! %p %d", td, lpri);
1379 }
1380
1381 #ifdef SMP
1382
1383 /*
1384  * Send a function execution request to another cpu.  The request is queued
1385  * on the cpu<->cpu ipiq matrix.  Each cpu owns a unique ipiq FIFO for every
1386  * possible target cpu.  The FIFO can be written.
1387  *
1388  * YYY If the FIFO fills up we have to enable interrupts and process the
1389  * IPIQ while waiting for it to empty or we may deadlock with another cpu.
1390  * Create a CPU_*() function to do this!
1391  *
1392  * We can safely bump gd_intr_nesting_level because our crit_exit() at the
1393  * end will take care of any pending interrupts.
1394  *
1395  * Must be called from a critical section.
1396  */
1397 int
1398 lwkt_send_ipiq(int dcpu, ipifunc_t func, void *arg)
1399 {
1400     lwkt_ipiq_t ip;
1401     int windex;
1402     struct globaldata *gd = mycpu;
1403
1404     if (dcpu == gd->gd_cpuid) {
1405         func(arg);
1406         return(0);
1407     } 
1408     crit_enter();
1409     ++gd->gd_intr_nesting_level;
1410 #ifdef INVARIANTS
1411     if (gd->gd_intr_nesting_level > 20)
1412         panic("lwkt_send_ipiq: TOO HEAVILY NESTED!");
1413 #endif
1414     KKASSERT(curthread->td_pri >= TDPRI_CRIT);
1415     KKASSERT(dcpu >= 0 && dcpu < ncpus);
1416     ++ipiq_count;
1417     ip = &gd->gd_ipiq[dcpu];
1418
1419     /*
1420      * We always drain before the FIFO becomes full so it should never
1421      * become full.  We need to leave enough entries to deal with 
1422      * reentrancy.
1423      */
1424     KKASSERT(ip->ip_windex - ip->ip_rindex != MAXCPUFIFO);
1425     windex = ip->ip_windex & MAXCPUFIFO_MASK;
1426     ip->ip_func[windex] = func;
1427     ip->ip_arg[windex] = arg;
1428     /* YYY memory barrier */
1429     ++ip->ip_windex;
1430     if (ip->ip_windex - ip->ip_rindex > MAXCPUFIFO / 2) {
1431         unsigned int eflags = read_eflags();
1432         cpu_enable_intr();
1433         ++ipiq_fifofull;
1434         while (ip->ip_windex - ip->ip_rindex > MAXCPUFIFO / 4) {
1435             KKASSERT(ip->ip_windex - ip->ip_rindex != MAXCPUFIFO - 1);
1436             lwkt_process_ipiq();
1437         }
1438         write_eflags(eflags);
1439     }
1440     --gd->gd_intr_nesting_level;
1441     cpu_send_ipiq(dcpu);        /* issues memory barrier if appropriate */
1442     crit_exit();
1443     return(ip->ip_windex);
1444 }
1445
1446 /*
1447  * Send a message to several target cpus.  Typically used for scheduling.
1448  * The message will not be sent to stopped cpus.
1449  */
1450 void
1451 lwkt_send_ipiq_mask(u_int32_t mask, ipifunc_t func, void *arg)
1452 {
1453     int cpuid;
1454
1455     mask &= ~stopped_cpus;
1456     while (mask) {
1457             cpuid = bsfl(mask);
1458             lwkt_send_ipiq(cpuid, func, arg);
1459             mask &= ~(1 << cpuid);
1460     }
1461 }
1462
1463 /*
1464  * Wait for the remote cpu to finish processing a function.
1465  *
1466  * YYY we have to enable interrupts and process the IPIQ while waiting
1467  * for it to empty or we may deadlock with another cpu.  Create a CPU_*()
1468  * function to do this!  YYY we really should 'block' here.
1469  *
1470  * Must be called from a critical section.  Thsi routine may be called
1471  * from an interrupt (for example, if an interrupt wakes a foreign thread
1472  * up).
1473  */
1474 void
1475 lwkt_wait_ipiq(int dcpu, int seq)
1476 {
1477     lwkt_ipiq_t ip;
1478     int maxc = 100000000;
1479
1480     if (dcpu != mycpu->gd_cpuid) {
1481         KKASSERT(dcpu >= 0 && dcpu < ncpus);
1482         ip = &mycpu->gd_ipiq[dcpu];
1483         if ((int)(ip->ip_xindex - seq) < 0) {
1484             unsigned int eflags = read_eflags();
1485             cpu_enable_intr();
1486             while ((int)(ip->ip_xindex - seq) < 0) {
1487                 lwkt_process_ipiq();
1488                 if (--maxc == 0)
1489                         printf("LWKT_WAIT_IPIQ WARNING! %d wait %d (%d)\n", mycpu->gd_cpuid, dcpu, ip->ip_xindex - seq);
1490                 if (maxc < -1000000)
1491                         panic("LWKT_WAIT_IPIQ");
1492             }
1493             write_eflags(eflags);
1494         }
1495     }
1496 }
1497
1498 /*
1499  * Called from IPI interrupt (like a fast interrupt), which has placed
1500  * us in a critical section.  The MP lock may or may not be held.
1501  * May also be called from doreti or splz, or be reentrantly called
1502  * indirectly through the ip_func[] we run.
1503  */
1504 void
1505 lwkt_process_ipiq(void)
1506 {
1507     int n;
1508     int cpuid = mycpu->gd_cpuid;
1509
1510     for (n = 0; n < ncpus; ++n) {
1511         lwkt_ipiq_t ip;
1512         int ri;
1513
1514         if (n == cpuid)
1515             continue;
1516         ip = globaldata_find(n)->gd_ipiq;
1517         if (ip == NULL)
1518             continue;
1519         ip = &ip[cpuid];
1520
1521         /*
1522          * Note: xindex is only updated after we are sure the function has
1523          * finished execution.  Beware lwkt_process_ipiq() reentrancy!  The
1524          * function may send an IPI which may block/drain.
1525          */
1526         while (ip->ip_rindex != ip->ip_windex) {
1527             ri = ip->ip_rindex & MAXCPUFIFO_MASK;
1528             ++ip->ip_rindex;
1529             ip->ip_func[ri](ip->ip_arg[ri]);
1530             /* YYY memory barrier */
1531             ip->ip_xindex = ip->ip_rindex;
1532         }
1533     }
1534 }
1535
1536 #else
1537
1538 int
1539 lwkt_send_ipiq(int dcpu, ipifunc_t func, void *arg)
1540 {
1541     panic("lwkt_send_ipiq: UP box! (%d,%p,%p)", dcpu, func, arg);
1542     return(0); /* NOT REACHED */
1543 }
1544
1545 void
1546 lwkt_wait_ipiq(int dcpu, int seq)
1547 {
1548     panic("lwkt_wait_ipiq: UP box! (%d,%d)", dcpu, seq);
1549 }
1550
1551 #endif