Merge branch 'vendor/LIBARCHIVE'
[dragonfly.git] / contrib / binutils-2.22 / gold / expression.cc
1 // expression.cc -- expressions in linker scripts for gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <string>
26
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "symtab.h"
30 #include "layout.h"
31 #include "output.h"
32 #include "script.h"
33 #include "script-c.h"
34
35 namespace gold
36 {
37
38 // This file holds the code which handles linker expressions.
39
40 // The dot symbol, which linker scripts refer to simply as ".",
41 // requires special treatment.  The dot symbol is set several times,
42 // section addresses will refer to it, output sections will change it,
43 // and it can be set based on the value of other symbols.  We simplify
44 // the handling by prohibiting setting the dot symbol to the value of
45 // a non-absolute symbol.
46
47 // When evaluating the value of an expression, we pass in a pointer to
48 // this struct, so that the expression evaluation can find the
49 // information it needs.
50
51 struct Expression::Expression_eval_info
52 {
53   // The symbol table.
54   const Symbol_table* symtab;
55   // The layout--we use this to get section information.
56   const Layout* layout;
57   // Whether to check assertions.
58   bool check_assertions;
59   // Whether expressions can refer to the dot symbol.  The dot symbol
60   // is only available within a SECTIONS clause.
61   bool is_dot_available;
62   // The current value of the dot symbol.
63   uint64_t dot_value;
64   // The section in which the dot symbol is defined; this is NULL if
65   // it is absolute.
66   Output_section* dot_section;
67   // Points to where the section of the result should be stored.
68   Output_section** result_section_pointer;
69   // Pointer to where the alignment of the result should be stored.
70   uint64_t* result_alignment_pointer;
71 };
72
73 // Evaluate an expression.
74
75 uint64_t
76 Expression::eval(const Symbol_table* symtab, const Layout* layout,
77                  bool check_assertions)
78 {
79   return this->eval_maybe_dot(symtab, layout, check_assertions,
80                               false, 0, NULL, NULL, NULL);
81 }
82
83 // Evaluate an expression which may refer to the dot symbol.
84
85 uint64_t
86 Expression::eval_with_dot(const Symbol_table* symtab, const Layout* layout,
87                           bool check_assertions, uint64_t dot_value,
88                           Output_section* dot_section,
89                           Output_section** result_section_pointer,
90                           uint64_t* result_alignment_pointer)
91 {
92   return this->eval_maybe_dot(symtab, layout, check_assertions, true,
93                               dot_value, dot_section, result_section_pointer,
94                               result_alignment_pointer);
95 }
96
97 // Evaluate an expression which may or may not refer to the dot
98 // symbol.
99
100 uint64_t
101 Expression::eval_maybe_dot(const Symbol_table* symtab, const Layout* layout,
102                            bool check_assertions, bool is_dot_available,
103                            uint64_t dot_value, Output_section* dot_section,
104                            Output_section** result_section_pointer,
105                            uint64_t* result_alignment_pointer)
106 {
107   Expression_eval_info eei;
108   eei.symtab = symtab;
109   eei.layout = layout;
110   eei.check_assertions = check_assertions;
111   eei.is_dot_available = is_dot_available;
112   eei.dot_value = dot_value;
113   eei.dot_section = dot_section;
114
115   // We assume the value is absolute, and only set this to a section
116   // if we find a section relative reference.
117   if (result_section_pointer != NULL)
118     *result_section_pointer = NULL;
119   eei.result_section_pointer = result_section_pointer;
120
121   eei.result_alignment_pointer = result_alignment_pointer;
122
123   return this->value(&eei);
124 }
125
126 // A number.
127
128 class Integer_expression : public Expression
129 {
130  public:
131   Integer_expression(uint64_t val)
132     : val_(val)
133   { }
134
135   uint64_t
136   value(const Expression_eval_info*)
137   { return this->val_; }
138
139   void
140   print(FILE* f) const
141   { fprintf(f, "0x%llx", static_cast<unsigned long long>(this->val_)); }
142
143  private:
144   uint64_t val_;
145 };
146
147 extern "C" Expression*
148 script_exp_integer(uint64_t val)
149 {
150   return new Integer_expression(val);
151 }
152
153 // An expression whose value is the value of a symbol.
154
155 class Symbol_expression : public Expression
156 {
157  public:
158   Symbol_expression(const char* name, size_t length)
159     : name_(name, length)
160   { }
161
162   uint64_t
163   value(const Expression_eval_info*);
164
165   void
166   print(FILE* f) const
167   { fprintf(f, "%s", this->name_.c_str()); }
168
169  private:
170   std::string name_;
171 };
172
173 uint64_t
174 Symbol_expression::value(const Expression_eval_info* eei)
175 {
176   Symbol* sym = eei->symtab->lookup(this->name_.c_str());
177   if (sym == NULL || !sym->is_defined())
178     {
179       gold_error(_("undefined symbol '%s' referenced in expression"),
180                  this->name_.c_str());
181       return 0;
182     }
183
184   if (eei->result_section_pointer != NULL)
185     *eei->result_section_pointer = sym->output_section();
186
187   if (parameters->target().get_size() == 32)
188     return eei->symtab->get_sized_symbol<32>(sym)->value();
189   else if (parameters->target().get_size() == 64)
190     return eei->symtab->get_sized_symbol<64>(sym)->value();
191   else
192     gold_unreachable();
193 }
194
195 // An expression whose value is the value of the special symbol ".".
196 // This is only valid within a SECTIONS clause.
197
198 class Dot_expression : public Expression
199 {
200  public:
201   Dot_expression()
202   { }
203
204   uint64_t
205   value(const Expression_eval_info*);
206
207   void
208   print(FILE* f) const
209   { fprintf(f, "."); }
210 };
211
212 uint64_t
213 Dot_expression::value(const Expression_eval_info* eei)
214 {
215   if (!eei->is_dot_available)
216     {
217       gold_error(_("invalid reference to dot symbol outside of "
218                    "SECTIONS clause"));
219       return 0;
220     }
221   if (eei->result_section_pointer != NULL)
222     *eei->result_section_pointer = eei->dot_section;
223   return eei->dot_value;
224 }
225
226 // A string.  This is either the name of a symbol, or ".".
227
228 extern "C" Expression*
229 script_exp_string(const char* name, size_t length)
230 {
231   if (length == 1 && name[0] == '.')
232     return new Dot_expression();
233   else
234     return new Symbol_expression(name, length);
235 }
236
237 // A unary expression.
238
239 class Unary_expression : public Expression
240 {
241  public:
242   Unary_expression(Expression* arg)
243     : arg_(arg)
244   { }
245
246   ~Unary_expression()
247   { delete this->arg_; }
248
249  protected:
250   uint64_t
251   arg_value(const Expression_eval_info* eei,
252             Output_section** arg_section_pointer) const
253   {
254     return this->arg_->eval_maybe_dot(eei->symtab, eei->layout,
255                                       eei->check_assertions,
256                                       eei->is_dot_available,
257                                       eei->dot_value,
258                                       eei->dot_section,
259                                       arg_section_pointer,
260                                       eei->result_alignment_pointer);
261   }
262
263   void
264   arg_print(FILE* f) const
265   { this->arg_->print(f); }
266
267  private:
268   Expression* arg_;
269 };
270
271 // Handle unary operators.  We use a preprocessor macro as a hack to
272 // capture the C operator.
273
274 #define UNARY_EXPRESSION(NAME, OPERATOR)                                \
275   class Unary_ ## NAME : public Unary_expression                        \
276   {                                                                     \
277   public:                                                               \
278     Unary_ ## NAME(Expression* arg)                                     \
279       : Unary_expression(arg)                                           \
280     { }                                                                 \
281                                                                         \
282     uint64_t                                                            \
283     value(const Expression_eval_info* eei)                              \
284     {                                                                   \
285       Output_section* arg_section;                                      \
286       uint64_t ret = OPERATOR this->arg_value(eei, &arg_section);       \
287       if (arg_section != NULL && parameters->options().relocatable())   \
288         gold_warning(_("unary " #NAME " applied to section "            \
289                        "relative value"));                              \
290       return ret;                                                       \
291     }                                                                   \
292                                                                         \
293     void                                                                \
294     print(FILE* f) const                                                \
295     {                                                                   \
296       fprintf(f, "(%s ", #OPERATOR);                                    \
297       this->arg_print(f);                                               \
298       fprintf(f, ")");                                                  \
299     }                                                                   \
300   };                                                                    \
301                                                                         \
302   extern "C" Expression*                                                \
303   script_exp_unary_ ## NAME(Expression* arg)                            \
304   {                                                                     \
305       return new Unary_ ## NAME(arg);                                   \
306   }
307
308 UNARY_EXPRESSION(minus, -)
309 UNARY_EXPRESSION(logical_not, !)
310 UNARY_EXPRESSION(bitwise_not, ~)
311
312 // A binary expression.
313
314 class Binary_expression : public Expression
315 {
316  public:
317   Binary_expression(Expression* left, Expression* right)
318     : left_(left), right_(right)
319   { }
320
321   ~Binary_expression()
322   {
323     delete this->left_;
324     delete this->right_;
325   }
326
327  protected:
328   uint64_t
329   left_value(const Expression_eval_info* eei,
330              Output_section** section_pointer,
331              uint64_t* alignment_pointer) const
332   {
333     return this->left_->eval_maybe_dot(eei->symtab, eei->layout,
334                                        eei->check_assertions,
335                                        eei->is_dot_available,
336                                        eei->dot_value,
337                                        eei->dot_section,
338                                        section_pointer,
339                                        alignment_pointer);
340   }
341
342   uint64_t
343   right_value(const Expression_eval_info* eei,
344               Output_section** section_pointer,
345               uint64_t* alignment_pointer) const
346   {
347     return this->right_->eval_maybe_dot(eei->symtab, eei->layout,
348                                         eei->check_assertions,
349                                         eei->is_dot_available,
350                                         eei->dot_value,
351                                         eei->dot_section,
352                                         section_pointer,
353                                         alignment_pointer);
354   }
355
356   void
357   left_print(FILE* f) const
358   { this->left_->print(f); }
359
360   void
361   right_print(FILE* f) const
362   { this->right_->print(f); }
363
364   // This is a call to function FUNCTION_NAME.  Print it.  This is for
365   // debugging.
366   void
367   print_function(FILE* f, const char* function_name) const
368   {
369     fprintf(f, "%s(", function_name);
370     this->left_print(f);
371     fprintf(f, ", ");
372     this->right_print(f);
373     fprintf(f, ")");
374   }
375
376  private:
377   Expression* left_;
378   Expression* right_;
379 };
380
381 // Handle binary operators.  We use a preprocessor macro as a hack to
382 // capture the C operator.  KEEP_LEFT means that if the left operand
383 // is section relative and the right operand is not, the result uses
384 // the same section as the left operand.  KEEP_RIGHT is the same with
385 // left and right swapped.  IS_DIV means that we need to give an error
386 // if the right operand is zero.  WARN means that we should warn if
387 // used on section relative values in a relocatable link.  We always
388 // warn if used on values in different sections in a relocatable link.
389
390 #define BINARY_EXPRESSION(NAME, OPERATOR, KEEP_LEFT, KEEP_RIGHT, IS_DIV, WARN) \
391   class Binary_ ## NAME : public Binary_expression                      \
392   {                                                                     \
393   public:                                                               \
394     Binary_ ## NAME(Expression* left, Expression* right)                \
395       : Binary_expression(left, right)                                  \
396     { }                                                                 \
397                                                                         \
398     uint64_t                                                            \
399     value(const Expression_eval_info* eei)                              \
400     {                                                                   \
401       Output_section* left_section;                                     \
402       uint64_t left_alignment = 0;                                      \
403       uint64_t left = this->left_value(eei, &left_section,              \
404                                        &left_alignment);                \
405       Output_section* right_section;                                    \
406       uint64_t right_alignment = 0;                                     \
407       uint64_t right = this->right_value(eei, &right_section,           \
408                                          &right_alignment);             \
409       if (KEEP_RIGHT && left_section == NULL && right_section != NULL)  \
410         {                                                               \
411           if (eei->result_section_pointer != NULL)                      \
412             *eei->result_section_pointer = right_section;               \
413           if (eei->result_alignment_pointer != NULL                     \
414               && right_alignment > *eei->result_alignment_pointer)      \
415             *eei->result_alignment_pointer = right_alignment;           \
416         }                                                               \
417       else if (KEEP_LEFT                                                \
418                && left_section != NULL                                  \
419                && right_section == NULL)                                \
420         {                                                               \
421           if (eei->result_section_pointer != NULL)                      \
422             *eei->result_section_pointer = left_section;                \
423           if (eei->result_alignment_pointer != NULL                     \
424               && left_alignment > *eei->result_alignment_pointer)       \
425             *eei->result_alignment_pointer = left_alignment;            \
426         }                                                               \
427       else if ((WARN || left_section != right_section)                  \
428                && (left_section != NULL || right_section != NULL)       \
429                && parameters->options().relocatable())                  \
430         gold_warning(_("binary " #NAME " applied to section "           \
431                        "relative value"));                              \
432       if (IS_DIV && right == 0)                                         \
433         {                                                               \
434           gold_error(_(#NAME " by zero"));                              \
435           return 0;                                                     \
436         }                                                               \
437       return left OPERATOR right;                                       \
438     }                                                                   \
439                                                                         \
440     void                                                                \
441     print(FILE* f) const                                                \
442     {                                                                   \
443       fprintf(f, "(");                                                  \
444       this->left_print(f);                                              \
445       fprintf(f, " %s ", #OPERATOR);                                    \
446       this->right_print(f);                                             \
447       fprintf(f, ")");                                                  \
448     }                                                                   \
449   };                                                                    \
450                                                                         \
451   extern "C" Expression*                                                \
452   script_exp_binary_ ## NAME(Expression* left, Expression* right)       \
453   {                                                                     \
454     return new Binary_ ## NAME(left, right);                            \
455   }
456
457 BINARY_EXPRESSION(mult, *, false, false, false, true)
458 BINARY_EXPRESSION(div, /, false, false, true, true)
459 BINARY_EXPRESSION(mod, %, false, false, true, true)
460 BINARY_EXPRESSION(add, +, true, true, false, true)
461 BINARY_EXPRESSION(sub, -, true, false, false, false)
462 BINARY_EXPRESSION(lshift, <<, false, false, false, true)
463 BINARY_EXPRESSION(rshift, >>, false, false, false, true)
464 BINARY_EXPRESSION(eq, ==, false, false, false, false)
465 BINARY_EXPRESSION(ne, !=, false, false, false, false)
466 BINARY_EXPRESSION(le, <=, false, false, false, false)
467 BINARY_EXPRESSION(ge, >=, false, false, false, false)
468 BINARY_EXPRESSION(lt, <, false, false, false, false)
469 BINARY_EXPRESSION(gt, >, false, false, false, false)
470 BINARY_EXPRESSION(bitwise_and, &, true, true, false, true)
471 BINARY_EXPRESSION(bitwise_xor, ^, true, true, false, true)
472 BINARY_EXPRESSION(bitwise_or, |, true, true, false, true)
473 BINARY_EXPRESSION(logical_and, &&, false, false, false, true)
474 BINARY_EXPRESSION(logical_or, ||, false, false, false, true)
475
476 // A trinary expression.
477
478 class Trinary_expression : public Expression
479 {
480  public:
481   Trinary_expression(Expression* arg1, Expression* arg2, Expression* arg3)
482     : arg1_(arg1), arg2_(arg2), arg3_(arg3)
483   { }
484
485   ~Trinary_expression()
486   {
487     delete this->arg1_;
488     delete this->arg2_;
489     delete this->arg3_;
490   }
491
492  protected:
493   uint64_t
494   arg1_value(const Expression_eval_info* eei,
495              Output_section** section_pointer) const
496   {
497     return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
498                                        eei->check_assertions,
499                                        eei->is_dot_available,
500                                        eei->dot_value,
501                                        eei->dot_section,
502                                        section_pointer,
503                                        NULL);
504   }
505
506   uint64_t
507   arg2_value(const Expression_eval_info* eei,
508              Output_section** section_pointer,
509              uint64_t* alignment_pointer) const
510   {
511     return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
512                                        eei->check_assertions,
513                                        eei->is_dot_available,
514                                        eei->dot_value,
515                                        eei->dot_section,
516                                        section_pointer,
517                                        alignment_pointer);
518   }
519
520   uint64_t
521   arg3_value(const Expression_eval_info* eei,
522              Output_section** section_pointer,
523              uint64_t* alignment_pointer) const
524   {
525     return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
526                                        eei->check_assertions,
527                                        eei->is_dot_available,
528                                        eei->dot_value,
529                                        eei->dot_section,
530                                        section_pointer,
531                                        alignment_pointer);
532   }
533
534   void
535   arg1_print(FILE* f) const
536   { this->arg1_->print(f); }
537
538   void
539   arg2_print(FILE* f) const
540   { this->arg2_->print(f); }
541
542   void
543   arg3_print(FILE* f) const
544   { this->arg3_->print(f); }
545
546  private:
547   Expression* arg1_;
548   Expression* arg2_;
549   Expression* arg3_;
550 };
551
552 // The conditional operator.
553
554 class Trinary_cond : public Trinary_expression
555 {
556  public:
557   Trinary_cond(Expression* arg1, Expression* arg2, Expression* arg3)
558     : Trinary_expression(arg1, arg2, arg3)
559   { }
560
561   uint64_t
562   value(const Expression_eval_info* eei)
563   {
564     Output_section* arg1_section;
565     uint64_t arg1 = this->arg1_value(eei, &arg1_section);
566     return (arg1
567             ? this->arg2_value(eei, eei->result_section_pointer,
568                                eei->result_alignment_pointer)
569             : this->arg3_value(eei, eei->result_section_pointer,
570                                eei->result_alignment_pointer));
571   }
572
573   void
574   print(FILE* f) const
575   {
576     fprintf(f, "(");
577     this->arg1_print(f);
578     fprintf(f, " ? ");
579     this->arg2_print(f);
580     fprintf(f, " : ");
581     this->arg3_print(f);
582     fprintf(f, ")");
583   }
584 };
585
586 extern "C" Expression*
587 script_exp_trinary_cond(Expression* arg1, Expression* arg2, Expression* arg3)
588 {
589   return new Trinary_cond(arg1, arg2, arg3);
590 }
591
592 // Max function.
593
594 class Max_expression : public Binary_expression
595 {
596  public:
597   Max_expression(Expression* left, Expression* right)
598     : Binary_expression(left, right)
599   { }
600
601   uint64_t
602   value(const Expression_eval_info* eei)
603   {
604     Output_section* left_section;
605     uint64_t left_alignment;
606     uint64_t left = this->left_value(eei, &left_section, &left_alignment);
607     Output_section* right_section;
608     uint64_t right_alignment;
609     uint64_t right = this->right_value(eei, &right_section, &right_alignment);
610     if (left_section == right_section)
611       {
612         if (eei->result_section_pointer != NULL)
613           *eei->result_section_pointer = left_section;
614       }
615     else if ((left_section != NULL || right_section != NULL)
616              && parameters->options().relocatable())
617       gold_warning(_("max applied to section relative value"));
618     if (eei->result_alignment_pointer != NULL)
619       {
620         uint64_t ra = *eei->result_alignment_pointer;
621         if (left > right)
622           ra = std::max(ra, left_alignment);
623         else if (right > left)
624           ra = std::max(ra, right_alignment);
625         else
626           ra = std::max(ra, std::max(left_alignment, right_alignment));
627         *eei->result_alignment_pointer = ra;
628       }
629     return std::max(left, right);
630   }
631
632   void
633   print(FILE* f) const
634   { this->print_function(f, "MAX"); }
635 };
636
637 extern "C" Expression*
638 script_exp_function_max(Expression* left, Expression* right)
639 {
640   return new Max_expression(left, right);
641 }
642
643 // Min function.
644
645 class Min_expression : public Binary_expression
646 {
647  public:
648   Min_expression(Expression* left, Expression* right)
649     : Binary_expression(left, right)
650   { }
651
652   uint64_t
653   value(const Expression_eval_info* eei)
654   {
655     Output_section* left_section;
656     uint64_t left_alignment;
657     uint64_t left = this->left_value(eei, &left_section, &left_alignment);
658     Output_section* right_section;
659     uint64_t right_alignment;
660     uint64_t right = this->right_value(eei, &right_section, &right_alignment);
661     if (left_section == right_section)
662       {
663         if (eei->result_section_pointer != NULL)
664           *eei->result_section_pointer = left_section;
665       }
666     else if ((left_section != NULL || right_section != NULL)
667              && parameters->options().relocatable())
668       gold_warning(_("min applied to section relative value"));
669     if (eei->result_alignment_pointer != NULL)
670       {
671         uint64_t ra = *eei->result_alignment_pointer;
672         if (left < right)
673           ra = std::max(ra, left_alignment);
674         else if (right < left)
675           ra = std::max(ra, right_alignment);
676         else
677           ra = std::max(ra, std::max(left_alignment, right_alignment));
678         *eei->result_alignment_pointer = ra;
679       }
680     return std::min(left, right);
681   }
682
683   void
684   print(FILE* f) const
685   { this->print_function(f, "MIN"); }
686 };
687
688 extern "C" Expression*
689 script_exp_function_min(Expression* left, Expression* right)
690 {
691   return new Min_expression(left, right);
692 }
693
694 // Class Section_expression.  This is a parent class used for
695 // functions which take the name of an output section.
696
697 class Section_expression : public Expression
698 {
699  public:
700   Section_expression(const char* section_name, size_t section_name_len)
701     : section_name_(section_name, section_name_len)
702   { }
703
704   uint64_t
705   value(const Expression_eval_info*);
706
707   void
708   print(FILE* f) const
709   { fprintf(f, "%s(%s)", this->function_name(), this->section_name_.c_str()); }
710
711  protected:
712   // The child class must implement this.
713   virtual uint64_t
714   value_from_output_section(const Expression_eval_info*,
715                             Output_section*) = 0;
716
717   // The child class must implement this.
718   virtual uint64_t
719   value_from_script_output_section(uint64_t address, uint64_t load_address,
720                                    uint64_t addralign, uint64_t size) = 0;
721
722   // The child class must implement this.
723   virtual const char*
724   function_name() const = 0;
725
726  private:
727   std::string section_name_;
728 };
729
730 uint64_t
731 Section_expression::value(const Expression_eval_info* eei)
732 {
733   const char* section_name = this->section_name_.c_str();
734   Output_section* os = eei->layout->find_output_section(section_name);
735   if (os != NULL)
736     return this->value_from_output_section(eei, os);
737
738   uint64_t address;
739   uint64_t load_address;
740   uint64_t addralign;
741   uint64_t size;
742   const Script_options* ss = eei->layout->script_options();
743   if (ss->saw_sections_clause())
744     {
745       if (ss->script_sections()->get_output_section_info(section_name,
746                                                          &address,
747                                                          &load_address,
748                                                          &addralign,
749                                                          &size))
750         return this->value_from_script_output_section(address, load_address,
751                                                       addralign, size);
752     }
753
754   gold_error("%s called on nonexistent output section '%s'",
755              this->function_name(), section_name);
756   return 0;
757 }
758
759 // ABSOLUTE function.
760
761 class Absolute_expression : public Unary_expression
762 {
763  public:
764   Absolute_expression(Expression* arg)
765     : Unary_expression(arg)
766   { }
767
768   uint64_t
769   value(const Expression_eval_info* eei)
770   {
771     uint64_t ret = this->arg_value(eei, NULL);
772     // Force the value to be absolute.
773     if (eei->result_section_pointer != NULL)
774       *eei->result_section_pointer = NULL;
775     return ret;
776   }
777
778   void
779   print(FILE* f) const
780   {
781     fprintf(f, "ABSOLUTE(");
782     this->arg_print(f);
783     fprintf(f, ")");
784   }
785 };
786
787 extern "C" Expression*
788 script_exp_function_absolute(Expression* arg)
789 {
790   return new Absolute_expression(arg);
791 }
792
793 // ALIGN function.
794
795 class Align_expression : public Binary_expression
796 {
797  public:
798   Align_expression(Expression* left, Expression* right)
799     : Binary_expression(left, right)
800   { }
801
802   uint64_t
803   value(const Expression_eval_info* eei)
804   {
805     Output_section* align_section;
806     uint64_t align = this->right_value(eei, &align_section, NULL);
807     if (align_section != NULL
808         && parameters->options().relocatable())
809       gold_warning(_("aligning to section relative value"));
810
811     if (eei->result_alignment_pointer != NULL
812         && align > *eei->result_alignment_pointer)
813       {
814         uint64_t a = align;
815         while ((a & (a - 1)) != 0)
816           a &= a - 1;
817         *eei->result_alignment_pointer = a;
818       }
819
820     uint64_t value = this->left_value(eei, eei->result_section_pointer, NULL);
821     if (align <= 1)
822       return value;
823     return ((value + align - 1) / align) * align;
824   }
825
826   void
827   print(FILE* f) const
828   { this->print_function(f, "ALIGN"); }
829 };
830
831 extern "C" Expression*
832 script_exp_function_align(Expression* left, Expression* right)
833 {
834   return new Align_expression(left, right);
835 }
836
837 // ASSERT function.
838
839 class Assert_expression : public Unary_expression
840 {
841  public:
842   Assert_expression(Expression* arg, const char* message, size_t length)
843     : Unary_expression(arg), message_(message, length)
844   { }
845
846   uint64_t
847   value(const Expression_eval_info* eei)
848   {
849     uint64_t value = this->arg_value(eei, eei->result_section_pointer);
850     if (!value && eei->check_assertions)
851       gold_error("%s", this->message_.c_str());
852     return value;
853   }
854
855   void
856   print(FILE* f) const
857   {
858     fprintf(f, "ASSERT(");
859     this->arg_print(f);
860     fprintf(f, ", %s)", this->message_.c_str());
861   }
862
863  private:
864   std::string message_;
865 };
866
867 extern "C" Expression*
868 script_exp_function_assert(Expression* expr, const char* message,
869                            size_t length)
870 {
871   return new Assert_expression(expr, message, length);
872 }
873
874 // ADDR function.
875
876 class Addr_expression : public Section_expression
877 {
878  public:
879   Addr_expression(const char* section_name, size_t section_name_len)
880     : Section_expression(section_name, section_name_len)
881   { }
882
883  protected:
884   uint64_t
885   value_from_output_section(const Expression_eval_info* eei,
886                             Output_section* os)
887   {
888     if (eei->result_section_pointer != NULL)
889       *eei->result_section_pointer = os;
890     return os->address();
891   }
892
893   uint64_t
894   value_from_script_output_section(uint64_t address, uint64_t, uint64_t,
895                                    uint64_t)
896   { return address; }
897
898   const char*
899   function_name() const
900   { return "ADDR"; }
901 };
902
903 extern "C" Expression*
904 script_exp_function_addr(const char* section_name, size_t section_name_len)
905 {
906   return new Addr_expression(section_name, section_name_len);
907 }
908
909 // ALIGNOF.
910
911 class Alignof_expression : public Section_expression
912 {
913  public:
914   Alignof_expression(const char* section_name, size_t section_name_len)
915     : Section_expression(section_name, section_name_len)
916   { }
917
918  protected:
919   uint64_t
920   value_from_output_section(const Expression_eval_info*,
921                             Output_section* os)
922   { return os->addralign(); }
923
924   uint64_t
925   value_from_script_output_section(uint64_t, uint64_t, uint64_t addralign,
926                                    uint64_t)
927   { return addralign; }
928
929   const char*
930   function_name() const
931   { return "ALIGNOF"; }
932 };
933
934 extern "C" Expression*
935 script_exp_function_alignof(const char* section_name, size_t section_name_len)
936 {
937   return new Alignof_expression(section_name, section_name_len);
938 }
939
940 // CONSTANT.  It would be nice if we could simply evaluate this
941 // immediately and return an Integer_expression, but unfortunately we
942 // don't know the target.
943
944 class Constant_expression : public Expression
945 {
946  public:
947   Constant_expression(const char* name, size_t length);
948
949   uint64_t
950   value(const Expression_eval_info*);
951
952   void
953   print(FILE* f) const;
954
955  private:
956   enum Constant_function
957   {
958     CONSTANT_MAXPAGESIZE,
959     CONSTANT_COMMONPAGESIZE
960   };
961
962   Constant_function function_;
963 };
964
965 Constant_expression::Constant_expression(const char* name, size_t length)
966 {
967   if (length == 11 && strncmp(name, "MAXPAGESIZE", length) == 0)
968     this->function_ = CONSTANT_MAXPAGESIZE;
969   else if (length == 14 && strncmp(name, "COMMONPAGESIZE", length) == 0)
970     this->function_ = CONSTANT_COMMONPAGESIZE;
971   else
972     {
973       std::string s(name, length);
974       gold_error(_("unknown constant %s"), s.c_str());
975       this->function_ = CONSTANT_MAXPAGESIZE;
976     }
977 }
978
979 uint64_t
980 Constant_expression::value(const Expression_eval_info*)
981 {
982   switch (this->function_)
983     {
984     case CONSTANT_MAXPAGESIZE:
985       return parameters->target().abi_pagesize();
986     case CONSTANT_COMMONPAGESIZE:
987       return parameters->target().common_pagesize();
988     default:
989       gold_unreachable();
990     }
991 }
992
993 void
994 Constant_expression::print(FILE* f) const
995 {
996   const char* name;
997   switch (this->function_)
998     {
999     case CONSTANT_MAXPAGESIZE:
1000       name = "MAXPAGESIZE";
1001       break;
1002     case CONSTANT_COMMONPAGESIZE:
1003       name = "COMMONPAGESIZE";
1004       break;
1005     default:
1006       gold_unreachable();
1007     }
1008   fprintf(f, "CONSTANT(%s)", name);
1009 }
1010   
1011 extern "C" Expression*
1012 script_exp_function_constant(const char* name, size_t length)
1013 {
1014   return new Constant_expression(name, length);
1015 }
1016
1017 // DATA_SEGMENT_ALIGN.  FIXME: we don't implement this; we always fall
1018 // back to the general case.
1019
1020 extern "C" Expression*
1021 script_exp_function_data_segment_align(Expression* left, Expression*)
1022 {
1023   Expression* e1 = script_exp_function_align(script_exp_string(".", 1), left);
1024   Expression* e2 = script_exp_binary_sub(left, script_exp_integer(1));
1025   Expression* e3 = script_exp_binary_bitwise_and(script_exp_string(".", 1),
1026                                                  e2);
1027   return script_exp_binary_add(e1, e3);
1028 }
1029
1030 // DATA_SEGMENT_RELRO.  FIXME: This is not implemented.
1031
1032 extern "C" Expression*
1033 script_exp_function_data_segment_relro_end(Expression*, Expression* right)
1034 {
1035   return right;
1036 }
1037
1038 // DATA_SEGMENT_END.  FIXME: This is not implemented.
1039
1040 extern "C" Expression*
1041 script_exp_function_data_segment_end(Expression* val)
1042 {
1043   return val;
1044 }
1045
1046 // DEFINED function.
1047
1048 class Defined_expression : public Expression
1049 {
1050  public:
1051   Defined_expression(const char* symbol_name, size_t symbol_name_len)
1052     : symbol_name_(symbol_name, symbol_name_len)
1053   { }
1054
1055   uint64_t
1056   value(const Expression_eval_info* eei)
1057   {
1058     Symbol* sym = eei->symtab->lookup(this->symbol_name_.c_str());
1059     return sym != NULL && sym->is_defined();
1060   }
1061
1062   void
1063   print(FILE* f) const
1064   { fprintf(f, "DEFINED(%s)", this->symbol_name_.c_str()); }
1065
1066  private:
1067   std::string symbol_name_;
1068 };
1069
1070 extern "C" Expression*
1071 script_exp_function_defined(const char* symbol_name, size_t symbol_name_len)
1072 {
1073   return new Defined_expression(symbol_name, symbol_name_len);
1074 }
1075
1076 // LOADADDR function
1077
1078 class Loadaddr_expression : public Section_expression
1079 {
1080  public:
1081   Loadaddr_expression(const char* section_name, size_t section_name_len)
1082     : Section_expression(section_name, section_name_len)
1083   { }
1084
1085  protected:
1086   uint64_t
1087   value_from_output_section(const Expression_eval_info* eei,
1088                             Output_section* os)
1089   {
1090     if (os->has_load_address())
1091       return os->load_address();
1092     else
1093       {
1094         if (eei->result_section_pointer != NULL)
1095           *eei->result_section_pointer = os;
1096         return os->address();
1097       }
1098   }
1099
1100   uint64_t
1101   value_from_script_output_section(uint64_t, uint64_t load_address, uint64_t,
1102                                    uint64_t)
1103   { return load_address; }
1104
1105   const char*
1106   function_name() const
1107   { return "LOADADDR"; }
1108 };
1109
1110 extern "C" Expression*
1111 script_exp_function_loadaddr(const char* section_name, size_t section_name_len)
1112 {
1113   return new Loadaddr_expression(section_name, section_name_len);
1114 }
1115
1116 // SIZEOF function
1117
1118 class Sizeof_expression : public Section_expression
1119 {
1120  public:
1121   Sizeof_expression(const char* section_name, size_t section_name_len)
1122     : Section_expression(section_name, section_name_len)
1123   { }
1124
1125  protected:
1126   uint64_t
1127   value_from_output_section(const Expression_eval_info*,
1128                             Output_section* os)
1129   {
1130     // We can not use data_size here, as the size of the section may
1131     // not have been finalized.  Instead we get whatever the current
1132     // size is.  This will work correctly for backward references in
1133     // linker scripts.
1134     return os->current_data_size();
1135   }
1136
1137   uint64_t
1138   value_from_script_output_section(uint64_t, uint64_t, uint64_t,
1139                                    uint64_t size)
1140   { return size; }
1141
1142   const char*
1143   function_name() const
1144   { return "SIZEOF"; }
1145 };
1146
1147 extern "C" Expression*
1148 script_exp_function_sizeof(const char* section_name, size_t section_name_len)
1149 {
1150   return new Sizeof_expression(section_name, section_name_len);
1151 }
1152
1153 // SIZEOF_HEADERS.
1154
1155 class Sizeof_headers_expression : public Expression
1156 {
1157  public:
1158   Sizeof_headers_expression()
1159   { }
1160
1161   uint64_t
1162   value(const Expression_eval_info*);
1163
1164   void
1165   print(FILE* f) const
1166   { fprintf(f, "SIZEOF_HEADERS"); }
1167 };
1168
1169 uint64_t
1170 Sizeof_headers_expression::value(const Expression_eval_info* eei)
1171 {
1172   unsigned int ehdr_size;
1173   unsigned int phdr_size;
1174   if (parameters->target().get_size() == 32)
1175     {
1176       ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
1177       phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
1178     }
1179   else if (parameters->target().get_size() == 64)
1180     {
1181       ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
1182       phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
1183     }
1184   else
1185     gold_unreachable();
1186
1187   return ehdr_size + phdr_size * eei->layout->expected_segment_count();
1188 }
1189
1190 extern "C" Expression*
1191 script_exp_function_sizeof_headers()
1192 {
1193   return new Sizeof_headers_expression();
1194 }
1195
1196 // SEGMENT_START.
1197
1198 class Segment_start_expression : public Unary_expression
1199 {
1200  public:
1201   Segment_start_expression(const char* segment_name, size_t segment_name_len,
1202                            Expression* default_value)
1203     : Unary_expression(default_value),
1204       segment_name_(segment_name, segment_name_len)
1205   { }
1206
1207   uint64_t
1208   value(const Expression_eval_info*);
1209
1210   void
1211   print(FILE* f) const
1212   {
1213     fprintf(f, "SEGMENT_START(\"%s\", ", this->segment_name_.c_str());
1214     this->arg_print(f);
1215     fprintf(f, ")");
1216   }
1217
1218  private:
1219   std::string segment_name_;
1220 };
1221
1222 uint64_t
1223 Segment_start_expression::value(const Expression_eval_info* eei)
1224 {
1225   // Check for command line overrides.
1226   if (parameters->options().user_set_Ttext()
1227       && this->segment_name_ == ".text")
1228     return parameters->options().Ttext();
1229   else if (parameters->options().user_set_Tdata()
1230            && this->segment_name_ == ".data")
1231     return parameters->options().Tdata();
1232   else if (parameters->options().user_set_Tbss()
1233            && this->segment_name_ == ".bss")
1234     return parameters->options().Tbss();
1235   else
1236     {
1237       uint64_t ret = this->arg_value(eei, NULL);
1238       // Force the value to be absolute.
1239       if (eei->result_section_pointer != NULL)
1240         *eei->result_section_pointer = NULL;
1241       return ret;
1242     }
1243 }
1244
1245 extern "C" Expression*
1246 script_exp_function_segment_start(const char* segment_name,
1247                                   size_t segment_name_len,
1248                                   Expression* default_value)
1249 {
1250   return new Segment_start_expression(segment_name, segment_name_len,
1251                                       default_value);
1252 }
1253
1254 } // End namespace gold.