Merge from vendor branch AWK:
[dragonfly.git] / contrib / gcc-4.1 / gcc / tree-flow-inline.h
1 /* Inline functions for tree-flow.h
2    Copyright (C) 2001, 2003, 2005 Free Software Foundation, Inc.
3    Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING.  If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA.  */
21
22 #ifndef _TREE_FLOW_INLINE_H
23 #define _TREE_FLOW_INLINE_H 1
24
25 /* Inline functions for manipulating various data structures defined in
26    tree-flow.h.  See tree-flow.h for documentation.  */
27
28 /* Initialize the hashtable iterator HTI to point to hashtable TABLE */
29
30 static inline void *
31 first_htab_element (htab_iterator *hti, htab_t table)
32 {
33   hti->htab = table;
34   hti->slot = table->entries;
35   hti->limit = hti->slot + htab_size (table);
36   do
37     {
38       PTR x = *(hti->slot);
39       if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
40         break;
41     } while (++(hti->slot) < hti->limit);
42   
43   if (hti->slot < hti->limit)
44     return *(hti->slot);
45   return NULL;
46 }
47
48 /* Return current non-empty/deleted slot of the hashtable pointed to by HTI,
49    or NULL if we have  reached the end.  */
50
51 static inline bool
52 end_htab_p (htab_iterator *hti)
53 {
54   if (hti->slot >= hti->limit)
55     return true;
56   return false;
57 }
58
59 /* Advance the hashtable iterator pointed to by HTI to the next element of the
60    hashtable.  */
61
62 static inline void *
63 next_htab_element (htab_iterator *hti)
64 {
65   while (++(hti->slot) < hti->limit)
66     {
67       PTR x = *(hti->slot);
68       if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
69         return x;
70     };
71   return NULL;
72 }
73
74 /* Initialize ITER to point to the first referenced variable in the
75    referenced_vars hashtable, and return that variable.  */
76
77 static inline tree
78 first_referenced_var (referenced_var_iterator *iter)
79 {
80   struct int_tree_map *itm;
81   itm = first_htab_element (&iter->hti, referenced_vars);
82   if (!itm) 
83     return NULL;
84   return itm->to;
85 }
86
87 /* Return true if we have hit the end of the referenced variables ITER is
88    iterating through.  */
89
90 static inline bool
91 end_referenced_vars_p (referenced_var_iterator *iter)
92 {
93   return end_htab_p (&iter->hti);
94 }
95
96 /* Make ITER point to the next referenced_var in the referenced_var hashtable,
97    and return that variable.  */
98
99 static inline tree
100 next_referenced_var (referenced_var_iterator *iter)
101 {
102   struct int_tree_map *itm;
103   itm = next_htab_element (&iter->hti);
104   if (!itm) 
105     return NULL;
106   return itm->to;
107
108
109 /* Fill up VEC with the variables in the referenced vars hashtable.  */
110
111 static inline void
112 fill_referenced_var_vec (VEC (tree, heap) **vec)
113 {
114   referenced_var_iterator rvi;
115   tree var;
116   *vec = NULL;
117   FOR_EACH_REFERENCED_VAR (var, rvi)
118     VEC_safe_push (tree, heap, *vec, var);
119 }
120
121 /* Return the variable annotation for T, which must be a _DECL node.
122    Return NULL if the variable annotation doesn't already exist.  */
123 static inline var_ann_t
124 var_ann (tree t)
125 {
126   gcc_assert (t);
127   gcc_assert (DECL_P (t));
128   gcc_assert (!t->common.ann || t->common.ann->common.type == VAR_ANN);
129
130   return (var_ann_t) t->common.ann;
131 }
132
133 /* Return the variable annotation for T, which must be a _DECL node.
134    Create the variable annotation if it doesn't exist.  */
135 static inline var_ann_t
136 get_var_ann (tree var)
137 {
138   var_ann_t ann = var_ann (var);
139   return (ann) ? ann : create_var_ann (var);
140 }
141
142 /* Return the statement annotation for T, which must be a statement
143    node.  Return NULL if the statement annotation doesn't exist.  */
144 static inline stmt_ann_t
145 stmt_ann (tree t)
146 {
147 #ifdef ENABLE_CHECKING
148   gcc_assert (is_gimple_stmt (t));
149 #endif
150   return (stmt_ann_t) t->common.ann;
151 }
152
153 /* Return the statement annotation for T, which must be a statement
154    node.  Create the statement annotation if it doesn't exist.  */
155 static inline stmt_ann_t
156 get_stmt_ann (tree stmt)
157 {
158   stmt_ann_t ann = stmt_ann (stmt);
159   return (ann) ? ann : create_stmt_ann (stmt);
160 }
161
162 /* Return the annotation type for annotation ANN.  */
163 static inline enum tree_ann_type
164 ann_type (tree_ann_t ann)
165 {
166   return ann->common.type;
167 }
168
169 /* Return the basic block for statement T.  */
170 static inline basic_block
171 bb_for_stmt (tree t)
172 {
173   stmt_ann_t ann;
174
175   if (TREE_CODE (t) == PHI_NODE)
176     return PHI_BB (t);
177
178   ann = stmt_ann (t);
179   return ann ? ann->bb : NULL;
180 }
181
182 /* Return the may_aliases varray for variable VAR, or NULL if it has
183    no may aliases.  */
184 static inline varray_type
185 may_aliases (tree var)
186 {
187   var_ann_t ann = var_ann (var);
188   return ann ? ann->may_aliases : NULL;
189 }
190
191 /* Return the line number for EXPR, or return -1 if we have no line
192    number information for it.  */
193 static inline int
194 get_lineno (tree expr)
195 {
196   if (expr == NULL_TREE)
197     return -1;
198
199   if (TREE_CODE (expr) == COMPOUND_EXPR)
200     expr = TREE_OPERAND (expr, 0);
201
202   if (! EXPR_HAS_LOCATION (expr))
203     return -1;
204
205   return EXPR_LINENO (expr);
206 }
207
208 /* Return the file name for EXPR, or return "???" if we have no
209    filename information.  */
210 static inline const char *
211 get_filename (tree expr)
212 {
213   const char *filename;
214   if (expr == NULL_TREE)
215     return "???";
216
217   if (TREE_CODE (expr) == COMPOUND_EXPR)
218     expr = TREE_OPERAND (expr, 0);
219
220   if (EXPR_HAS_LOCATION (expr) && (filename = EXPR_FILENAME (expr)))
221     return filename;
222   else
223     return "???";
224 }
225
226 /* Return true if T is a noreturn call.  */
227 static inline bool
228 noreturn_call_p (tree t)
229 {
230   tree call = get_call_expr_in (t);
231   return call != 0 && (call_expr_flags (call) & ECF_NORETURN) != 0;
232 }
233
234 /* Mark statement T as modified.  */
235 static inline void
236 mark_stmt_modified (tree t)
237 {
238   stmt_ann_t ann;
239   if (TREE_CODE (t) == PHI_NODE)
240     return;
241
242   ann = stmt_ann (t);
243   if (ann == NULL)
244     ann = create_stmt_ann (t);
245   else if (noreturn_call_p (t))
246     VEC_safe_push (tree, gc, modified_noreturn_calls, t);
247   ann->modified = 1;
248 }
249
250 /* Mark statement T as modified, and update it.  */
251 static inline void
252 update_stmt (tree t)
253 {
254   if (TREE_CODE (t) == PHI_NODE)
255     return;
256   mark_stmt_modified (t);
257   update_stmt_operands (t);
258 }
259
260 static inline void
261 update_stmt_if_modified (tree t)
262 {
263   if (stmt_modified_p (t))
264     update_stmt_operands (t);
265 }
266
267 /* Return true if T is marked as modified, false otherwise.  */
268 static inline bool
269 stmt_modified_p (tree t)
270 {
271   stmt_ann_t ann = stmt_ann (t);
272
273   /* Note that if the statement doesn't yet have an annotation, we consider it
274      modified.  This will force the next call to update_stmt_operands to scan 
275      the statement.  */
276   return ann ? ann->modified : true;
277 }
278
279 /* Delink an immediate_uses node from its chain.  */
280 static inline void
281 delink_imm_use (ssa_use_operand_t *linknode)
282 {
283   /* Return if this node is not in a list.  */
284   if (linknode->prev == NULL)
285     return;
286
287   linknode->prev->next = linknode->next;
288   linknode->next->prev = linknode->prev;
289   linknode->prev = NULL;
290   linknode->next = NULL;
291 }
292
293 /* Link ssa_imm_use node LINKNODE into the chain for LIST.  */
294 static inline void
295 link_imm_use_to_list (ssa_use_operand_t *linknode, ssa_use_operand_t *list)
296 {
297   /* Link the new node at the head of the list.  If we are in the process of 
298      traversing the list, we won't visit any new nodes added to it.  */
299   linknode->prev = list;
300   linknode->next = list->next;
301   list->next->prev = linknode;
302   list->next = linknode;
303 }
304
305 /* Link ssa_imm_use node LINKNODE into the chain for DEF.  */
306 static inline void
307 link_imm_use (ssa_use_operand_t *linknode, tree def)
308 {
309   ssa_use_operand_t *root;
310
311   if (!def || TREE_CODE (def) != SSA_NAME)
312     linknode->prev = NULL;
313   else
314     {
315       root = &(SSA_NAME_IMM_USE_NODE (def));
316 #ifdef ENABLE_CHECKING
317       if (linknode->use)
318         gcc_assert (*(linknode->use) == def);
319 #endif
320       link_imm_use_to_list (linknode, root);
321     }
322 }
323
324 /* Set the value of a use pointed to by USE to VAL.  */
325 static inline void
326 set_ssa_use_from_ptr (use_operand_p use, tree val)
327 {
328   delink_imm_use (use);
329   *(use->use) = val;
330   link_imm_use (use, val);
331 }
332
333 /* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring 
334    in STMT.  */
335 static inline void
336 link_imm_use_stmt (ssa_use_operand_t *linknode, tree def, tree stmt)
337 {
338   if (stmt)
339     link_imm_use (linknode, def);
340   else
341     link_imm_use (linknode, NULL);
342   linknode->stmt = stmt;
343 }
344
345 /* Relink a new node in place of an old node in the list.  */
346 static inline void
347 relink_imm_use (ssa_use_operand_t *node, ssa_use_operand_t *old)
348 {
349   /* The node one had better be in the same list.  */
350   gcc_assert (*(old->use) == *(node->use));
351   node->prev = old->prev;
352   node->next = old->next;
353   if (old->prev)
354     {
355       old->prev->next = node;
356       old->next->prev = node;
357       /* Remove the old node from the list.  */
358       old->prev = NULL;
359     }
360 }
361
362 /* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring 
363    in STMT.  */
364 static inline void
365 relink_imm_use_stmt (ssa_use_operand_t *linknode, ssa_use_operand_t *old, tree stmt)
366 {
367   if (stmt)
368     relink_imm_use (linknode, old);
369   else
370     link_imm_use (linknode, NULL);
371   linknode->stmt = stmt;
372 }
373
374 /* Finished the traverse of an immediate use list IMM by removing it from 
375    the list.  */
376 static inline void
377 end_safe_imm_use_traverse (imm_use_iterator *imm)
378 {
379  delink_imm_use (&(imm->iter_node));
380 }
381
382 /* Return true if IMM is at the end of the list.  */
383 static inline bool
384 end_safe_imm_use_p (imm_use_iterator *imm)
385 {
386   return (imm->imm_use == imm->end_p);
387 }
388
389 /* Initialize iterator IMM to process the list for VAR.  */
390 static inline use_operand_p
391 first_safe_imm_use (imm_use_iterator *imm, tree var)
392 {
393   /* Set up and link the iterator node into the linked list for VAR.  */
394   imm->iter_node.use = NULL;
395   imm->iter_node.stmt = NULL_TREE;
396   imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
397   /* Check if there are 0 elements.  */
398   if (imm->end_p->next == imm->end_p)
399     {
400       imm->imm_use = imm->end_p;
401       return NULL_USE_OPERAND_P;
402     }
403
404   link_imm_use (&(imm->iter_node), var);
405   imm->imm_use = imm->iter_node.next;
406   return imm->imm_use;
407 }
408
409 /* Bump IMM to the next use in the list.  */
410 static inline use_operand_p
411 next_safe_imm_use (imm_use_iterator *imm)
412 {
413   ssa_use_operand_t *ptr;
414   use_operand_p old;
415
416   old = imm->imm_use;
417   /* If the next node following the iter_node is still the one referred to by
418      imm_use, then the list hasn't changed, go to the next node.  */
419   if (imm->iter_node.next == imm->imm_use)
420     {
421       ptr = &(imm->iter_node);
422       /* Remove iternode from the list.  */
423       delink_imm_use (ptr);
424       imm->imm_use = imm->imm_use->next;
425       if (! end_safe_imm_use_p (imm))
426         {
427           /* This isn't the end, link iternode before the next use.  */
428           ptr->prev = imm->imm_use->prev;
429           ptr->next = imm->imm_use;
430           imm->imm_use->prev->next = ptr;
431           imm->imm_use->prev = ptr;
432         }
433       else
434         return old;
435     }
436   else
437     {
438       /* If the 'next' value after the iterator isn't the same as it was, then
439          a node has been deleted, so we simply proceed to the node following 
440          where the iterator is in the list.  */
441       imm->imm_use = imm->iter_node.next;
442       if (end_safe_imm_use_p (imm))
443         {
444           end_safe_imm_use_traverse (imm);
445           return old;
446         }
447     }
448
449   return imm->imm_use;
450 }
451
452 /* Return true is IMM has reached the end of the immediate use list.  */
453 static inline bool
454 end_readonly_imm_use_p (imm_use_iterator *imm)
455 {
456   return (imm->imm_use == imm->end_p);
457 }
458
459 /* Initialize iterator IMM to process the list for VAR.  */
460 static inline use_operand_p
461 first_readonly_imm_use (imm_use_iterator *imm, tree var)
462 {
463   gcc_assert (TREE_CODE (var) == SSA_NAME);
464
465   imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
466   imm->imm_use = imm->end_p->next;
467 #ifdef ENABLE_CHECKING
468   imm->iter_node.next = imm->imm_use->next;
469 #endif
470   if (end_readonly_imm_use_p (imm))
471     return NULL_USE_OPERAND_P;
472   return imm->imm_use;
473 }
474
475 /* Bump IMM to the next use in the list.  */
476 static inline use_operand_p
477 next_readonly_imm_use (imm_use_iterator *imm)
478 {
479   use_operand_p old = imm->imm_use;
480
481 #ifdef ENABLE_CHECKING
482   /* If this assertion fails, it indicates the 'next' pointer has changed 
483      since we the last bump.  This indicates that the list is being modified
484      via stmt changes, or SET_USE, or somesuch thing, and you need to be
485      using the SAFE version of the iterator.  */
486   gcc_assert (imm->iter_node.next == old->next);
487   imm->iter_node.next = old->next->next;
488 #endif
489
490   imm->imm_use = old->next;
491   if (end_readonly_imm_use_p (imm))
492     return old;
493   return imm->imm_use;
494 }
495
496 /* Return true if VAR has no uses.  */
497 static inline bool
498 has_zero_uses (tree var)
499 {
500   ssa_use_operand_t *ptr;
501   ptr = &(SSA_NAME_IMM_USE_NODE (var));
502   /* A single use means there is no items in the list.  */
503   return (ptr == ptr->next);
504 }
505
506 /* Return true if VAR has a single use.  */
507 static inline bool
508 has_single_use (tree var)
509 {
510   ssa_use_operand_t *ptr;
511   ptr = &(SSA_NAME_IMM_USE_NODE (var));
512   /* A single use means there is one item in the list.  */
513   return (ptr != ptr->next && ptr == ptr->next->next);
514 }
515
516 /* If VAR has only a single immediate use, return true, and set USE_P and STMT
517    to the use pointer and stmt of occurrence.  */
518 static inline bool
519 single_imm_use (tree var, use_operand_p *use_p, tree *stmt)
520 {
521   ssa_use_operand_t *ptr;
522
523   ptr = &(SSA_NAME_IMM_USE_NODE (var));
524   if (ptr != ptr->next && ptr == ptr->next->next)
525     {
526       *use_p = ptr->next;
527       *stmt = ptr->next->stmt;
528       return true;
529     }
530   *use_p = NULL_USE_OPERAND_P;
531   *stmt = NULL_TREE;
532   return false;
533 }
534
535 /* Return the number of immediate uses of VAR.  */
536 static inline unsigned int
537 num_imm_uses (tree var)
538 {
539   ssa_use_operand_t *ptr, *start;
540   unsigned int num;
541
542   start = &(SSA_NAME_IMM_USE_NODE (var));
543   num = 0;
544   for (ptr = start->next; ptr != start; ptr = ptr->next)
545      num++;
546
547   return num;
548 }
549
550
551 /* Return the tree pointer to by USE.  */ 
552 static inline tree
553 get_use_from_ptr (use_operand_p use)
554
555   return *(use->use);
556
557
558 /* Return the tree pointer to by DEF.  */
559 static inline tree
560 get_def_from_ptr (def_operand_p def)
561 {
562   return *def;
563 }
564
565 /* Return a def_operand_p pointer for the result of PHI.  */
566 static inline def_operand_p
567 get_phi_result_ptr (tree phi)
568 {
569   return &(PHI_RESULT_TREE (phi));
570 }
571
572 /* Return a use_operand_p pointer for argument I of phinode PHI.  */
573 static inline use_operand_p
574 get_phi_arg_def_ptr (tree phi, int i)
575 {
576   return &(PHI_ARG_IMM_USE_NODE (phi,i));
577 }
578
579
580 /* Return the bitmap of addresses taken by STMT, or NULL if it takes
581    no addresses.  */
582 static inline bitmap
583 addresses_taken (tree stmt)
584 {
585   stmt_ann_t ann = stmt_ann (stmt);
586   return ann ? ann->addresses_taken : NULL;
587 }
588
589 /* Return the PHI nodes for basic block BB, or NULL if there are no
590    PHI nodes.  */
591 static inline tree
592 phi_nodes (basic_block bb)
593 {
594   return bb->phi_nodes;
595 }
596
597 /* Set list of phi nodes of a basic block BB to L.  */
598
599 static inline void
600 set_phi_nodes (basic_block bb, tree l)
601 {
602   tree phi;
603
604   bb->phi_nodes = l;
605   for (phi = l; phi; phi = PHI_CHAIN (phi))
606     set_bb_for_stmt (phi, bb);
607 }
608
609 /* Return the phi argument which contains the specified use.  */
610
611 static inline int
612 phi_arg_index_from_use (use_operand_p use)
613 {
614   struct phi_arg_d *element, *root;
615   int index;
616   tree phi;
617
618   /* Since the use is the first thing in a PHI argument element, we can
619      calculate its index based on casting it to an argument, and performing
620      pointer arithmetic.  */
621
622   phi = USE_STMT (use);
623   gcc_assert (TREE_CODE (phi) == PHI_NODE);
624
625   element = (struct phi_arg_d *)use;
626   root = &(PHI_ARG_ELT (phi, 0));
627   index = element - root;
628
629 #ifdef ENABLE_CHECKING
630   /* Make sure the calculation doesn't have any leftover bytes.  If it does, 
631      then imm_use is likely not the first element in phi_arg_d.  */
632   gcc_assert (
633           (((char *)element - (char *)root) % sizeof (struct phi_arg_d)) == 0);
634   gcc_assert (index >= 0 && index < PHI_ARG_CAPACITY (phi));
635 #endif
636  
637  return index;
638 }
639
640 /* Mark VAR as used, so that it'll be preserved during rtl expansion.  */
641
642 static inline void
643 set_is_used (tree var)
644 {
645   var_ann_t ann = get_var_ann (var);
646   ann->used = 1;
647 }
648
649
650 /*  -----------------------------------------------------------------------  */
651
652 /* Return true if T is an executable statement.  */
653 static inline bool
654 is_exec_stmt (tree t)
655 {
656   return (t && !IS_EMPTY_STMT (t) && t != error_mark_node);
657 }
658
659
660 /* Return true if this stmt can be the target of a control transfer stmt such
661    as a goto.  */
662 static inline bool
663 is_label_stmt (tree t)
664 {
665   if (t)
666     switch (TREE_CODE (t))
667       {
668         case LABEL_DECL:
669         case LABEL_EXPR:
670         case CASE_LABEL_EXPR:
671           return true;
672         default:
673           return false;
674       }
675   return false;
676 }
677
678 /* Set the default definition for VAR to DEF.  */
679 static inline void
680 set_default_def (tree var, tree def)
681 {
682   var_ann_t ann = get_var_ann (var);
683   ann->default_def = def;
684 }
685
686 /* Return the default definition for variable VAR, or NULL if none
687    exists.  */
688 static inline tree
689 default_def (tree var)
690 {
691   var_ann_t ann = var_ann (var);
692   return ann ? ann->default_def : NULL_TREE;
693 }
694
695 /* PHI nodes should contain only ssa_names and invariants.  A test
696    for ssa_name is definitely simpler; don't let invalid contents
697    slip in in the meantime.  */
698
699 static inline bool
700 phi_ssa_name_p (tree t)
701 {
702   if (TREE_CODE (t) == SSA_NAME)
703     return true;
704 #ifdef ENABLE_CHECKING
705   gcc_assert (is_gimple_min_invariant (t));
706 #endif
707   return false;
708 }
709
710 /*  -----------------------------------------------------------------------  */
711
712 /* Return a block_stmt_iterator that points to beginning of basic
713    block BB.  */
714 static inline block_stmt_iterator
715 bsi_start (basic_block bb)
716 {
717   block_stmt_iterator bsi;
718   if (bb->stmt_list)
719     bsi.tsi = tsi_start (bb->stmt_list);
720   else
721     {
722       gcc_assert (bb->index < 0);
723       bsi.tsi.ptr = NULL;
724       bsi.tsi.container = NULL;
725     }
726   bsi.bb = bb;
727   return bsi;
728 }
729
730 /* Return a block statement iterator that points to the first non-label
731    statement in block BB.  */
732
733 static inline block_stmt_iterator
734 bsi_after_labels (basic_block bb)
735 {
736   block_stmt_iterator bsi = bsi_start (bb);
737
738   while (!bsi_end_p (bsi) && TREE_CODE (bsi_stmt (bsi)) == LABEL_EXPR)
739     bsi_next (&bsi);
740
741   return bsi;
742 }
743
744 /* Return a block statement iterator that points to the end of basic
745    block BB.  */
746 static inline block_stmt_iterator
747 bsi_last (basic_block bb)
748 {
749   block_stmt_iterator bsi;
750   if (bb->stmt_list)
751     bsi.tsi = tsi_last (bb->stmt_list);
752   else
753     {
754       gcc_assert (bb->index < 0);
755       bsi.tsi.ptr = NULL;
756       bsi.tsi.container = NULL;
757     }
758   bsi.bb = bb;
759   return bsi;
760 }
761
762 /* Return true if block statement iterator I has reached the end of
763    the basic block.  */
764 static inline bool
765 bsi_end_p (block_stmt_iterator i)
766 {
767   return tsi_end_p (i.tsi);
768 }
769
770 /* Modify block statement iterator I so that it is at the next
771    statement in the basic block.  */
772 static inline void
773 bsi_next (block_stmt_iterator *i)
774 {
775   tsi_next (&i->tsi);
776 }
777
778 /* Modify block statement iterator I so that it is at the previous
779    statement in the basic block.  */
780 static inline void
781 bsi_prev (block_stmt_iterator *i)
782 {
783   tsi_prev (&i->tsi);
784 }
785
786 /* Return the statement that block statement iterator I is currently
787    at.  */
788 static inline tree
789 bsi_stmt (block_stmt_iterator i)
790 {
791   return tsi_stmt (i.tsi);
792 }
793
794 /* Return a pointer to the statement that block statement iterator I
795    is currently at.  */
796 static inline tree *
797 bsi_stmt_ptr (block_stmt_iterator i)
798 {
799   return tsi_stmt_ptr (i.tsi);
800 }
801
802 /* Returns the loop of the statement STMT.  */
803
804 static inline struct loop *
805 loop_containing_stmt (tree stmt)
806 {
807   basic_block bb = bb_for_stmt (stmt);
808   if (!bb)
809     return NULL;
810
811   return bb->loop_father;
812 }
813
814 /* Return true if VAR is a clobbered by function calls.  */
815 static inline bool
816 is_call_clobbered (tree var)
817 {
818   return is_global_var (var)
819     || bitmap_bit_p (call_clobbered_vars, DECL_UID (var));
820 }
821
822 /* Mark variable VAR as being clobbered by function calls.  */
823 static inline void
824 mark_call_clobbered (tree var)
825 {
826   var_ann_t ann = var_ann (var);
827   /* If VAR is a memory tag, then we need to consider it a global
828      variable.  This is because the pointer that VAR represents has
829      been found to point to either an arbitrary location or to a known
830      location in global memory.  */
831   if (ann->mem_tag_kind != NOT_A_TAG && ann->mem_tag_kind != STRUCT_FIELD)
832     DECL_EXTERNAL (var) = 1;
833   bitmap_set_bit (call_clobbered_vars, DECL_UID (var));
834   ssa_call_clobbered_cache_valid = false;
835   ssa_ro_call_cache_valid = false;
836 }
837
838 /* Clear the call-clobbered attribute from variable VAR.  */
839 static inline void
840 clear_call_clobbered (tree var)
841 {
842   var_ann_t ann = var_ann (var);
843   if (ann->mem_tag_kind != NOT_A_TAG && ann->mem_tag_kind != STRUCT_FIELD)
844     DECL_EXTERNAL (var) = 0;
845   bitmap_clear_bit (call_clobbered_vars, DECL_UID (var));
846   ssa_call_clobbered_cache_valid = false;
847   ssa_ro_call_cache_valid = false;
848 }
849
850 /* Mark variable VAR as being non-addressable.  */
851 static inline void
852 mark_non_addressable (tree var)
853 {
854   bitmap_clear_bit (call_clobbered_vars, DECL_UID (var));
855   TREE_ADDRESSABLE (var) = 0;
856   ssa_call_clobbered_cache_valid = false;
857   ssa_ro_call_cache_valid = false;
858 }
859
860 /* Return the common annotation for T.  Return NULL if the annotation
861    doesn't already exist.  */
862 static inline tree_ann_t
863 tree_ann (tree t)
864 {
865   return t->common.ann;
866 }
867
868 /* Return a common annotation for T.  Create the constant annotation if it
869    doesn't exist.  */
870 static inline tree_ann_t
871 get_tree_ann (tree t)
872 {
873   tree_ann_t ann = tree_ann (t);
874   return (ann) ? ann : create_tree_ann (t);
875 }
876
877 /*  -----------------------------------------------------------------------  */
878
879 /* The following set of routines are used to iterator over various type of
880    SSA operands.  */
881
882 /* Return true if PTR is finished iterating.  */
883 static inline bool
884 op_iter_done (ssa_op_iter *ptr)
885 {
886   return ptr->done;
887 }
888
889 /* Get the next iterator use value for PTR.  */
890 static inline use_operand_p
891 op_iter_next_use (ssa_op_iter *ptr)
892 {
893   use_operand_p use_p;
894 #ifdef ENABLE_CHECKING
895   gcc_assert (ptr->iter_type == ssa_op_iter_use);
896 #endif
897   if (ptr->uses)
898     {
899       use_p = USE_OP_PTR (ptr->uses);
900       ptr->uses = ptr->uses->next;
901       return use_p;
902     }
903   if (ptr->vuses)
904     {
905       use_p = VUSE_OP_PTR (ptr->vuses);
906       ptr->vuses = ptr->vuses->next;
907       return use_p;
908     }
909   if (ptr->mayuses)
910     {
911       use_p = MAYDEF_OP_PTR (ptr->mayuses);
912       ptr->mayuses = ptr->mayuses->next;
913       return use_p;
914     }
915   if (ptr->mustkills)
916     {
917       use_p = MUSTDEF_KILL_PTR (ptr->mustkills);
918       ptr->mustkills = ptr->mustkills->next;
919       return use_p;
920     }
921   if (ptr->phi_i < ptr->num_phi)
922     {
923       return PHI_ARG_DEF_PTR (ptr->phi_stmt, (ptr->phi_i)++);
924     }
925   ptr->done = true;
926   return NULL_USE_OPERAND_P;
927 }
928
929 /* Get the next iterator def value for PTR.  */
930 static inline def_operand_p
931 op_iter_next_def (ssa_op_iter *ptr)
932 {
933   def_operand_p def_p;
934 #ifdef ENABLE_CHECKING
935   gcc_assert (ptr->iter_type == ssa_op_iter_def);
936 #endif
937   if (ptr->defs)
938     {
939       def_p = DEF_OP_PTR (ptr->defs);
940       ptr->defs = ptr->defs->next;
941       return def_p;
942     }
943   if (ptr->mustdefs)
944     {
945       def_p = MUSTDEF_RESULT_PTR (ptr->mustdefs);
946       ptr->mustdefs = ptr->mustdefs->next;
947       return def_p;
948     }
949   if (ptr->maydefs)
950     {
951       def_p = MAYDEF_RESULT_PTR (ptr->maydefs);
952       ptr->maydefs = ptr->maydefs->next;
953       return def_p;
954     }
955   ptr->done = true;
956   return NULL_DEF_OPERAND_P;
957 }
958
959 /* Get the next iterator tree value for PTR.  */
960 static inline tree
961 op_iter_next_tree (ssa_op_iter *ptr)
962 {
963   tree val;
964 #ifdef ENABLE_CHECKING
965   gcc_assert (ptr->iter_type == ssa_op_iter_tree);
966 #endif
967   if (ptr->uses)
968     {
969       val = USE_OP (ptr->uses);
970       ptr->uses = ptr->uses->next;
971       return val;
972     }
973   if (ptr->vuses)
974     {
975       val = VUSE_OP (ptr->vuses);
976       ptr->vuses = ptr->vuses->next;
977       return val;
978     }
979   if (ptr->mayuses)
980     {
981       val = MAYDEF_OP (ptr->mayuses);
982       ptr->mayuses = ptr->mayuses->next;
983       return val;
984     }
985   if (ptr->mustkills)
986     {
987       val = MUSTDEF_KILL (ptr->mustkills);
988       ptr->mustkills = ptr->mustkills->next;
989       return val;
990     }
991   if (ptr->defs)
992     {
993       val = DEF_OP (ptr->defs);
994       ptr->defs = ptr->defs->next;
995       return val;
996     }
997   if (ptr->mustdefs)
998     {
999       val = MUSTDEF_RESULT (ptr->mustdefs);
1000       ptr->mustdefs = ptr->mustdefs->next;
1001       return val;
1002     }
1003   if (ptr->maydefs)
1004     {
1005       val = MAYDEF_RESULT (ptr->maydefs);
1006       ptr->maydefs = ptr->maydefs->next;
1007       return val;
1008     }
1009
1010   ptr->done = true;
1011   return NULL_TREE;
1012
1013 }
1014
1015
1016 /* This functions clears the iterator PTR, and marks it done.  This is normally
1017    used to prevent warnings in the compile about might be uninitialized
1018    components.  */
1019
1020 static inline void
1021 clear_and_done_ssa_iter (ssa_op_iter *ptr)
1022 {
1023   ptr->defs = NULL;
1024   ptr->uses = NULL;
1025   ptr->vuses = NULL;
1026   ptr->maydefs = NULL;
1027   ptr->mayuses = NULL;
1028   ptr->mustdefs = NULL;
1029   ptr->mustkills = NULL;
1030   ptr->iter_type = ssa_op_iter_none;
1031   ptr->phi_i = 0;
1032   ptr->num_phi = 0;
1033   ptr->phi_stmt = NULL_TREE;
1034   ptr->done = true;
1035 }
1036
1037 /* Initialize the iterator PTR to the virtual defs in STMT.  */
1038 static inline void
1039 op_iter_init (ssa_op_iter *ptr, tree stmt, int flags)
1040 {
1041 #ifdef ENABLE_CHECKING
1042   gcc_assert (stmt_ann (stmt));
1043 #endif
1044
1045   ptr->defs = (flags & SSA_OP_DEF) ? DEF_OPS (stmt) : NULL;
1046   ptr->uses = (flags & SSA_OP_USE) ? USE_OPS (stmt) : NULL;
1047   ptr->vuses = (flags & SSA_OP_VUSE) ? VUSE_OPS (stmt) : NULL;
1048   ptr->maydefs = (flags & SSA_OP_VMAYDEF) ? MAYDEF_OPS (stmt) : NULL;
1049   ptr->mayuses = (flags & SSA_OP_VMAYUSE) ? MAYDEF_OPS (stmt) : NULL;
1050   ptr->mustdefs = (flags & SSA_OP_VMUSTDEF) ? MUSTDEF_OPS (stmt) : NULL;
1051   ptr->mustkills = (flags & SSA_OP_VMUSTKILL) ? MUSTDEF_OPS (stmt) : NULL;
1052   ptr->done = false;
1053
1054   ptr->phi_i = 0;
1055   ptr->num_phi = 0;
1056   ptr->phi_stmt = NULL_TREE;
1057 }
1058
1059 /* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return
1060    the first use.  */
1061 static inline use_operand_p
1062 op_iter_init_use (ssa_op_iter *ptr, tree stmt, int flags)
1063 {
1064   gcc_assert ((flags & SSA_OP_ALL_DEFS) == 0);
1065   op_iter_init (ptr, stmt, flags);
1066   ptr->iter_type = ssa_op_iter_use;
1067   return op_iter_next_use (ptr);
1068 }
1069
1070 /* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return
1071    the first def.  */
1072 static inline def_operand_p
1073 op_iter_init_def (ssa_op_iter *ptr, tree stmt, int flags)
1074 {
1075   gcc_assert ((flags & (SSA_OP_ALL_USES | SSA_OP_VIRTUAL_KILLS)) == 0);
1076   op_iter_init (ptr, stmt, flags);
1077   ptr->iter_type = ssa_op_iter_def;
1078   return op_iter_next_def (ptr);
1079 }
1080
1081 /* Initialize iterator PTR to the operands in STMT based on FLAGS. Return
1082    the first operand as a tree.  */
1083 static inline tree
1084 op_iter_init_tree (ssa_op_iter *ptr, tree stmt, int flags)
1085 {
1086   op_iter_init (ptr, stmt, flags);
1087   ptr->iter_type = ssa_op_iter_tree;
1088   return op_iter_next_tree (ptr);
1089 }
1090
1091 /* Get the next iterator mustdef value for PTR, returning the mustdef values in
1092    KILL and DEF.  */
1093 static inline void
1094 op_iter_next_maymustdef (use_operand_p *use, def_operand_p *def, 
1095                          ssa_op_iter *ptr)
1096 {
1097 #ifdef ENABLE_CHECKING
1098   gcc_assert (ptr->iter_type == ssa_op_iter_maymustdef);
1099 #endif
1100   if (ptr->mayuses)
1101     {
1102       *def = MAYDEF_RESULT_PTR (ptr->mayuses);
1103       *use = MAYDEF_OP_PTR (ptr->mayuses);
1104       ptr->mayuses = ptr->mayuses->next;
1105       return;
1106     }
1107
1108   if (ptr->mustkills)
1109     {
1110       *def = MUSTDEF_RESULT_PTR (ptr->mustkills);
1111       *use = MUSTDEF_KILL_PTR (ptr->mustkills);
1112       ptr->mustkills = ptr->mustkills->next;
1113       return;
1114     }
1115
1116   *def = NULL_DEF_OPERAND_P;
1117   *use = NULL_USE_OPERAND_P;
1118   ptr->done = true;
1119   return;
1120 }
1121
1122
1123 /* Initialize iterator PTR to the operands in STMT.  Return the first operands
1124    in USE and DEF.  */
1125 static inline void
1126 op_iter_init_maydef (ssa_op_iter *ptr, tree stmt, use_operand_p *use, 
1127                      def_operand_p *def)
1128 {
1129   gcc_assert (TREE_CODE (stmt) != PHI_NODE);
1130
1131   op_iter_init (ptr, stmt, SSA_OP_VMAYUSE);
1132   ptr->iter_type = ssa_op_iter_maymustdef;
1133   op_iter_next_maymustdef (use, def, ptr);
1134 }
1135
1136
1137 /* Initialize iterator PTR to the operands in STMT.  Return the first operands
1138    in KILL and DEF.  */
1139 static inline void
1140 op_iter_init_mustdef (ssa_op_iter *ptr, tree stmt, use_operand_p *kill, 
1141                      def_operand_p *def)
1142 {
1143   gcc_assert (TREE_CODE (stmt) != PHI_NODE);
1144
1145   op_iter_init (ptr, stmt, SSA_OP_VMUSTKILL);
1146   ptr->iter_type = ssa_op_iter_maymustdef;
1147   op_iter_next_maymustdef (kill, def, ptr);
1148 }
1149
1150 /* Initialize iterator PTR to the operands in STMT.  Return the first operands
1151    in KILL and DEF.  */
1152 static inline void
1153 op_iter_init_must_and_may_def (ssa_op_iter *ptr, tree stmt,
1154                                use_operand_p *kill, def_operand_p *def)
1155 {
1156   gcc_assert (TREE_CODE (stmt) != PHI_NODE);
1157
1158   op_iter_init (ptr, stmt, SSA_OP_VMUSTKILL|SSA_OP_VMAYUSE);
1159   ptr->iter_type = ssa_op_iter_maymustdef;
1160   op_iter_next_maymustdef (kill, def, ptr);
1161 }
1162
1163
1164 /* If there is a single operand in STMT matching FLAGS, return it.  Otherwise
1165    return NULL.  */
1166 static inline tree
1167 single_ssa_tree_operand (tree stmt, int flags)
1168 {
1169   tree var;
1170   ssa_op_iter iter;
1171
1172   var = op_iter_init_tree (&iter, stmt, flags);
1173   if (op_iter_done (&iter))
1174     return NULL_TREE;
1175   op_iter_next_tree (&iter);
1176   if (op_iter_done (&iter))
1177     return var;
1178   return NULL_TREE;
1179 }
1180
1181
1182 /* If there is a single operand in STMT matching FLAGS, return it.  Otherwise
1183    return NULL.  */
1184 static inline use_operand_p
1185 single_ssa_use_operand (tree stmt, int flags)
1186 {
1187   use_operand_p var;
1188   ssa_op_iter iter;
1189
1190   var = op_iter_init_use (&iter, stmt, flags);
1191   if (op_iter_done (&iter))
1192     return NULL_USE_OPERAND_P;
1193   op_iter_next_use (&iter);
1194   if (op_iter_done (&iter))
1195     return var;
1196   return NULL_USE_OPERAND_P;
1197 }
1198
1199
1200
1201 /* If there is a single operand in STMT matching FLAGS, return it.  Otherwise
1202    return NULL.  */
1203 static inline def_operand_p
1204 single_ssa_def_operand (tree stmt, int flags)
1205 {
1206   def_operand_p var;
1207   ssa_op_iter iter;
1208
1209   var = op_iter_init_def (&iter, stmt, flags);
1210   if (op_iter_done (&iter))
1211     return NULL_DEF_OPERAND_P;
1212   op_iter_next_def (&iter);
1213   if (op_iter_done (&iter))
1214     return var;
1215   return NULL_DEF_OPERAND_P;
1216 }
1217
1218
1219 /* If there is a single operand in STMT matching FLAGS, return it.  Otherwise
1220    return NULL.  */
1221 static inline bool
1222 zero_ssa_operands (tree stmt, int flags)
1223 {
1224   ssa_op_iter iter;
1225
1226   op_iter_init_tree (&iter, stmt, flags);
1227   return op_iter_done (&iter);
1228 }
1229
1230
1231 /* Return the number of operands matching FLAGS in STMT.  */
1232 static inline int
1233 num_ssa_operands (tree stmt, int flags)
1234 {
1235   ssa_op_iter iter;
1236   tree t;
1237   int num = 0;
1238
1239   FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, flags)
1240     num++;
1241   return num;
1242 }
1243
1244
1245 /* Delink all immediate_use information for STMT.  */
1246 static inline void
1247 delink_stmt_imm_use (tree stmt)
1248 {
1249    ssa_op_iter iter;
1250    use_operand_p use_p;
1251
1252    if (ssa_operands_active ())
1253      FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
1254                                (SSA_OP_ALL_USES | SSA_OP_ALL_KILLS))
1255        delink_imm_use (use_p);
1256 }
1257
1258
1259 /* This routine will compare all the operands matching FLAGS in STMT1 to those
1260    in STMT2.  TRUE is returned if they are the same.  STMTs can be NULL.  */
1261 static inline bool
1262 compare_ssa_operands_equal (tree stmt1, tree stmt2, int flags)
1263 {
1264   ssa_op_iter iter1, iter2;
1265   tree op1 = NULL_TREE;
1266   tree op2 = NULL_TREE;
1267   bool look1, look2;
1268
1269   if (stmt1 == stmt2)
1270     return true;
1271
1272   look1 = stmt1 && stmt_ann (stmt1);
1273   look2 = stmt2 && stmt_ann (stmt2);
1274
1275   if (look1)
1276     {
1277       op1 = op_iter_init_tree (&iter1, stmt1, flags);
1278       if (!look2)
1279         return op_iter_done (&iter1);
1280     }
1281   else
1282     clear_and_done_ssa_iter (&iter1);
1283
1284   if (look2)
1285     {
1286       op2 = op_iter_init_tree (&iter2, stmt2, flags);
1287       if (!look1)
1288         return op_iter_done (&iter2);
1289     }
1290   else
1291     clear_and_done_ssa_iter (&iter2);
1292
1293   while (!op_iter_done (&iter1) && !op_iter_done (&iter2))
1294     {
1295       if (op1 != op2)
1296         return false;
1297       op1 = op_iter_next_tree (&iter1);
1298       op2 = op_iter_next_tree (&iter2);
1299     }
1300
1301   return (op_iter_done (&iter1) && op_iter_done (&iter2));
1302 }
1303
1304
1305 /* If there is a single DEF in the PHI node which matches FLAG, return it.
1306    Otherwise return NULL_DEF_OPERAND_P.  */
1307 static inline tree
1308 single_phi_def (tree stmt, int flags)
1309 {
1310   tree def = PHI_RESULT (stmt);
1311   if ((flags & SSA_OP_DEF) && is_gimple_reg (def)) 
1312     return def;
1313   if ((flags & SSA_OP_VIRTUAL_DEFS) && !is_gimple_reg (def))
1314     return def;
1315   return NULL_TREE;
1316 }
1317
1318 /* Initialize the iterator PTR for uses matching FLAGS in PHI.  FLAGS should
1319    be either SSA_OP_USES or SAS_OP_VIRTUAL_USES.  */
1320 static inline use_operand_p
1321 op_iter_init_phiuse (ssa_op_iter *ptr, tree phi, int flags)
1322 {
1323   tree phi_def = PHI_RESULT (phi);
1324   int comp;
1325
1326   clear_and_done_ssa_iter (ptr);
1327   ptr->done = false;
1328
1329   gcc_assert ((flags & (SSA_OP_USE | SSA_OP_VIRTUAL_USES)) != 0);
1330
1331   comp = (is_gimple_reg (phi_def) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
1332     
1333   /* If the PHI node doesn't the operand type we care about, we're done.  */
1334   if ((flags & comp) == 0)
1335     {
1336       ptr->done = true;
1337       return NULL_USE_OPERAND_P;
1338     }
1339
1340   ptr->phi_stmt = phi;
1341   ptr->num_phi = PHI_NUM_ARGS (phi);
1342   ptr->iter_type = ssa_op_iter_use;
1343   return op_iter_next_use (ptr);
1344 }
1345
1346
1347 /* Start an iterator for a PHI definition.  */
1348
1349 static inline def_operand_p
1350 op_iter_init_phidef (ssa_op_iter *ptr, tree phi, int flags)
1351 {
1352   tree phi_def = PHI_RESULT (phi);
1353   int comp;
1354
1355   clear_and_done_ssa_iter (ptr);
1356   ptr->done = false;
1357
1358   gcc_assert ((flags & (SSA_OP_DEF | SSA_OP_VIRTUAL_DEFS)) != 0);
1359
1360   comp = (is_gimple_reg (phi_def) ? SSA_OP_DEF : SSA_OP_VIRTUAL_DEFS);
1361     
1362   /* If the PHI node doesn't the operand type we care about, we're done.  */
1363   if ((flags & comp) == 0)
1364     {
1365       ptr->done = true;
1366       return NULL_USE_OPERAND_P;
1367     }
1368
1369   ptr->iter_type = ssa_op_iter_def;
1370   /* The first call to op_iter_next_def will terminate the iterator since
1371      all the fields are NULL.  Simply return the result here as the first and
1372      therefore only result.  */
1373   return PHI_RESULT_PTR (phi);
1374 }
1375
1376
1377
1378 /* Return true if VAR cannot be modified by the program.  */
1379
1380 static inline bool
1381 unmodifiable_var_p (tree var)
1382 {
1383   if (TREE_CODE (var) == SSA_NAME)
1384     var = SSA_NAME_VAR (var);
1385   return TREE_READONLY (var) && (TREE_STATIC (var) || DECL_EXTERNAL (var));
1386 }
1387
1388 /* Return true if REF, an ARRAY_REF, has an INDIRECT_REF somewhere in it.  */
1389
1390 static inline bool
1391 array_ref_contains_indirect_ref (tree ref)
1392 {
1393   gcc_assert (TREE_CODE (ref) == ARRAY_REF);
1394
1395   do {
1396     ref = TREE_OPERAND (ref, 0);
1397   } while (handled_component_p (ref));
1398
1399   return TREE_CODE (ref) == INDIRECT_REF;
1400 }
1401
1402 /* Return true if REF, a handled component reference, has an ARRAY_REF
1403    somewhere in it.  */
1404
1405 static inline bool
1406 ref_contains_array_ref (tree ref)
1407 {
1408   gcc_assert (handled_component_p (ref));
1409
1410   do {
1411     if (TREE_CODE (ref) == ARRAY_REF)
1412       return true;
1413     ref = TREE_OPERAND (ref, 0);
1414   } while (handled_component_p (ref));
1415
1416   return false;
1417 }
1418
1419 /* Given a variable VAR, lookup and return a pointer to the list of
1420    subvariables for it.  */
1421
1422 static inline subvar_t *
1423 lookup_subvars_for_var (tree var)
1424 {
1425   var_ann_t ann = var_ann (var);
1426   gcc_assert (ann);
1427   return &ann->subvars;
1428 }
1429
1430 /* Given a variable VAR, return a linked list of subvariables for VAR, or
1431    NULL, if there are no subvariables.  */
1432
1433 static inline subvar_t
1434 get_subvars_for_var (tree var)
1435 {
1436   subvar_t subvars;
1437
1438   gcc_assert (SSA_VAR_P (var));  
1439   
1440   if (TREE_CODE (var) == SSA_NAME)
1441     subvars = *(lookup_subvars_for_var (SSA_NAME_VAR (var)));
1442   else
1443     subvars = *(lookup_subvars_for_var (var));
1444   return subvars;
1445 }
1446
1447 /* Return the subvariable of VAR at offset OFFSET.  */
1448
1449 static inline tree
1450 get_subvar_at (tree var, unsigned HOST_WIDE_INT offset)
1451 {
1452   subvar_t sv;
1453
1454   for (sv = get_subvars_for_var (var); sv; sv = sv->next)
1455     if (sv->offset == offset)
1456       return sv->var;
1457
1458   return NULL_TREE;
1459 }
1460
1461 /* Return true if V is a tree that we can have subvars for.
1462    Normally, this is any aggregate type, however, due to implementation
1463    limitations ATM, we exclude array types as well.  */
1464
1465 static inline bool
1466 var_can_have_subvars (tree v)
1467 {
1468   /* Volatile variables should never have subvars.  */
1469   if (TREE_THIS_VOLATILE (v))
1470     return false;
1471
1472   return (AGGREGATE_TYPE_P (TREE_TYPE (v)) &&
1473           TREE_CODE (TREE_TYPE (v)) != ARRAY_TYPE);
1474 }
1475
1476   
1477 /* Return true if OFFSET and SIZE define a range that overlaps with some
1478    portion of the range of SV, a subvar.  If there was an exact overlap,
1479    *EXACT will be set to true upon return. */
1480
1481 static inline bool
1482 overlap_subvar (unsigned HOST_WIDE_INT offset, unsigned HOST_WIDE_INT size,
1483                 subvar_t sv,  bool *exact)
1484 {
1485   /* There are three possible cases of overlap.
1486      1. We can have an exact overlap, like so:   
1487      |offset, offset + size             |
1488      |sv->offset, sv->offset + sv->size |
1489      
1490      2. We can have offset starting after sv->offset, like so:
1491      
1492            |offset, offset + size              |
1493      |sv->offset, sv->offset + sv->size  |
1494
1495      3. We can have offset starting before sv->offset, like so:
1496      
1497      |offset, offset + size    |
1498        |sv->offset, sv->offset + sv->size|
1499   */
1500
1501   if (exact)
1502     *exact = false;
1503   if (offset == sv->offset && size == sv->size)
1504     {
1505       if (exact)
1506         *exact = true;
1507       return true;
1508     }
1509   else if (offset >= sv->offset && offset < (sv->offset + sv->size))
1510     {
1511       return true;
1512     }
1513   else if (offset < sv->offset && (size > sv->offset - offset))
1514     {
1515       return true;
1516     }
1517   return false;
1518
1519 }
1520
1521 #endif /* _TREE_FLOW_INLINE_H  */