Merge branch 'vendor/GCC47'
[dragonfly.git] / contrib / gcc-4.7 / gcc / graphite-poly.h
1 /* Graphite polyhedral representation.
2    Copyright (C) 2009, 2010 Free Software Foundation, Inc.
3    Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4    Tobias Grosser <grosser@fim.uni-passau.de>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21
22 #ifndef GCC_GRAPHITE_POLY_H
23 #define GCC_GRAPHITE_POLY_H
24
25 typedef struct poly_dr *poly_dr_p;
26 DEF_VEC_P(poly_dr_p);
27 DEF_VEC_ALLOC_P (poly_dr_p, heap);
28
29 typedef struct poly_bb *poly_bb_p;
30 DEF_VEC_P(poly_bb_p);
31 DEF_VEC_ALLOC_P (poly_bb_p, heap);
32
33 typedef struct scop *scop_p;
34 DEF_VEC_P(scop_p);
35 DEF_VEC_ALLOC_P (scop_p, heap);
36
37 typedef ppl_dimension_type graphite_dim_t;
38
39 static inline graphite_dim_t pbb_dim_iter_domain (const struct poly_bb *);
40 static inline graphite_dim_t pbb_nb_params (const struct poly_bb *);
41 static inline graphite_dim_t scop_nb_params (scop_p);
42
43 /* A data reference can write or read some memory or we
44    just know it may write some memory.  */
45 enum poly_dr_type
46 {
47   PDR_READ,
48   /* PDR_MAY_READs are represented using PDR_READS.  This does not
49      limit the expressiveness.  */
50   PDR_WRITE,
51   PDR_MAY_WRITE
52 };
53
54 struct poly_dr
55 {
56   /* An identifier for this PDR.  */
57   int id;
58
59   /* The number of data refs identical to this one in the PBB.  */
60   int nb_refs;
61
62   /* A pointer to compiler's data reference description.  */
63   void *compiler_dr;
64
65   /* A pointer to the PBB that contains this data reference.  */
66   poly_bb_p pbb;
67
68   enum poly_dr_type type;
69
70   /* The access polyhedron contains the polyhedral space this data
71      reference will access.
72
73      The polyhedron contains these dimensions:
74
75      - The alias set (a):
76      Every memory access is classified in at least one alias set.
77
78      - The subscripts (s_0, ..., s_n):
79      The memory is accessed using zero or more subscript dimensions.
80
81      - The iteration domain (variables and parameters)
82
83      Do not hardcode the dimensions.  Use the following accessor functions:
84      - pdr_alias_set_dim
85      - pdr_subscript_dim
86      - pdr_iterator_dim
87      - pdr_parameter_dim
88
89      Example:
90
91      | int A[1335][123];
92      | int *p = malloc ();
93      |
94      | k = ...
95      | for i
96      |   {
97      |     if (unknown_function ())
98      |       p = A;
99      |       ... = p[?][?];
100      |     for j
101      |       A[i][j+k] = m;
102      |   }
103
104      The data access A[i][j+k] in alias set "5" is described like this:
105
106      | i   j   k   a  s0  s1   1
107      | 0   0   0   1   0   0  -5     =  0
108      |-1   0   0   0   1   0   0     =  0
109      | 0  -1  -1   0   0   1   0     =  0
110      | 0   0   0   0   1   0   0     >= 0  # The last four lines describe the
111      | 0   0   0   0   0   1   0     >= 0  # array size.
112      | 0   0   0   0  -1   0 1335    >= 0
113      | 0   0   0   0   0  -1 123     >= 0
114
115      The pointer "*p" in alias set "5" and "7" is described as a union of
116      polyhedron:
117
118
119      | i   k   a  s0   1
120      | 0   0   1   0  -5   =  0
121      | 0   0   0   1   0   >= 0
122
123      "or"
124
125      | i   k   a  s0   1
126      | 0   0   1   0  -7   =  0
127      | 0   0   0   1   0   >= 0
128
129      "*p" accesses all of the object allocated with 'malloc'.
130
131      The scalar data access "m" is represented as an array with zero subscript
132      dimensions.
133
134      | i   j   k   a   1
135      | 0   0   0  -1   15  = 0
136
137      The difference between the graphite internal format for access data and
138      the OpenSop format is in the order of columns.
139      Instead of having:
140
141      | i   j   k   a  s0  s1   1
142      | 0   0   0   1   0   0  -5     =  0
143      |-1   0   0   0   1   0   0     =  0
144      | 0  -1  -1   0   0   1   0     =  0
145      | 0   0   0   0   1   0   0     >= 0  # The last four lines describe the
146      | 0   0   0   0   0   1   0     >= 0  # array size.
147      | 0   0   0   0  -1   0 1335    >= 0
148      | 0   0   0   0   0  -1 123     >= 0
149
150      In OpenScop we have:
151
152      | a  s0  s1   i   j   k   1
153      | 1   0   0   0   0   0  -5     =  0
154      | 0   1   0  -1   0   0   0     =  0
155      | 0   0   1   0  -1  -1   0     =  0
156      | 0   1   0   0   0   0   0     >= 0  # The last four lines describe the
157      | 0   0   1   0   0   0   0     >= 0  # array size.
158      | 0  -1   0   0   0   0 1335    >= 0
159      | 0   0  -1   0   0   0 123     >= 0
160
161      The OpenScop access function is printed as follows:
162
163      | 1  # The number of disjunct components in a union of access functions.
164      | R C O I L P  # Described bellow.
165      | a  s0  s1   i   j   k   1
166      | 1   0   0   0   0   0  -5     =  0
167      | 0   1   0  -1   0   0   0     =  0
168      | 0   0   1   0  -1  -1   0     =  0
169      | 0   1   0   0   0   0   0     >= 0  # The last four lines describe the
170      | 0   0   1   0   0   0   0     >= 0  # array size.
171      | 0  -1   0   0   0   0 1335    >= 0
172      | 0   0  -1   0   0   0 123     >= 0
173
174      Where:
175      - R: Number of rows.
176      - C: Number of columns.
177      - O: Number of output dimensions = alias set + number of subscripts.
178      - I: Number of input dimensions (iterators).
179      - L: Number of local (existentially quantified) dimensions.
180      - P: Number of parameters.
181
182      In the example, the vector "R C O I L P" is "7 7 3 2 0 1".  */
183   ppl_Pointset_Powerset_C_Polyhedron_t accesses;
184
185   /* Data reference's base object set number, we must assure 2 pdrs are in the
186      same base object set before dependency checking.  */
187   int dr_base_object_set;
188
189   /* The number of subscripts.  */
190   graphite_dim_t nb_subscripts;
191 };
192
193 #define PDR_ID(PDR) (PDR->id)
194 #define PDR_NB_REFS(PDR) (PDR->nb_refs)
195 #define PDR_CDR(PDR) (PDR->compiler_dr)
196 #define PDR_PBB(PDR) (PDR->pbb)
197 #define PDR_TYPE(PDR) (PDR->type)
198 #define PDR_ACCESSES(PDR) (PDR->accesses)
199 #define PDR_BASE_OBJECT_SET(PDR) (PDR->dr_base_object_set)
200 #define PDR_NB_SUBSCRIPTS(PDR) (PDR->nb_subscripts)
201
202 void new_poly_dr (poly_bb_p, int, ppl_Pointset_Powerset_C_Polyhedron_t,
203                   enum poly_dr_type, void *, graphite_dim_t);
204 void free_poly_dr (poly_dr_p);
205 void debug_pdr (poly_dr_p, int);
206 void print_pdr (FILE *, poly_dr_p, int);
207 static inline scop_p pdr_scop (poly_dr_p pdr);
208
209 /* The dimension of the PDR_ACCESSES polyhedron of PDR.  */
210
211 static inline ppl_dimension_type
212 pdr_dim (poly_dr_p pdr)
213 {
214   ppl_dimension_type dim;
215   ppl_Pointset_Powerset_C_Polyhedron_space_dimension (PDR_ACCESSES (pdr),
216                                                       &dim);
217   return dim;
218 }
219
220 /* The dimension of the iteration domain of the scop of PDR.  */
221
222 static inline ppl_dimension_type
223 pdr_dim_iter_domain (poly_dr_p pdr)
224 {
225   return pbb_dim_iter_domain (PDR_PBB (pdr));
226 }
227
228 /* The number of parameters of the scop of PDR.  */
229
230 static inline ppl_dimension_type
231 pdr_nb_params (poly_dr_p pdr)
232 {
233   return scop_nb_params (pdr_scop (pdr));
234 }
235
236 /* The dimension of the alias set in PDR.  */
237
238 static inline ppl_dimension_type
239 pdr_alias_set_dim (poly_dr_p pdr)
240 {
241   poly_bb_p pbb = PDR_PBB (pdr);
242
243   return pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb);
244 }
245
246 /* The dimension in PDR containing subscript S.  */
247
248 static inline ppl_dimension_type
249 pdr_subscript_dim (poly_dr_p pdr, graphite_dim_t s)
250 {
251   poly_bb_p pbb = PDR_PBB (pdr);
252
253   return pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb) + 1 + s;
254 }
255
256 /* The dimension in PDR containing the loop iterator ITER.  */
257
258 static inline ppl_dimension_type
259 pdr_iterator_dim (poly_dr_p pdr ATTRIBUTE_UNUSED, graphite_dim_t iter)
260 {
261   return iter;
262 }
263
264 /* The dimension in PDR containing parameter PARAM.  */
265
266 static inline ppl_dimension_type
267 pdr_parameter_dim (poly_dr_p pdr, graphite_dim_t param)
268 {
269   poly_bb_p pbb = PDR_PBB (pdr);
270
271   return pbb_dim_iter_domain (pbb) + param;
272 }
273
274 /* Returns true when PDR is a "read".  */
275
276 static inline bool
277 pdr_read_p (poly_dr_p pdr)
278 {
279   return PDR_TYPE (pdr) == PDR_READ;
280 }
281
282 /* Returns true when PDR is a "write".  */
283
284 static inline bool
285 pdr_write_p (poly_dr_p pdr)
286 {
287   return PDR_TYPE (pdr) == PDR_WRITE;
288 }
289
290 /* Returns true when PDR is a "may write".  */
291
292 static inline bool
293 pdr_may_write_p (poly_dr_p pdr)
294 {
295   return PDR_TYPE (pdr) == PDR_MAY_WRITE;
296 }
297
298 /* Return true when PDR1 and PDR2 are similar data accesses: they have
299    the same base array, and the same access functions.  */
300
301 static inline bool
302 same_pdr_p (poly_dr_p pdr1, poly_dr_p pdr2)
303 {
304   return PDR_NB_SUBSCRIPTS (pdr1) == PDR_NB_SUBSCRIPTS (pdr2)
305     && PDR_BASE_OBJECT_SET (pdr1) == PDR_BASE_OBJECT_SET (pdr2);
306 }
307
308 typedef struct poly_scattering *poly_scattering_p;
309
310 struct poly_scattering
311 {
312   /* The scattering function containing the transformations: the
313      layout of this polyhedron is: T|I|G with T the transform
314      scattering, I the iteration domain, G the context parameters.  */
315   ppl_Polyhedron_t scattering;
316
317   /* The number of local variables.  */
318   int nb_local_variables;
319
320   /* The number of scattering dimensions.  */
321   int nb_scattering;
322 };
323
324 /* POLY_BB represents a blackbox in the polyhedral model.  */
325
326 struct poly_bb
327 {
328   /* Pointer to a basic block or a statement in the compiler.  */
329   void *black_box;
330
331   /* Pointer to the SCOP containing this PBB.  */
332   scop_p scop;
333
334   /* The iteration domain of this bb.  The layout of this polyhedron
335      is I|G with I the iteration domain, G the context parameters.
336
337      Example:
338
339      for (i = a - 7*b + 8; i <= 3*a + 13*b + 20; i++)
340        for (j = 2; j <= 2*i + 5; j++)
341          for (k = 0; k <= 5; k++)
342            S (i,j,k)
343
344      Loop iterators: i, j, k
345      Parameters: a, b
346
347      | i >=  a -  7b +  8
348      | i <= 3a + 13b + 20
349      | j >= 2
350      | j <= 2i + 5
351      | k >= 0
352      | k <= 5
353
354      The number of variables in the DOMAIN may change and is not
355      related to the number of loops in the original code.  */
356   ppl_Pointset_Powerset_C_Polyhedron_t domain;
357
358   /* The data references we access.  */
359   VEC (poly_dr_p, heap) *drs;
360
361   /* The original scattering.  */
362   poly_scattering_p original;
363
364   /* The transformed scattering.  */
365   poly_scattering_p transformed;
366
367   /* A copy of the transformed scattering.  */
368   poly_scattering_p saved;
369
370   /* True when the PDR duplicates have already been removed.  */
371   bool pdr_duplicates_removed;
372
373   /* True when this PBB contains only a reduction statement.  */
374   bool is_reduction;
375 };
376
377 #define PBB_BLACK_BOX(PBB) ((gimple_bb_p) PBB->black_box)
378 #define PBB_SCOP(PBB) (PBB->scop)
379 #define PBB_DOMAIN(PBB) (PBB->domain)
380 #define PBB_DRS(PBB) (PBB->drs)
381 #define PBB_ORIGINAL(PBB) (PBB->original)
382 #define PBB_ORIGINAL_SCATTERING(PBB) (PBB->original->scattering)
383 #define PBB_TRANSFORMED(PBB) (PBB->transformed)
384 #define PBB_TRANSFORMED_SCATTERING(PBB) (PBB->transformed->scattering)
385 #define PBB_SAVED(PBB) (PBB->saved)
386 #define PBB_NB_LOCAL_VARIABLES(PBB) (PBB->transformed->nb_local_variables)
387 #define PBB_NB_SCATTERING_TRANSFORM(PBB) (PBB->transformed->nb_scattering)
388 #define PBB_PDR_DUPLICATES_REMOVED(PBB) (PBB->pdr_duplicates_removed)
389 #define PBB_IS_REDUCTION(PBB) (PBB->is_reduction)
390
391 extern poly_bb_p new_poly_bb (scop_p, void *);
392 extern void free_poly_bb (poly_bb_p);
393 extern void debug_loop_vec (poly_bb_p);
394 extern void schedule_to_scattering (poly_bb_p, int);
395 extern void print_pbb_domain (FILE *, poly_bb_p, int);
396 extern void print_pbb (FILE *, poly_bb_p, int);
397 extern void print_scop_context (FILE *, scop_p, int);
398 extern void print_scop (FILE *, scop_p, int);
399 extern void print_cloog (FILE *, scop_p, int);
400 extern void debug_pbb_domain (poly_bb_p, int);
401 extern void debug_pbb (poly_bb_p, int);
402 extern void print_pdrs (FILE *, poly_bb_p, int);
403 extern void debug_pdrs (poly_bb_p, int);
404 extern void debug_scop_context (scop_p, int);
405 extern void debug_scop (scop_p, int);
406 extern void debug_cloog (scop_p, int);
407 extern void print_scop_params (FILE *, scop_p, int);
408 extern void debug_scop_params (scop_p, int);
409 extern void print_iteration_domain (FILE *, poly_bb_p, int);
410 extern void print_iteration_domains (FILE *, scop_p, int);
411 extern void debug_iteration_domain (poly_bb_p, int);
412 extern void debug_iteration_domains (scop_p, int);
413 extern int scop_do_interchange (scop_p);
414 extern int scop_do_strip_mine (scop_p, int);
415 extern bool scop_do_block (scop_p);
416 extern bool flatten_all_loops (scop_p);
417 extern void pbb_number_of_iterations_at_time (poly_bb_p, graphite_dim_t, mpz_t);
418 extern void pbb_remove_duplicate_pdrs (poly_bb_p);
419
420 /* Return the number of write data references in PBB.  */
421
422 static inline int
423 number_of_write_pdrs (poly_bb_p pbb)
424 {
425   int res = 0;
426   int i;
427   poly_dr_p pdr;
428
429   for (i = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb), i, pdr); i++)
430     if (PDR_TYPE (pdr) == PDR_WRITE)
431       res++;
432
433   return res;
434 }
435
436 /* Returns a gimple_bb from BB.  */
437
438 static inline gimple_bb_p
439 gbb_from_bb (basic_block bb)
440 {
441   return (gimple_bb_p) bb->aux;
442 }
443
444 /* The poly_bb of the BB.  */
445
446 static inline poly_bb_p
447 pbb_from_bb (basic_block bb)
448 {
449   return GBB_PBB (gbb_from_bb (bb));
450 }
451
452 /* The basic block of the PBB.  */
453
454 static inline basic_block
455 pbb_bb (poly_bb_p pbb)
456 {
457   return GBB_BB (PBB_BLACK_BOX (pbb));
458 }
459
460 /* The index of the PBB.  */
461
462 static inline int
463 pbb_index (poly_bb_p pbb)
464 {
465   return pbb_bb (pbb)->index;
466 }
467
468 /* The loop of the PBB.  */
469
470 static inline loop_p
471 pbb_loop (poly_bb_p pbb)
472 {
473   return gbb_loop (PBB_BLACK_BOX (pbb));
474 }
475
476 /* The scop that contains the PDR.  */
477
478 static inline scop_p
479 pdr_scop (poly_dr_p pdr)
480 {
481   return PBB_SCOP (PDR_PBB (pdr));
482 }
483
484 /* Set black box of PBB to BLACKBOX.  */
485
486 static inline void
487 pbb_set_black_box (poly_bb_p pbb, void *black_box)
488 {
489   pbb->black_box = black_box;
490 }
491
492 /* The number of loops around PBB: the dimension of the iteration
493    domain.  */
494
495 static inline graphite_dim_t
496 pbb_dim_iter_domain (const struct poly_bb *pbb)
497 {
498   scop_p scop = PBB_SCOP (pbb);
499   ppl_dimension_type dim;
500
501   ppl_Pointset_Powerset_C_Polyhedron_space_dimension (PBB_DOMAIN (pbb), &dim);
502   return dim - scop_nb_params (scop);
503 }
504
505 /* The number of params defined in PBB.  */
506
507 static inline graphite_dim_t
508 pbb_nb_params (const struct poly_bb *pbb)
509 {
510   scop_p scop = PBB_SCOP (pbb);
511
512   return scop_nb_params (scop);
513 }
514
515 /* The number of scattering dimensions in the SCATTERING polyhedron
516    of a PBB for a given SCOP.  */
517
518 static inline graphite_dim_t
519 pbb_nb_scattering_orig (const struct poly_bb *pbb)
520 {
521   return 2 * pbb_dim_iter_domain (pbb) + 1;
522 }
523
524 /* The number of scattering dimensions in PBB.  */
525
526 static inline graphite_dim_t
527 pbb_nb_scattering_transform (const struct poly_bb *pbb)
528 {
529   return PBB_NB_SCATTERING_TRANSFORM (pbb);
530 }
531
532 /* The number of dynamic scattering dimensions in PBB.  */
533
534 static inline graphite_dim_t
535 pbb_nb_dynamic_scattering_transform (const struct poly_bb *pbb)
536 {
537   /* This function requires the 2d + 1 scattering format to be
538      invariant during all transformations.  */
539   gcc_assert (PBB_NB_SCATTERING_TRANSFORM (pbb) % 2);
540   return PBB_NB_SCATTERING_TRANSFORM (pbb) / 2;
541 }
542
543 /* Returns the number of local variables used in the transformed
544    scattering polyhedron of PBB.  */
545
546 static inline graphite_dim_t
547 pbb_nb_local_vars (const struct poly_bb *pbb)
548 {
549   /* For now we do not have any local variables, as we do not do strip
550      mining for example.  */
551   return PBB_NB_LOCAL_VARIABLES (pbb);
552 }
553
554 /* The dimension in the domain of PBB containing the iterator ITER.  */
555
556 static inline ppl_dimension_type
557 pbb_iterator_dim (poly_bb_p pbb ATTRIBUTE_UNUSED, graphite_dim_t iter)
558 {
559   return iter;
560 }
561
562 /* The dimension in the domain of PBB containing the iterator ITER.  */
563
564 static inline ppl_dimension_type
565 pbb_parameter_dim (poly_bb_p pbb, graphite_dim_t param)
566 {
567   return param
568     + pbb_dim_iter_domain (pbb);
569 }
570
571 /* The dimension in the original scattering polyhedron of PBB
572    containing the scattering iterator SCATTER.  */
573
574 static inline ppl_dimension_type
575 psco_scattering_dim (poly_bb_p pbb ATTRIBUTE_UNUSED, graphite_dim_t scatter)
576 {
577   gcc_assert (scatter < pbb_nb_scattering_orig (pbb));
578   return scatter;
579 }
580
581 /* The dimension in the transformed scattering polyhedron of PBB
582    containing the scattering iterator SCATTER.  */
583
584 static inline ppl_dimension_type
585 psct_scattering_dim (poly_bb_p pbb ATTRIBUTE_UNUSED, graphite_dim_t scatter)
586 {
587   gcc_assert (scatter <= pbb_nb_scattering_transform (pbb));
588   return scatter;
589 }
590
591 ppl_dimension_type psct_scattering_dim_for_loop_depth (poly_bb_p,
592                                                        graphite_dim_t);
593
594 /* The dimension in the transformed scattering polyhedron of PBB of
595    the local variable LV.  */
596
597 static inline ppl_dimension_type
598 psct_local_var_dim (poly_bb_p pbb, graphite_dim_t lv)
599 {
600   gcc_assert (lv <= pbb_nb_local_vars (pbb));
601   return lv + pbb_nb_scattering_transform (pbb);
602 }
603
604 /* The dimension in the original scattering polyhedron of PBB
605    containing the loop iterator ITER.  */
606
607 static inline ppl_dimension_type
608 psco_iterator_dim (poly_bb_p pbb, graphite_dim_t iter)
609 {
610   gcc_assert (iter < pbb_dim_iter_domain (pbb));
611   return iter + pbb_nb_scattering_orig (pbb);
612 }
613
614 /* The dimension in the transformed scattering polyhedron of PBB
615    containing the loop iterator ITER.  */
616
617 static inline ppl_dimension_type
618 psct_iterator_dim (poly_bb_p pbb, graphite_dim_t iter)
619 {
620   gcc_assert (iter < pbb_dim_iter_domain (pbb));
621   return iter
622     + pbb_nb_scattering_transform (pbb)
623     + pbb_nb_local_vars (pbb);
624 }
625
626 /* The dimension in the original scattering polyhedron of PBB
627    containing parameter PARAM.  */
628
629 static inline ppl_dimension_type
630 psco_parameter_dim (poly_bb_p pbb, graphite_dim_t param)
631 {
632   gcc_assert (param < pbb_nb_params (pbb));
633   return param
634     + pbb_nb_scattering_orig (pbb)
635     + pbb_dim_iter_domain (pbb);
636 }
637
638 /* The dimension in the transformed scattering polyhedron of PBB
639    containing parameter PARAM.  */
640
641 static inline ppl_dimension_type
642 psct_parameter_dim (poly_bb_p pbb, graphite_dim_t param)
643 {
644   gcc_assert (param < pbb_nb_params (pbb));
645   return param
646     + pbb_nb_scattering_transform (pbb)
647     + pbb_nb_local_vars (pbb)
648     + pbb_dim_iter_domain (pbb);
649 }
650
651 /* The scattering dimension of PBB corresponding to the dynamic level
652    LEVEL.  */
653
654 static inline ppl_dimension_type
655 psct_dynamic_dim (poly_bb_p pbb, graphite_dim_t level)
656 {
657   graphite_dim_t result = 1 + 2 * level;
658
659   gcc_assert (result < pbb_nb_scattering_transform (pbb));
660   return result;
661 }
662
663 /* The scattering dimension of PBB corresponding to the static
664    sequence of the loop level LEVEL.  */
665
666 static inline ppl_dimension_type
667 psct_static_dim (poly_bb_p pbb, graphite_dim_t level)
668 {
669   graphite_dim_t result = 2 * level;
670
671   gcc_assert (result < pbb_nb_scattering_transform (pbb));
672   return result;
673 }
674
675 /* Adds to the transformed scattering polyhedron of PBB a new local
676    variable and returns its index.  */
677
678 static inline graphite_dim_t
679 psct_add_local_variable (poly_bb_p pbb)
680 {
681   graphite_dim_t nlv = pbb_nb_local_vars (pbb);
682   ppl_dimension_type lv_column = psct_local_var_dim (pbb, nlv);
683   ppl_insert_dimensions (PBB_TRANSFORMED_SCATTERING (pbb), lv_column, 1);
684   PBB_NB_LOCAL_VARIABLES (pbb) += 1;
685   return nlv;
686 }
687
688 /* Adds a dimension to the transformed scattering polyhedron of PBB at
689    INDEX.  */
690
691 static inline void
692 psct_add_scattering_dimension (poly_bb_p pbb, ppl_dimension_type index)
693 {
694   gcc_assert (index < pbb_nb_scattering_transform (pbb));
695
696   ppl_insert_dimensions (PBB_TRANSFORMED_SCATTERING (pbb), index, 1);
697   PBB_NB_SCATTERING_TRANSFORM (pbb) += 1;
698 }
699
700 typedef struct lst *lst_p;
701 DEF_VEC_P(lst_p);
702 DEF_VEC_ALLOC_P (lst_p, heap);
703
704 /* Loops and Statements Tree.  */
705 struct lst {
706
707   /* LOOP_P is true when an LST node is a loop.  */
708   bool loop_p;
709
710   /* A pointer to the loop that contains this node.  */
711   lst_p loop_father;
712
713   /* The sum of all the memory strides for an LST loop.  */
714   mpz_t memory_strides;
715
716   /* Loop nodes contain a sequence SEQ of LST nodes, statements
717      contain a pointer to their polyhedral representation PBB.  */
718   union {
719     poly_bb_p pbb;
720     VEC (lst_p, heap) *seq;
721   } node;
722 };
723
724 #define LST_LOOP_P(LST) ((LST)->loop_p)
725 #define LST_LOOP_FATHER(LST) ((LST)->loop_father)
726 #define LST_PBB(LST) ((LST)->node.pbb)
727 #define LST_SEQ(LST) ((LST)->node.seq)
728 #define LST_LOOP_MEMORY_STRIDES(LST) ((LST)->memory_strides)
729
730 void scop_to_lst (scop_p);
731 void print_lst (FILE *, lst_p, int);
732 void debug_lst (lst_p);
733 void dot_lst (lst_p);
734
735 /* Creates a new LST loop with SEQ.  */
736
737 static inline lst_p
738 new_lst_loop (VEC (lst_p, heap) *seq)
739 {
740   lst_p lst = XNEW (struct lst);
741   int i;
742   lst_p l;
743
744   LST_LOOP_P (lst) = true;
745   LST_SEQ (lst) = seq;
746   LST_LOOP_FATHER (lst) = NULL;
747   mpz_init (LST_LOOP_MEMORY_STRIDES (lst));
748   mpz_set_si (LST_LOOP_MEMORY_STRIDES (lst), -1);
749
750   for (i = 0; VEC_iterate (lst_p, seq, i, l); i++)
751     LST_LOOP_FATHER (l) = lst;
752
753   return lst;
754 }
755
756 /* Creates a new LST statement with PBB.  */
757
758 static inline lst_p
759 new_lst_stmt (poly_bb_p pbb)
760 {
761   lst_p lst = XNEW (struct lst);
762
763   LST_LOOP_P (lst) = false;
764   LST_PBB (lst) = pbb;
765   LST_LOOP_FATHER (lst) = NULL;
766   return lst;
767 }
768
769 /* Frees the memory used by LST.  */
770
771 static inline void
772 free_lst (lst_p lst)
773 {
774   if (!lst)
775     return;
776
777   if (LST_LOOP_P (lst))
778     {
779       int i;
780       lst_p l;
781
782       for (i = 0; VEC_iterate (lst_p, LST_SEQ (lst), i, l); i++)
783         free_lst (l);
784
785       mpz_clear (LST_LOOP_MEMORY_STRIDES (lst));
786       VEC_free (lst_p, heap, LST_SEQ (lst));
787     }
788
789   free (lst);
790 }
791
792 /* Returns a copy of LST.  */
793
794 static inline lst_p
795 copy_lst (lst_p lst)
796 {
797   if (!lst)
798     return NULL;
799
800   if (LST_LOOP_P (lst))
801     {
802       int i;
803       lst_p l;
804       VEC (lst_p, heap) *seq = VEC_alloc (lst_p, heap, 5);
805
806       for (i = 0; VEC_iterate (lst_p, LST_SEQ (lst), i, l); i++)
807         VEC_safe_push (lst_p, heap, seq, copy_lst (l));
808
809       return new_lst_loop (seq);
810     }
811
812   return new_lst_stmt (LST_PBB (lst));
813 }
814
815 /* Adds a new loop under the loop LST.  */
816
817 static inline void
818 lst_add_loop_under_loop (lst_p lst)
819 {
820   VEC (lst_p, heap) *seq = VEC_alloc (lst_p, heap, 1);
821   lst_p l = new_lst_loop (LST_SEQ (lst));
822
823   gcc_assert (LST_LOOP_P (lst));
824
825   LST_LOOP_FATHER (l) = lst;
826   VEC_quick_push (lst_p, seq, l);
827   LST_SEQ (lst) = seq;
828 }
829
830 /* Returns the loop depth of LST.  */
831
832 static inline int
833 lst_depth (lst_p lst)
834 {
835   if (!lst)
836     return -2;
837
838   /* The depth of the outermost "fake" loop is -1.  This outermost
839      loop does not have a loop father and it is just a container, as
840      in the loop representation of GCC.  */
841   if (!LST_LOOP_FATHER (lst))
842     return -1;
843
844   return lst_depth (LST_LOOP_FATHER (lst)) + 1;
845 }
846
847 /* Returns the Dewey number for LST.  */
848
849 static inline int
850 lst_dewey_number (lst_p lst)
851 {
852   int i;
853   lst_p l;
854
855   if (!lst)
856     return -1;
857
858   if (!LST_LOOP_FATHER (lst))
859     return 0;
860
861   FOR_EACH_VEC_ELT (lst_p, LST_SEQ (LST_LOOP_FATHER (lst)), i, l)
862     if (l == lst)
863       return i;
864
865   return -1;
866 }
867
868 /* Returns the Dewey number of LST at depth DEPTH.  */
869
870 static inline int
871 lst_dewey_number_at_depth (lst_p lst, int depth)
872 {
873   gcc_assert (lst && depth >= 0 && lst_depth (lst) <= depth);
874
875   if (lst_depth (lst) == depth)
876     return lst_dewey_number (lst);
877
878   return lst_dewey_number_at_depth (LST_LOOP_FATHER (lst), depth);
879 }
880
881 /* Returns the predecessor of LST in the sequence of its loop father.
882    Returns NULL if LST is the first statement in the sequence.  */
883
884 static inline lst_p
885 lst_pred (lst_p lst)
886 {
887   int dewey;
888   lst_p father;
889
890   if (!lst || !LST_LOOP_FATHER (lst))
891     return NULL;
892
893   dewey = lst_dewey_number (lst);
894   if (dewey == 0)
895     return NULL;
896
897   father = LST_LOOP_FATHER (lst);
898   return VEC_index (lst_p, LST_SEQ (father), dewey - 1);
899 }
900
901 /* Returns the successor of LST in the sequence of its loop father.
902    Returns NULL if there is none.  */
903
904 static inline lst_p
905 lst_succ (lst_p lst)
906 {
907   int dewey;
908   lst_p father;
909
910   if (!lst || !LST_LOOP_FATHER (lst))
911     return NULL;
912
913   dewey = lst_dewey_number (lst);
914   father = LST_LOOP_FATHER (lst);
915
916   if (VEC_length (lst_p, LST_SEQ (father)) == (unsigned) dewey + 1)
917     return NULL;
918
919   return VEC_index (lst_p, LST_SEQ (father), dewey + 1);
920 }
921
922
923 /* Return the LST node corresponding to PBB.  */
924
925 static inline lst_p
926 lst_find_pbb (lst_p lst, poly_bb_p pbb)
927 {
928   int i;
929   lst_p l;
930
931   if (!lst)
932     return NULL;
933
934   if (!LST_LOOP_P (lst))
935     return (pbb == LST_PBB (lst)) ? lst : NULL;
936
937   for (i = 0; VEC_iterate (lst_p, LST_SEQ (lst), i, l); i++)
938     {
939       lst_p res = lst_find_pbb (l, pbb);
940       if (res)
941         return res;
942     }
943
944   return NULL;
945 }
946
947 /* Return the LST node corresponding to the loop around STMT at depth
948    LOOP_DEPTH.  */
949
950 static inline lst_p
951 find_lst_loop (lst_p stmt, int loop_depth)
952 {
953   lst_p loop = LST_LOOP_FATHER (stmt);
954
955   gcc_assert (loop_depth >= 0);
956
957   while (loop_depth < lst_depth (loop))
958     loop = LST_LOOP_FATHER (loop);
959
960   return loop;
961 }
962
963 /* Return the first LST representing a PBB statement in LST.  */
964
965 static inline lst_p
966 lst_find_first_pbb (lst_p lst)
967 {
968   int i;
969   lst_p l;
970
971   if (!lst)
972     return NULL;
973
974   if (!LST_LOOP_P (lst))
975     return lst;
976
977   for (i = 0; VEC_iterate (lst_p, LST_SEQ (lst), i, l); i++)
978     {
979       lst_p res = lst_find_first_pbb (l);
980       if (res)
981         return res;
982     }
983
984   return NULL;
985 }
986
987 /* Returns true when LST is a loop that does not contain
988    statements.  */
989
990 static inline bool
991 lst_empty_p (lst_p lst)
992 {
993   return !lst_find_first_pbb (lst);
994 }
995
996 /* Return the last LST representing a PBB statement in LST.  */
997
998 static inline lst_p
999 lst_find_last_pbb (lst_p lst)
1000 {
1001   int i;
1002   lst_p l, res = NULL;
1003
1004   if (!lst)
1005     return NULL;
1006
1007   if (!LST_LOOP_P (lst))
1008     return lst;
1009
1010   for (i = 0; VEC_iterate (lst_p, LST_SEQ (lst), i, l); i++)
1011     {
1012       lst_p last = lst_find_last_pbb (l);
1013
1014       if (last)
1015         res = last;
1016     }
1017
1018   gcc_assert (res);
1019   return res;
1020 }
1021
1022 /* Returns true if LOOP contains LST, in other words, if LST is nested
1023    in LOOP.  */
1024
1025 static inline bool
1026 lst_contains_p (lst_p loop, lst_p lst)
1027 {
1028   if (!loop || !lst || !LST_LOOP_P (loop))
1029     return false;
1030
1031   if (loop == lst)
1032     return true;
1033
1034   return lst_contains_p (loop, LST_LOOP_FATHER (lst));
1035 }
1036
1037 /* Returns true if LOOP contains PBB, in other words, if PBB is nested
1038    in LOOP.  */
1039
1040 static inline bool
1041 lst_contains_pbb (lst_p loop, poly_bb_p pbb)
1042 {
1043   return lst_find_pbb (loop, pbb) ? true : false;
1044 }
1045
1046 /* Creates a loop nest of depth NB_LOOPS containing LST.  */
1047
1048 static inline lst_p
1049 lst_create_nest (int nb_loops, lst_p lst)
1050 {
1051   lst_p res, loop;
1052   VEC (lst_p, heap) *seq;
1053
1054   if (nb_loops == 0)
1055     return lst;
1056
1057   seq = VEC_alloc (lst_p, heap, 1);
1058   loop = lst_create_nest (nb_loops - 1, lst);
1059   VEC_quick_push (lst_p, seq, loop);
1060   res = new_lst_loop (seq);
1061   LST_LOOP_FATHER (loop) = res;
1062
1063   return res;
1064 }
1065
1066 /* Removes LST from the sequence of statements of its loop father.  */
1067
1068 static inline void
1069 lst_remove_from_sequence (lst_p lst)
1070 {
1071   lst_p father = LST_LOOP_FATHER (lst);
1072   int dewey = lst_dewey_number (lst);
1073
1074   gcc_assert (lst && father && dewey >= 0);
1075
1076   VEC_ordered_remove (lst_p, LST_SEQ (father), dewey);
1077   LST_LOOP_FATHER (lst) = NULL;
1078 }
1079
1080 /* Removes the loop LST and inline its body in the father loop.  */
1081
1082 static inline void
1083 lst_remove_loop_and_inline_stmts_in_loop_father (lst_p lst)
1084 {
1085   lst_p l, father = LST_LOOP_FATHER (lst);
1086   int i, dewey = lst_dewey_number (lst);
1087
1088   gcc_assert (lst && father && dewey >= 0);
1089
1090   VEC_ordered_remove (lst_p, LST_SEQ (father), dewey);
1091   LST_LOOP_FATHER (lst) = NULL;
1092
1093   FOR_EACH_VEC_ELT (lst_p, LST_SEQ (lst), i, l)
1094     {
1095       VEC_safe_insert (lst_p, heap, LST_SEQ (father), dewey + i, l);
1096       LST_LOOP_FATHER (l) = father;
1097     }
1098 }
1099
1100 /* Sets NITER to the upper bound approximation of the number of
1101    iterations of loop LST.  */
1102
1103 static inline void
1104 lst_niter_for_loop (lst_p lst, mpz_t niter)
1105 {
1106   int depth = lst_depth (lst);
1107   poly_bb_p pbb = LST_PBB (lst_find_first_pbb (lst));
1108
1109   gcc_assert (LST_LOOP_P (lst));
1110   pbb_number_of_iterations_at_time (pbb, psct_dynamic_dim (pbb, depth), niter);
1111 }
1112
1113 /* Updates the scattering of PBB to be at the DEWEY number in the loop
1114    at depth LEVEL.  */
1115
1116 static inline void
1117 pbb_update_scattering (poly_bb_p pbb, graphite_dim_t level, int dewey)
1118 {
1119   ppl_Polyhedron_t ph = PBB_TRANSFORMED_SCATTERING (pbb);
1120   ppl_dimension_type sched = psct_static_dim (pbb, level);
1121   ppl_dimension_type ds[1];
1122   ppl_Constraint_t new_cstr;
1123   ppl_Linear_Expression_t expr;
1124   ppl_dimension_type dim;
1125
1126   ppl_Polyhedron_space_dimension (ph, &dim);
1127   ds[0] = sched;
1128   ppl_Polyhedron_remove_space_dimensions (ph, ds, 1);
1129   ppl_insert_dimensions (ph, sched, 1);
1130
1131   ppl_new_Linear_Expression_with_dimension (&expr, dim);
1132   ppl_set_coef (expr, sched, -1);
1133   ppl_set_inhomogeneous (expr, dewey);
1134   ppl_new_Constraint (&new_cstr, expr, PPL_CONSTRAINT_TYPE_EQUAL);
1135   ppl_delete_Linear_Expression (expr);
1136   ppl_Polyhedron_add_constraint (ph, new_cstr);
1137   ppl_delete_Constraint (new_cstr);
1138 }
1139
1140 /* Updates the scattering of all the PBBs under LST to be at the DEWEY
1141    number in the loop at depth LEVEL.  */
1142
1143 static inline void
1144 lst_update_scattering_under (lst_p lst, int level, int dewey)
1145 {
1146   int i;
1147   lst_p l;
1148
1149   gcc_assert (lst && level >= 0 && dewey >= 0);
1150
1151   if (LST_LOOP_P (lst))
1152     for (i = 0; VEC_iterate (lst_p, LST_SEQ (lst), i, l); i++)
1153       lst_update_scattering_under (l, level, dewey);
1154   else
1155     pbb_update_scattering (LST_PBB (lst), level, dewey);
1156 }
1157
1158 /* Updates the all the scattering levels of all the PBBs under
1159    LST.  */
1160
1161 static inline void
1162 lst_update_scattering (lst_p lst)
1163 {
1164   int i;
1165   lst_p l;
1166
1167   if (!lst)
1168     return;
1169
1170   if (LST_LOOP_FATHER (lst))
1171     {
1172       lst_p father = LST_LOOP_FATHER (lst);
1173       int dewey = lst_dewey_number (lst);
1174       int level = lst_depth (lst);
1175
1176       gcc_assert (lst && father && dewey >= 0 && level >= 0);
1177
1178       for (i = dewey; VEC_iterate (lst_p, LST_SEQ (father), i, l); i++)
1179         lst_update_scattering_under (l, level, i);
1180     }
1181
1182   if (LST_LOOP_P (lst))
1183     for (i = 0; VEC_iterate (lst_p, LST_SEQ (lst), i, l); i++)
1184       lst_update_scattering (l);
1185 }
1186
1187 /* Inserts LST1 before LST2 if BEFORE is true; inserts LST1 after LST2
1188    if BEFORE is false.  */
1189
1190 static inline void
1191 lst_insert_in_sequence (lst_p lst1, lst_p lst2, bool before)
1192 {
1193   lst_p father;
1194   int dewey;
1195
1196   /* Do not insert empty loops.  */
1197   if (!lst1 || lst_empty_p (lst1))
1198     return;
1199
1200   father = LST_LOOP_FATHER (lst2);
1201   dewey = lst_dewey_number (lst2);
1202
1203   gcc_assert (lst2 && father && dewey >= 0);
1204
1205   VEC_safe_insert (lst_p, heap, LST_SEQ (father), before ? dewey : dewey + 1,
1206                    lst1);
1207   LST_LOOP_FATHER (lst1) = father;
1208 }
1209
1210 /* Replaces LST1 with LST2.  */
1211
1212 static inline void
1213 lst_replace (lst_p lst1, lst_p lst2)
1214 {
1215   lst_p father;
1216   int dewey;
1217
1218   if (!lst2 || lst_empty_p (lst2))
1219     return;
1220
1221   father = LST_LOOP_FATHER (lst1);
1222   dewey = lst_dewey_number (lst1);
1223   LST_LOOP_FATHER (lst2) = father;
1224   VEC_replace (lst_p, LST_SEQ (father), dewey, lst2);
1225 }
1226
1227 /* Returns a copy of ROOT where LST has been replaced by a copy of the
1228    LSTs A B C in this sequence.  */
1229
1230 static inline lst_p
1231 lst_substitute_3 (lst_p root, lst_p lst, lst_p a, lst_p b, lst_p c)
1232 {
1233   int i;
1234   lst_p l;
1235   VEC (lst_p, heap) *seq;
1236
1237   if (!root)
1238     return NULL;
1239
1240   gcc_assert (lst && root != lst);
1241
1242   if (!LST_LOOP_P (root))
1243     return new_lst_stmt (LST_PBB (root));
1244
1245   seq = VEC_alloc (lst_p, heap, 5);
1246
1247   for (i = 0; VEC_iterate (lst_p, LST_SEQ (root), i, l); i++)
1248     if (l != lst)
1249       VEC_safe_push (lst_p, heap, seq, lst_substitute_3 (l, lst, a, b, c));
1250     else
1251       {
1252         if (!lst_empty_p (a))
1253           VEC_safe_push (lst_p, heap, seq, copy_lst (a));
1254         if (!lst_empty_p (b))
1255           VEC_safe_push (lst_p, heap, seq, copy_lst (b));
1256         if (!lst_empty_p (c))
1257           VEC_safe_push (lst_p, heap, seq, copy_lst (c));
1258       }
1259
1260   return new_lst_loop (seq);
1261 }
1262
1263 /* Moves LST before LOOP if BEFORE is true, and after the LOOP if
1264    BEFORE is false.  */
1265
1266 static inline void
1267 lst_distribute_lst (lst_p loop, lst_p lst, bool before)
1268 {
1269   int loop_depth = lst_depth (loop);
1270   int depth = lst_depth (lst);
1271   int nb_loops = depth - loop_depth;
1272
1273   gcc_assert (lst && loop && LST_LOOP_P (loop) && nb_loops > 0);
1274
1275   lst_remove_from_sequence (lst);
1276   lst_insert_in_sequence (lst_create_nest (nb_loops, lst), loop, before);
1277 }
1278
1279 /* Removes from LOOP all the statements before/after and including PBB
1280    if BEFORE is true/false.  Returns the negation of BEFORE when the
1281    statement PBB has been found.  */
1282
1283 static inline bool
1284 lst_remove_all_before_including_pbb (lst_p loop, poly_bb_p pbb, bool before)
1285 {
1286   int i;
1287   lst_p l;
1288
1289   if (!loop || !LST_LOOP_P (loop))
1290     return before;
1291
1292   for (i = 0; VEC_iterate (lst_p, LST_SEQ (loop), i, l);)
1293     if (LST_LOOP_P (l))
1294       {
1295         before = lst_remove_all_before_including_pbb (l, pbb, before);
1296
1297         if (VEC_length (lst_p, LST_SEQ (l)) == 0)
1298           {
1299             VEC_ordered_remove (lst_p, LST_SEQ (loop), i);
1300             free_lst (l);
1301           }
1302         else
1303           i++;
1304       }
1305     else
1306       {
1307         if (before)
1308           {
1309             if (LST_PBB (l) == pbb)
1310               before = false;
1311
1312             VEC_ordered_remove (lst_p, LST_SEQ (loop), i);
1313             free_lst (l);
1314           }
1315         else if (LST_PBB (l) == pbb)
1316           {
1317             before = true;
1318             VEC_ordered_remove (lst_p, LST_SEQ (loop), i);
1319             free_lst (l);
1320           }
1321         else
1322           i++;
1323       }
1324
1325   return before;
1326 }
1327
1328 /* Removes from LOOP all the statements before/after and excluding PBB
1329    if BEFORE is true/false; Returns the negation of BEFORE when the
1330    statement PBB has been found.  */
1331
1332 static inline bool
1333 lst_remove_all_before_excluding_pbb (lst_p loop, poly_bb_p pbb, bool before)
1334 {
1335   int i;
1336   lst_p l;
1337
1338   if (!loop || !LST_LOOP_P (loop))
1339     return before;
1340
1341   for (i = 0; VEC_iterate (lst_p, LST_SEQ (loop), i, l);)
1342     if (LST_LOOP_P (l))
1343       {
1344         before = lst_remove_all_before_excluding_pbb (l, pbb, before);
1345
1346         if (VEC_length (lst_p, LST_SEQ (l)) == 0)
1347           {
1348             VEC_ordered_remove (lst_p, LST_SEQ (loop), i);
1349             free_lst (l);
1350             continue;
1351           }
1352
1353         i++;
1354       }
1355     else
1356       {
1357         if (before && LST_PBB (l) != pbb)
1358           {
1359             VEC_ordered_remove (lst_p, LST_SEQ (loop), i);
1360             free_lst (l);
1361             continue;
1362           }
1363
1364         i++;
1365
1366         if (LST_PBB (l) == pbb)
1367           before = before ? false : true;
1368       }
1369
1370   return before;
1371 }
1372
1373 /* A SCOP is a Static Control Part of the program, simple enough to be
1374    represented in polyhedral form.  */
1375 struct scop
1376 {
1377   /* A SCOP is defined as a SESE region.  */
1378   void *region;
1379
1380   /* Number of parameters in SCoP.  */
1381   graphite_dim_t nb_params;
1382
1383   /* All the basic blocks in this scop that contain memory references
1384      and that will be represented as statements in the polyhedral
1385      representation.  */
1386   VEC (poly_bb_p, heap) *bbs;
1387
1388   /* Original, transformed and saved schedules.  */
1389   lst_p original_schedule, transformed_schedule, saved_schedule;
1390
1391   /* The context describes known restrictions concerning the parameters
1392      and relations in between the parameters.
1393
1394   void f (int8_t a, uint_16_t b) {
1395     c = 2 a + b;
1396     ...
1397   }
1398
1399   Here we can add these restrictions to the context:
1400
1401   -128 >= a >= 127
1402      0 >= b >= 65,535
1403      c = 2a + b  */
1404   ppl_Pointset_Powerset_C_Polyhedron_t context;
1405
1406   /* A hashtable of the data dependence relations for the original
1407      scattering.  */
1408   htab_t original_pddrs;
1409
1410   /* True when the scop has been converted to its polyhedral
1411      representation.  */
1412   bool poly_scop_p;
1413 };
1414
1415 #define SCOP_BBS(S) (S->bbs)
1416 #define SCOP_REGION(S) ((sese) S->region)
1417 #define SCOP_CONTEXT(S) (S->context)
1418 #define SCOP_ORIGINAL_PDDRS(S) (S->original_pddrs)
1419 #define SCOP_ORIGINAL_SCHEDULE(S) (S->original_schedule)
1420 #define SCOP_TRANSFORMED_SCHEDULE(S) (S->transformed_schedule)
1421 #define SCOP_SAVED_SCHEDULE(S) (S->saved_schedule)
1422 #define POLY_SCOP_P(S) (S->poly_scop_p)
1423
1424 extern scop_p new_scop (void *);
1425 extern void free_scop (scop_p);
1426 extern void free_scops (VEC (scop_p, heap) *);
1427 extern void print_generated_program (FILE *, scop_p);
1428 extern void debug_generated_program (scop_p);
1429 extern void print_scattering_function (FILE *, poly_bb_p, int);
1430 extern void print_scattering_functions (FILE *, scop_p, int);
1431 extern void debug_scattering_function (poly_bb_p, int);
1432 extern void debug_scattering_functions (scop_p, int);
1433 extern int scop_max_loop_depth (scop_p);
1434 extern int unify_scattering_dimensions (scop_p);
1435 extern bool apply_poly_transforms (scop_p);
1436 extern bool graphite_legal_transform (scop_p);
1437 extern void cloog_checksum (scop_p);
1438
1439 /* Set the region of SCOP to REGION.  */
1440
1441 static inline void
1442 scop_set_region (scop_p scop, void *region)
1443 {
1444   scop->region = region;
1445 }
1446
1447 /* Returns the number of parameters for SCOP.  */
1448
1449 static inline graphite_dim_t
1450 scop_nb_params (scop_p scop)
1451 {
1452   return scop->nb_params;
1453 }
1454
1455 /* Set the number of params of SCOP to NB_PARAMS.  */
1456
1457 static inline void
1458 scop_set_nb_params (scop_p scop, graphite_dim_t nb_params)
1459 {
1460   scop->nb_params = nb_params;
1461 }
1462
1463 /* Allocates a new empty poly_scattering structure.  */
1464
1465 static inline poly_scattering_p
1466 poly_scattering_new (void)
1467 {
1468   poly_scattering_p res = XNEW (struct poly_scattering);
1469
1470   res->scattering = NULL;
1471   res->nb_local_variables = 0;
1472   res->nb_scattering = 0;
1473   return res;
1474 }
1475
1476 /* Free a poly_scattering structure.  */
1477
1478 static inline void
1479 poly_scattering_free (poly_scattering_p s)
1480 {
1481   ppl_delete_Polyhedron (s->scattering);
1482   free (s);
1483 }
1484
1485 /* Copies S and return a new scattering.  */
1486
1487 static inline poly_scattering_p
1488 poly_scattering_copy (poly_scattering_p s)
1489 {
1490   poly_scattering_p res = poly_scattering_new ();
1491
1492   ppl_new_C_Polyhedron_from_C_Polyhedron (&(res->scattering), s->scattering);
1493   res->nb_local_variables = s->nb_local_variables;
1494   res->nb_scattering = s->nb_scattering;
1495   return res;
1496 }
1497
1498 /* Saves the transformed scattering of PBB.  */
1499
1500 static inline void
1501 store_scattering_pbb (poly_bb_p pbb)
1502 {
1503   gcc_assert (PBB_TRANSFORMED (pbb));
1504
1505   if (PBB_SAVED (pbb))
1506     poly_scattering_free (PBB_SAVED (pbb));
1507
1508   PBB_SAVED (pbb) = poly_scattering_copy (PBB_TRANSFORMED (pbb));
1509 }
1510
1511 /* Stores the SCOP_TRANSFORMED_SCHEDULE to SCOP_SAVED_SCHEDULE.  */
1512
1513 static inline void
1514 store_lst_schedule (scop_p scop)
1515 {
1516   if (SCOP_SAVED_SCHEDULE (scop))
1517     free_lst (SCOP_SAVED_SCHEDULE (scop));
1518
1519   SCOP_SAVED_SCHEDULE (scop) = copy_lst (SCOP_TRANSFORMED_SCHEDULE (scop));
1520 }
1521
1522 /* Restores the SCOP_TRANSFORMED_SCHEDULE from SCOP_SAVED_SCHEDULE.  */
1523
1524 static inline void
1525 restore_lst_schedule (scop_p scop)
1526 {
1527   if (SCOP_TRANSFORMED_SCHEDULE (scop))
1528     free_lst (SCOP_TRANSFORMED_SCHEDULE (scop));
1529
1530   SCOP_TRANSFORMED_SCHEDULE (scop) = copy_lst (SCOP_SAVED_SCHEDULE (scop));
1531 }
1532
1533 /* Saves the scattering for all the pbbs in the SCOP.  */
1534
1535 static inline void
1536 store_scattering (scop_p scop)
1537 {
1538   int i;
1539   poly_bb_p pbb;
1540
1541   for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
1542     store_scattering_pbb (pbb);
1543
1544   store_lst_schedule (scop);
1545 }
1546
1547 /* Restores the scattering of PBB.  */
1548
1549 static inline void
1550 restore_scattering_pbb (poly_bb_p pbb)
1551 {
1552   gcc_assert (PBB_SAVED (pbb));
1553
1554   poly_scattering_free (PBB_TRANSFORMED (pbb));
1555   PBB_TRANSFORMED (pbb) = poly_scattering_copy (PBB_SAVED (pbb));
1556 }
1557
1558 /* Restores the scattering for all the pbbs in the SCOP.  */
1559
1560 static inline void
1561 restore_scattering (scop_p scop)
1562 {
1563   int i;
1564   poly_bb_p pbb;
1565
1566   for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
1567     restore_scattering_pbb (pbb);
1568
1569   restore_lst_schedule (scop);
1570 }
1571
1572 /* For a given PBB, add to RES the scop context, the iteration domain,
1573    the original scattering when ORIGINAL_P is true, otherwise add the
1574    transformed scattering.  */
1575
1576 static inline void
1577 combine_context_id_scat (ppl_Pointset_Powerset_C_Polyhedron_t *res,
1578                          poly_bb_p pbb, bool original_p)
1579 {
1580   ppl_Pointset_Powerset_C_Polyhedron_t context;
1581   ppl_Pointset_Powerset_C_Polyhedron_t id;
1582
1583   ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
1584     (res, original_p ?
1585      PBB_ORIGINAL_SCATTERING (pbb) : PBB_TRANSFORMED_SCATTERING (pbb));
1586
1587   ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
1588     (&context, SCOP_CONTEXT (PBB_SCOP (pbb)));
1589
1590   ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
1591     (&id, PBB_DOMAIN (pbb));
1592
1593   /* Extend the context and the iteration domain to the dimension of
1594      the scattering: T|I|G.  */
1595   {
1596     ppl_dimension_type gdim, tdim, idim;
1597
1598     ppl_Pointset_Powerset_C_Polyhedron_space_dimension (*res, &tdim);
1599     ppl_Pointset_Powerset_C_Polyhedron_space_dimension (context, &gdim);
1600     ppl_Pointset_Powerset_C_Polyhedron_space_dimension (id, &idim);
1601
1602     if (tdim > gdim)
1603       ppl_insert_dimensions_pointset (context, 0, tdim - gdim);
1604
1605     if (tdim > idim)
1606       ppl_insert_dimensions_pointset (id, 0, tdim - idim);
1607   }
1608
1609   /* Add the context and the iteration domain to the result.  */
1610   ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (*res, context);
1611   ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (*res, id);
1612
1613   ppl_delete_Pointset_Powerset_C_Polyhedron (context);
1614   ppl_delete_Pointset_Powerset_C_Polyhedron (id);
1615 }
1616
1617 #endif