860ddcf10b57b3db4a55dfd213e4ec2c8cd9b025
[dragonfly.git] / sys / dev / netif / rum / if_rum.c
1 /*      $OpenBSD: if_rum.c,v 1.40 2006/09/18 16:20:20 damien Exp $      */
2 /*      $DragonFly: src/sys/dev/netif/rum/if_rum.c,v 1.5 2007/02/06 14:33:39 sephe Exp $        */
3
4 /*-
5  * Copyright (c) 2005, 2006 Damien Bergamini <damien.bergamini@free.fr>
6  * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20
21 /*-
22  * Ralink Technology RT2501USB/RT2601USB chipset driver
23  * http://www.ralinktech.com/
24  */
25
26 #include <sys/param.h>
27 #include <sys/bus.h>
28 #include <sys/endian.h>
29 #include <sys/kernel.h>
30 #include <sys/malloc.h>
31 #include <sys/mbuf.h>
32 #include <sys/rman.h>
33 #include <sys/serialize.h>
34 #include <sys/socket.h>
35 #include <sys/sockio.h>
36
37 #include <net/bpf.h>
38 #include <net/ethernet.h>
39 #include <net/if.h>
40 #include <net/if_arp.h>
41 #include <net/if_dl.h>
42 #include <net/if_media.h>
43 #include <net/ifq_var.h>
44
45 #include <netproto/802_11/ieee80211_var.h>
46 #include <netproto/802_11/ieee80211_radiotap.h>
47 #include <netproto/802_11/wlan_ratectl/onoe/ieee80211_onoe_param.h>
48
49 #include <bus/usb/usb.h>
50 #include <bus/usb/usbdi.h>
51 #include <bus/usb/usbdi_util.h>
52 #include <bus/usb/usbdevs.h>
53
54 #include "if_rumreg.h"
55 #include "if_rumvar.h"
56 #include "rum_ucode.h"
57
58 #ifdef USB_DEBUG
59 #define RUM_DEBUG
60 #endif
61
62 #ifdef RUM_DEBUG
63 #define DPRINTF(x)      do { if (rum_debug) logprintf x; } while (0)
64 #define DPRINTFN(n, x)  do { if (rum_debug >= (n)) logprintf x; } while (0)
65 int rum_debug = 0;
66 #else
67 #define DPRINTF(x)
68 #define DPRINTFN(n, x)
69 #endif
70
71 /* various supported device vendors/products */
72 static const struct usb_devno rum_devs[] = {
73         { USB_VENDOR_ABOCOM,            USB_PRODUCT_ABOCOM_RT2573 },
74         { USB_VENDOR_ASUS,              USB_PRODUCT_ASUS_WL167G_2 },
75         { USB_VENDOR_BELKIN,            USB_PRODUCT_BELKIN_F5D7050A },
76         { USB_VENDOR_BELKIN,            USB_PRODUCT_BELKIN_F5D9050V3 },
77         { USB_VENDOR_LINKSYS4,          USB_PRODUCT_LINKSYS4_WUSB54GC },
78         { USB_VENDOR_CONCEPTRONIC,      USB_PRODUCT_CONCEPTRONIC_C54RU2 },
79         { USB_VENDOR_DICKSMITH,         USB_PRODUCT_DICKSMITH_CWD854F },
80         { USB_VENDOR_DICKSMITH,         USB_PRODUCT_DICKSMITH_RT2573 },
81         { USB_VENDOR_DLINK2,            USB_PRODUCT_DLINK2_DWLG122C1 },
82         { USB_VENDOR_DLINK2,            USB_PRODUCT_DLINK2_WUA1340 },
83         { USB_VENDOR_GIGABYTE,          USB_PRODUCT_GIGABYTE_GNWB01GS },
84         { USB_VENDOR_GIGASET,           USB_PRODUCT_GIGASET_RT2573 },
85         { USB_VENDOR_GOODWAY,           USB_PRODUCT_GOODWAY_RT2573 },
86         { USB_VENDOR_HUAWEI3COM,        USB_PRODUCT_HUAWEI3COM_RT2573 },
87         { USB_VENDOR_MSI,               USB_PRODUCT_MSI_RT2573 },
88         { USB_VENDOR_MSI,               USB_PRODUCT_MSI_RT2573_2 },
89         { USB_VENDOR_MSI,               USB_PRODUCT_MSI_RT2573_3 },
90         { USB_VENDOR_PLANEX2,           USB_PRODUCT_PLANEX2_GWUSMM },
91         { USB_VENDOR_QCOM,              USB_PRODUCT_QCOM_RT2573 },
92         { USB_VENDOR_QCOM,              USB_PRODUCT_QCOM_RT2573_2 },
93         { USB_VENDOR_RALINK,            USB_PRODUCT_RALINK_RT2573 },
94         { USB_VENDOR_RALINK,            USB_PRODUCT_RALINK_RT2671 },
95         { USB_VENDOR_SITECOMEU,         USB_PRODUCT_SITECOMEU_WL113R2 },
96         { USB_VENDOR_SITECOMEU,         USB_PRODUCT_SITECOMEU_WL172 },
97         { USB_VENDOR_SURECOM,           USB_PRODUCT_SURECOM_RT2573 }
98 };
99
100 #ifdef notyet
101 Static void             rum_attachhook(void *);
102 #endif
103 Static int              rum_alloc_tx_list(struct rum_softc *);
104 Static void             rum_free_tx_list(struct rum_softc *);
105 Static int              rum_alloc_rx_list(struct rum_softc *);
106 Static void             rum_free_rx_list(struct rum_softc *);
107 Static int              rum_media_change(struct ifnet *);
108 Static void             rum_next_scan(void *);
109 Static void             rum_task(void *);
110 Static int              rum_newstate(struct ieee80211com *,
111                             enum ieee80211_state, int);
112 Static void             rum_txeof(usbd_xfer_handle, usbd_private_handle,
113                             usbd_status);
114 Static void             rum_rxeof(usbd_xfer_handle, usbd_private_handle,
115                             usbd_status);
116 Static uint8_t          rum_rxrate(struct rum_rx_desc *);
117 Static int              rum_ack_rate(struct ieee80211com *, int);
118 Static uint16_t         rum_txtime(int, int, uint32_t);
119 Static uint8_t          rum_plcp_signal(int);
120 Static void             rum_setup_tx_desc(struct rum_softc *,
121                             struct rum_tx_desc *, uint32_t, uint16_t, int,
122                             int);
123 Static int              rum_tx_data(struct rum_softc *, struct mbuf *,
124                             struct ieee80211_node *);
125 Static void             rum_start(struct ifnet *);
126 Static void             rum_watchdog(struct ifnet *);
127 Static int              rum_ioctl(struct ifnet *, u_long, caddr_t,
128                                   struct ucred *);
129 Static void             rum_eeprom_read(struct rum_softc *, uint16_t, void *,
130                             int);
131 Static uint32_t         rum_read(struct rum_softc *, uint16_t);
132 Static void             rum_read_multi(struct rum_softc *, uint16_t, void *,
133                             int);
134 Static void             rum_write(struct rum_softc *, uint16_t, uint32_t);
135 Static void             rum_write_multi(struct rum_softc *, uint16_t, void *,
136                             size_t);
137 Static void             rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
138 Static uint8_t          rum_bbp_read(struct rum_softc *, uint8_t);
139 Static void             rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
140 Static void             rum_select_antenna(struct rum_softc *);
141 Static void             rum_enable_mrr(struct rum_softc *);
142 Static void             rum_set_txpreamble(struct rum_softc *);
143 Static void             rum_set_basicrates(struct rum_softc *);
144 Static void             rum_select_band(struct rum_softc *,
145                             struct ieee80211_channel *);
146 Static void             rum_set_chan(struct rum_softc *,
147                             struct ieee80211_channel *);
148 Static void             rum_enable_tsf_sync(struct rum_softc *);
149 Static void             rum_update_slot(struct rum_softc *);
150 Static void             rum_set_bssid(struct rum_softc *, const uint8_t *);
151 Static void             rum_set_macaddr(struct rum_softc *, const uint8_t *);
152 Static void             rum_update_promisc(struct rum_softc *);
153 Static const char       *rum_get_rf(int);
154 Static void             rum_read_eeprom(struct rum_softc *);
155 Static int              rum_bbp_init(struct rum_softc *);
156 Static void             rum_init(void *);
157 Static void             rum_stop(struct rum_softc *);
158 Static int              rum_load_microcode(struct rum_softc *, const uint8_t *,
159                             size_t);
160 Static int              rum_prepare_beacon(struct rum_softc *);
161
162 Static void             rum_stats_timeout(void *);
163 Static void             rum_stats_update(usbd_xfer_handle, usbd_private_handle,
164                                          usbd_status);
165 Static void             rum_stats(struct ieee80211com *,
166                                   struct ieee80211_node *,
167                                   struct ieee80211_ratectl_stats *);
168 Static void             rum_ratectl_change(struct ieee80211com *ic, u_int,
169                                            u_int);
170 Static int              rum_get_rssi(struct rum_softc *, uint8_t);
171
172 /*
173  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
174  */
175 static const struct ieee80211_rateset rum_rateset_11a =
176         { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
177
178 static const struct ieee80211_rateset rum_rateset_11b =
179         { 4, { 2, 4, 11, 22 } };
180
181 static const struct ieee80211_rateset rum_rateset_11g =
182         { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
183
184 static const struct {
185         uint32_t        reg;
186         uint32_t        val;
187 } rum_def_mac[] = {
188         RT2573_DEF_MAC
189 };
190
191 static const struct {
192         uint8_t reg;
193         uint8_t val;
194 } rum_def_bbp[] = {
195         RT2573_DEF_BBP
196 };
197
198 static const struct rfprog {
199         uint8_t         chan;
200         uint32_t        r1, r2, r3, r4;
201 }  rum_rf5226[] = {
202         RT2573_RF5226
203 }, rum_rf5225[] = {
204         RT2573_RF5225
205 };
206
207 USB_DECLARE_DRIVER(rum);
208 DRIVER_MODULE(rum, uhub, rum_driver, rum_devclass, usbd_driver_load, 0);
209
210 USB_MATCH(rum)
211 {
212         USB_MATCH_START(rum, uaa);
213
214         if (uaa->iface != NULL)
215                 return UMATCH_NONE;
216
217         return (usb_lookup(rum_devs, uaa->vendor, uaa->product) != NULL) ?
218             UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
219 }
220
221 USB_ATTACH(rum)
222 {
223         USB_ATTACH_START(rum, sc, uaa);
224         struct ieee80211com *ic = &sc->sc_ic;
225         struct ifnet *ifp = &ic->ic_if;
226         usb_interface_descriptor_t *id;
227         usb_endpoint_descriptor_t *ed;
228         usbd_status error;
229         char devinfo[1024];
230         int i, ntries;
231         uint32_t tmp;
232
233         sc->sc_udev = uaa->device;
234
235         usbd_devinfo(uaa->device, 0, devinfo);
236         USB_ATTACH_SETUP;
237
238         if (usbd_set_config_no(sc->sc_udev, RT2573_CONFIG_NO, 0) != 0) {
239                 kprintf("%s: could not set configuration no\n",
240                     USBDEVNAME(sc->sc_dev));
241                 USB_ATTACH_ERROR_RETURN;
242         }
243
244         /* get the first interface handle */
245         error = usbd_device2interface_handle(sc->sc_udev, RT2573_IFACE_INDEX,
246             &sc->sc_iface);
247         if (error != 0) {
248                 kprintf("%s: could not get interface handle\n",
249                     USBDEVNAME(sc->sc_dev));
250                 USB_ATTACH_ERROR_RETURN;
251         }
252
253         /*
254          * Find endpoints.
255          */
256         id = usbd_get_interface_descriptor(sc->sc_iface);
257
258         sc->sc_rx_no = sc->sc_tx_no = -1;
259         for (i = 0; i < id->bNumEndpoints; i++) {
260                 ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
261                 if (ed == NULL) {
262                         kprintf("%s: no endpoint descriptor for iface %d\n",
263                             USBDEVNAME(sc->sc_dev), i);
264                         USB_ATTACH_ERROR_RETURN;
265                 }
266
267                 if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
268                     UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
269                         sc->sc_rx_no = ed->bEndpointAddress;
270                 else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
271                     UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK)
272                         sc->sc_tx_no = ed->bEndpointAddress;
273         }
274         if (sc->sc_rx_no == -1 || sc->sc_tx_no == -1) {
275                 kprintf("%s: missing endpoint\n", USBDEVNAME(sc->sc_dev));
276                 USB_ATTACH_ERROR_RETURN;
277         }
278
279         usb_init_task(&sc->sc_task, rum_task, sc);
280
281         callout_init(&sc->scan_ch);
282         callout_init(&sc->stats_ch);
283
284         /* retrieve RT2573 rev. no */
285         for (ntries = 0; ntries < 1000; ntries++) {
286                 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
287                         break;
288                 DELAY(1000);
289         }
290         if (ntries == 1000) {
291                 kprintf("%s: timeout waiting for chip to settle\n",
292                     USBDEVNAME(sc->sc_dev));
293                 USB_ATTACH_ERROR_RETURN;
294         }
295
296         /* retrieve MAC address and various other things from EEPROM */
297         rum_read_eeprom(sc);
298
299         kprintf("%s: MAC/BBP RT%04x (rev 0x%05x), RF %s, address %6D\n",
300             USBDEVNAME(sc->sc_dev), sc->macbbp_rev, tmp,
301             rum_get_rf(sc->rf_rev), ic->ic_myaddr, ":");
302
303         error = rum_load_microcode(sc, rt2573, sizeof(rt2573));
304         if (error != 0) {
305                 device_printf(self, "can't load microcode\n");
306                 USB_ATTACH_ERROR_RETURN;
307         }
308
309         ic->ic_phytype = IEEE80211_T_OFDM;      /* not only, but not used */
310         ic->ic_opmode = IEEE80211_M_STA;        /* default to BSS mode */
311         ic->ic_state = IEEE80211_S_INIT;
312
313         /* set device capabilities */
314         ic->ic_caps =
315             IEEE80211_C_IBSS |          /* IBSS mode supported */
316             IEEE80211_C_MONITOR |       /* monitor mode supported */
317             IEEE80211_C_HOSTAP |        /* HostAp mode supported */
318             IEEE80211_C_TXPMGT |        /* tx power management */
319             IEEE80211_C_SHPREAMBLE |    /* short preamble supported */
320             IEEE80211_C_SHSLOT |        /* short slot time supported */
321             IEEE80211_C_WPA;            /* WPA 1+2 */
322
323         if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
324                 /* set supported .11a rates */
325                 ic->ic_sup_rates[IEEE80211_MODE_11A] = rum_rateset_11a;
326
327                 /* set supported .11a channels */
328                 for (i = 34; i <= 46; i += 4) {
329                         ic->ic_channels[i].ic_freq =
330                             ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
331                         ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
332                 }
333                 for (i = 36; i <= 64; i += 4) {
334                         ic->ic_channels[i].ic_freq =
335                             ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
336                         ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
337                 }
338                 for (i = 100; i <= 140; i += 4) {
339                         ic->ic_channels[i].ic_freq =
340                             ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
341                         ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
342                 }
343                 for (i = 149; i <= 165; i += 4) {
344                         ic->ic_channels[i].ic_freq =
345                             ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
346                         ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
347                 }
348         }
349
350         /* set supported .11b and .11g rates */
351         ic->ic_sup_rates[IEEE80211_MODE_11B] = rum_rateset_11b;
352         ic->ic_sup_rates[IEEE80211_MODE_11G] = rum_rateset_11g;
353
354         /* set supported .11b and .11g channels (1 through 14) */
355         for (i = 1; i <= 14; i++) {
356                 ic->ic_channels[i].ic_freq =
357                     ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
358                 ic->ic_channels[i].ic_flags =
359                     IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
360                     IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
361         }
362
363         if_initname(ifp, device_get_name(self), device_get_unit(self));
364         ifp->if_softc = sc;
365         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
366         ifp->if_init = rum_init;
367         ifp->if_ioctl = rum_ioctl;
368         ifp->if_start = rum_start;
369         ifp->if_watchdog = rum_watchdog;
370         ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
371         ifq_set_ready(&ifp->if_snd);
372
373         ic->ic_ratectl.rc_st_ratectl_cap = IEEE80211_RATECTL_CAP_ONOE;
374         ic->ic_ratectl.rc_st_ratectl = IEEE80211_RATECTL_ONOE;
375         ic->ic_ratectl.rc_st_valid_stats =
376                 IEEE80211_RATECTL_STATS_PKT_NORETRY |
377                 IEEE80211_RATECTL_STATS_PKT_OK |
378                 IEEE80211_RATECTL_STATS_PKT_ERR |
379                 IEEE80211_RATECTL_STATS_RETRIES;
380         ic->ic_ratectl.rc_st_stats = rum_stats;
381         ic->ic_ratectl.rc_st_change = rum_ratectl_change;
382
383         ieee80211_ifattach(ic);
384
385         /* Enable software beacon missing handling. */
386         ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS;
387
388         /* override state transition machine */
389         sc->sc_newstate = ic->ic_newstate;
390         ic->ic_newstate = rum_newstate;
391         ieee80211_media_init(ic, rum_media_change, ieee80211_media_status);
392
393         bpfattach_dlt(ifp, DLT_IEEE802_11_RADIO,
394             sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
395             &sc->sc_drvbpf);
396
397         sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
398         sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
399         sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2573_RX_RADIOTAP_PRESENT);
400
401         sc->sc_txtap_len = sizeof sc->sc_txtapu;
402         sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
403         sc->sc_txtap.wt_ihdr.it_present = htole32(RT2573_TX_RADIOTAP_PRESENT);
404
405         if (bootverbose)
406                 ieee80211_announce(ic);
407
408         USB_ATTACH_SUCCESS_RETURN;
409 }
410
411 USB_DETACH(rum)
412 {
413         USB_DETACH_START(rum, sc);
414         struct ifnet *ifp = &sc->sc_ic.ic_if;
415
416 #ifdef spl
417         s = splusb();
418 #endif
419
420         lwkt_serialize_enter(ifp->if_serializer);
421
422         callout_stop(&sc->scan_ch);
423         callout_stop(&sc->stats_ch);
424
425         sc->sc_flags |= RUM_FLAG_SYNCTASK;
426         rum_stop(sc);
427
428         lwkt_serialize_exit(ifp->if_serializer);
429
430         usb_rem_task(sc->sc_udev, &sc->sc_task);
431
432         bpfdetach(ifp);
433         ieee80211_ifdetach(&sc->sc_ic); /* free all nodes */
434
435         if (sc->stats_xfer != NULL) {
436                 usbd_free_xfer(sc->stats_xfer);
437                 sc->stats_xfer = NULL;
438         }
439
440         if (sc->sc_rx_pipeh != NULL) {
441                 usbd_abort_pipe(sc->sc_rx_pipeh);
442                 usbd_close_pipe(sc->sc_rx_pipeh);
443         }
444
445         if (sc->sc_tx_pipeh != NULL) {
446                 usbd_abort_pipe(sc->sc_tx_pipeh);
447                 usbd_close_pipe(sc->sc_tx_pipeh);
448         }
449
450         rum_free_rx_list(sc);
451         rum_free_tx_list(sc);
452
453 #ifdef spl
454         splx(s);
455 #endif
456         return 0;
457 }
458
459 Static int
460 rum_alloc_tx_list(struct rum_softc *sc)
461 {
462         struct rum_tx_data *data;
463         int i, error;
464
465         sc->tx_queued = 0;
466
467         for (i = 0; i < RT2573_TX_LIST_COUNT; i++) {
468                 data = &sc->tx_data[i];
469
470                 data->sc = sc;
471
472                 data->xfer = usbd_alloc_xfer(sc->sc_udev);
473                 if (data->xfer == NULL) {
474                         kprintf("%s: could not allocate tx xfer\n",
475                             USBDEVNAME(sc->sc_dev));
476                         error = ENOMEM;
477                         goto fail;
478                 }
479
480                 data->buf = usbd_alloc_buffer(data->xfer,
481                     RT2573_TX_DESC_SIZE + IEEE80211_MAX_LEN);
482                 if (data->buf == NULL) {
483                         kprintf("%s: could not allocate tx buffer\n",
484                             USBDEVNAME(sc->sc_dev));
485                         error = ENOMEM;
486                         goto fail;
487                 }
488
489                 /* clean Tx descriptor */
490                 bzero(data->buf, RT2573_TX_DESC_SIZE);
491         }
492
493         return 0;
494
495 fail:   rum_free_tx_list(sc);
496         return error;
497 }
498
499 Static void
500 rum_free_tx_list(struct rum_softc *sc)
501 {
502         struct rum_tx_data *data;
503         int i;
504
505         for (i = 0; i < RT2573_TX_LIST_COUNT; i++) {
506                 data = &sc->tx_data[i];
507
508                 if (data->xfer != NULL) {
509                         usbd_free_xfer(data->xfer);
510                         data->xfer = NULL;
511                 }
512
513                 if (data->ni != NULL) {
514                         ieee80211_free_node(data->ni);
515                         data->ni = NULL;
516                 }
517         }
518 }
519
520 Static int
521 rum_alloc_rx_list(struct rum_softc *sc)
522 {
523         struct rum_rx_data *data;
524         int i, error;
525
526         for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
527                 data = &sc->rx_data[i];
528
529                 data->sc = sc;
530
531                 data->xfer = usbd_alloc_xfer(sc->sc_udev);
532                 if (data->xfer == NULL) {
533                         kprintf("%s: could not allocate rx xfer\n",
534                             USBDEVNAME(sc->sc_dev));
535                         error = ENOMEM;
536                         goto fail;
537                 }
538
539                 if (usbd_alloc_buffer(data->xfer, MCLBYTES) == NULL) {
540                         kprintf("%s: could not allocate rx buffer\n",
541                             USBDEVNAME(sc->sc_dev));
542                         error = ENOMEM;
543                         goto fail;
544                 }
545
546                 data->m = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
547                 if (data->m == NULL) {
548                         kprintf("%s: could not allocate rx mbuf\n",
549                             USBDEVNAME(sc->sc_dev));
550                         error = ENOMEM;
551                         goto fail;
552                 }
553
554                 data->buf = mtod(data->m, uint8_t *);
555                 bzero(data->buf, sizeof(struct rum_rx_desc));
556         }
557
558         return 0;
559
560 fail:   rum_free_tx_list(sc);
561         return error;
562 }
563
564 Static void
565 rum_free_rx_list(struct rum_softc *sc)
566 {
567         struct rum_rx_data *data;
568         int i;
569
570         for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
571                 data = &sc->rx_data[i];
572
573                 if (data->xfer != NULL) {
574                         usbd_free_xfer(data->xfer);
575                         data->xfer = NULL;
576                 }
577
578                 if (data->m != NULL) {
579                         m_freem(data->m);
580                         data->m = NULL;
581                 }
582         }
583 }
584
585 Static int
586 rum_media_change(struct ifnet *ifp)
587 {
588         int error;
589
590         error = ieee80211_media_change(ifp);
591         if (error != ENETRESET)
592                 return error;
593
594         if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
595                 rum_init(ifp->if_softc);
596
597         return 0;
598 }
599
600 /*
601  * This function is called periodically (every 200ms) during scanning to
602  * switch from one channel to another.
603  */
604 Static void
605 rum_next_scan(void *arg)
606 {
607         struct rum_softc *sc = arg;
608         struct ieee80211com *ic = &sc->sc_ic;
609         struct ifnet *ifp = &ic->ic_if;
610
611         lwkt_serialize_enter(ifp->if_serializer);
612
613         if (ic->ic_state == IEEE80211_S_SCAN)
614                 ieee80211_next_scan(ic);
615
616         lwkt_serialize_exit(ifp->if_serializer);
617 }
618
619 Static void
620 rum_task(void *arg)
621 {
622         struct rum_softc *sc = arg;
623         struct ieee80211com *ic = &sc->sc_ic;
624         struct ifnet *ifp = &ic->ic_if;
625         enum ieee80211_state ostate;
626         struct ieee80211_node *ni;
627         uint32_t tmp;
628
629         lwkt_serialize_enter(ifp->if_serializer);
630
631         ieee80211_ratectl_newstate(ic, sc->sc_state);
632
633         ostate = ic->ic_state;
634
635         switch (sc->sc_state) {
636         case IEEE80211_S_INIT:
637                 if (ostate == IEEE80211_S_RUN) {
638                         /* abort TSF synchronization */
639                         tmp = rum_read(sc, RT2573_TXRX_CSR9);
640                         rum_write(sc, RT2573_TXRX_CSR9, tmp & ~0x00ffffff);
641                 }
642                 break;
643
644         case IEEE80211_S_SCAN:
645                 rum_set_chan(sc, ic->ic_curchan);
646                 callout_reset(&sc->scan_ch, hz / 5, rum_next_scan, sc);
647                 break;
648
649         case IEEE80211_S_AUTH:
650                 rum_set_chan(sc, ic->ic_curchan);
651                 break;
652
653         case IEEE80211_S_ASSOC:
654                 rum_set_chan(sc, ic->ic_curchan);
655                 break;
656
657         case IEEE80211_S_RUN:
658                 rum_set_chan(sc, ic->ic_curchan);
659
660                 ni = ic->ic_bss;
661
662                 lwkt_serialize_exit(ifp->if_serializer);
663
664                 if (ic->ic_opmode != IEEE80211_M_MONITOR) {
665                         rum_update_slot(sc);
666                         rum_enable_mrr(sc);
667                         rum_set_txpreamble(sc);
668                         rum_set_basicrates(sc);
669                         rum_set_bssid(sc, ni->ni_bssid);
670                 }
671
672                 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
673                     ic->ic_opmode == IEEE80211_M_IBSS)
674                         rum_prepare_beacon(sc);
675
676                 if (ic->ic_opmode != IEEE80211_M_MONITOR)
677                         rum_enable_tsf_sync(sc);
678
679                 /* clear statistic registers (STA_CSR0 to STA_CSR5) */
680                 rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
681
682                 lwkt_serialize_enter(ifp->if_serializer);
683
684                 callout_reset(&sc->stats_ch, 4 * hz / 5, rum_stats_timeout, sc);
685
686                 break;
687         }
688
689         sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
690
691         lwkt_serialize_exit(ifp->if_serializer);
692 }
693
694 Static int
695 rum_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
696 {
697         struct rum_softc *sc = ic->ic_if.if_softc;
698         struct ifnet *ifp = &ic->ic_if;
699
700         ASSERT_SERIALIZED(ifp->if_serializer);
701
702         callout_stop(&sc->scan_ch);
703         callout_stop(&sc->stats_ch);
704
705         /* do it in a process context */
706         sc->sc_state = nstate;
707         sc->sc_arg = arg;
708
709         lwkt_serialize_exit(ifp->if_serializer);
710         usb_rem_task(sc->sc_udev, &sc->sc_task);
711
712         if (sc->sc_flags & RUM_FLAG_SYNCTASK) {
713                 usb_do_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER,
714                             USBD_NO_TIMEOUT);
715         } else {
716                 usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
717         }
718         lwkt_serialize_enter(ifp->if_serializer);
719
720         return 0;
721 }
722
723 /* quickly determine if a given rate is CCK or OFDM */
724 #define RUM_RATE_IS_OFDM(rate)  ((rate) >= 12 && (rate) != 22)
725
726 #define RUM_ACK_SIZE    14      /* 10 + 4(FCS) */
727 #define RUM_CTS_SIZE    14      /* 10 + 4(FCS) */
728
729 Static void
730 rum_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
731 {
732         struct rum_tx_data *data = priv;
733         struct rum_softc *sc = data->sc;
734         struct ieee80211com *ic = &sc->sc_ic;
735         struct ifnet *ifp = &ic->ic_if;
736
737         if (status != USBD_NORMAL_COMPLETION) {
738                 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
739                         return;
740
741                 kprintf("%s: could not transmit buffer: %s\n",
742                     USBDEVNAME(sc->sc_dev), usbd_errstr(status));
743
744                 if (status == USBD_STALLED)
745                         usbd_clear_endpoint_stall_async(sc->sc_tx_pipeh);
746
747                 ifp->if_oerrors++;
748                 return;
749         }
750
751 #ifdef spl
752         s = splnet();
753 #endif
754
755         lwkt_serialize_enter(ifp->if_serializer);
756
757         m_freem(data->m);
758         data->m = NULL;
759         ieee80211_free_node(data->ni);
760         data->ni = NULL;
761
762         bzero(data->buf, sizeof(struct rum_tx_data));
763         sc->tx_queued--;
764         ifp->if_opackets++;
765
766         DPRINTFN(10, ("tx done\n"));
767
768         sc->sc_tx_timer = 0;
769         ifp->if_flags &= ~IFF_OACTIVE;
770         rum_start(ifp);
771
772         lwkt_serialize_exit(ifp->if_serializer);
773
774 #ifdef spl
775         splx(s);
776 #endif
777 }
778
779 Static void
780 rum_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
781 {
782         struct rum_rx_data *data = priv;
783         struct rum_softc *sc = data->sc;
784         struct ieee80211com *ic = &sc->sc_ic;
785         struct ifnet *ifp = &ic->ic_if;
786         struct rum_rx_desc *desc;
787         struct ieee80211_frame_min *wh;
788         struct ieee80211_node *ni;
789         struct mbuf *mnew, *m;
790         int len, rssi;
791
792         if (status != USBD_NORMAL_COMPLETION) {
793                 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
794                         return;
795
796                 if (status == USBD_STALLED)
797                         usbd_clear_endpoint_stall_async(sc->sc_rx_pipeh);
798                 goto skip;
799         }
800
801         usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
802
803         if (len < RT2573_RX_DESC_SIZE + sizeof (struct ieee80211_frame_min)) {
804                 DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc->sc_dev),
805                     len));
806                 ifp->if_ierrors++;
807                 goto skip;
808         }
809
810         desc = (struct rum_rx_desc *)data->buf;
811
812         if (le32toh(desc->flags) & RT2573_RX_CRC_ERROR) {
813                 /*
814                  * This should not happen since we did not request to receive
815                  * those frames when we filled RT2573_TXRX_CSR0.
816                  */
817                 DPRINTFN(5, ("CRC error\n"));
818                 ifp->if_ierrors++;
819                 goto skip;
820         }
821
822         mnew = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
823         if (mnew == NULL) {
824                 kprintf("%s: could not allocate rx mbuf\n",
825                     USBDEVNAME(sc->sc_dev));
826                 ifp->if_ierrors++;
827                 goto skip;
828         }
829
830         m = data->m;
831         data->m = mnew;
832         data->buf = mtod(data->m, uint8_t *);
833
834         /* finalize mbuf */
835         m->m_pkthdr.rcvif = ifp;
836         m->m_data = (caddr_t)(desc + 1);
837         m->m_pkthdr.len = m->m_len = (le32toh(desc->flags) >> 16) & 0xfff;
838
839 #ifdef spl
840         s = splnet();
841 #endif
842
843         lwkt_serialize_enter(ifp->if_serializer);
844
845         rssi = rum_get_rssi(sc, desc->rssi);
846
847         if (sc->sc_drvbpf != NULL) {
848                 struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
849
850                 tap->wr_flags = 0;
851                 tap->wr_rate = rum_rxrate(desc);
852                 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
853                 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
854                 tap->wr_antenna = sc->rx_ant;
855                 tap->wr_antsignal = rssi;
856
857                 bpf_ptap(sc->sc_drvbpf, m, tap, sc->sc_rxtap_len);
858         }
859
860         wh = mtod(m, struct ieee80211_frame_min *);
861         ni = ieee80211_find_rxnode(ic, wh);
862
863         /* send the frame to the 802.11 layer */
864         ieee80211_input(ic, m, ni, rssi, 0);
865
866         /* node is no longer needed */
867         ieee80211_free_node(ni);
868
869         /*
870          * In HostAP mode, ieee80211_input() will enqueue packets in if_snd
871          * without calling if_start().
872          */
873         if (!ifq_is_empty(&ifp->if_snd) && !(ifp->if_flags & IFF_OACTIVE))
874                 rum_start(ifp);
875
876 #ifdef spl
877         splx(s);
878 #endif
879
880         lwkt_serialize_exit(ifp->if_serializer);
881
882         DPRINTFN(15, ("rx done\n"));
883
884 skip:   /* setup a new transfer */
885         bzero(data->buf, sizeof(struct rum_rx_desc));
886         usbd_setup_xfer(xfer, sc->sc_rx_pipeh, data, data->buf, MCLBYTES,
887             USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
888         usbd_transfer(xfer);
889 }
890
891 /*
892  * This function is only used by the Rx radiotap code. It returns the rate at
893  * which a given frame was received.
894  */
895 Static uint8_t
896 rum_rxrate(struct rum_rx_desc *desc)
897 {
898         if (le32toh(desc->flags) & RT2573_RX_OFDM) {
899                 /* reverse function of rum_plcp_signal */
900                 switch (desc->rate) {
901                 case 0xb:       return 12;
902                 case 0xf:       return 18;
903                 case 0xa:       return 24;
904                 case 0xe:       return 36;
905                 case 0x9:       return 48;
906                 case 0xd:       return 72;
907                 case 0x8:       return 96;
908                 case 0xc:       return 108;
909                 }
910         } else {
911                 if (desc->rate == 10)
912                         return 2;
913                 if (desc->rate == 20)
914                         return 4;
915                 if (desc->rate == 55)
916                         return 11;
917                 if (desc->rate == 110)
918                         return 22;
919         }
920         return 2;       /* should not get there */
921 }
922
923 /*
924  * Return the expected ack rate for a frame transmitted at rate `rate'.
925  * XXX: this should depend on the destination node basic rate set.
926  */
927 Static int
928 rum_ack_rate(struct ieee80211com *ic, int rate)
929 {
930         switch (rate) {
931         /* CCK rates */
932         case 2:
933                 return 2;
934         case 4:
935         case 11:
936         case 22:
937                 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
938
939         /* OFDM rates */
940         case 12:
941         case 18:
942                 return 12;
943         case 24:
944         case 36:
945                 return 24;
946         case 48:
947         case 72:
948         case 96:
949         case 108:
950                 return 48;
951         }
952
953         /* default to 1Mbps */
954         return 2;
955 }
956
957 /*
958  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
959  * The function automatically determines the operating mode depending on the
960  * given rate. `flags' indicates whether short preamble is in use or not.
961  */
962 Static uint16_t
963 rum_txtime(int len, int rate, uint32_t flags)
964 {
965         uint16_t txtime;
966
967         if (RUM_RATE_IS_OFDM(rate)) {
968                 /* IEEE Std 802.11a-1999, pp. 37 */
969                 txtime = (8 + 4 * len + 3 + rate - 1) / rate;
970                 txtime = 16 + 4 + 4 * txtime + 6;
971         } else {
972                 /* IEEE Std 802.11b-1999, pp. 28 */
973                 txtime = (16 * len + rate - 1) / rate;
974                 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
975                         txtime +=  72 + 24;
976                 else
977                         txtime += 144 + 48;
978         }
979         return txtime;
980 }
981
982 Static uint8_t
983 rum_plcp_signal(int rate)
984 {
985         switch (rate) {
986         /* CCK rates (returned values are device-dependent) */
987         case 2:         return 0x0;
988         case 4:         return 0x1;
989         case 11:        return 0x2;
990         case 22:        return 0x3;
991
992         /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
993         case 12:        return 0xb;
994         case 18:        return 0xf;
995         case 24:        return 0xa;
996         case 36:        return 0xe;
997         case 48:        return 0x9;
998         case 72:        return 0xd;
999         case 96:        return 0x8;
1000         case 108:       return 0xc;
1001
1002         /* unsupported rates (should not get there) */
1003         default:        return 0xff;
1004         }
1005 }
1006
1007 Static void
1008 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1009     uint32_t flags, uint16_t xflags, int len, int rate)
1010 {
1011         struct ieee80211com *ic = &sc->sc_ic;
1012         uint16_t plcp_length;
1013         int remainder;
1014
1015         desc->flags = htole32(flags);
1016         desc->flags |= htole32(len << 16);
1017
1018         desc->xflags = htole16(xflags);
1019
1020         desc->wme = htole16(
1021             RT2573_QID(0) |
1022             RT2573_AIFSN(2) |
1023             RT2573_LOGCWMIN(4) |
1024             RT2573_LOGCWMAX(10));
1025
1026         /* setup PLCP fields */
1027         desc->plcp_signal  = rum_plcp_signal(rate);
1028         desc->plcp_service = 4;
1029
1030         len += IEEE80211_CRC_LEN;
1031         if (RUM_RATE_IS_OFDM(rate)) {
1032                 desc->flags |= htole32(RT2573_TX_OFDM);
1033
1034                 plcp_length = len & 0xfff;
1035                 desc->plcp_length_hi = plcp_length >> 6;
1036                 desc->plcp_length_lo = plcp_length & 0x3f;
1037         } else {
1038                 plcp_length = (16 * len + rate - 1) / rate;
1039                 if (rate == 22) {
1040                         remainder = (16 * len) % 22;
1041                         if (remainder != 0 && remainder < 7)
1042                                 desc->plcp_service |= RT2573_PLCP_LENGEXT;
1043                 }
1044                 desc->plcp_length_hi = plcp_length >> 8;
1045                 desc->plcp_length_lo = plcp_length & 0xff;
1046
1047                 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1048                         desc->plcp_signal |= 0x08;
1049         }
1050         desc->flags |= htole32(RT2573_TX_VALID);
1051 }
1052
1053 #define RUM_TX_TIMEOUT  5000
1054
1055 Static int
1056 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1057 {
1058         struct ieee80211com *ic = &sc->sc_ic;
1059         struct rum_tx_desc *desc;
1060         struct rum_tx_data *data;
1061         struct ieee80211_frame *wh;
1062         uint32_t flags = 0;
1063         uint16_t dur;
1064         usbd_status error;
1065         int xferlen, rate;
1066
1067         wh = mtod(m0, struct ieee80211_frame *);
1068
1069         if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1070                 if (ieee80211_crypto_encap(ic, ni, m0) == NULL) {
1071                         m_freem(m0);
1072                         return ENOBUFS;
1073                 }
1074
1075                 /* packet header may have moved, reset our local pointer */
1076                 wh = mtod(m0, struct ieee80211_frame *);
1077         }
1078
1079         /* pickup a rate */
1080         if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1081             IEEE80211_FC0_TYPE_MGT) {
1082                 /* mgmt frames are sent at the lowest available bit-rate */
1083                 rate = ni->ni_rates.rs_rates[0];
1084         } else {
1085                 if (ic->ic_fixed_rate != -1) {
1086                         rate = ic->ic_sup_rates[ic->ic_curmode].
1087                             rs_rates[ic->ic_fixed_rate];
1088                 } else
1089                         rate = ni->ni_rates.rs_rates[ni->ni_txrate];
1090         }
1091         rate &= IEEE80211_RATE_VAL;
1092         if (rate == 0)
1093                 rate = 2;       /* fallback to 1Mbps; should not happen  */
1094
1095         data = &sc->tx_data[0];
1096         desc = (struct rum_tx_desc *)data->buf;
1097
1098         data->m = m0;
1099         data->ni = ni;
1100
1101         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1102                 flags |= RT2573_TX_ACK;
1103
1104                 dur = rum_txtime(RUM_ACK_SIZE, rum_ack_rate(ic, rate),
1105                     ic->ic_flags) + sc->sifs;
1106                 *(uint16_t *)wh->i_dur = htole16(dur);
1107
1108                 /* tell hardware to set timestamp in probe responses */
1109                 if ((wh->i_fc[0] &
1110                     (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1111                     (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1112                         flags |= RT2573_TX_TIMESTAMP;
1113         }
1114
1115         if (sc->sc_drvbpf != NULL) {
1116                 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1117
1118                 tap->wt_flags = 0;
1119                 tap->wt_rate = rate;
1120                 tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1121                 tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1122                 tap->wt_antenna = sc->tx_ant;
1123
1124                 bpf_ptap(sc->sc_drvbpf, m0, tap, sc->sc_txtap_len);
1125         }
1126
1127         m_copydata(m0, 0, m0->m_pkthdr.len, data->buf + RT2573_TX_DESC_SIZE);
1128         rum_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate);
1129
1130         /* align end on a 4-bytes boundary */
1131         xferlen = (RT2573_TX_DESC_SIZE + m0->m_pkthdr.len + 3) & ~3;
1132
1133         /*
1134          * No space left in the last URB to store the extra 4 bytes, force
1135          * sending of another URB.
1136          */
1137         if ((xferlen % 64) == 0)
1138                 xferlen += 4;
1139
1140         DPRINTFN(10, ("sending frame len=%u rate=%u xfer len=%u\n",
1141             m0->m_pkthdr.len + RT2573_TX_DESC_SIZE, rate, xferlen));
1142
1143         usbd_setup_xfer(data->xfer, sc->sc_tx_pipeh, data, data->buf, xferlen,
1144             USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUM_TX_TIMEOUT, rum_txeof);
1145
1146         error = usbd_transfer(data->xfer);
1147         if (error != USBD_NORMAL_COMPLETION && error != USBD_IN_PROGRESS) {
1148                 m_freem(m0);
1149                 return error;
1150         }
1151
1152         sc->tx_queued++;
1153
1154         return 0;
1155 }
1156
1157 Static void
1158 rum_start(struct ifnet *ifp)
1159 {
1160         struct rum_softc *sc = ifp->if_softc;
1161         struct ieee80211com *ic = &sc->sc_ic;
1162         struct ieee80211_node *ni;
1163         struct mbuf *m0;
1164
1165         ASSERT_SERIALIZED(ifp->if_serializer);
1166
1167         /*
1168          * net80211 may still try to send management frames even if the
1169          * IFF_RUNNING flag is not set...
1170          */
1171         if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1172                 return;
1173
1174         for (;;) {
1175                 if (!IF_QEMPTY(&ic->ic_mgtq)) {
1176                         if (sc->tx_queued >= RT2573_TX_LIST_COUNT) {
1177                                 ifp->if_flags |= IFF_OACTIVE;
1178                                 break;
1179                         }
1180                         IF_DEQUEUE(&ic->ic_mgtq, m0);
1181
1182                         ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1183                         m0->m_pkthdr.rcvif = NULL;
1184
1185                         BPF_MTAP(ifp, m0);
1186
1187                         if (rum_tx_data(sc, m0, ni) != 0)
1188                                 break;
1189
1190                 } else {
1191                         struct ether_header *eh;
1192
1193                         if (ic->ic_state != IEEE80211_S_RUN)
1194                                 break;
1195
1196                         m0 = ifq_poll(&ifp->if_snd);
1197                         if (m0 == NULL)
1198                                 break;
1199                         if (sc->tx_queued >= RT2573_TX_LIST_COUNT) {
1200                                 ifp->if_flags |= IFF_OACTIVE;
1201                                 break;
1202                         }
1203                         ifq_dequeue(&ifp->if_snd, m0);
1204
1205                         if (m0->m_len < sizeof (struct ether_header) &&
1206                             !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1207                                 continue;
1208
1209                         eh = mtod(m0, struct ether_header *);
1210                         ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1211                         if (ni == NULL) {
1212                                 m_freem(m0);
1213                                 continue;
1214                         }
1215
1216                         BPF_MTAP(ifp, m0);
1217
1218                         m0 = ieee80211_encap(ic, m0, ni);
1219                         if (m0 == NULL)
1220                                 continue;
1221
1222                         if (ic->ic_rawbpf != NULL)
1223                                 bpf_mtap(ic->ic_rawbpf, m0);
1224
1225                         if (rum_tx_data(sc, m0, ni) != 0) {
1226                                 if (ni != NULL)
1227                                         ieee80211_free_node(ni);
1228                                 ifp->if_oerrors++;
1229                                 break;
1230                         }
1231                 }
1232
1233                 sc->sc_tx_timer = 5;
1234                 ifp->if_timer = 1;
1235         }
1236 }
1237
1238 Static void
1239 rum_watchdog(struct ifnet *ifp)
1240 {
1241         struct rum_softc *sc = ifp->if_softc;
1242
1243         ASSERT_SERIALIZED(ifp->if_serializer);
1244
1245         ifp->if_timer = 0;
1246
1247         if (sc->sc_tx_timer > 0) {
1248                 if (--sc->sc_tx_timer == 0) {
1249                         kprintf("%s: device timeout\n", USBDEVNAME(sc->sc_dev));
1250                         /*rum_init(sc); XXX needs a process context! */
1251                         ifp->if_oerrors++;
1252                         return;
1253                 }
1254                 ifp->if_timer = 1;
1255         }
1256
1257         ieee80211_watchdog(&sc->sc_ic);
1258 }
1259
1260 Static int
1261 rum_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
1262 {
1263         struct rum_softc *sc = ifp->if_softc;
1264         struct ieee80211com *ic = &sc->sc_ic;
1265         int error = 0;
1266
1267         ASSERT_SERIALIZED(ifp->if_serializer);
1268
1269 #ifdef spl
1270         s = splnet();
1271 #endif
1272
1273         switch (cmd) {
1274         case SIOCSIFFLAGS:
1275                 if (ifp->if_flags & IFF_UP) {
1276                         if (ifp->if_flags & IFF_RUNNING)
1277                                 rum_update_promisc(sc);
1278                         else
1279                                 rum_init(sc);
1280                 } else {
1281                         if (ifp->if_flags & IFF_RUNNING)
1282                                 rum_stop(sc);
1283                 }
1284                 break;
1285         default:
1286                 error = ieee80211_ioctl(ic, cmd, data, cr);
1287                 break;
1288         }
1289
1290         if (error == ENETRESET) {
1291                 struct ieee80211req *ireq = (struct ieee80211req *)data;
1292
1293                 if (cmd == SIOCS80211 &&
1294                     ireq->i_type == IEEE80211_IOC_CHANNEL &&
1295                     ic->ic_opmode == IEEE80211_M_MONITOR) {
1296                         /*
1297                          * This allows for fast channel switching in monitor mode
1298                          * (used by kismet). In IBSS mode, we must explicitly reset
1299                          * the interface to generate a new beacon frame.
1300                          */
1301                         rum_set_chan(sc, ic->ic_ibss_chan);
1302                 } else if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1303                     (IFF_UP | IFF_RUNNING)) {
1304                         rum_init(sc);
1305                 }
1306                 error = 0;
1307         }
1308
1309 #ifdef spl
1310         splx(s);
1311 #endif
1312
1313         return error;
1314 }
1315
1316 Static void
1317 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1318 {
1319         usb_device_request_t req;
1320         usbd_status error;
1321
1322         req.bmRequestType = UT_READ_VENDOR_DEVICE;
1323         req.bRequest = RT2573_READ_EEPROM;
1324         USETW(req.wValue, 0);
1325         USETW(req.wIndex, addr);
1326         USETW(req.wLength, len);
1327
1328         error = usbd_do_request(sc->sc_udev, &req, buf);
1329         if (error != 0) {
1330                 kprintf("%s: could not read EEPROM: %s\n",
1331                     USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1332         }
1333 }
1334
1335 Static uint32_t
1336 rum_read(struct rum_softc *sc, uint16_t reg)
1337 {
1338         uint32_t val;
1339
1340         rum_read_multi(sc, reg, &val, sizeof val);
1341
1342         return le32toh(val);
1343 }
1344
1345 Static void
1346 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1347 {
1348         usb_device_request_t req;
1349         usbd_status error;
1350
1351         req.bmRequestType = UT_READ_VENDOR_DEVICE;
1352         req.bRequest = RT2573_READ_MULTI_MAC;
1353         USETW(req.wValue, 0);
1354         USETW(req.wIndex, reg);
1355         USETW(req.wLength, len);
1356
1357         error = usbd_do_request(sc->sc_udev, &req, buf);
1358         if (error != 0) {
1359                 kprintf("%s: could not multi read MAC register: %s\n",
1360                     USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1361         }
1362 }
1363
1364 Static void
1365 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1366 {
1367         uint32_t tmp = htole32(val);
1368
1369         rum_write_multi(sc, reg, &tmp, sizeof tmp);
1370 }
1371
1372 Static void
1373 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1374 {
1375         usb_device_request_t req;
1376         usbd_status error;
1377
1378         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1379         req.bRequest = RT2573_WRITE_MULTI_MAC;
1380         USETW(req.wValue, 0);
1381         USETW(req.wIndex, reg);
1382         USETW(req.wLength, len);
1383
1384         error = usbd_do_request(sc->sc_udev, &req, buf);
1385         if (error != 0) {
1386                 kprintf("%s: could not multi write MAC register: %s\n",
1387                     USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1388         }
1389 }
1390
1391 Static void
1392 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1393 {
1394         uint32_t tmp;
1395         int ntries;
1396
1397         for (ntries = 0; ntries < 5; ntries++) {
1398                 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1399                         break;
1400         }
1401         if (ntries == 5) {
1402                 kprintf("%s: could not write to BBP\n", USBDEVNAME(sc->sc_dev));
1403                 return;
1404         }
1405
1406         tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1407         rum_write(sc, RT2573_PHY_CSR3, tmp);
1408 }
1409
1410 Static uint8_t
1411 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1412 {
1413         uint32_t val;
1414         int ntries;
1415
1416         for (ntries = 0; ntries < 5; ntries++) {
1417                 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1418                         break;
1419         }
1420         if (ntries == 5) {
1421                 kprintf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1422                 return 0;
1423         }
1424
1425         val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1426         rum_write(sc, RT2573_PHY_CSR3, val);
1427
1428         for (ntries = 0; ntries < 100; ntries++) {
1429                 val = rum_read(sc, RT2573_PHY_CSR3);
1430                 if (!(val & RT2573_BBP_BUSY))
1431                         return val & 0xff;
1432                 DELAY(1);
1433         }
1434
1435         kprintf("%s: could not read BBP\n", USBDEVNAME(sc->sc_dev));
1436         return 0;
1437 }
1438
1439 Static void
1440 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1441 {
1442         uint32_t tmp;
1443         int ntries;
1444
1445         for (ntries = 0; ntries < 5; ntries++) {
1446                 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1447                         break;
1448         }
1449         if (ntries == 5) {
1450                 kprintf("%s: could not write to RF\n", USBDEVNAME(sc->sc_dev));
1451                 return;
1452         }
1453
1454         tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1455             (reg & 3);
1456         rum_write(sc, RT2573_PHY_CSR4, tmp);
1457
1458         /* remember last written value in sc */
1459         sc->rf_regs[reg] = val;
1460
1461         DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff));
1462 }
1463
1464 Static void
1465 rum_select_antenna(struct rum_softc *sc)
1466 {
1467         uint8_t bbp4, bbp77;
1468         uint32_t tmp;
1469
1470         bbp4  = rum_bbp_read(sc, 4);
1471         bbp77 = rum_bbp_read(sc, 77);
1472
1473         /* TBD */
1474
1475         /* make sure Rx is disabled before switching antenna */
1476         tmp = rum_read(sc, RT2573_TXRX_CSR0);
1477         rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1478
1479         rum_bbp_write(sc,  4, bbp4);
1480         rum_bbp_write(sc, 77, bbp77);
1481
1482         rum_write(sc, RT2573_TXRX_CSR0, tmp);
1483 }
1484
1485 /*
1486  * Enable multi-rate retries for frames sent at OFDM rates.
1487  * In 802.11b/g mode, allow fallback to CCK rates.
1488  */
1489 Static void
1490 rum_enable_mrr(struct rum_softc *sc)
1491 {
1492         struct ieee80211com *ic = &sc->sc_ic;
1493         uint32_t tmp;
1494
1495         tmp = rum_read(sc, RT2573_TXRX_CSR4);
1496
1497         tmp &= ~RT2573_MRR_CCK_FALLBACK;
1498         if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan))
1499                 tmp |= RT2573_MRR_CCK_FALLBACK;
1500         tmp |= RT2573_MRR_ENABLED;
1501
1502         rum_write(sc, RT2573_TXRX_CSR4, tmp);
1503 }
1504
1505 Static void
1506 rum_set_txpreamble(struct rum_softc *sc)
1507 {
1508         uint32_t tmp;
1509
1510         tmp = rum_read(sc, RT2573_TXRX_CSR4);
1511
1512         tmp &= ~RT2573_SHORT_PREAMBLE;
1513         if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
1514                 tmp |= RT2573_SHORT_PREAMBLE;
1515
1516         rum_write(sc, RT2573_TXRX_CSR4, tmp);
1517 }
1518
1519 Static void
1520 rum_set_basicrates(struct rum_softc *sc)
1521 {
1522         struct ieee80211com *ic = &sc->sc_ic;
1523
1524         /* update basic rate set */
1525         if (ic->ic_curmode == IEEE80211_MODE_11B) {
1526                 /* 11b basic rates: 1, 2Mbps */
1527                 rum_write(sc, RT2573_TXRX_CSR5, 0x3);
1528         } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) {
1529                 /* 11a basic rates: 6, 12, 24Mbps */
1530                 rum_write(sc, RT2573_TXRX_CSR5, 0x150);
1531         } else {
1532                 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1533                 rum_write(sc, RT2573_TXRX_CSR5, 0x15f);
1534         }
1535 }
1536
1537 /*
1538  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
1539  * driver.
1540  */
1541 Static void
1542 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
1543 {
1544         uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
1545         uint32_t tmp;
1546
1547         /* update all BBP registers that depend on the band */
1548         bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
1549         bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
1550         if (IEEE80211_IS_CHAN_5GHZ(c)) {
1551                 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
1552                 bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
1553         }
1554         if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1555             (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1556                 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
1557         }
1558
1559         sc->bbp17 = bbp17;
1560         rum_bbp_write(sc,  17, bbp17);
1561         rum_bbp_write(sc,  96, bbp96);
1562         rum_bbp_write(sc, 104, bbp104);
1563
1564         if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
1565             (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
1566                 rum_bbp_write(sc, 75, 0x80);
1567                 rum_bbp_write(sc, 86, 0x80);
1568                 rum_bbp_write(sc, 88, 0x80);
1569         }
1570
1571         rum_bbp_write(sc, 35, bbp35);
1572         rum_bbp_write(sc, 97, bbp97);
1573         rum_bbp_write(sc, 98, bbp98);
1574
1575         tmp = rum_read(sc, RT2573_PHY_CSR0);
1576         tmp &= ~(RT2573_PA_PE_2GHZ | RT2573_PA_PE_5GHZ);
1577         if (IEEE80211_IS_CHAN_2GHZ(c))
1578                 tmp |= RT2573_PA_PE_2GHZ;
1579         else
1580                 tmp |= RT2573_PA_PE_5GHZ;
1581         rum_write(sc, RT2573_PHY_CSR0, tmp);
1582
1583         /* 802.11a uses a 16 microseconds short interframe space */
1584         sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
1585 }
1586
1587 Static void
1588 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
1589 {
1590         struct ieee80211com *ic = &sc->sc_ic;
1591         struct ifnet *ifp = &ic->ic_if;
1592         const struct rfprog *rfprog;
1593         uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
1594         int8_t power;
1595         u_int i, chan;
1596
1597         ASSERT_SERIALIZED(ifp->if_serializer);
1598
1599         chan = ieee80211_chan2ieee(ic, c);
1600         if (chan == 0 || chan == IEEE80211_CHAN_ANY)
1601                 return;
1602
1603         lwkt_serialize_exit(ifp->if_serializer);
1604
1605         /* select the appropriate RF settings based on what EEPROM says */
1606         rfprog = (sc->rf_rev == RT2573_RF_5225 ||
1607                   sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
1608
1609         /* find the settings for this channel (we know it exists) */
1610         for (i = 0; rfprog[i].chan != chan; i++)
1611                 ;       /* EMPTY */
1612
1613         power = sc->txpow[i];
1614         if (power < 0) {
1615                 bbp94 += power;
1616                 power = 0;
1617         } else if (power > 31) {
1618                 bbp94 += power - 31;
1619                 power = 31;
1620         }
1621
1622         /*
1623          * If we are switching from the 2GHz band to the 5GHz band or
1624          * vice-versa, BBP registers need to be reprogrammed.
1625          */
1626         if (c->ic_flags != sc->sc_curchan->ic_flags) {
1627                 rum_select_band(sc, c);
1628                 rum_select_antenna(sc);
1629         }
1630         sc->sc_curchan = c;
1631
1632         rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1633         rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1634         rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1635         rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1636
1637         rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1638         rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1639         rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
1640         rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1641
1642         rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
1643         rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
1644         rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
1645         rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
1646
1647         DELAY(10);
1648
1649         /* enable smart mode for MIMO-capable RFs */
1650         bbp3 = rum_bbp_read(sc, 3);
1651
1652         bbp3 &= ~RT2573_SMART_MODE;
1653         if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
1654                 bbp3 |= RT2573_SMART_MODE;
1655
1656         rum_bbp_write(sc, 3, bbp3);
1657
1658         if (bbp94 != RT2573_BBPR94_DEFAULT)
1659                 rum_bbp_write(sc, 94, bbp94);
1660
1661         lwkt_serialize_enter(ifp->if_serializer);
1662 }
1663
1664 /*
1665  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
1666  * and HostAP operating modes.
1667  */
1668 Static void
1669 rum_enable_tsf_sync(struct rum_softc *sc)
1670 {
1671         struct ieee80211com *ic = &sc->sc_ic;
1672         uint32_t tmp;
1673
1674         if (ic->ic_opmode != IEEE80211_M_STA) {
1675                 /*
1676                  * Change default 16ms TBTT adjustment to 8ms.
1677                  * Must be done before enabling beacon generation.
1678                  */
1679                 rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8);
1680         }
1681
1682         tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
1683
1684         /* set beacon interval (in 1/16ms unit) */
1685         tmp |= ic->ic_bss->ni_intval * 16;
1686
1687         tmp |= RT2573_TSF_TICKING | RT2573_ENABLE_TBTT;
1688         if (ic->ic_opmode == IEEE80211_M_STA)
1689                 tmp |= RT2573_TSF_MODE(1);
1690         else
1691                 tmp |= RT2573_TSF_MODE(2) | RT2573_GENERATE_BEACON;
1692
1693         rum_write(sc, RT2573_TXRX_CSR9, tmp);
1694 }
1695
1696 Static void
1697 rum_update_slot(struct rum_softc *sc)
1698 {
1699         struct ieee80211com *ic = &sc->sc_ic;
1700         uint8_t slottime;
1701         uint32_t tmp;
1702
1703         slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
1704
1705         tmp = rum_read(sc, RT2573_MAC_CSR9);
1706         tmp = (tmp & ~0xff) | slottime;
1707         rum_write(sc, RT2573_MAC_CSR9, tmp);
1708
1709         DPRINTF(("setting slot time to %uus\n", slottime));
1710 }
1711
1712 Static void
1713 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
1714 {
1715         uint32_t tmp;
1716
1717         tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
1718         rum_write(sc, RT2573_MAC_CSR4, tmp);
1719
1720         tmp = bssid[4] | bssid[5] << 8 | RT2573_ONE_BSSID << 16;
1721         rum_write(sc, RT2573_MAC_CSR5, tmp);
1722 }
1723
1724 Static void
1725 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
1726 {
1727         uint32_t tmp;
1728
1729         tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
1730         rum_write(sc, RT2573_MAC_CSR2, tmp);
1731
1732         tmp = addr[4] | addr[5] << 8 | 0xff << 16;
1733         rum_write(sc, RT2573_MAC_CSR3, tmp);
1734 }
1735
1736 Static void
1737 rum_update_promisc(struct rum_softc *sc)
1738 {
1739         struct ifnet *ifp = &sc->sc_ic.ic_if;
1740         uint32_t tmp;
1741
1742         tmp = rum_read(sc, RT2573_TXRX_CSR0);
1743
1744         tmp &= ~RT2573_DROP_NOT_TO_ME;
1745         if (!(ifp->if_flags & IFF_PROMISC))
1746                 tmp |= RT2573_DROP_NOT_TO_ME;
1747
1748         rum_write(sc, RT2573_TXRX_CSR0, tmp);
1749
1750         DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
1751             "entering" : "leaving"));
1752 }
1753
1754 Static const char *
1755 rum_get_rf(int rev)
1756 {
1757         switch (rev) {
1758         case RT2573_RF_2527:    return "RT2527 (MIMO XR)";
1759         case RT2573_RF_2528:    return "RT2528";
1760         case RT2573_RF_5225:    return "RT5225 (MIMO XR)";
1761         case RT2573_RF_5226:    return "RT5226";
1762         default:                return "unknown";
1763         }
1764 }
1765
1766 Static void
1767 rum_read_eeprom(struct rum_softc *sc)
1768 {
1769         struct ieee80211com *ic = &sc->sc_ic;
1770         uint16_t val;
1771 #ifdef RUM_DEBUG
1772         int i;
1773 #endif
1774
1775         /* read MAC/BBP type */
1776         rum_eeprom_read(sc, RT2573_EEPROM_MACBBP, &val, 2);
1777         sc->macbbp_rev = le16toh(val);
1778
1779         /* read MAC address */
1780         rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, ic->ic_myaddr, 6);
1781
1782         rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
1783         val = le16toh(val);
1784         sc->rf_rev =   (val >> 11) & 0x1f;
1785         sc->hw_radio = (val >> 10) & 0x1;
1786         sc->rx_ant =   (val >> 4)  & 0x3;
1787         sc->tx_ant =   (val >> 2)  & 0x3;
1788         sc->nb_ant =   val & 0x3;
1789
1790         DPRINTF(("RF revision=%d\n", sc->rf_rev));
1791
1792         rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
1793         val = le16toh(val);
1794         sc->ext_5ghz_lna = (val >> 6) & 0x1;
1795         sc->ext_2ghz_lna = (val >> 4) & 0x1;
1796
1797         DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
1798             sc->ext_2ghz_lna, sc->ext_5ghz_lna));
1799
1800         rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
1801         val = le16toh(val);
1802         if ((val & 0xff) != 0xff)
1803                 sc->rssi_2ghz_corr = (int8_t)(val & 0xff);      /* signed */
1804
1805         /* Only [-10, 10] is valid */
1806         if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10)
1807                 sc->rssi_2ghz_corr = 0;
1808
1809         rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
1810         val = le16toh(val);
1811         if ((val & 0xff) != 0xff)
1812                 sc->rssi_5ghz_corr = (int8_t)(val & 0xff);      /* signed */
1813
1814         /* Only [-10, 10] is valid */
1815         if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10)
1816                 sc->rssi_5ghz_corr = 0;
1817
1818         if (sc->ext_2ghz_lna)
1819                 sc->rssi_2ghz_corr -= 14;
1820         if (sc->ext_5ghz_lna)
1821                 sc->rssi_5ghz_corr -= 14;
1822
1823         DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
1824             sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
1825
1826         rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
1827         val = le16toh(val);
1828         if ((val & 0xff) != 0xff)
1829                 sc->rffreq = val & 0xff;
1830
1831         DPRINTF(("RF freq=%d\n", sc->rffreq));
1832
1833         /* read Tx power for all a/b/g channels */
1834         rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
1835         /* XXX default Tx power for 802.11a channels */
1836         memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
1837 #ifdef RUM_DEBUG
1838         for (i = 0; i < 14; i++)
1839                 DPRINTF(("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]));
1840 #endif
1841
1842         /* read default values for BBP registers */
1843         rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
1844 #ifdef RUM_DEBUG
1845         for (i = 0; i < 14; i++) {
1846                 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1847                         continue;
1848                 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
1849                     sc->bbp_prom[i].val));
1850         }
1851 #endif
1852 }
1853
1854 Static int
1855 rum_bbp_init(struct rum_softc *sc)
1856 {
1857 #define N(a)    (sizeof (a) / sizeof ((a)[0]))
1858         int i, ntries;
1859         uint8_t val;
1860
1861         /* wait for BBP to be ready */
1862         for (ntries = 0; ntries < 100; ntries++) {
1863                 val = rum_bbp_read(sc, 0);
1864                 if (val != 0 && val != 0xff)
1865                         break;
1866                 DELAY(1000);
1867         }
1868         if (ntries == 100) {
1869                 kprintf("%s: timeout waiting for BBP\n",
1870                     USBDEVNAME(sc->sc_dev));
1871                 return EIO;
1872         }
1873
1874         /* initialize BBP registers to default values */
1875         for (i = 0; i < N(rum_def_bbp); i++)
1876                 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
1877
1878         /* write vendor-specific BBP values (from EEPROM) */
1879         for (i = 0; i < 16; i++) {
1880                 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
1881                         continue;
1882                 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
1883         }
1884
1885         return 0;
1886 #undef N
1887 }
1888
1889 Static void
1890 rum_init(void *xsc)
1891 {
1892 #define N(a)    (sizeof (a) / sizeof ((a)[0]))
1893         struct rum_softc *sc = xsc;
1894         struct ieee80211com *ic = &sc->sc_ic;
1895         struct ifnet *ifp = &ic->ic_if;
1896         struct rum_rx_data *data;
1897         uint32_t tmp;
1898         usbd_status error;
1899         int i, ntries;
1900
1901         ASSERT_SERIALIZED(ifp->if_serializer);
1902
1903         rum_stop(sc);
1904
1905         /* initialize MAC registers to default values */
1906         for (i = 0; i < N(rum_def_mac); i++)
1907                 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
1908
1909         /* set host ready */
1910         rum_write(sc, RT2573_MAC_CSR1, 3);
1911         rum_write(sc, RT2573_MAC_CSR1, 0);
1912
1913         /* wait for BBP/RF to wakeup */
1914         for (ntries = 0; ntries < 1000; ntries++) {
1915                 if (rum_read(sc, RT2573_MAC_CSR12) & 8)
1916                         break;
1917                 rum_write(sc, RT2573_MAC_CSR12, 4);     /* force wakeup */
1918                 DELAY(1000);
1919         }
1920         if (ntries == 1000) {
1921                 kprintf("%s: timeout waiting for BBP/RF to wakeup\n",
1922                     USBDEVNAME(sc->sc_dev));
1923                 goto fail;
1924         }
1925
1926         if ((error = rum_bbp_init(sc)) != 0)
1927                 goto fail;
1928
1929         /* select default channel */
1930         sc->sc_curchan = ic->ic_curchan = ic->ic_ibss_chan;
1931         rum_select_band(sc, sc->sc_curchan);
1932         rum_select_antenna(sc);
1933         rum_set_chan(sc, sc->sc_curchan);
1934
1935         /* clear STA registers */
1936         rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
1937
1938         IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
1939         rum_set_macaddr(sc, ic->ic_myaddr);
1940
1941         /* initialize ASIC */
1942         rum_write(sc, RT2573_MAC_CSR1, 4);
1943
1944         /*
1945          * Allocate xfer for AMRR statistics requests.
1946          */
1947         sc->stats_xfer = usbd_alloc_xfer(sc->sc_udev);
1948         if (sc->stats_xfer == NULL) {
1949                 kprintf("%s: could not allocate AMRR xfer\n",
1950                     USBDEVNAME(sc->sc_dev));
1951                 goto fail;
1952         }
1953
1954         /*
1955          * Open Tx and Rx USB bulk pipes.
1956          */
1957         error = usbd_open_pipe(sc->sc_iface, sc->sc_tx_no, USBD_EXCLUSIVE_USE,
1958             &sc->sc_tx_pipeh);
1959         if (error != 0) {
1960                 kprintf("%s: could not open Tx pipe: %s\n",
1961                     USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1962                 goto fail;
1963         }
1964
1965         error = usbd_open_pipe(sc->sc_iface, sc->sc_rx_no, USBD_EXCLUSIVE_USE,
1966             &sc->sc_rx_pipeh);
1967         if (error != 0) {
1968                 kprintf("%s: could not open Rx pipe: %s\n",
1969                     USBDEVNAME(sc->sc_dev), usbd_errstr(error));
1970                 goto fail;
1971         }
1972
1973         /*
1974          * Allocate Tx and Rx xfer queues.
1975          */
1976         error = rum_alloc_tx_list(sc);
1977         if (error != 0) {
1978                 kprintf("%s: could not allocate Tx list\n",
1979                     USBDEVNAME(sc->sc_dev));
1980                 goto fail;
1981         }
1982
1983         error = rum_alloc_rx_list(sc);
1984         if (error != 0) {
1985                 kprintf("%s: could not allocate Rx list\n",
1986                     USBDEVNAME(sc->sc_dev));
1987                 goto fail;
1988         }
1989
1990         /*
1991          * Start up the receive pipe.
1992          */
1993         for (i = 0; i < RT2573_RX_LIST_COUNT; i++) {
1994                 data = &sc->rx_data[i];
1995
1996                 usbd_setup_xfer(data->xfer, sc->sc_rx_pipeh, data, data->buf,
1997                     MCLBYTES, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, rum_rxeof);
1998                 usbd_transfer(data->xfer);
1999         }
2000
2001         /* update Rx filter */
2002         tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2003
2004         tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2005         if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2006                 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2007                        RT2573_DROP_ACKCTS;
2008                 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2009                         tmp |= RT2573_DROP_TODS;
2010                 if (!(ifp->if_flags & IFF_PROMISC))
2011                         tmp |= RT2573_DROP_NOT_TO_ME;
2012         }
2013         rum_write(sc, RT2573_TXRX_CSR0, tmp);
2014
2015         ifp->if_flags &= ~IFF_OACTIVE;
2016         ifp->if_flags |= IFF_RUNNING;
2017
2018         if (ic->ic_opmode == IEEE80211_M_MONITOR)
2019                 ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2020         else
2021                 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2022
2023         return;
2024
2025 fail:   rum_stop(sc);
2026
2027 #undef N
2028 }
2029
2030 Static void
2031 rum_stop(struct rum_softc *sc)
2032 {
2033         struct ieee80211com *ic = &sc->sc_ic;
2034         struct ifnet *ifp = &ic->ic_if;
2035         uint32_t tmp;
2036
2037         ASSERT_SERIALIZED(ifp->if_serializer);
2038
2039         ieee80211_new_state(ic, IEEE80211_S_INIT, -1);  /* free all nodes */
2040
2041         sc->sc_tx_timer = 0;
2042         ifp->if_timer = 0;
2043         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2044
2045         /* disable Rx */
2046         tmp = rum_read(sc, RT2573_TXRX_CSR0);
2047         rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
2048
2049         /* reset ASIC */
2050         rum_write(sc, RT2573_MAC_CSR1, 3);
2051         rum_write(sc, RT2573_MAC_CSR1, 0);
2052
2053         if (sc->sc_rx_pipeh != NULL) {
2054                 usbd_abort_pipe(sc->sc_rx_pipeh);
2055                 usbd_close_pipe(sc->sc_rx_pipeh);
2056                 sc->sc_rx_pipeh = NULL;
2057         }
2058
2059         if (sc->sc_tx_pipeh != NULL) {
2060                 usbd_abort_pipe(sc->sc_tx_pipeh);
2061                 usbd_close_pipe(sc->sc_tx_pipeh);
2062                 sc->sc_tx_pipeh = NULL;
2063         }
2064
2065         rum_free_rx_list(sc);
2066         rum_free_tx_list(sc);
2067 }
2068
2069 Static int
2070 rum_load_microcode(struct rum_softc *sc, const uint8_t *ucode, size_t size)
2071 {
2072         usb_device_request_t req;
2073         uint16_t reg = RT2573_MCU_CODE_BASE;
2074         usbd_status error;
2075
2076         /* copy firmware image into NIC */
2077         for (; size >= 4; reg += 4, ucode += 4, size -= 4)
2078                 rum_write(sc, reg, UGETDW(ucode));
2079
2080         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
2081         req.bRequest = RT2573_MCU_CNTL;
2082         USETW(req.wValue, RT2573_MCU_RUN);
2083         USETW(req.wIndex, 0);
2084         USETW(req.wLength, 0);
2085
2086         error = usbd_do_request(sc->sc_udev, &req, NULL);
2087         if (error != 0) {
2088                 kprintf("%s: could not run firmware: %s\n",
2089                     USBDEVNAME(sc->sc_dev), usbd_errstr(error));
2090         }
2091         return error;
2092 }
2093
2094 Static int
2095 rum_prepare_beacon(struct rum_softc *sc)
2096 {
2097         struct ieee80211com *ic = &sc->sc_ic;
2098         struct ieee80211_beacon_offsets bo;
2099         struct rum_tx_desc desc;
2100         struct mbuf *m0;
2101         int rate;
2102
2103         m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &bo);
2104         if (m0 == NULL) {
2105                 if_printf(&ic->ic_if, "could not allocate beacon frame\n");
2106                 return ENOBUFS;
2107         }
2108
2109         /* send beacons at the lowest available rate */
2110         rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan) ? 12 : 2;
2111
2112         rum_setup_tx_desc(sc, &desc, RT2573_TX_TIMESTAMP, RT2573_TX_HWSEQ,
2113             m0->m_pkthdr.len, rate);
2114
2115         /* copy the first 24 bytes of Tx descriptor into NIC memory */
2116         rum_write_multi(sc, RT2573_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2117
2118         /* copy beacon header and payload into NIC memory */
2119         rum_write_multi(sc, RT2573_HW_BEACON_BASE0 + 24, mtod(m0, uint8_t *),
2120             m0->m_pkthdr.len);
2121
2122         m_freem(m0);
2123
2124         return 0;
2125 }
2126
2127 Static void
2128 rum_stats_timeout(void *arg)
2129 {
2130         struct rum_softc *sc = arg;
2131         struct ifnet *ifp = &sc->sc_ic.ic_if;
2132         usb_device_request_t req;
2133
2134         lwkt_serialize_enter(ifp->if_serializer);
2135
2136         /*
2137          * Asynchronously read statistic registers (cleared by read).
2138          */
2139         req.bmRequestType = UT_READ_VENDOR_DEVICE;
2140         req.bRequest = RT2573_READ_MULTI_MAC;
2141         USETW(req.wValue, 0);
2142         USETW(req.wIndex, RT2573_STA_CSR0);
2143         USETW(req.wLength, sizeof(sc->sta));
2144
2145         usbd_setup_default_xfer(sc->stats_xfer, sc->sc_udev, sc,
2146                                 USBD_DEFAULT_TIMEOUT, &req,
2147                                 sc->sta, sizeof(sc->sta), 0,
2148                                 rum_stats_update);
2149         usbd_transfer(sc->stats_xfer);
2150
2151         lwkt_serialize_exit(ifp->if_serializer);
2152 }
2153
2154 Static void
2155 rum_stats_update(usbd_xfer_handle xfer, usbd_private_handle priv,
2156                  usbd_status status)
2157 {
2158         struct rum_softc *sc = (struct rum_softc *)priv;
2159         struct ifnet *ifp = &sc->sc_ic.ic_if;
2160         struct ieee80211_ratectl_stats *stats = &sc->sc_stats;
2161
2162         if (status != USBD_NORMAL_COMPLETION) {
2163                 kprintf("%s: could not retrieve Tx statistics - cancelling "
2164                     "automatic rate control\n", USBDEVNAME(sc->sc_dev));
2165                 return;
2166         }
2167
2168         lwkt_serialize_enter(ifp->if_serializer);
2169
2170         /* count TX retry-fail as Tx errors */
2171         ifp->if_oerrors += RUM_TX_PKT_FAIL(sc);
2172
2173         stats->stats_pkt_noretry += RUM_TX_PKT_NO_RETRY(sc);
2174         stats->stats_pkt_ok += RUM_TX_PKT_NO_RETRY(sc) +
2175                                RUM_TX_PKT_ONE_RETRY(sc) +
2176                                RUM_TX_PKT_MULTI_RETRY(sc);
2177         stats->stats_pkt_err += RUM_TX_PKT_FAIL(sc);
2178
2179         stats->stats_short_retries += RUM_TX_PKT_ONE_RETRY(sc);
2180 #if 1
2181         /*
2182          * XXX Estimated average:
2183          * Actual number of retries for each packet should belong to
2184          * [2, RUM_TX_SHORT_RETRY_MAX]
2185          */
2186         stats->stats_short_retries +=
2187                 RUM_TX_PKT_MULTI_RETRY(sc) *
2188                 ((2 + RUM_TX_SHORT_RETRY_MAX) / 2);
2189 #else
2190         stats->stats_short_retries += RUM_TX_PKT_MULTI_RETRY(sc);
2191 #endif
2192         stats->stats_short_retries +=
2193                 RUM_TX_PKT_FAIL(sc) * RUM_TX_SHORT_RETRY_MAX;
2194
2195         callout_reset(&sc->stats_ch, 4 * hz / 5, rum_stats_timeout, sc);
2196
2197         lwkt_serialize_exit(ifp->if_serializer);
2198 }
2199
2200 Static void
2201 rum_stats(struct ieee80211com *ic, struct ieee80211_node *ni __unused,
2202           struct ieee80211_ratectl_stats *stats)
2203 {
2204         struct ifnet *ifp = &ic->ic_if;
2205         struct rum_softc *sc = ifp->if_softc;
2206
2207         ASSERT_SERIALIZED(ifp->if_serializer);
2208
2209         bcopy(&sc->sc_stats, stats, sizeof(*stats));
2210         bzero(&sc->sc_stats, sizeof(sc->sc_stats));
2211 }
2212
2213 Static void
2214 rum_ratectl_change(struct ieee80211com *ic, u_int orc __unused, u_int nrc)
2215 {
2216         struct ieee80211_ratectl_state *st = &ic->ic_ratectl;
2217         struct ieee80211_onoe_param *oparam;
2218
2219         if (st->rc_st_param != NULL) {
2220                 kfree(st->rc_st_param, M_DEVBUF);
2221                 st->rc_st_param = NULL;
2222         }
2223
2224         switch (nrc) {
2225         case IEEE80211_RATECTL_ONOE:
2226                 oparam = kmalloc(sizeof(*oparam), M_DEVBUF, M_INTWAIT);
2227
2228                 IEEE80211_ONOE_PARAM_SETUP(oparam);
2229                 oparam->onoe_raise = 15;
2230
2231                 st->rc_st_param = oparam;
2232                 break;
2233         case IEEE80211_RATECTL_NONE:
2234                 /* This could only happen during detaching */
2235                 break;
2236         default:
2237                 panic("unknown rate control algo %u\n", nrc);
2238         }
2239 }
2240
2241 Static int
2242 rum_get_rssi(struct rum_softc *sc, uint8_t raw)
2243 {
2244         int lna, agc, rssi;
2245
2246         lna = (raw >> 5) & 0x3;
2247         agc = raw & 0x1f;
2248
2249         rssi = (2 * agc) - RT2573_NOISE_FLOOR;
2250
2251         if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) {
2252                 rssi += sc->rssi_2ghz_corr;
2253
2254                 if (lna == 1)
2255                         rssi -= 64;
2256                 else if (lna == 2)
2257                         rssi -= 74;
2258                 else if (lna == 3)
2259                         rssi -= 90;
2260         } else {
2261                 rssi += sc->rssi_5ghz_corr;
2262
2263                 if (!sc->ext_5ghz_lna && lna != 1)
2264                         rssi += 4;
2265
2266                 if (lna == 1)
2267                         rssi -= 64;
2268                 else if (lna == 2)
2269                         rssi -= 86;
2270                 else if (lna == 3)
2271                         rssi -= 100;
2272         }
2273         return rssi;
2274 }