kernel - Add kmalloc_obj subsystem step 1a
[dragonfly.git] / sys / kern / kern_slaballoc.c
1 /*
2  * KERN_SLABALLOC.C     - Kernel SLAB memory allocator
3  *
4  * Copyright (c) 2003,2004,2010-2019 The DragonFly Project.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The DragonFly Project
8  * by Matthew Dillon <dillon@backplane.com>
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in
18  *    the documentation and/or other materials provided with the
19  *    distribution.
20  * 3. Neither the name of The DragonFly Project nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific, prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
28  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
32  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
33  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
34  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * This module implements a slab allocator drop-in replacement for the
38  * kernel malloc().
39  *
40  * A slab allocator reserves a ZONE for each chunk size, then lays the
41  * chunks out in an array within the zone.  Allocation and deallocation
42  * is nearly instantanious, and fragmentation/overhead losses are limited
43  * to a fixed worst-case amount.
44  *
45  * The downside of this slab implementation is in the chunk size
46  * multiplied by the number of zones.  ~80 zones * 128K = 10MB of VM per cpu.
47  * In a kernel implementation all this memory will be physical so
48  * the zone size is adjusted downward on machines with less physical
49  * memory.  The upside is that overhead is bounded... this is the *worst*
50  * case overhead.
51  *
52  * Slab management is done on a per-cpu basis and no locking or mutexes
53  * are required, only a critical section.  When one cpu frees memory
54  * belonging to another cpu's slab manager an asynchronous IPI message
55  * will be queued to execute the operation.   In addition, both the
56  * high level slab allocator and the low level zone allocator optimize
57  * M_ZERO requests, and the slab allocator does not have to pre initialize
58  * the linked list of chunks.
59  *
60  * XXX Balancing is needed between cpus.  Balance will be handled through
61  * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
62  *
63  * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
64  * the new zone should be restricted to M_USE_RESERVE requests only.
65  *
66  *      Alloc Size      Chunking        Number of zones
67  *      0-127           8               16
68  *      128-255         16              8
69  *      256-511         32              8
70  *      512-1023        64              8
71  *      1024-2047       128             8
72  *      2048-4095       256             8
73  *      4096-8191       512             8
74  *      8192-16383      1024            8
75  *      16384-32767     2048            8
76  *      (if PAGE_SIZE is 4K the maximum zone allocation is 16383)
77  *
78  *      Allocations >= ZoneLimit go directly to kmem.
79  *      (n * PAGE_SIZE, n > 2) allocations go directly to kmem.
80  *
81  * Alignment properties:
82  * - All power-of-2 sized allocations are power-of-2 aligned.
83  * - Allocations with M_POWEROF2 are power-of-2 aligned on the nearest
84  *   power-of-2 round up of 'size'.
85  * - Non-power-of-2 sized allocations are zone chunk size aligned (see the
86  *   above table 'Chunking' column).
87  *
88  *                      API REQUIREMENTS AND SIDE EFFECTS
89  *
90  *    To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
91  *    have remained compatible with the following API requirements:
92  *
93  *    + malloc(0) is allowed and returns non-NULL (ahc driver)
94  *    + ability to allocate arbitrarily large chunks of memory
95  */
96
97 #include "opt_vm.h"
98
99 #include <sys/param.h>
100 #include <sys/systm.h>
101 #include <sys/kernel.h>
102 #include <sys/slaballoc.h>
103 #include <sys/mbuf.h>
104 #include <sys/vmmeter.h>
105 #include <sys/lock.h>
106 #include <sys/thread.h>
107 #include <sys/globaldata.h>
108 #include <sys/sysctl.h>
109 #include <sys/ktr.h>
110 #include <sys/kthread.h>
111 #include <sys/malloc.h>
112
113 #include <vm/vm.h>
114 #include <vm/vm_param.h>
115 #include <vm/vm_kern.h>
116 #include <vm/vm_extern.h>
117 #include <vm/vm_object.h>
118 #include <vm/pmap.h>
119 #include <vm/vm_map.h>
120 #include <vm/vm_page.h>
121 #include <vm/vm_pageout.h>
122
123 #include <machine/cpu.h>
124
125 #include <sys/thread2.h>
126 #include <vm/vm_page2.h>
127
128 #if (__VM_CACHELINE_SIZE == 32)
129 #define CAN_CACHEALIGN(sz)      ((sz) >= 256)
130 #elif (__VM_CACHELINE_SIZE == 64)
131 #define CAN_CACHEALIGN(sz)      ((sz) >= 512)
132 #elif (__VM_CACHELINE_SIZE == 128)
133 #define CAN_CACHEALIGN(sz)      ((sz) >= 1024)
134 #else
135 #error "unsupported cacheline size"
136 #endif
137
138 #define btokup(z)       (&pmap_kvtom((vm_offset_t)(z))->ku_pagecnt)
139
140 #define MEMORY_STRING   "ptr=%p type=%p size=%lu flags=%04x"
141 #define MEMORY_ARGS     void *ptr, void *type, unsigned long size, int flags
142
143 #if !defined(KTR_MEMORY)
144 #define KTR_MEMORY      KTR_ALL
145 #endif
146 KTR_INFO_MASTER(memory);
147 KTR_INFO(KTR_MEMORY, memory, malloc_beg, 0, "malloc begin");
148 KTR_INFO(KTR_MEMORY, memory, malloc_end, 1, MEMORY_STRING, MEMORY_ARGS);
149 KTR_INFO(KTR_MEMORY, memory, free_zero, 2, MEMORY_STRING, MEMORY_ARGS);
150 KTR_INFO(KTR_MEMORY, memory, free_ovsz, 3, MEMORY_STRING, MEMORY_ARGS);
151 KTR_INFO(KTR_MEMORY, memory, free_ovsz_delayed, 4, MEMORY_STRING, MEMORY_ARGS);
152 KTR_INFO(KTR_MEMORY, memory, free_chunk, 5, MEMORY_STRING, MEMORY_ARGS);
153 KTR_INFO(KTR_MEMORY, memory, free_request, 6, MEMORY_STRING, MEMORY_ARGS);
154 KTR_INFO(KTR_MEMORY, memory, free_rem_beg, 7, MEMORY_STRING, MEMORY_ARGS);
155 KTR_INFO(KTR_MEMORY, memory, free_rem_end, 8, MEMORY_STRING, MEMORY_ARGS);
156 KTR_INFO(KTR_MEMORY, memory, free_beg, 9, "free begin");
157 KTR_INFO(KTR_MEMORY, memory, free_end, 10, "free end");
158
159 #define logmemory(name, ptr, type, size, flags)                         \
160         KTR_LOG(memory_ ## name, ptr, type, size, flags)
161 #define logmemory_quick(name)                                           \
162         KTR_LOG(memory_ ## name)
163
164 /*
165  * Fixed globals (not per-cpu)
166  */
167 __read_frequently static int ZoneSize;
168 __read_frequently static int ZoneLimit;
169 __read_frequently static int ZonePageCount;
170 __read_frequently static uintptr_t ZoneMask;
171 __read_frequently struct malloc_type *kmemstatistics;   /* exported to vmstat */
172
173 #if defined(INVARIANTS)
174 static void chunk_mark_allocated(SLZone *z, void *chunk);
175 static void chunk_mark_free(SLZone *z, void *chunk);
176 #else
177 #define chunk_mark_allocated(z, chunk)
178 #define chunk_mark_free(z, chunk)
179 #endif
180
181 /*
182  * Misc constants.  Note that allocations that are exact multiples of
183  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
184  */
185 #define ZONE_RELS_THRESH        32              /* threshold number of zones */
186
187 #ifdef INVARIANTS
188 /*
189  * The WEIRD_ADDR is used as known text to copy into free objects to
190  * try to create deterministic failure cases if the data is accessed after
191  * free.
192  */
193 #define WEIRD_ADDR      0xdeadc0de
194 #endif
195 #define ZERO_LENGTH_PTR ((void *)-8)
196
197 /*
198  * Misc global malloc buckets
199  */
200
201 MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches");
202 MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory");
203 MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers");
204 MALLOC_DEFINE(M_DRM, "m_drm", "DRM memory allocations");
205
206 MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
207 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
208
209 /*
210  * Initialize the slab memory allocator.  We have to choose a zone size based
211  * on available physical memory.  We choose a zone side which is approximately
212  * 1/1024th of our memory, so if we have 128MB of ram we have a zone size of
213  * 128K.  The zone size is limited to the bounds set in slaballoc.h
214  * (typically 32K min, 128K max).
215  */
216 static void kmeminit(void *dummy);
217 static void kmemfinishinit(void *dummy);
218
219 char *ZeroPage;
220
221 SYSINIT(kmem1, SI_BOOT1_ALLOCATOR, SI_ORDER_FIRST, kmeminit, NULL);
222 SYSINIT(kmem2, SI_BOOT2_POST_SMP, SI_ORDER_FIRST, kmemfinishinit, NULL);
223
224 #ifdef INVARIANTS
225 /*
226  * If enabled any memory allocated without M_ZERO is initialized to -1.
227  */
228 __read_frequently static int  use_malloc_pattern;
229 SYSCTL_INT(_debug, OID_AUTO, use_malloc_pattern, CTLFLAG_RW,
230            &use_malloc_pattern, 0,
231            "Initialize memory to -1 if M_ZERO not specified");
232
233 __read_frequently static int32_t weirdary[16];
234 __read_frequently static int  use_weird_array;
235 SYSCTL_INT(_debug, OID_AUTO, use_weird_array, CTLFLAG_RW,
236            &use_weird_array, 0,
237            "Initialize memory to weird values on kfree()");
238 #endif
239
240 __read_frequently static int ZoneRelsThresh = ZONE_RELS_THRESH;
241 SYSCTL_INT(_kern, OID_AUTO, zone_cache, CTLFLAG_RW, &ZoneRelsThresh, 0, "");
242
243 static struct spinlock kmemstat_spin =
244                         SPINLOCK_INITIALIZER(&kmemstat_spin, "malinit");
245 static struct malloc_type *kmemstat_poll;
246
247 /*
248  * Returns the kernel memory size limit for the purposes of initializing
249  * various subsystem caches.  The smaller of available memory and the KVM
250  * memory space is returned.
251  *
252  * The size in megabytes is returned.
253  */
254 size_t
255 kmem_lim_size(void)
256 {
257     size_t limsize;
258
259     limsize = (size_t)vmstats.v_page_count * PAGE_SIZE;
260     if (limsize > KvaSize)
261         limsize = KvaSize;
262     return (limsize / (1024 * 1024));
263 }
264
265 static void
266 kmeminit(void *dummy)
267 {
268     size_t limsize;
269     int usesize;
270 #ifdef INVARIANTS
271     int i;
272 #endif
273
274     limsize = kmem_lim_size();
275     usesize = (int)(limsize * 1024);    /* convert to KB */
276
277     /*
278      * If the machine has a large KVM space and more than 8G of ram,
279      * double the zone release threshold to reduce SMP invalidations.
280      * If more than 16G of ram, do it again.
281      *
282      * The BIOS eats a little ram so add some slop.  We want 8G worth of
283      * memory sticks to trigger the first adjustment.
284      */
285     if (ZoneRelsThresh == ZONE_RELS_THRESH) {
286             if (limsize >= 7 * 1024)
287                     ZoneRelsThresh *= 2;
288             if (limsize >= 15 * 1024)
289                     ZoneRelsThresh *= 2;
290             if (limsize >= 31 * 1024)
291                     ZoneRelsThresh *= 2;
292             if (limsize >= 63 * 1024)
293                     ZoneRelsThresh *= 2;
294             if (limsize >= 127 * 1024)
295                     ZoneRelsThresh *= 2;
296     }
297
298     /*
299      * Calculate the zone size.  This typically calculates to
300      * ZALLOC_MAX_ZONE_SIZE
301      */
302     ZoneSize = ZALLOC_MIN_ZONE_SIZE;
303     while (ZoneSize < ZALLOC_MAX_ZONE_SIZE && (ZoneSize << 1) < usesize)
304         ZoneSize <<= 1;
305     ZoneLimit = ZoneSize / 4;
306     if (ZoneLimit > ZALLOC_ZONE_LIMIT)
307         ZoneLimit = ZALLOC_ZONE_LIMIT;
308     ZoneMask = ~(uintptr_t)(ZoneSize - 1);
309     ZonePageCount = ZoneSize / PAGE_SIZE;
310
311 #ifdef INVARIANTS
312     for (i = 0; i < NELEM(weirdary); ++i)
313         weirdary[i] = WEIRD_ADDR;
314 #endif
315
316     ZeroPage = kmem_slab_alloc(PAGE_SIZE, PAGE_SIZE, M_WAITOK|M_ZERO);
317
318     if (bootverbose)
319         kprintf("Slab ZoneSize set to %dKB\n", ZoneSize / 1024);
320 }
321
322 /*
323  * Once we know how many cpus are configured reduce ZoneRelsThresh
324  * based on multiples of 32 cpu threads.
325  */
326 static void
327 kmemfinishinit(void *dummy)
328 {
329         if (ncpus > 32)
330                 ZoneRelsThresh = ZoneRelsThresh * 32 / ncpus;
331 }
332
333 /*
334  * (low level) Initialize slab-related elements in the globaldata structure.
335  *
336  * Occurs after kmeminit().
337  */
338 void
339 slab_gdinit(globaldata_t gd)
340 {
341         SLGlobalData *slgd;
342         int i;
343
344         slgd = &gd->gd_slab;
345         for (i = 0; i < NZONES; ++i)
346                 TAILQ_INIT(&slgd->ZoneAry[i]);
347         TAILQ_INIT(&slgd->FreeZones);
348         TAILQ_INIT(&slgd->FreeOvZones);
349 }
350
351 /*
352  * Initialize a malloc type tracking structure.
353  */
354 void
355 malloc_init(void *data)
356 {
357     struct malloc_type *type = data;
358     struct kmalloc_use *use;
359     size_t limsize;
360     int n;
361
362     if (type->ks_magic != M_MAGIC)
363         panic("malloc type lacks magic");
364
365     if (type->ks_limit != 0)
366         return;
367
368     if (vmstats.v_page_count == 0)
369         panic("malloc_init not allowed before vm init");
370
371     limsize = kmem_lim_size() * (1024 * 1024);
372     type->ks_limit = limsize / 10;
373     if (type->ks_flags & KSF_OBJSIZE)
374             malloc_mgt_init(type, &type->ks_mgt, type->ks_objsize);
375
376     if (ncpus == 1)
377         use = &type->ks_use0;
378     else
379         use = kmalloc(ncpus * sizeof(*use), M_TEMP, M_WAITOK | M_ZERO);
380     if (type->ks_flags & KSF_OBJSIZE) {
381         for (n = 0; n < ncpus; ++n)
382             malloc_mgt_init(type, &use[n].mgt, type->ks_objsize);
383     }
384
385     spin_lock(&kmemstat_spin);
386     type->ks_next = kmemstatistics;
387     type->ks_use = use;
388     kmemstatistics = type;
389     spin_unlock(&kmemstat_spin);
390 }
391
392 void
393 malloc_uninit(void *data)
394 {
395     struct malloc_type *type = data;
396     struct malloc_type *t;
397 #ifdef INVARIANTS
398     int i;
399     long ttl;
400 #endif
401
402     if (type->ks_magic != M_MAGIC)
403         panic("malloc type lacks magic");
404
405     if (vmstats.v_page_count == 0)
406         panic("malloc_uninit not allowed before vm init");
407
408     if (type->ks_limit == 0)
409         panic("malloc_uninit on uninitialized type");
410
411     /* Make sure that all pending kfree()s are finished. */
412     lwkt_synchronize_ipiqs("muninit");
413
414     /*
415      * Remove from the kmemstatistics list, blocking if the removal races
416      * the kmalloc poller.
417      *
418      * Advance kmemstat_poll if necessary.
419      */
420     spin_lock(&kmemstat_spin);
421     while (type->ks_flags & KSF_POLLING)
422         ssleep(type, &kmemstat_spin, 0, "kmuninit", 0);
423
424     if (kmemstat_poll == type)
425         kmemstat_poll = type->ks_next;
426
427     if (kmemstatistics == type) {
428         kmemstatistics = type->ks_next;
429     } else {
430         for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) {
431             if (t->ks_next == type) {
432                 t->ks_next = type->ks_next;
433                 break;
434             }
435         }
436     }
437     type->ks_next = NULL;
438     type->ks_limit = 0;
439     spin_unlock(&kmemstat_spin);
440
441     /*
442      * memuse is only correct in aggregation.  Due to memory being allocated
443      * on one cpu and freed on another individual array entries may be
444      * negative or positive (canceling each other out).
445      */
446 #ifdef INVARIANTS
447     ttl = 0;
448 #endif
449     for (i = 0; i < ncpus; ++i) {
450 #ifdef INVARIANTS
451         ttl += type->ks_use[i].memuse;
452 #endif
453         if (type->ks_flags & KSF_OBJSIZE)
454             malloc_mgt_uninit(type, &type->ks_use[i].mgt);
455     }
456     if (type->ks_flags & KSF_OBJSIZE)
457         malloc_mgt_uninit(type, &type->ks_mgt);
458 #ifdef INVARIANTS
459     if (ttl) {
460         kprintf("malloc_uninit: %ld bytes of '%s' still allocated on cpu %d\n",
461             ttl, type->ks_shortdesc, i);
462     }
463 #endif
464
465     if (type->ks_use != &type->ks_use0) {
466         kfree(type->ks_use, M_TEMP);
467         type->ks_use = NULL;
468     }
469 }
470
471 /*
472  * Slowly polls all kmalloc zones for cleanup
473  */
474 static void
475 kmalloc_poller_thread(void)
476 {
477     struct malloc_type *type;
478
479     for (;;) {
480         /*
481          * Very slow poll
482          */
483         tsleep((caddr_t)&lbolt, 0, "kmslp", 0);
484
485         /*
486          * poll one
487          */
488         spin_lock(&kmemstat_spin);
489         type = kmemstat_poll;
490
491         if (type == NULL)
492                 type = kmemstatistics;
493         if (type) {
494                 atomic_set_int(&type->ks_flags, KSF_POLLING);
495                 spin_unlock(&kmemstat_spin);
496                 if (malloc_mgt_poll(type)) {
497                         spin_lock(&kmemstat_spin);
498                         kmemstat_poll = type->ks_next;
499                 } else {
500                         spin_lock(&kmemstat_spin);
501                 }
502                 atomic_clear_int(&type->ks_flags, KSF_POLLING);
503                 wakeup(type);
504         } else {
505                 kmemstat_poll = NULL;
506         }
507         spin_unlock(&kmemstat_spin);
508     }
509 }
510
511 static struct thread *kmalloc_poller_td;
512 static struct kproc_desc kmalloc_poller_kp = {
513         "kmalloc_poller",
514         kmalloc_poller_thread,
515         &kmalloc_poller_td
516 };
517 SYSINIT(kmalloc_polller, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST,
518         kproc_start, &kmalloc_poller_kp);
519
520 /*
521  * Reinitialize all installed malloc regions after ncpus has been
522  * determined.  type->ks_use0 is initially set to &type->ks_use0,
523  * this function will dynamically allocate it as appropriate for ncpus.
524  */
525 void
526 malloc_reinit_ncpus(void)
527 {
528     struct malloc_type *t;
529     struct kmalloc_use *use;
530     int n;
531
532     /*
533      * If only one cpu we can leave ks_use set to ks_use0
534      */
535     if (ncpus <= 1)
536         return;
537
538     /*
539      * Expand ks_use for all kmalloc blocks
540      */
541     for (t = kmemstatistics; t; t = t->ks_next) {
542         KKASSERT(t->ks_use == &t->ks_use0);
543         t->ks_use = kmalloc(sizeof(*use) * ncpus, M_TEMP, M_WAITOK|M_ZERO);
544         t->ks_use[0] = t->ks_use0;
545         if (t->ks_flags & KSF_OBJSIZE) {
546             malloc_mgt_relocate(&t->ks_use0.mgt, &t->ks_use[0].mgt);
547             for (n = 1; n < ncpus; ++n)
548                 malloc_mgt_init(t, &t->ks_use[n].mgt, t->ks_objsize);
549         }
550     }
551 }
552
553 /*
554  * Increase the kmalloc pool limit for the specified pool.  No changes
555  * are the made if the pool would shrink.
556  */
557 void
558 kmalloc_raise_limit(struct malloc_type *type, size_t bytes)
559 {
560     KKASSERT(type->ks_limit != 0);
561     if (bytes == 0)
562         bytes = KvaSize;
563     if (type->ks_limit < bytes)
564         type->ks_limit = bytes;
565 }
566
567 void
568 kmalloc_set_unlimited(struct malloc_type *type)
569 {
570     type->ks_limit = kmem_lim_size() * (1024 * 1024);
571 }
572
573 /*
574  * Dynamically create a malloc pool.  This function is a NOP if *typep is
575  * already non-NULL.
576  */
577 void
578 kmalloc_create(struct malloc_type **typep, const char *descr)
579 {
580         struct malloc_type *type;
581
582         if (*typep == NULL) {
583                 type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO);
584                 type->ks_magic = M_MAGIC;
585                 type->ks_shortdesc = descr;
586                 malloc_init(type);
587                 *typep = type;
588         }
589 }
590
591 void
592 _kmalloc_create_obj(struct malloc_type **typep, const char *descr,
593                     size_t objsize)
594 {
595         struct malloc_type *type;
596
597         if (*typep == NULL) {
598                 type = kmalloc(sizeof(*type), M_TEMP, M_WAITOK | M_ZERO);
599                 type->ks_magic = M_MAGIC;
600                 type->ks_shortdesc = descr;
601                 type->ks_flags = KSF_OBJSIZE;
602                 type->ks_objsize = __VM_CACHELINE_ALIGN(objsize);
603                 malloc_init(type);
604                 *typep = type;
605         }
606 }
607
608 /*
609  * Destroy a dynamically created malloc pool.  This function is a NOP if
610  * the pool has already been destroyed.
611  */
612 void
613 kmalloc_destroy(struct malloc_type **typep)
614 {
615         if (*typep != NULL) {
616                 malloc_uninit(*typep);
617                 kfree(*typep, M_TEMP);
618                 *typep = NULL;
619         }
620 }
621
622 /*
623  * Calculate the zone index for the allocation request size and set the
624  * allocation request size to that particular zone's chunk size.
625  */
626 static __inline int
627 zoneindex(unsigned long *bytes, unsigned long *align)
628 {
629     unsigned int n = (unsigned int)*bytes;      /* unsigned for shift opt */
630
631     if (n < 128) {
632         *bytes = n = (n + 7) & ~7;
633         *align = 8;
634         return(n / 8 - 1);              /* 8 byte chunks, 16 zones */
635     }
636     if (n < 256) {
637         *bytes = n = (n + 15) & ~15;
638         *align = 16;
639         return(n / 16 + 7);
640     }
641     if (n < 8192) {
642         if (n < 512) {
643             *bytes = n = (n + 31) & ~31;
644             *align = 32;
645             return(n / 32 + 15);
646         }
647         if (n < 1024) {
648             *bytes = n = (n + 63) & ~63;
649             *align = 64;
650             return(n / 64 + 23);
651         }
652         if (n < 2048) {
653             *bytes = n = (n + 127) & ~127;
654             *align = 128;
655             return(n / 128 + 31);
656         }
657         if (n < 4096) {
658             *bytes = n = (n + 255) & ~255;
659             *align = 256;
660             return(n / 256 + 39);
661         }
662         *bytes = n = (n + 511) & ~511;
663         *align = 512;
664         return(n / 512 + 47);
665     }
666 #if ZALLOC_ZONE_LIMIT > 8192
667     if (n < 16384) {
668         *bytes = n = (n + 1023) & ~1023;
669         *align = 1024;
670         return(n / 1024 + 55);
671     }
672 #endif
673 #if ZALLOC_ZONE_LIMIT > 16384
674     if (n < 32768) {
675         *bytes = n = (n + 2047) & ~2047;
676         *align = 2048;
677         return(n / 2048 + 63);
678     }
679 #endif
680     panic("Unexpected byte count %d", n);
681     return(0);
682 }
683
684 static __inline void
685 clean_zone_rchunks(SLZone *z)
686 {
687     SLChunk *bchunk;
688
689     while ((bchunk = z->z_RChunks) != NULL) {
690         cpu_ccfence();
691         if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, NULL)) {
692             *z->z_LChunksp = bchunk;
693             while (bchunk) {
694                 chunk_mark_free(z, bchunk);
695                 z->z_LChunksp = &bchunk->c_Next;
696                 bchunk = bchunk->c_Next;
697                 ++z->z_NFree;
698             }
699             break;
700         }
701         /* retry */
702     }
703 }
704
705 /*
706  * If the zone becomes totally free and is not the only zone listed for a
707  * chunk size we move it to the FreeZones list.  We always leave at least
708  * one zone per chunk size listed, even if it is freeable.
709  *
710  * Do not move the zone if there is an IPI in_flight (z_RCount != 0),
711  * otherwise MP races can result in our free_remote code accessing a
712  * destroyed zone.  The remote end interlocks z_RCount with z_RChunks
713  * so one has to test both z_NFree and z_RCount.
714  *
715  * Since this code can be called from an IPI callback, do *NOT* try to mess
716  * with kernel_map here.  Hysteresis will be performed at kmalloc() time.
717  */
718 static __inline SLZone *
719 check_zone_free(SLGlobalData *slgd, SLZone *z)
720 {
721     SLZone *znext;
722
723     znext = TAILQ_NEXT(z, z_Entry);
724     if (z->z_NFree == z->z_NMax && z->z_RCount == 0 &&
725         (TAILQ_FIRST(&slgd->ZoneAry[z->z_ZoneIndex]) != z || znext)) {
726         int *kup;
727
728         TAILQ_REMOVE(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
729
730         z->z_Magic = -1;
731         TAILQ_INSERT_HEAD(&slgd->FreeZones, z, z_Entry);
732         ++slgd->NFreeZones;
733         kup = btokup(z);
734         *kup = 0;
735     }
736     return znext;
737 }
738
739 #ifdef SLAB_DEBUG
740 /*
741  * Used to debug memory corruption issues.  Record up to (typically 32)
742  * allocation sources for this zone (for a particular chunk size).
743  */
744
745 static void
746 slab_record_source(SLZone *z, const char *file, int line)
747 {
748     int i;
749     int b = line & (SLAB_DEBUG_ENTRIES - 1);
750
751     i = b;
752     do {
753         if (z->z_Sources[i].file == file && z->z_Sources[i].line == line)
754                 return;
755         if (z->z_Sources[i].file == NULL)
756                 break;
757         i = (i + 1) & (SLAB_DEBUG_ENTRIES - 1);
758     } while (i != b);
759     z->z_Sources[i].file = file;
760     z->z_Sources[i].line = line;
761 }
762
763 #endif
764
765 static __inline unsigned long
766 powerof2_size(unsigned long size)
767 {
768         int i;
769
770         if (size == 0 || powerof2(size))
771                 return size;
772
773         i = flsl(size);
774         return (1UL << i);
775 }
776
777 /*
778  * kmalloc()    (SLAB ALLOCATOR)
779  *
780  *      Allocate memory via the slab allocator.  If the request is too large,
781  *      or if it page-aligned beyond a certain size, we fall back to the
782  *      KMEM subsystem.  A SLAB tracking descriptor must be specified, use
783  *      &SlabMisc if you don't care.
784  *
785  *      M_RNOWAIT       - don't block.
786  *      M_NULLOK        - return NULL instead of blocking.
787  *      M_ZERO          - zero the returned memory.
788  *      M_USE_RESERVE   - allow greater drawdown of the free list
789  *      M_USE_INTERRUPT_RESERVE - allow the freelist to be exhausted
790  *      M_POWEROF2      - roundup size to the nearest power of 2
791  *
792  * MPSAFE
793  */
794
795 /* don't let kmalloc macro mess up function declaration */
796 #undef kmalloc
797
798 #ifdef SLAB_DEBUG
799 void *
800 _kmalloc_debug(unsigned long size, struct malloc_type *type, int flags,
801               const char *file, int line)
802 #else
803 void *
804 _kmalloc(unsigned long size, struct malloc_type *type, int flags)
805 #endif
806 {
807     SLZone *z;
808     SLChunk *chunk;
809     SLGlobalData *slgd;
810     struct globaldata *gd;
811     unsigned long align;
812     int zi;
813 #ifdef INVARIANTS
814     int i;
815 #endif
816
817     logmemory_quick(malloc_beg);
818     gd = mycpu;
819     slgd = &gd->gd_slab;
820
821     /*
822      * XXX silly to have this in the critical path.
823      */
824     KKASSERT(type->ks_limit != 0);
825     ++type->ks_use[gd->gd_cpuid].calls;
826
827     /*
828      * Flagged for cache-alignment
829      */
830     if (flags & M_CACHEALIGN) {
831         if (size < __VM_CACHELINE_SIZE)
832                 size = __VM_CACHELINE_SIZE;
833         else if (!CAN_CACHEALIGN(size))
834                 flags |= M_POWEROF2;
835     }
836
837     /*
838      * Flagged to force nearest power-of-2 (higher or same)
839      */
840     if (flags & M_POWEROF2)
841         size = powerof2_size(size);
842
843     /*
844      * Handle the case where the limit is reached.  Panic if we can't return
845      * NULL.  The original malloc code looped, but this tended to
846      * simply deadlock the computer.
847      *
848      * ks_loosememuse is an up-only limit that is NOT MP-synchronized, used
849      * to determine if a more complete limit check should be done.  The
850      * actual memory use is tracked via ks_use[cpu].memuse.
851      */
852     while (type->ks_loosememuse >= type->ks_limit) {
853         int i;
854         long ttl;
855
856         for (i = ttl = 0; i < ncpus; ++i)
857             ttl += type->ks_use[i].memuse;
858         type->ks_loosememuse = ttl;     /* not MP synchronized */
859         if ((ssize_t)ttl < 0)           /* deal with occassional race */
860                 ttl = 0;
861         if (ttl >= type->ks_limit) {
862             if (flags & M_NULLOK) {
863                 logmemory(malloc_end, NULL, type, size, flags);
864                 return(NULL);
865             }
866             panic("%s: malloc limit exceeded", type->ks_shortdesc);
867         }
868     }
869
870     /*
871      * Handle the degenerate size == 0 case.  Yes, this does happen.
872      * Return a special pointer.  This is to maintain compatibility with
873      * the original malloc implementation.  Certain devices, such as the
874      * adaptec driver, not only allocate 0 bytes, they check for NULL and
875      * also realloc() later on.  Joy.
876      */
877     if (size == 0) {
878         logmemory(malloc_end, ZERO_LENGTH_PTR, type, size, flags);
879         return(ZERO_LENGTH_PTR);
880     }
881
882     /*
883      * Handle hysteresis from prior frees here in malloc().  We cannot
884      * safely manipulate the kernel_map in free() due to free() possibly
885      * being called via an IPI message or from sensitive interrupt code.
886      *
887      * NOTE: ku_pagecnt must be cleared before we free the slab or we
888      *       might race another cpu allocating the kva and setting
889      *       ku_pagecnt.
890      */
891     while (slgd->NFreeZones > ZoneRelsThresh && (flags & M_RNOWAIT) == 0) {
892         crit_enter();
893         if (slgd->NFreeZones > ZoneRelsThresh) {        /* crit sect race */
894             int *kup;
895
896             z = TAILQ_LAST(&slgd->FreeZones, SLZoneList);
897             KKASSERT(z != NULL);
898             TAILQ_REMOVE(&slgd->FreeZones, z, z_Entry);
899             --slgd->NFreeZones;
900             kup = btokup(z);
901             *kup = 0;
902             kmem_slab_free(z, ZoneSize);        /* may block */
903         }
904         crit_exit();
905     }
906
907     /*
908      * XXX handle oversized frees that were queued from kfree().
909      */
910     while (TAILQ_FIRST(&slgd->FreeOvZones) && (flags & M_RNOWAIT) == 0) {
911         crit_enter();
912         if ((z = TAILQ_LAST(&slgd->FreeOvZones, SLZoneList)) != NULL) {
913             vm_size_t tsize;
914
915             KKASSERT(z->z_Magic == ZALLOC_OVSZ_MAGIC);
916             TAILQ_REMOVE(&slgd->FreeOvZones, z, z_Entry);
917             tsize = z->z_ChunkSize;
918             kmem_slab_free(z, tsize);   /* may block */
919         }
920         crit_exit();
921     }
922
923     /*
924      * Handle large allocations directly.  There should not be very many of
925      * these so performance is not a big issue.
926      *
927      * The backend allocator is pretty nasty on a SMP system.   Use the
928      * slab allocator for one and two page-sized chunks even though we lose
929      * some efficiency.  XXX maybe fix mmio and the elf loader instead.
930      */
931     if (size >= ZoneLimit || ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
932         int *kup;
933
934         size = round_page(size);
935         chunk = kmem_slab_alloc(size, PAGE_SIZE, flags);
936         if (chunk == NULL) {
937             logmemory(malloc_end, NULL, type, size, flags);
938             return(NULL);
939         }
940         flags &= ~M_ZERO;       /* result already zero'd if M_ZERO was set */
941         flags |= M_PASSIVE_ZERO;
942         kup = btokup(chunk);
943         *kup = size / PAGE_SIZE;
944         crit_enter();
945         goto done;
946     }
947
948     /*
949      * Attempt to allocate out of an existing zone.  First try the free list,
950      * then allocate out of unallocated space.  If we find a good zone move
951      * it to the head of the list so later allocations find it quickly
952      * (we might have thousands of zones in the list).
953      *
954      * Note: zoneindex() will panic of size is too large.
955      */
956     zi = zoneindex(&size, &align);
957     KKASSERT(zi < NZONES);
958     crit_enter();
959
960     if ((z = TAILQ_LAST(&slgd->ZoneAry[zi], SLZoneList)) != NULL) {
961         /*
962          * Locate a chunk - we have to have at least one.  If this is the
963          * last chunk go ahead and do the work to retrieve chunks freed
964          * from remote cpus, and if the zone is still empty move it off
965          * the ZoneAry.
966          */
967         if (--z->z_NFree <= 0) {
968             KKASSERT(z->z_NFree == 0);
969
970             /*
971              * WARNING! This code competes with other cpus.  It is ok
972              * for us to not drain RChunks here but we might as well, and
973              * it is ok if more accumulate after we're done.
974              *
975              * Set RSignal before pulling rchunks off, indicating that we
976              * will be moving ourselves off of the ZoneAry.  Remote ends will
977              * read RSignal before putting rchunks on thus interlocking
978              * their IPI signaling.
979              */
980             if (z->z_RChunks == NULL)
981                 atomic_swap_int(&z->z_RSignal, 1);
982
983             clean_zone_rchunks(z);
984
985             /*
986              * Remove from the zone list if no free chunks remain.
987              * Clear RSignal
988              */
989             if (z->z_NFree == 0) {
990                 TAILQ_REMOVE(&slgd->ZoneAry[zi], z, z_Entry);
991             } else {
992                 z->z_RSignal = 0;
993             }
994         }
995
996         /*
997          * Fast path, we have chunks available in z_LChunks.
998          */
999         chunk = z->z_LChunks;
1000         if (chunk) {
1001                 chunk_mark_allocated(z, chunk);
1002                 z->z_LChunks = chunk->c_Next;
1003                 if (z->z_LChunks == NULL)
1004                         z->z_LChunksp = &z->z_LChunks;
1005 #ifdef SLAB_DEBUG
1006                 slab_record_source(z, file, line);
1007 #endif
1008                 goto done;
1009         }
1010
1011         /*
1012          * No chunks are available in LChunks, the free chunk MUST be
1013          * in the never-before-used memory area, controlled by UIndex.
1014          *
1015          * The consequences are very serious if our zone got corrupted so
1016          * we use an explicit panic rather than a KASSERT.
1017          */
1018         if (z->z_UIndex + 1 != z->z_NMax)
1019             ++z->z_UIndex;
1020         else
1021             z->z_UIndex = 0;
1022
1023         if (z->z_UIndex == z->z_UEndIndex)
1024             panic("slaballoc: corrupted zone");
1025
1026         chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
1027         if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
1028             flags &= ~M_ZERO;
1029             flags |= M_PASSIVE_ZERO;
1030         }
1031         chunk_mark_allocated(z, chunk);
1032 #ifdef SLAB_DEBUG
1033         slab_record_source(z, file, line);
1034 #endif
1035         goto done;
1036     }
1037
1038     /*
1039      * If all zones are exhausted we need to allocate a new zone for this
1040      * index.  Use M_ZERO to take advantage of pre-zerod pages.  Also see
1041      * UAlloc use above in regards to M_ZERO.  Note that when we are reusing
1042      * a zone from the FreeZones list UAlloc'd data will not be zero'd, and
1043      * we do not pre-zero it because we do not want to mess up the L1 cache.
1044      *
1045      * At least one subsystem, the tty code (see CROUND) expects power-of-2
1046      * allocations to be power-of-2 aligned.  We maintain compatibility by
1047      * adjusting the base offset below.
1048      */
1049     {
1050         int off;
1051         int *kup;
1052
1053         if ((z = TAILQ_FIRST(&slgd->FreeZones)) != NULL) {
1054             TAILQ_REMOVE(&slgd->FreeZones, z, z_Entry);
1055             --slgd->NFreeZones;
1056             bzero(z, sizeof(SLZone));
1057             z->z_Flags |= SLZF_UNOTZEROD;
1058         } else {
1059             z = kmem_slab_alloc(ZoneSize, ZoneSize, flags|M_ZERO);
1060             if (z == NULL)
1061                 goto fail;
1062         }
1063
1064         /*
1065          * How big is the base structure?
1066          */
1067 #if defined(INVARIANTS)
1068         /*
1069          * Make room for z_Bitmap.  An exact calculation is somewhat more
1070          * complicated so don't make an exact calculation.
1071          */
1072         off = offsetof(SLZone, z_Bitmap[(ZoneSize / size + 31) / 32]);
1073         bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8);
1074 #else
1075         off = sizeof(SLZone);
1076 #endif
1077
1078         /*
1079          * Guarentee power-of-2 alignment for power-of-2-sized chunks.
1080          * Otherwise properly align the data according to the chunk size.
1081          */
1082         if (powerof2(size))
1083             align = size;
1084         off = roundup2(off, align);
1085
1086         z->z_Magic = ZALLOC_SLAB_MAGIC;
1087         z->z_ZoneIndex = zi;
1088         z->z_NMax = (ZoneSize - off) / size;
1089         z->z_NFree = z->z_NMax - 1;
1090         z->z_BasePtr = (char *)z + off;
1091         z->z_UIndex = z->z_UEndIndex = slgd->JunkIndex % z->z_NMax;
1092         z->z_ChunkSize = size;
1093         z->z_CpuGd = gd;
1094         z->z_Cpu = gd->gd_cpuid;
1095         z->z_LChunksp = &z->z_LChunks;
1096 #ifdef SLAB_DEBUG
1097         bcopy(z->z_Sources, z->z_AltSources, sizeof(z->z_Sources));
1098         bzero(z->z_Sources, sizeof(z->z_Sources));
1099 #endif
1100         chunk = (SLChunk *)(z->z_BasePtr + z->z_UIndex * size);
1101         TAILQ_INSERT_HEAD(&slgd->ZoneAry[zi], z, z_Entry);
1102         if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
1103             flags &= ~M_ZERO;   /* already zero'd */
1104             flags |= M_PASSIVE_ZERO;
1105         }
1106         kup = btokup(z);
1107         *kup = -(z->z_Cpu + 1); /* -1 to -(N+1) */
1108         chunk_mark_allocated(z, chunk);
1109 #ifdef SLAB_DEBUG
1110         slab_record_source(z, file, line);
1111 #endif
1112
1113         /*
1114          * Slide the base index for initial allocations out of the next
1115          * zone we create so we do not over-weight the lower part of the
1116          * cpu memory caches.
1117          */
1118         slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
1119                                 & (ZALLOC_MAX_ZONE_SIZE - 1);
1120     }
1121
1122 done:
1123     ++type->ks_use[gd->gd_cpuid].inuse;
1124     type->ks_use[gd->gd_cpuid].memuse += size;
1125     type->ks_use[gd->gd_cpuid].loosememuse += size;
1126     if (type->ks_use[gd->gd_cpuid].loosememuse >= ZoneSize) {
1127         /* not MP synchronized */
1128         type->ks_loosememuse += type->ks_use[gd->gd_cpuid].loosememuse;
1129         type->ks_use[gd->gd_cpuid].loosememuse = 0;
1130     }
1131     crit_exit();
1132
1133     if (flags & M_ZERO)
1134         bzero(chunk, size);
1135 #ifdef INVARIANTS
1136     else if ((flags & (M_ZERO|M_PASSIVE_ZERO)) == 0) {
1137         if (use_malloc_pattern) {
1138             for (i = 0; i < size; i += sizeof(int)) {
1139                 *(int *)((char *)chunk + i) = -1;
1140             }
1141         }
1142         chunk->c_Next = (void *)-1; /* avoid accidental double-free check */
1143     }
1144 #endif
1145     logmemory(malloc_end, chunk, type, size, flags);
1146     return(chunk);
1147 fail:
1148     crit_exit();
1149     logmemory(malloc_end, NULL, type, size, flags);
1150     return(NULL);
1151 }
1152
1153 /*
1154  * kernel realloc.  (SLAB ALLOCATOR) (MP SAFE)
1155  *
1156  * Generally speaking this routine is not called very often and we do
1157  * not attempt to optimize it beyond reusing the same pointer if the
1158  * new size fits within the chunking of the old pointer's zone.
1159  */
1160 #ifdef SLAB_DEBUG
1161 void *
1162 krealloc_debug(void *ptr, unsigned long size,
1163                struct malloc_type *type, int flags,
1164                const char *file, int line)
1165 #else
1166 void *
1167 krealloc(void *ptr, unsigned long size, struct malloc_type *type, int flags)
1168 #endif
1169 {
1170     unsigned long osize;
1171     unsigned long align;
1172     SLZone *z;
1173     void *nptr;
1174     int *kup;
1175
1176     KKASSERT((flags & M_ZERO) == 0);    /* not supported */
1177
1178     if (ptr == NULL || ptr == ZERO_LENGTH_PTR)
1179         return(_kmalloc_debug(size, type, flags, file, line));
1180     if (size == 0) {
1181         kfree(ptr, type);
1182         return(NULL);
1183     }
1184
1185     /*
1186      * Handle oversized allocations.  XXX we really should require that a
1187      * size be passed to free() instead of this nonsense.
1188      */
1189     kup = btokup(ptr);
1190     if (*kup > 0) {
1191         osize = *kup << PAGE_SHIFT;
1192         if (osize == round_page(size))
1193             return(ptr);
1194         if ((nptr = _kmalloc_debug(size, type, flags, file, line)) == NULL)
1195             return(NULL);
1196         bcopy(ptr, nptr, min(size, osize));
1197         kfree(ptr, type);
1198         return(nptr);
1199     }
1200
1201     /*
1202      * Get the original allocation's zone.  If the new request winds up
1203      * using the same chunk size we do not have to do anything.
1204      */
1205     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1206     kup = btokup(z);
1207     KKASSERT(*kup < 0);
1208     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1209
1210     /*
1211      * Allocate memory for the new request size.  Note that zoneindex has
1212      * already adjusted the request size to the appropriate chunk size, which
1213      * should optimize our bcopy().  Then copy and return the new pointer.
1214      *
1215      * Resizing a non-power-of-2 allocation to a power-of-2 size does not
1216      * necessary align the result.
1217      *
1218      * We can only zoneindex (to align size to the chunk size) if the new
1219      * size is not too large.
1220      */
1221     if (size < ZoneLimit) {
1222         zoneindex(&size, &align);
1223         if (z->z_ChunkSize == size)
1224             return(ptr);
1225     }
1226     if ((nptr = _kmalloc_debug(size, type, flags, file, line)) == NULL)
1227         return(NULL);
1228     bcopy(ptr, nptr, min(size, z->z_ChunkSize));
1229     kfree(ptr, type);
1230     return(nptr);
1231 }
1232
1233 /*
1234  * Return the kmalloc limit for this type, in bytes.
1235  */
1236 long
1237 kmalloc_limit(struct malloc_type *type)
1238 {
1239     KKASSERT(type->ks_limit != 0);
1240     return(type->ks_limit);
1241 }
1242
1243 /*
1244  * Allocate a copy of the specified string.
1245  *
1246  * (MP SAFE) (MAY BLOCK)
1247  */
1248 #ifdef SLAB_DEBUG
1249 char *
1250 kstrdup_debug(const char *str, struct malloc_type *type,
1251               const char *file, int line)
1252 #else
1253 char *
1254 kstrdup(const char *str, struct malloc_type *type)
1255 #endif
1256 {
1257     int zlen;   /* length inclusive of terminating NUL */
1258     char *nstr;
1259
1260     if (str == NULL)
1261         return(NULL);
1262     zlen = strlen(str) + 1;
1263     nstr = _kmalloc_debug(zlen, type, M_WAITOK, file, line);
1264     bcopy(str, nstr, zlen);
1265     return(nstr);
1266 }
1267
1268 #ifdef SLAB_DEBUG
1269 char *
1270 kstrndup_debug(const char *str, size_t maxlen, struct malloc_type *type,
1271               const char *file, int line)
1272 #else
1273 char *
1274 kstrndup(const char *str, size_t maxlen, struct malloc_type *type)
1275 #endif
1276 {
1277     int zlen;   /* length inclusive of terminating NUL */
1278     char *nstr;
1279
1280     if (str == NULL)
1281         return(NULL);
1282     zlen = strnlen(str, maxlen) + 1;
1283     nstr = _kmalloc_debug(zlen, type, M_WAITOK, file, line);
1284     bcopy(str, nstr, zlen);
1285     nstr[zlen - 1] = '\0';
1286     return(nstr);
1287 }
1288
1289 /*
1290  * Notify our cpu that a remote cpu has freed some chunks in a zone that
1291  * we own.  RCount will be bumped so the memory should be good, but validate
1292  * that it really is.
1293  */
1294 static void
1295 kfree_remote(void *ptr)
1296 {
1297     SLGlobalData *slgd;
1298     SLZone *z;
1299     int nfree;
1300     int *kup;
1301
1302     slgd = &mycpu->gd_slab;
1303     z = ptr;
1304     kup = btokup(z);
1305     KKASSERT(*kup == -((int)mycpuid + 1));
1306     KKASSERT(z->z_RCount > 0);
1307     atomic_subtract_int(&z->z_RCount, 1);
1308
1309     logmemory(free_rem_beg, z, NULL, 0L, 0);
1310     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1311     KKASSERT(z->z_Cpu  == mycpu->gd_cpuid);
1312     nfree = z->z_NFree;
1313
1314     /*
1315      * Indicate that we will no longer be off of the ZoneAry by
1316      * clearing RSignal.
1317      */
1318     if (z->z_RChunks)
1319         z->z_RSignal = 0;
1320
1321     /*
1322      * Atomically extract the bchunks list and then process it back
1323      * into the lchunks list.  We want to append our bchunks to the
1324      * lchunks list and not prepend since we likely do not have
1325      * cache mastership of the related data (not that it helps since
1326      * we are using c_Next).
1327      */
1328     clean_zone_rchunks(z);
1329     if (z->z_NFree && nfree == 0) {
1330         TAILQ_INSERT_HEAD(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1331     }
1332
1333     check_zone_free(slgd, z);
1334     logmemory(free_rem_end, z, NULL, 0L, 0);
1335 }
1336
1337 /*
1338  * free (SLAB ALLOCATOR)
1339  *
1340  * Free a memory block previously allocated by malloc.
1341  *
1342  * Note: We do not attempt to update ks_loosememuse as MP races could
1343  * prevent us from checking memory limits in malloc.   YYY we may
1344  * consider updating ks_cpu.loosememuse.
1345  *
1346  * MPSAFE
1347  */
1348 void
1349 _kfree(void *ptr, struct malloc_type *type)
1350 {
1351     SLZone *z;
1352     SLChunk *chunk;
1353     SLGlobalData *slgd;
1354     struct globaldata *gd;
1355     int *kup;
1356     unsigned long size;
1357     SLChunk *bchunk;
1358     int rsignal;
1359
1360     logmemory_quick(free_beg);
1361     gd = mycpu;
1362     slgd = &gd->gd_slab;
1363
1364     if (ptr == NULL)
1365         panic("trying to free NULL pointer");
1366
1367     /*
1368      * Handle special 0-byte allocations
1369      */
1370     if (ptr == ZERO_LENGTH_PTR) {
1371         logmemory(free_zero, ptr, type, -1UL, 0);
1372         logmemory_quick(free_end);
1373         return;
1374     }
1375
1376     /*
1377      * Panic on bad malloc type
1378      */
1379     if (type->ks_magic != M_MAGIC)
1380         panic("free: malloc type lacks magic");
1381
1382     /*
1383      * Handle oversized allocations.  XXX we really should require that a
1384      * size be passed to free() instead of this nonsense.
1385      *
1386      * This code is never called via an ipi.
1387      */
1388     kup = btokup(ptr);
1389     if (*kup > 0) {
1390         size = *kup << PAGE_SHIFT;
1391         *kup = 0;
1392 #ifdef INVARIANTS
1393         if (use_weird_array) {
1394                 KKASSERT(sizeof(weirdary) <= size);
1395                 bcopy(weirdary, ptr, sizeof(weirdary));
1396         }
1397 #endif
1398         /*
1399          * NOTE: For oversized allocations we do not record the
1400          *           originating cpu.  It gets freed on the cpu calling
1401          *           kfree().  The statistics are in aggregate.
1402          *
1403          * note: XXX we have still inherited the interrupts-can't-block
1404          * assumption.  An interrupt thread does not bump
1405          * gd_intr_nesting_level so check TDF_INTTHREAD.  This is
1406          * primarily until we can fix softupdate's assumptions about free().
1407          */
1408         crit_enter();
1409         --type->ks_use[gd->gd_cpuid].inuse;
1410         type->ks_use[gd->gd_cpuid].memuse -= size;
1411         if (mycpu->gd_intr_nesting_level ||
1412             (gd->gd_curthread->td_flags & TDF_INTTHREAD)) {
1413             logmemory(free_ovsz_delayed, ptr, type, size, 0);
1414             z = (SLZone *)ptr;
1415             z->z_Magic = ZALLOC_OVSZ_MAGIC;
1416             z->z_ChunkSize = size;
1417
1418             TAILQ_INSERT_HEAD(&slgd->FreeOvZones, z, z_Entry);
1419             crit_exit();
1420         } else {
1421             crit_exit();
1422             logmemory(free_ovsz, ptr, type, size, 0);
1423             kmem_slab_free(ptr, size);  /* may block */
1424         }
1425         logmemory_quick(free_end);
1426         return;
1427     }
1428
1429     /*
1430      * Zone case.  Figure out the zone based on the fact that it is
1431      * ZoneSize aligned.
1432      */
1433     z = (SLZone *)((uintptr_t)ptr & ZoneMask);
1434     kup = btokup(z);
1435     KKASSERT(*kup < 0);
1436     KKASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1437
1438     /*
1439      * If we do not own the zone then use atomic ops to free to the
1440      * remote cpu linked list and notify the target zone using a
1441      * passive message.
1442      *
1443      * The target zone cannot be deallocated while we own a chunk of it,
1444      * so the zone header's storage is stable until the very moment
1445      * we adjust z_RChunks.  After that we cannot safely dereference (z).
1446      *
1447      * (no critical section needed)
1448      */
1449     if (z->z_CpuGd != gd) {
1450         /*
1451          * Making these adjustments now allow us to avoid passing (type)
1452          * to the remote cpu.  Note that inuse/memuse is being
1453          * adjusted on OUR cpu, not the zone cpu, but it should all still
1454          * sum up properly and cancel out.
1455          */
1456         crit_enter();
1457         --type->ks_use[gd->gd_cpuid].inuse;
1458         type->ks_use[gd->gd_cpuid].memuse -= z->z_ChunkSize;
1459         crit_exit();
1460
1461         /*
1462          * WARNING! This code competes with other cpus.  Once we
1463          *          successfully link the chunk to RChunks the remote
1464          *          cpu can rip z's storage out from under us.
1465          *
1466          *          Bumping RCount prevents z's storage from getting
1467          *          ripped out.
1468          */
1469         rsignal = z->z_RSignal;
1470         cpu_lfence();
1471         if (rsignal)
1472                 atomic_add_int(&z->z_RCount, 1);
1473
1474         chunk = ptr;
1475         for (;;) {
1476             bchunk = z->z_RChunks;
1477             cpu_ccfence();
1478             chunk->c_Next = bchunk;
1479             cpu_sfence();
1480
1481             if (atomic_cmpset_ptr(&z->z_RChunks, bchunk, chunk))
1482                 break;
1483         }
1484
1485         /*
1486          * We have to signal the remote cpu if our actions will cause
1487          * the remote zone to be placed back on ZoneAry so it can
1488          * move the zone back on.
1489          *
1490          * We only need to deal with NULL->non-NULL RChunk transitions
1491          * and only if z_RSignal is set.  We interlock by reading rsignal
1492          * before adding our chunk to RChunks.  This should result in
1493          * virtually no IPI traffic.
1494          *
1495          * We can use a passive IPI to reduce overhead even further.
1496          */
1497         if (bchunk == NULL && rsignal) {
1498             logmemory(free_request, ptr, type,
1499                       (unsigned long)z->z_ChunkSize, 0);
1500             lwkt_send_ipiq_passive(z->z_CpuGd, kfree_remote, z);
1501             /* z can get ripped out from under us from this point on */
1502         } else if (rsignal) {
1503             atomic_subtract_int(&z->z_RCount, 1);
1504             /* z can get ripped out from under us from this point on */
1505         }
1506         logmemory_quick(free_end);
1507         return;
1508     }
1509
1510     /*
1511      * kfree locally
1512      */
1513     logmemory(free_chunk, ptr, type, (unsigned long)z->z_ChunkSize, 0);
1514
1515     crit_enter();
1516     chunk = ptr;
1517     chunk_mark_free(z, chunk);
1518
1519     /*
1520      * Put weird data into the memory to detect modifications after freeing,
1521      * illegal pointer use after freeing (we should fault on the odd address),
1522      * and so forth.  XXX needs more work, see the old malloc code.
1523      */
1524 #ifdef INVARIANTS
1525     if (use_weird_array) {
1526             if (z->z_ChunkSize < sizeof(weirdary))
1527                 bcopy(weirdary, chunk, z->z_ChunkSize);
1528             else
1529                 bcopy(weirdary, chunk, sizeof(weirdary));
1530     }
1531 #endif
1532
1533     /*
1534      * Add this free non-zero'd chunk to a linked list for reuse.  Add
1535      * to the front of the linked list so it is more likely to be
1536      * reallocated, since it is already in our L1 cache.
1537      */
1538 #ifdef INVARIANTS
1539     if ((vm_offset_t)chunk < KvaStart || (vm_offset_t)chunk >= KvaEnd)
1540         panic("BADFREE %p", chunk);
1541 #endif
1542     chunk->c_Next = z->z_LChunks;
1543     z->z_LChunks = chunk;
1544     if (chunk->c_Next == NULL)
1545         z->z_LChunksp = &chunk->c_Next;
1546
1547 #ifdef INVARIANTS
1548     if (chunk->c_Next && (vm_offset_t)chunk->c_Next < KvaStart)
1549         panic("BADFREE2");
1550 #endif
1551
1552     /*
1553      * Bump the number of free chunks.  If it becomes non-zero the zone
1554      * must be added back onto the appropriate list.  A fully allocated
1555      * zone that sees its first free is considered 'mature' and is placed
1556      * at the head, giving the system time to potentially free the remaining
1557      * entries even while other allocations are going on and making the zone
1558      * freeable.
1559      */
1560     if (z->z_NFree++ == 0)
1561             TAILQ_INSERT_HEAD(&slgd->ZoneAry[z->z_ZoneIndex], z, z_Entry);
1562
1563     --type->ks_use[gd->gd_cpuid].inuse;
1564     type->ks_use[gd->gd_cpuid].memuse -= z->z_ChunkSize;
1565
1566     check_zone_free(slgd, z);
1567     logmemory_quick(free_end);
1568     crit_exit();
1569 }
1570
1571 /*
1572  * Cleanup slabs which are hanging around due to RChunks or which are wholely
1573  * free and can be moved to the free list if not moved by other means.
1574  *
1575  * Called once every 10 seconds on all cpus.
1576  */
1577 void
1578 slab_cleanup(void)
1579 {
1580     SLGlobalData *slgd = &mycpu->gd_slab;
1581     SLZone *z;
1582     int i;
1583
1584     crit_enter();
1585     for (i = 0; i < NZONES; ++i) {
1586         if ((z = TAILQ_FIRST(&slgd->ZoneAry[i])) == NULL)
1587                 continue;
1588
1589         /*
1590          * Scan zones.
1591          */
1592         while (z) {
1593             /*
1594              * Shift all RChunks to the end of the LChunks list.  This is
1595              * an O(1) operation.
1596              *
1597              * Then free the zone if possible.
1598              */
1599             clean_zone_rchunks(z);
1600             z = check_zone_free(slgd, z);
1601         }
1602     }
1603     crit_exit();
1604 }
1605
1606 #if defined(INVARIANTS)
1607
1608 /*
1609  * Helper routines for sanity checks
1610  */
1611 static void
1612 chunk_mark_allocated(SLZone *z, void *chunk)
1613 {
1614     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1615     uint32_t *bitptr;
1616
1617     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1618     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1619             ("memory chunk %p bit index %d is illegal", chunk, bitdex));
1620     bitptr = &z->z_Bitmap[bitdex >> 5];
1621     bitdex &= 31;
1622     KASSERT((*bitptr & (1 << bitdex)) == 0,
1623             ("memory chunk %p is already allocated!", chunk));
1624     *bitptr |= 1 << bitdex;
1625 }
1626
1627 static void
1628 chunk_mark_free(SLZone *z, void *chunk)
1629 {
1630     int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1631     uint32_t *bitptr;
1632
1633     KKASSERT((((intptr_t)chunk ^ (intptr_t)z) & ZoneMask) == 0);
1634     KASSERT(bitdex >= 0 && bitdex < z->z_NMax,
1635             ("memory chunk %p bit index %d is illegal!", chunk, bitdex));
1636     bitptr = &z->z_Bitmap[bitdex >> 5];
1637     bitdex &= 31;
1638     KASSERT((*bitptr & (1 << bitdex)) != 0,
1639             ("memory chunk %p is already free!", chunk));
1640     *bitptr &= ~(1 << bitdex);
1641 }
1642
1643 #endif
1644
1645 /*
1646  * kmem_slab_alloc()
1647  *
1648  *      Directly allocate and wire kernel memory in PAGE_SIZE chunks with the
1649  *      specified alignment.  M_* flags are expected in the flags field.
1650  *
1651  *      Alignment must be a multiple of PAGE_SIZE.
1652  *
1653  *      NOTE! XXX For the moment we use vm_map_entry_reserve/release(),
1654  *      but when we move zalloc() over to use this function as its backend
1655  *      we will have to switch to kreserve/krelease and call reserve(0)
1656  *      after the new space is made available.
1657  *
1658  *      Interrupt code which has preempted other code is not allowed to
1659  *      use PQ_CACHE pages.  However, if an interrupt thread is run
1660  *      non-preemptively or blocks and then runs non-preemptively, then
1661  *      it is free to use PQ_CACHE pages.  <--- may not apply any longer XXX
1662  */
1663 void *
1664 kmem_slab_alloc(vm_size_t size, vm_offset_t align, int flags)
1665 {
1666     vm_size_t i;
1667     vm_offset_t addr;
1668     int count, vmflags, base_vmflags;
1669     vm_page_t mbase = NULL;
1670     vm_page_t m;
1671     thread_t td;
1672
1673     size = round_page(size);
1674     addr = vm_map_min(&kernel_map);
1675
1676     count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1677     crit_enter();
1678     vm_map_lock(&kernel_map);
1679     if (vm_map_findspace(&kernel_map, addr, size, align, 0, &addr)) {
1680         vm_map_unlock(&kernel_map);
1681         if ((flags & M_NULLOK) == 0)
1682             panic("kmem_slab_alloc(): kernel_map ran out of space!");
1683         vm_map_entry_release(count);
1684         crit_exit();
1685         return(NULL);
1686     }
1687
1688     /*
1689      * kernel_object maps 1:1 to kernel_map.
1690      */
1691     vm_object_hold(&kernel_object);
1692     vm_object_reference_locked(&kernel_object);
1693     vm_map_insert(&kernel_map, &count,
1694                   &kernel_object, NULL,
1695                   addr, NULL,
1696                   addr, addr + size,
1697                   VM_MAPTYPE_NORMAL,
1698                   VM_SUBSYS_KMALLOC,
1699                   VM_PROT_ALL, VM_PROT_ALL, 0);
1700     vm_object_drop(&kernel_object);
1701     vm_map_set_wired_quick(&kernel_map, addr, size, &count);
1702     vm_map_unlock(&kernel_map);
1703
1704     td = curthread;
1705
1706     base_vmflags = 0;
1707     if (flags & M_ZERO)
1708         base_vmflags |= VM_ALLOC_ZERO;
1709     if (flags & M_USE_RESERVE)
1710         base_vmflags |= VM_ALLOC_SYSTEM;
1711     if (flags & M_USE_INTERRUPT_RESERVE)
1712         base_vmflags |= VM_ALLOC_INTERRUPT;
1713     if ((flags & (M_RNOWAIT|M_WAITOK)) == 0) {
1714         panic("kmem_slab_alloc: bad flags %08x (%p)",
1715               flags, ((int **)&size)[-1]);
1716     }
1717
1718     /*
1719      * Allocate the pages.  Do not map them yet.  VM_ALLOC_NORMAL can only
1720      * be set if we are not preempting.
1721      *
1722      * VM_ALLOC_SYSTEM is automatically set if we are preempting and
1723      * M_WAITOK was specified as an alternative (i.e. M_USE_RESERVE is
1724      * implied in this case), though I'm not sure if we really need to
1725      * do that.
1726      */
1727     vmflags = base_vmflags;
1728     if (flags & M_WAITOK) {
1729         if (td->td_preempted)
1730             vmflags |= VM_ALLOC_SYSTEM;
1731         else
1732             vmflags |= VM_ALLOC_NORMAL;
1733     }
1734
1735     vm_object_hold(&kernel_object);
1736     for (i = 0; i < size; i += PAGE_SIZE) {
1737         m = vm_page_alloc(&kernel_object, OFF_TO_IDX(addr + i), vmflags);
1738         if (i == 0)
1739                 mbase = m;
1740
1741         /*
1742          * If the allocation failed we either return NULL or we retry.
1743          *
1744          * If M_WAITOK is specified we wait for more memory and retry.
1745          * If M_WAITOK is specified from a preemption we yield instead of
1746          * wait.  Livelock will not occur because the interrupt thread
1747          * will not be preempting anyone the second time around after the
1748          * yield.
1749          */
1750         if (m == NULL) {
1751             if (flags & M_WAITOK) {
1752                 if (td->td_preempted) {
1753                     lwkt_switch();
1754                 } else {
1755                     vm_wait(0);
1756                 }
1757                 i -= PAGE_SIZE; /* retry */
1758                 continue;
1759             }
1760             break;
1761         }
1762     }
1763
1764     /*
1765      * Check and deal with an allocation failure
1766      */
1767     if (i != size) {
1768         while (i != 0) {
1769             i -= PAGE_SIZE;
1770             m = vm_page_lookup(&kernel_object, OFF_TO_IDX(addr + i));
1771             /* page should already be busy */
1772             vm_page_free(m);
1773         }
1774         vm_map_lock(&kernel_map);
1775         vm_map_delete(&kernel_map, addr, addr + size, &count);
1776         vm_map_unlock(&kernel_map);
1777         vm_object_drop(&kernel_object);
1778
1779         vm_map_entry_release(count);
1780         crit_exit();
1781         return(NULL);
1782     }
1783
1784     /*
1785      * Success!
1786      *
1787      * NOTE: The VM pages are still busied.  mbase points to the first one
1788      *       but we have to iterate via vm_page_next()
1789      */
1790     vm_object_drop(&kernel_object);
1791     crit_exit();
1792
1793     /*
1794      * Enter the pages into the pmap and deal with M_ZERO.
1795      */
1796     m = mbase;
1797     i = 0;
1798
1799     while (i < size) {
1800         /*
1801          * page should already be busy
1802          */
1803         m->valid = VM_PAGE_BITS_ALL;
1804         vm_page_wire(m);
1805         pmap_enter(&kernel_pmap, addr + i, m,
1806                    VM_PROT_ALL | VM_PROT_NOSYNC, 1, NULL);
1807         if (flags & M_ZERO)
1808                 pagezero((char *)addr + i);
1809         KKASSERT(m->flags & (PG_WRITEABLE | PG_MAPPED));
1810         vm_page_flag_set(m, PG_REFERENCED);
1811         vm_page_wakeup(m);
1812
1813         i += PAGE_SIZE;
1814         vm_object_hold(&kernel_object);
1815         m = vm_page_next(m);
1816         vm_object_drop(&kernel_object);
1817     }
1818     smp_invltlb();
1819     vm_map_entry_release(count);
1820     return((void *)addr);
1821 }
1822
1823 /*
1824  * kmem_slab_free()
1825  */
1826 void
1827 kmem_slab_free(void *ptr, vm_size_t size)
1828 {
1829     crit_enter();
1830     vm_map_remove(&kernel_map, (vm_offset_t)ptr, (vm_offset_t)ptr + size);
1831     crit_exit();
1832 }