Merge from vendor branch BSDTAR:
[dragonfly.git] / sys / dev / netif / bge / if_bge.c
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.29 2003/12/01 21:06:59 ambrisko Exp $
34  * $DragonFly: src/sys/dev/netif/bge/if_bge.c,v 1.27 2005/02/14 17:45:08 joerg Exp $
35  *
36  */
37
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
40  * 
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Engineer, Wind River Systems
43  */
44
45 /*
46  * The Broadcom BCM5700 is based on technology originally developed by
47  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
48  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
49  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
50  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
51  * frames, highly configurable RX filtering, and 16 RX and TX queues
52  * (which, along with RX filter rules, can be used for QOS applications).
53  * Other features, such as TCP segmentation, may be available as part
54  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
55  * firmware images can be stored in hardware and need not be compiled
56  * into the driver.
57  *
58  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
59  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
60  * 
61  * The BCM5701 is a single-chip solution incorporating both the BCM5700
62  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
63  * does not support external SSRAM.
64  *
65  * Broadcom also produces a variation of the BCM5700 under the "Altima"
66  * brand name, which is functionally similar but lacks PCI-X support.
67  *
68  * Without external SSRAM, you can only have at most 4 TX rings,
69  * and the use of the mini RX ring is disabled. This seems to imply
70  * that these features are simply not available on the BCM5701. As a
71  * result, this driver does not implement any support for the mini RX
72  * ring.
73  */
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/sockio.h>
78 #include <sys/mbuf.h>
79 #include <sys/malloc.h>
80 #include <sys/kernel.h>
81 #include <sys/socket.h>
82 #include <sys/queue.h>
83
84 #include <net/if.h>
85 #include <net/ifq_var.h>
86 #include <net/if_arp.h>
87 #include <net/ethernet.h>
88 #include <net/if_dl.h>
89 #include <net/if_media.h>
90
91 #include <net/bpf.h>
92
93 #include <net/if_types.h>
94 #include <net/vlan/if_vlan_var.h>
95
96 #include <netinet/in_systm.h>
97 #include <netinet/in.h>
98 #include <netinet/ip.h>
99
100 #include <vm/vm.h>              /* for vtophys */
101 #include <vm/pmap.h>            /* for vtophys */
102 #include <machine/clock.h>      /* for DELAY */
103 #include <machine/bus_memio.h>
104 #include <machine/bus.h>
105 #include <machine/resource.h>
106 #include <sys/bus.h>
107 #include <sys/rman.h>
108
109 #include <dev/netif/mii_layer/mii.h>
110 #include <dev/netif/mii_layer/miivar.h>
111 #include <dev/netif/mii_layer/miidevs.h>
112 #include <dev/netif/mii_layer/brgphyreg.h>
113
114 #include <bus/pci/pcidevs.h>
115 #include <bus/pci/pcireg.h>
116 #include <bus/pci/pcivar.h>
117
118 #include "if_bgereg.h"
119
120 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP | CSUM_UDP)
121
122 /* "controller miibus0" required.  See GENERIC if you get errors here. */
123 #include "miibus_if.h"
124
125 /*
126  * Various supported device vendors/types and their names. Note: the
127  * spec seems to indicate that the hardware still has Alteon's vendor
128  * ID burned into it, though it will always be overriden by the vendor
129  * ID in the EEPROM. Just to be safe, we cover all possibilities.
130  */
131 #define BGE_DEVDESC_MAX         64      /* Maximum device description length */
132
133 static struct bge_type bge_devs[] = {
134         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
135                 "Broadcom BCM5700 Gigabit Ethernet" },
136         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
137                 "Broadcom BCM5701 Gigabit Ethernet" },
138         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
139                 "Broadcom BCM5700 Gigabit Ethernet" },
140         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
141                 "Broadcom BCM5701 Gigabit Ethernet" },
142         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
143                 "Broadcom BCM5702X Gigabit Ethernet" },
144         { PCI_VENDOR_BROADCOM, BCOM_DEVICEID_BCM5702X,
145                 "Broadcom BCM5702X Gigabit Ethernet" },
146         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
147                 "Broadcom BCM5703X Gigabit Ethernet" },
148         { PCI_VENDOR_BROADCOM, BCOM_DEVICEID_BCM5703X,
149                 "Broadcom BCM5703X Gigabit Ethernet" },
150         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
151                 "Broadcom BCM5704C Dual Gigabit Ethernet" },
152         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
153                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
154         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
155                 "Broadcom BCM5705 Gigabit Ethernet" },
156         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
157                 "Broadcom BCM5705M Gigabit Ethernet" },
158         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705_ALT,
159                 "Broadcom BCM5705M Gigabit Ethernet" },
160         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
161                 "Broadcom BCM5782 Gigabit Ethernet" },
162         { PCI_VENDOR_BROADCOM, BCOM_DEVICEID_BCM5788,
163                 "Broadcom BCM5788 Gigabit Ethernet" },
164         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
165                 "Broadcom BCM5901 Fast Ethernet" },
166         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
167                 "Broadcom BCM5901A2 Fast Ethernet" },
168         { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
169                 "SysKonnect Gigabit Ethernet" },
170         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
171                 "Altima AC1000 Gigabit Ethernet" },
172         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
173                 "Altima AC1002 Gigabit Ethernet" },
174         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
175                 "Altima AC9100 Gigabit Ethernet" },
176         { 0, 0, NULL }
177 };
178
179 static int bge_probe            (device_t);
180 static int bge_attach           (device_t);
181 static int bge_detach           (device_t);
182 static void bge_release_resources
183                                 (struct bge_softc *);
184 static void bge_txeof           (struct bge_softc *);
185 static void bge_rxeof           (struct bge_softc *);
186
187 static void bge_tick            (void *);
188 static void bge_stats_update    (struct bge_softc *);
189 static void bge_stats_update_regs
190                                 (struct bge_softc *);
191 static int bge_encap            (struct bge_softc *, struct mbuf *,
192                                         u_int32_t *);
193
194 static void bge_intr            (void *);
195 static void bge_start           (struct ifnet *);
196 static int bge_ioctl            (struct ifnet *, u_long, caddr_t,
197                                         struct ucred *);
198 static void bge_init            (void *);
199 static void bge_stop            (struct bge_softc *);
200 static void bge_watchdog                (struct ifnet *);
201 static void bge_shutdown                (device_t);
202 static int bge_ifmedia_upd      (struct ifnet *);
203 static void bge_ifmedia_sts     (struct ifnet *, struct ifmediareq *);
204
205 static u_int8_t bge_eeprom_getbyte      (struct bge_softc *,
206                                                 int, u_int8_t *);
207 static int bge_read_eeprom      (struct bge_softc *, caddr_t, int, int);
208
209 static u_int32_t bge_crc        (caddr_t);
210 static void bge_setmulti        (struct bge_softc *);
211
212 static void bge_handle_events   (struct bge_softc *);
213 static int bge_alloc_jumbo_mem  (struct bge_softc *);
214 static void bge_free_jumbo_mem  (struct bge_softc *);
215 static void *bge_jalloc         (struct bge_softc *);
216 static void bge_jfree           (caddr_t, u_int);
217 static void bge_jref            (caddr_t, u_int);
218 static int bge_newbuf_std       (struct bge_softc *, int, struct mbuf *);
219 static int bge_newbuf_jumbo     (struct bge_softc *, int, struct mbuf *);
220 static int bge_init_rx_ring_std (struct bge_softc *);
221 static void bge_free_rx_ring_std        (struct bge_softc *);
222 static int bge_init_rx_ring_jumbo       (struct bge_softc *);
223 static void bge_free_rx_ring_jumbo      (struct bge_softc *);
224 static void bge_free_tx_ring    (struct bge_softc *);
225 static int bge_init_tx_ring     (struct bge_softc *);
226
227 static int bge_chipinit         (struct bge_softc *);
228 static int bge_blockinit        (struct bge_softc *);
229
230 #ifdef notdef
231 static u_int8_t bge_vpd_readbyte (struct bge_softc *, int);
232 static void bge_vpd_read_res    (struct bge_softc *,
233                                         struct vpd_res *, int);
234 static void bge_vpd_read        (struct bge_softc *);
235 #endif
236
237 static u_int32_t bge_readmem_ind
238                                 (struct bge_softc *, int);
239 static void bge_writemem_ind    (struct bge_softc *, int, int);
240 #ifdef notdef
241 static u_int32_t bge_readreg_ind
242                                 (struct bge_softc *, int);
243 #endif
244 static void bge_writereg_ind    (struct bge_softc *, int, int);
245
246 static int bge_miibus_readreg   (device_t, int, int);
247 static int bge_miibus_writereg  (device_t, int, int, int);
248 static void bge_miibus_statchg  (device_t);
249
250 static void bge_reset           (struct bge_softc *);
251
252 static device_method_t bge_methods[] = {
253         /* Device interface */
254         DEVMETHOD(device_probe,         bge_probe),
255         DEVMETHOD(device_attach,        bge_attach),
256         DEVMETHOD(device_detach,        bge_detach),
257         DEVMETHOD(device_shutdown,      bge_shutdown),
258
259         /* bus interface */
260         DEVMETHOD(bus_print_child,      bus_generic_print_child),
261         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
262
263         /* MII interface */
264         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
265         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
266         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
267
268         { 0, 0 }
269 };
270
271 static driver_t bge_driver = {
272         "bge",
273         bge_methods,
274         sizeof(struct bge_softc)
275 };
276
277 static devclass_t bge_devclass;
278
279 DECLARE_DUMMY_MODULE(if_bge);
280 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, 0, 0);
281 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
282
283 static u_int32_t
284 bge_readmem_ind(sc, off)
285         struct bge_softc *sc;
286         int off;
287 {
288         device_t dev;
289
290         dev = sc->bge_dev;
291
292         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
293         return(pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4));
294 }
295
296 static void
297 bge_writemem_ind(sc, off, val)
298         struct bge_softc *sc;
299         int off, val;
300 {
301         device_t dev;
302
303         dev = sc->bge_dev;
304
305         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
306         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
307
308         return;
309 }
310
311 #ifdef notdef
312 static u_int32_t
313 bge_readreg_ind(sc, off)
314         struct bge_softc *sc;
315         int off;
316 {
317         device_t dev;
318
319         dev = sc->bge_dev;
320
321         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
322         return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
323 }
324 #endif
325
326 static void
327 bge_writereg_ind(sc, off, val)
328         struct bge_softc *sc;
329         int off, val;
330 {
331         device_t dev;
332
333         dev = sc->bge_dev;
334
335         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
336         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
337
338         return;
339 }
340
341 #ifdef notdef
342 static u_int8_t
343 bge_vpd_readbyte(sc, addr)
344         struct bge_softc *sc;
345         int addr;
346 {
347         int i;
348         device_t dev;
349         u_int32_t val;
350
351         dev = sc->bge_dev;
352         pci_write_config(dev, BGE_PCI_VPD_ADDR, addr, 2);
353         for (i = 0; i < BGE_TIMEOUT * 10; i++) {
354                 DELAY(10);
355                 if (pci_read_config(dev, BGE_PCI_VPD_ADDR, 2) & BGE_VPD_FLAG)
356                         break;
357         }
358
359         if (i == BGE_TIMEOUT) {
360                 printf("bge%d: VPD read timed out\n", sc->bge_unit);
361                 return(0);
362         }
363
364         val = pci_read_config(dev, BGE_PCI_VPD_DATA, 4);
365
366         return((val >> ((addr % 4) * 8)) & 0xFF);
367 }
368
369 static void
370 bge_vpd_read_res(sc, res, addr)
371         struct bge_softc *sc;
372         struct vpd_res *res;
373         int addr;
374 {
375         int i;
376         u_int8_t *ptr;
377
378         ptr = (u_int8_t *)res;
379         for (i = 0; i < sizeof(struct vpd_res); i++)
380                 ptr[i] = bge_vpd_readbyte(sc, i + addr);
381
382         return;
383 }
384
385 static void
386 bge_vpd_read(sc)
387         struct bge_softc *sc;
388 {
389         int pos = 0, i;
390         struct vpd_res res;
391
392         if (sc->bge_vpd_prodname != NULL)
393                 free(sc->bge_vpd_prodname, M_DEVBUF);
394         if (sc->bge_vpd_readonly != NULL)
395                 free(sc->bge_vpd_readonly, M_DEVBUF);
396         sc->bge_vpd_prodname = NULL;
397         sc->bge_vpd_readonly = NULL;
398
399         bge_vpd_read_res(sc, &res, pos);
400
401         if (res.vr_id != VPD_RES_ID) {
402                 printf("bge%d: bad VPD resource id: expected %x got %x\n",
403                         sc->bge_unit, VPD_RES_ID, res.vr_id);
404                 return;
405         }
406
407         pos += sizeof(res);
408         sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_INTWAIT);
409         for (i = 0; i < res.vr_len; i++)
410                 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
411         sc->bge_vpd_prodname[i] = '\0';
412         pos += i;
413
414         bge_vpd_read_res(sc, &res, pos);
415
416         if (res.vr_id != VPD_RES_READ) {
417                 printf("bge%d: bad VPD resource id: expected %x got %x\n",
418                     sc->bge_unit, VPD_RES_READ, res.vr_id);
419                 return;
420         }
421
422         pos += sizeof(res);
423         sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_INTWAIT);
424         for (i = 0; i < res.vr_len + 1; i++)
425                 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
426
427         return;
428 }
429 #endif
430
431 /*
432  * Read a byte of data stored in the EEPROM at address 'addr.' The
433  * BCM570x supports both the traditional bitbang interface and an
434  * auto access interface for reading the EEPROM. We use the auto
435  * access method.
436  */
437 static u_int8_t
438 bge_eeprom_getbyte(sc, addr, dest)
439         struct bge_softc *sc;
440         int addr;
441         u_int8_t *dest;
442 {
443         int i;
444         u_int32_t byte = 0;
445
446         /*
447          * Enable use of auto EEPROM access so we can avoid
448          * having to use the bitbang method.
449          */
450         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
451
452         /* Reset the EEPROM, load the clock period. */
453         CSR_WRITE_4(sc, BGE_EE_ADDR,
454             BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
455         DELAY(20);
456
457         /* Issue the read EEPROM command. */
458         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
459
460         /* Wait for completion */
461         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
462                 DELAY(10);
463                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
464                         break;
465         }
466
467         if (i == BGE_TIMEOUT) {
468                 printf("bge%d: eeprom read timed out\n", sc->bge_unit);
469                 return(0);
470         }
471
472         /* Get result. */
473         byte = CSR_READ_4(sc, BGE_EE_DATA);
474
475         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
476
477         return(0);
478 }
479
480 /*
481  * Read a sequence of bytes from the EEPROM.
482  */
483 static int
484 bge_read_eeprom(sc, dest, off, cnt)
485         struct bge_softc *sc;
486         caddr_t dest;
487         int off;
488         int cnt;
489 {
490         int err = 0, i;
491         u_int8_t byte = 0;
492
493         for (i = 0; i < cnt; i++) {
494                 err = bge_eeprom_getbyte(sc, off + i, &byte);
495                 if (err)
496                         break;
497                 *(dest + i) = byte;
498         }
499
500         return(err ? 1 : 0);
501 }
502
503 static int
504 bge_miibus_readreg(dev, phy, reg)
505         device_t dev;
506         int phy, reg;
507 {
508         struct bge_softc *sc;
509         struct ifnet *ifp;
510         u_int32_t val, autopoll;
511         int i;
512
513         sc = device_get_softc(dev);
514         ifp = &sc->arpcom.ac_if;
515
516         /*
517          * Broadcom's own driver always assumes the internal
518          * PHY is at GMII address 1. On some chips, the PHY responds
519          * to accesses at all addresses, which could cause us to
520          * bogusly attach the PHY 32 times at probe type. Always
521          * restricting the lookup to address 1 is simpler than
522          * trying to figure out which chips revisions should be
523          * special-cased.
524          */
525         if (phy != 1)
526                 return(0);
527
528         /* Reading with autopolling on may trigger PCI errors */
529         autopoll = CSR_READ_4(sc, BGE_MI_MODE);
530         if (autopoll & BGE_MIMODE_AUTOPOLL) {
531                 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
532                 DELAY(40);
533         }
534
535         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
536             BGE_MIPHY(phy)|BGE_MIREG(reg));
537
538         for (i = 0; i < BGE_TIMEOUT; i++) {
539                 val = CSR_READ_4(sc, BGE_MI_COMM);
540                 if (!(val & BGE_MICOMM_BUSY))
541                         break;
542         }
543
544         if (i == BGE_TIMEOUT) {
545                 printf("bge%d: PHY read timed out\n", sc->bge_unit);
546                 val = 0;
547                 goto done;
548         }
549
550         val = CSR_READ_4(sc, BGE_MI_COMM);
551
552 done:
553         if (autopoll & BGE_MIMODE_AUTOPOLL) {
554                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
555                 DELAY(40);
556         }
557
558         if (val & BGE_MICOMM_READFAIL)
559                 return(0);
560
561         return(val & 0xFFFF);
562 }
563
564 static int
565 bge_miibus_writereg(dev, phy, reg, val)
566         device_t dev;
567         int phy, reg, val;
568 {
569         struct bge_softc *sc;
570         u_int32_t autopoll;
571         int i;
572
573         sc = device_get_softc(dev);
574
575         /* Reading with autopolling on may trigger PCI errors */
576         autopoll = CSR_READ_4(sc, BGE_MI_MODE);
577         if (autopoll & BGE_MIMODE_AUTOPOLL) {
578                 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
579                 DELAY(40);
580         }
581
582         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
583             BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
584
585         for (i = 0; i < BGE_TIMEOUT; i++) {
586                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
587                         break;
588         }
589
590         if (autopoll & BGE_MIMODE_AUTOPOLL) {
591                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
592                 DELAY(40);
593         }
594
595         if (i == BGE_TIMEOUT) {
596                 printf("bge%d: PHY read timed out\n", sc->bge_unit);
597                 return(0);
598         }
599
600         return(0);
601 }
602
603 static void
604 bge_miibus_statchg(dev)
605         device_t dev;
606 {
607         struct bge_softc *sc;
608         struct mii_data *mii;
609
610         sc = device_get_softc(dev);
611         mii = device_get_softc(sc->bge_miibus);
612
613         BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
614         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
615                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
616         } else {
617                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
618         }
619
620         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
621                 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
622         } else {
623                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
624         }
625
626         return;
627 }
628
629 /*
630  * Handle events that have triggered interrupts.
631  */
632 static void
633 bge_handle_events(sc)
634         struct bge_softc                *sc;
635 {
636
637         return;
638 }
639
640 /*
641  * Memory management for jumbo frames.
642  */
643
644 static int
645 bge_alloc_jumbo_mem(sc)
646         struct bge_softc                *sc;
647 {
648         caddr_t                 ptr;
649         int             i;
650         struct bge_jpool_entry   *entry;
651
652         /* Grab a big chunk o' storage. */
653         sc->bge_cdata.bge_jumbo_buf = contigmalloc(BGE_JMEM, M_DEVBUF,
654                 M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
655
656         if (sc->bge_cdata.bge_jumbo_buf == NULL) {
657                 printf("bge%d: no memory for jumbo buffers!\n", sc->bge_unit);
658                 return(ENOBUFS);
659         }
660
661         SLIST_INIT(&sc->bge_jfree_listhead);
662         SLIST_INIT(&sc->bge_jinuse_listhead);
663
664         /*
665          * Now divide it up into 9K pieces and save the addresses
666          * in an array. Note that we play an evil trick here by using
667          * the first few bytes in the buffer to hold the the address
668          * of the softc structure for this interface. This is because
669          * bge_jfree() needs it, but it is called by the mbuf management
670          * code which will not pass it to us explicitly.
671          */
672         ptr = sc->bge_cdata.bge_jumbo_buf;
673         for (i = 0; i < BGE_JSLOTS; i++) {
674                 u_int64_t               **aptr;
675                 aptr = (u_int64_t **)ptr;
676                 aptr[0] = (u_int64_t *)sc;
677                 ptr += sizeof(u_int64_t);
678                 sc->bge_cdata.bge_jslots[i].bge_buf = ptr;
679                 sc->bge_cdata.bge_jslots[i].bge_inuse = 0;
680                 ptr += (BGE_JLEN - sizeof(u_int64_t));
681                 entry = malloc(sizeof(struct bge_jpool_entry), 
682                                M_DEVBUF, M_INTWAIT);
683                 entry->slot = i;
684                 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
685                     entry, jpool_entries);
686         }
687
688         return(0);
689 }
690
691 static void
692 bge_free_jumbo_mem(sc)
693         struct bge_softc *sc;
694 {
695         int i;
696         struct bge_jpool_entry *entry;
697  
698         for (i = 0; i < BGE_JSLOTS; i++) {
699                 entry = SLIST_FIRST(&sc->bge_jfree_listhead);
700                 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
701                 free(entry, M_DEVBUF);
702         }
703
704         contigfree(sc->bge_cdata.bge_jumbo_buf, BGE_JMEM, M_DEVBUF);
705
706         return;
707 }
708
709 /*
710  * Allocate a jumbo buffer.
711  */
712 static void *
713 bge_jalloc(sc)
714         struct bge_softc                *sc;
715 {
716         struct bge_jpool_entry   *entry;
717         
718         entry = SLIST_FIRST(&sc->bge_jfree_listhead);
719         
720         if (entry == NULL) {
721                 printf("bge%d: no free jumbo buffers\n", sc->bge_unit);
722                 return(NULL);
723         }
724
725         SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
726         SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
727         sc->bge_cdata.bge_jslots[entry->slot].bge_inuse = 1;
728         return(sc->bge_cdata.bge_jslots[entry->slot].bge_buf);
729 }
730
731 /*
732  * Adjust usage count on a jumbo buffer.
733  */
734 static void
735 bge_jref(buf, size)
736         caddr_t                 buf;
737         u_int                   size;
738 {
739         struct bge_softc                *sc;
740         u_int64_t               **aptr;
741         int             i;
742
743         /* Extract the softc struct pointer. */
744         aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
745         sc = (struct bge_softc *)(aptr[0]);
746
747         if (sc == NULL)
748                 panic("bge_jref: can't find softc pointer!");
749
750         if (size != BGE_JUMBO_FRAMELEN)
751                 panic("bge_jref: adjusting refcount of buf of wrong size!");
752
753         /* calculate the slot this buffer belongs to */
754
755         i = ((vm_offset_t)aptr 
756              - (vm_offset_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
757
758         if ((i < 0) || (i >= BGE_JSLOTS))
759                 panic("bge_jref: asked to reference buffer "
760                     "that we don't manage!");
761         else if (sc->bge_cdata.bge_jslots[i].bge_inuse == 0)
762                 panic("bge_jref: buffer already free!");
763         else
764                 sc->bge_cdata.bge_jslots[i].bge_inuse++;
765
766         return;
767 }
768
769 /*
770  * Release a jumbo buffer.
771  */
772 static void
773 bge_jfree(buf, size)
774         caddr_t                 buf;
775         u_int                   size;
776 {
777         struct bge_softc                *sc;
778         u_int64_t               **aptr;
779         int                     i;
780         struct bge_jpool_entry   *entry;
781
782         /* Extract the softc struct pointer. */
783         aptr = (u_int64_t **)(buf - sizeof(u_int64_t));
784         sc = (struct bge_softc *)(aptr[0]);
785
786         if (sc == NULL)
787                 panic("bge_jfree: can't find softc pointer!");
788
789         if (size != BGE_JUMBO_FRAMELEN)
790                 panic("bge_jfree: freeing buffer of wrong size!");
791
792         /* calculate the slot this buffer belongs to */
793
794         i = ((vm_offset_t)aptr 
795              - (vm_offset_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
796
797         if ((i < 0) || (i >= BGE_JSLOTS))
798                 panic("bge_jfree: asked to free buffer that we don't manage!");
799         else if (sc->bge_cdata.bge_jslots[i].bge_inuse == 0)
800                 panic("bge_jfree: buffer already free!");
801         else {
802                 sc->bge_cdata.bge_jslots[i].bge_inuse--;
803                 if(sc->bge_cdata.bge_jslots[i].bge_inuse == 0) {
804                         entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
805                         if (entry == NULL)
806                                 panic("bge_jfree: buffer not in use!");
807                         entry->slot = i;
808                         SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, 
809                                           jpool_entries);
810                         SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, 
811                                           entry, jpool_entries);
812                 }
813         }
814
815         return;
816 }
817
818
819 /*
820  * Intialize a standard receive ring descriptor.
821  */
822 static int
823 bge_newbuf_std(sc, i, m)
824         struct bge_softc        *sc;
825         int                     i;
826         struct mbuf             *m;
827 {
828         struct mbuf             *m_new = NULL;
829         struct bge_rx_bd        *r;
830
831         if (m == NULL) {
832                 MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
833                 if (m_new == NULL) {
834                         return(ENOBUFS);
835                 }
836
837                 MCLGET(m_new, MB_DONTWAIT);
838                 if (!(m_new->m_flags & M_EXT)) {
839                         m_freem(m_new);
840                         return(ENOBUFS);
841                 }
842                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
843         } else {
844                 m_new = m;
845                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
846                 m_new->m_data = m_new->m_ext.ext_buf;
847         }
848
849         if (!sc->bge_rx_alignment_bug)
850                 m_adj(m_new, ETHER_ALIGN);
851         sc->bge_cdata.bge_rx_std_chain[i] = m_new;
852         r = &sc->bge_rdata->bge_rx_std_ring[i];
853         BGE_HOSTADDR(r->bge_addr, vtophys(mtod(m_new, caddr_t)));
854         r->bge_flags = BGE_RXBDFLAG_END;
855         r->bge_len = m_new->m_len;
856         r->bge_idx = i;
857
858         return(0);
859 }
860
861 /*
862  * Initialize a jumbo receive ring descriptor. This allocates
863  * a jumbo buffer from the pool managed internally by the driver.
864  */
865 static int
866 bge_newbuf_jumbo(sc, i, m)
867         struct bge_softc *sc;
868         int i;
869         struct mbuf *m;
870 {
871         struct mbuf *m_new = NULL;
872         struct bge_rx_bd *r;
873
874         if (m == NULL) {
875                 caddr_t                 *buf = NULL;
876
877                 /* Allocate the mbuf. */
878                 MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
879                 if (m_new == NULL) {
880                         return(ENOBUFS);
881                 }
882
883                 /* Allocate the jumbo buffer */
884                 buf = bge_jalloc(sc);
885                 if (buf == NULL) {
886                         m_freem(m_new);
887                         printf("bge%d: jumbo allocation failed "
888                             "-- packet dropped!\n", sc->bge_unit);
889                         return(ENOBUFS);
890                 }
891
892                 /* Attach the buffer to the mbuf. */
893                 m_new->m_data = m_new->m_ext.ext_buf = (void *)buf;
894                 m_new->m_flags |= M_EXT | M_EXT_OLD;
895                 m_new->m_len = m_new->m_pkthdr.len =
896                     m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
897                 m_new->m_ext.ext_nfree.old = bge_jfree;
898                 m_new->m_ext.ext_nref.old = bge_jref;
899         } else {
900                 m_new = m;
901                 m_new->m_data = m_new->m_ext.ext_buf;
902                 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
903         }
904
905         if (!sc->bge_rx_alignment_bug)
906                 m_adj(m_new, ETHER_ALIGN);
907         /* Set up the descriptor. */
908         r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
909         sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
910         BGE_HOSTADDR(r->bge_addr, vtophys(mtod(m_new, caddr_t)));
911         r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
912         r->bge_len = m_new->m_len;
913         r->bge_idx = i;
914
915         return(0);
916 }
917
918 /*
919  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
920  * that's 1MB or memory, which is a lot. For now, we fill only the first
921  * 256 ring entries and hope that our CPU is fast enough to keep up with
922  * the NIC.
923  */
924 static int
925 bge_init_rx_ring_std(sc)
926         struct bge_softc *sc;
927 {
928         int i;
929
930         for (i = 0; i < BGE_SSLOTS; i++) {
931                 if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
932                         return(ENOBUFS);
933         };
934
935         sc->bge_std = i - 1;
936         CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
937
938         return(0);
939 }
940
941 static void
942 bge_free_rx_ring_std(sc)
943         struct bge_softc *sc;
944 {
945         int i;
946
947         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
948                 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
949                         m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
950                         sc->bge_cdata.bge_rx_std_chain[i] = NULL;
951                 }
952                 bzero((char *)&sc->bge_rdata->bge_rx_std_ring[i],
953                     sizeof(struct bge_rx_bd));
954         }
955
956         return;
957 }
958
959 static int
960 bge_init_rx_ring_jumbo(sc)
961         struct bge_softc *sc;
962 {
963         int i;
964         struct bge_rcb *rcb;
965
966         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
967                 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
968                         return(ENOBUFS);
969         };
970
971         sc->bge_jumbo = i - 1;
972
973         rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
974         rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
975         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
976
977         CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
978
979         return(0);
980 }
981
982 static void
983 bge_free_rx_ring_jumbo(sc)
984         struct bge_softc *sc;
985 {
986         int i;
987
988         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
989                 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
990                         m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
991                         sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
992                 }
993                 bzero((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i],
994                     sizeof(struct bge_rx_bd));
995         }
996
997         return;
998 }
999
1000 static void
1001 bge_free_tx_ring(sc)
1002         struct bge_softc *sc;
1003 {
1004         int i;
1005
1006         if (sc->bge_rdata->bge_tx_ring == NULL)
1007                 return;
1008
1009         for (i = 0; i < BGE_TX_RING_CNT; i++) {
1010                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1011                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
1012                         sc->bge_cdata.bge_tx_chain[i] = NULL;
1013                 }
1014                 bzero((char *)&sc->bge_rdata->bge_tx_ring[i],
1015                     sizeof(struct bge_tx_bd));
1016         }
1017
1018         return;
1019 }
1020
1021 static int
1022 bge_init_tx_ring(sc)
1023         struct bge_softc *sc;
1024 {
1025         sc->bge_txcnt = 0;
1026         sc->bge_tx_saved_considx = 0;
1027
1028         CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
1029         /* 5700 b2 errata */
1030         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1031                 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
1032
1033         CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1034         /* 5700 b2 errata */
1035         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1036                 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1037
1038         return(0);
1039 }
1040
1041 #define BGE_POLY        0xEDB88320
1042
1043 static u_int32_t
1044 bge_crc(addr)
1045         caddr_t addr;
1046 {
1047         u_int32_t idx, bit, data, crc;
1048
1049         /* Compute CRC for the address value. */
1050         crc = 0xFFFFFFFF; /* initial value */
1051
1052         for (idx = 0; idx < 6; idx++) {
1053                 for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
1054                         crc = (crc >> 1) ^ (((crc ^ data) & 1) ? BGE_POLY : 0);
1055         }
1056
1057         return(crc & 0x7F);
1058 }
1059
1060 static void
1061 bge_setmulti(sc)
1062         struct bge_softc *sc;
1063 {
1064         struct ifnet *ifp;
1065         struct ifmultiaddr *ifma;
1066         u_int32_t hashes[4] = { 0, 0, 0, 0 };
1067         int h, i;
1068
1069         ifp = &sc->arpcom.ac_if;
1070
1071         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1072                 for (i = 0; i < 4; i++)
1073                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1074                 return;
1075         }
1076
1077         /* First, zot all the existing filters. */
1078         for (i = 0; i < 4; i++)
1079                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1080
1081         /* Now program new ones. */
1082         for (ifma = ifp->if_multiaddrs.lh_first;
1083             ifma != NULL; ifma = ifma->ifma_link.le_next) {
1084                 if (ifma->ifma_addr->sa_family != AF_LINK)
1085                         continue;
1086                 h = bge_crc(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
1087                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1088         }
1089
1090         for (i = 0; i < 4; i++)
1091                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1092
1093         return;
1094 }
1095
1096 /*
1097  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1098  * self-test results.
1099  */
1100 static int
1101 bge_chipinit(sc)
1102         struct bge_softc *sc;
1103 {
1104         int                     i;
1105         u_int32_t               dma_rw_ctl;
1106
1107         /* Set endianness before we access any non-PCI registers. */
1108 #if BYTE_ORDER == BIG_ENDIAN
1109         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
1110             BGE_BIGENDIAN_INIT, 4);
1111 #else
1112         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
1113             BGE_LITTLEENDIAN_INIT, 4);
1114 #endif
1115
1116         /*
1117          * Check the 'ROM failed' bit on the RX CPU to see if
1118          * self-tests passed.
1119          */
1120         if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1121                 printf("bge%d: RX CPU self-diagnostics failed!\n",
1122                     sc->bge_unit);
1123                 return(ENODEV);
1124         }
1125
1126         /* Clear the MAC control register */
1127         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1128
1129         /*
1130          * Clear the MAC statistics block in the NIC's
1131          * internal memory.
1132          */
1133         for (i = BGE_STATS_BLOCK;
1134             i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1135                 BGE_MEMWIN_WRITE(sc, i, 0);
1136
1137         for (i = BGE_STATUS_BLOCK;
1138             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1139                 BGE_MEMWIN_WRITE(sc, i, 0);
1140
1141         /* Set up the PCI DMA control register. */
1142         if (pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
1143             BGE_PCISTATE_PCI_BUSMODE) {
1144                 /* Conventional PCI bus */
1145                 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1146                     (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1147                     (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1148                     (0x0F);
1149         } else {
1150                 /* PCI-X bus */
1151                 /*
1152                  * The 5704 uses a different encoding of read/write
1153                  * watermarks.
1154                  */
1155                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1156                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1157                             (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1158                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1159                 else
1160                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1161                             (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1162                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1163                             (0x0F);
1164
1165                 /*
1166                  * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1167                  * for hardware bugs.
1168                  */
1169                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1170                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1171                         u_int32_t tmp;
1172
1173                         tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1174                         if (tmp == 0x6 || tmp == 0x7)
1175                                 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1176                 }
1177         }
1178
1179         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1180             sc->bge_asicrev == BGE_ASICREV_BCM5704 ||
1181             sc->bge_asicrev == BGE_ASICREV_BCM5705)
1182                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1183         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1184
1185         /*
1186          * Set up general mode register.
1187          */
1188         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_WORDSWAP_NONFRAME|
1189             BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1190             BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1191             BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1192
1193         /*
1194          * Disable memory write invalidate.  Apparently it is not supported
1195          * properly by these devices.
1196          */
1197         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1198
1199 #ifdef __brokenalpha__
1200         /*
1201          * Must insure that we do not cross an 8K (bytes) boundary
1202          * for DMA reads.  Our highest limit is 1K bytes.  This is a 
1203          * restriction on some ALPHA platforms with early revision 
1204          * 21174 PCI chipsets, such as the AlphaPC 164lx 
1205          */
1206         PCI_SETBIT(sc->bge_dev, BGE_PCI_DMA_RW_CTL,
1207             BGE_PCI_READ_BNDRY_1024BYTES, 4);
1208 #endif
1209
1210         /* Set the timer prescaler (always 66Mhz) */
1211         CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1212
1213         return(0);
1214 }
1215
1216 static int
1217 bge_blockinit(sc)
1218         struct bge_softc *sc;
1219 {
1220         struct bge_rcb *rcb;
1221         volatile struct bge_rcb *vrcb;
1222         int i;
1223
1224         /*
1225          * Initialize the memory window pointer register so that
1226          * we can access the first 32K of internal NIC RAM. This will
1227          * allow us to set up the TX send ring RCBs and the RX return
1228          * ring RCBs, plus other things which live in NIC memory.
1229          */
1230         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1231
1232         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1233
1234         if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1235                 /* Configure mbuf memory pool */
1236                 if (sc->bge_extram) {
1237                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1238                             BGE_EXT_SSRAM);
1239                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1240                                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1241                         else
1242                                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1243                 } else {
1244                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1245                             BGE_BUFFPOOL_1);
1246                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1247                                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1248                         else
1249                                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1250                 }
1251
1252                 /* Configure DMA resource pool */
1253                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1254                     BGE_DMA_DESCRIPTORS);
1255                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1256         }
1257
1258         /* Configure mbuf pool watermarks */
1259         if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
1260                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1261                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1262         } else {
1263                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1264                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1265         }
1266         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1267
1268         /* Configure DMA resource watermarks */
1269         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1270         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1271
1272         /* Enable buffer manager */
1273         if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1274                 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1275                     BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1276
1277                 /* Poll for buffer manager start indication */
1278                 for (i = 0; i < BGE_TIMEOUT; i++) {
1279                         if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1280                                 break;
1281                         DELAY(10);
1282                 }
1283
1284                 if (i == BGE_TIMEOUT) {
1285                         printf("bge%d: buffer manager failed to start\n",
1286                             sc->bge_unit);
1287                         return(ENXIO);
1288                 }
1289         }
1290
1291         /* Enable flow-through queues */
1292         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1293         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1294
1295         /* Wait until queue initialization is complete */
1296         for (i = 0; i < BGE_TIMEOUT; i++) {
1297                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1298                         break;
1299                 DELAY(10);
1300         }
1301
1302         if (i == BGE_TIMEOUT) {
1303                 printf("bge%d: flow-through queue init failed\n",
1304                     sc->bge_unit);
1305                 return(ENXIO);
1306         }
1307
1308         /* Initialize the standard RX ring control block */
1309         rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1310         BGE_HOSTADDR(rcb->bge_hostaddr,
1311             vtophys(&sc->bge_rdata->bge_rx_std_ring));
1312         if (sc->bge_asicrev == BGE_ASICREV_BCM5705)
1313                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1314         else
1315                 rcb->bge_maxlen_flags =
1316                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1317         if (sc->bge_extram)
1318                 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1319         else
1320                 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1321         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1322         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1323         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1324         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1325
1326         /*
1327          * Initialize the jumbo RX ring control block
1328          * We set the 'ring disabled' bit in the flags
1329          * field until we're actually ready to start
1330          * using this ring (i.e. once we set the MTU
1331          * high enough to require it).
1332          */
1333         if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1334                 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1335                 BGE_HOSTADDR(rcb->bge_hostaddr,
1336                     vtophys(&sc->bge_rdata->bge_rx_jumbo_ring));
1337                 rcb->bge_maxlen_flags =
1338                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1339                     BGE_RCB_FLAG_RING_DISABLED);
1340                 if (sc->bge_extram)
1341                         rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1342                 else
1343                         rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1344                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1345                     rcb->bge_hostaddr.bge_addr_hi);
1346                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1347                     rcb->bge_hostaddr.bge_addr_lo);
1348                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1349                     rcb->bge_maxlen_flags);
1350                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1351
1352                 /* Set up dummy disabled mini ring RCB */
1353                 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1354                 rcb->bge_maxlen_flags =
1355                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1356                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1357                     rcb->bge_maxlen_flags);
1358         }
1359
1360         /*
1361          * Set the BD ring replentish thresholds. The recommended
1362          * values are 1/8th the number of descriptors allocated to
1363          * each ring.
1364          */
1365         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1366         CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1367
1368         /*
1369          * Disable all unused send rings by setting the 'ring disabled'
1370          * bit in the flags field of all the TX send ring control blocks.
1371          * These are located in NIC memory.
1372          */
1373         vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1374             BGE_SEND_RING_RCB);
1375         for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1376                 vrcb->bge_maxlen_flags =
1377                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1378                 vrcb->bge_nicaddr = 0;
1379                 vrcb++;
1380         }
1381
1382         /* Configure TX RCB 0 (we use only the first ring) */
1383         vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1384             BGE_SEND_RING_RCB);
1385         vrcb->bge_hostaddr.bge_addr_hi = 0;
1386         BGE_HOSTADDR(vrcb->bge_hostaddr, vtophys(&sc->bge_rdata->bge_tx_ring));
1387         vrcb->bge_nicaddr = BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT);
1388         if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1389                 vrcb->bge_maxlen_flags =
1390                     BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0);
1391
1392         /* Disable all unused RX return rings */
1393         vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1394             BGE_RX_RETURN_RING_RCB);
1395         for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1396                 vrcb->bge_hostaddr.bge_addr_hi = 0;
1397                 vrcb->bge_hostaddr.bge_addr_lo = 0;
1398                 vrcb->bge_maxlen_flags =
1399                     BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1400                     BGE_RCB_FLAG_RING_DISABLED);
1401                 vrcb->bge_nicaddr = 0;
1402                 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1403                     (i * (sizeof(u_int64_t))), 0);
1404                 vrcb++;
1405         }
1406
1407         /* Initialize RX ring indexes */
1408         CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1409         CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1410         CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1411
1412         /*
1413          * Set up RX return ring 0
1414          * Note that the NIC address for RX return rings is 0x00000000.
1415          * The return rings live entirely within the host, so the
1416          * nicaddr field in the RCB isn't used.
1417          */
1418         vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1419             BGE_RX_RETURN_RING_RCB);
1420         vrcb->bge_hostaddr.bge_addr_hi = 0;
1421         BGE_HOSTADDR(vrcb->bge_hostaddr,
1422             vtophys(&sc->bge_rdata->bge_rx_return_ring));
1423         vrcb->bge_nicaddr = 0x00000000;
1424         vrcb->bge_maxlen_flags =
1425             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0);
1426
1427         /* Set random backoff seed for TX */
1428         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1429             sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1430             sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1431             sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1432             BGE_TX_BACKOFF_SEED_MASK);
1433
1434         /* Set inter-packet gap */
1435         CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1436
1437         /*
1438          * Specify which ring to use for packets that don't match
1439          * any RX rules.
1440          */
1441         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1442
1443         /*
1444          * Configure number of RX lists. One interrupt distribution
1445          * list, sixteen active lists, one bad frames class.
1446          */
1447         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1448
1449         /* Inialize RX list placement stats mask. */
1450         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1451         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1452
1453         /* Disable host coalescing until we get it set up */
1454         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1455
1456         /* Poll to make sure it's shut down. */
1457         for (i = 0; i < BGE_TIMEOUT; i++) {
1458                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1459                         break;
1460                 DELAY(10);
1461         }
1462
1463         if (i == BGE_TIMEOUT) {
1464                 printf("bge%d: host coalescing engine failed to idle\n",
1465                     sc->bge_unit);
1466                 return(ENXIO);
1467         }
1468
1469         /* Set up host coalescing defaults */
1470         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1471         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1472         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1473         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1474         if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1475                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1476                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1477         }
1478         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1479         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1480
1481         /* Set up address of statistics block */
1482         if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1483                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 0);
1484                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1485                     vtophys(&sc->bge_rdata->bge_info.bge_stats));
1486
1487                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1488                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1489                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1490         }
1491
1492         /* Set up address of status block */
1493         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 0);
1494         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1495             vtophys(&sc->bge_rdata->bge_status_block));
1496
1497         sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1498         sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1499
1500         /* Turn on host coalescing state machine */
1501         CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1502
1503         /* Turn on RX BD completion state machine and enable attentions */
1504         CSR_WRITE_4(sc, BGE_RBDC_MODE,
1505             BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1506
1507         /* Turn on RX list placement state machine */
1508         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1509
1510         /* Turn on RX list selector state machine. */
1511         if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1512                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1513
1514         /* Turn on DMA, clear stats */
1515         CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1516             BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1517             BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1518             BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1519             (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1520
1521         /* Set misc. local control, enable interrupts on attentions */
1522         CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1523
1524 #ifdef notdef
1525         /* Assert GPIO pins for PHY reset */
1526         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1527             BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1528         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1529             BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1530 #endif
1531
1532         /* Turn on DMA completion state machine */
1533         if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1534                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1535
1536         /* Turn on write DMA state machine */
1537         CSR_WRITE_4(sc, BGE_WDMA_MODE,
1538             BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1539         
1540         /* Turn on read DMA state machine */
1541         CSR_WRITE_4(sc, BGE_RDMA_MODE,
1542             BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1543
1544         /* Turn on RX data completion state machine */
1545         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1546
1547         /* Turn on RX BD initiator state machine */
1548         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1549
1550         /* Turn on RX data and RX BD initiator state machine */
1551         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1552
1553         /* Turn on Mbuf cluster free state machine */
1554         if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1555                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1556
1557         /* Turn on send BD completion state machine */
1558         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1559
1560         /* Turn on send data completion state machine */
1561         CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1562
1563         /* Turn on send data initiator state machine */
1564         CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1565
1566         /* Turn on send BD initiator state machine */
1567         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1568
1569         /* Turn on send BD selector state machine */
1570         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1571
1572         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1573         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1574             BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1575
1576         /* ack/clear link change events */
1577         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1578             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1579             BGE_MACSTAT_LINK_CHANGED);
1580
1581         /* Enable PHY auto polling (for MII/GMII only) */
1582         if (sc->bge_tbi) {
1583                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1584         } else {
1585                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1586                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700)
1587                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1588                             BGE_EVTENB_MI_INTERRUPT);
1589         }
1590
1591         /* Enable link state change attentions. */
1592         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1593
1594         return(0);
1595 }
1596
1597 /*
1598  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1599  * against our list and return its name if we find a match. Note
1600  * that since the Broadcom controller contains VPD support, we
1601  * can get the device name string from the controller itself instead
1602  * of the compiled-in string. This is a little slow, but it guarantees
1603  * we'll always announce the right product name.
1604  */
1605 static int
1606 bge_probe(dev)
1607         device_t dev;
1608 {
1609         struct bge_type *t;
1610         struct bge_softc *sc;
1611         char *descbuf;
1612
1613         t = bge_devs;
1614
1615         sc = device_get_softc(dev);
1616         bzero(sc, sizeof(struct bge_softc));
1617         sc->bge_unit = device_get_unit(dev);
1618         sc->bge_dev = dev;
1619
1620         while(t->bge_name != NULL) {
1621                 if ((pci_get_vendor(dev) == t->bge_vid) &&
1622                     (pci_get_device(dev) == t->bge_did)) {
1623 #ifdef notdef
1624                         bge_vpd_read(sc);
1625                         device_set_desc(dev, sc->bge_vpd_prodname);
1626 #endif
1627                         descbuf = malloc(BGE_DEVDESC_MAX, M_TEMP, M_INTWAIT);
1628                         snprintf(descbuf, BGE_DEVDESC_MAX,
1629                             "%s, ASIC rev. %#04x", t->bge_name,
1630                             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 16);
1631                         device_set_desc_copy(dev, descbuf);
1632                         if (pci_get_subvendor(dev) == PCI_VENDOR_DELL)
1633                                 sc->bge_no_3_led = 1;
1634                         free(descbuf, M_TEMP);
1635                         return(0);
1636                 }
1637                 t++;
1638         }
1639
1640         return(ENXIO);
1641 }
1642
1643 static int
1644 bge_attach(dev)
1645         device_t dev;
1646 {
1647         int s;
1648         u_int32_t command;
1649         struct ifnet *ifp;
1650         struct bge_softc *sc;
1651         u_int32_t hwcfg = 0;
1652         u_int32_t mac_addr = 0;
1653         int unit, error = 0, rid;
1654         uint8_t ether_addr[ETHER_ADDR_LEN];
1655
1656         s = splimp();
1657
1658         sc = device_get_softc(dev);
1659         unit = device_get_unit(dev);
1660         sc->bge_dev = dev;
1661         sc->bge_unit = unit;
1662         callout_init(&sc->bge_stat_timer);
1663
1664         /*
1665          * Map control/status registers.
1666          */
1667         command = pci_read_config(dev, PCIR_COMMAND, 4);
1668         command |= (PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
1669         pci_write_config(dev, PCIR_COMMAND, command, 4);
1670         command = pci_read_config(dev, PCIR_COMMAND, 4);
1671
1672         if (!(command & PCIM_CMD_MEMEN)) {
1673                 printf("bge%d: failed to enable memory mapping!\n", unit);
1674                 error = ENXIO;
1675                 goto fail;
1676         }
1677
1678         rid = BGE_PCI_BAR0;
1679         sc->bge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
1680             0, ~0, 1, RF_ACTIVE);
1681
1682         if (sc->bge_res == NULL) {
1683                 printf ("bge%d: couldn't map memory\n", unit);
1684                 error = ENXIO;
1685                 goto fail;
1686         }
1687
1688         sc->bge_btag = rman_get_bustag(sc->bge_res);
1689         sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
1690         sc->bge_vhandle = (vm_offset_t)rman_get_virtual(sc->bge_res);
1691
1692         /*
1693          * XXX FIXME: rman_get_virtual() on the alpha is currently
1694          * broken and returns a physical address instead of a kernel
1695          * virtual address. Consequently, we need to do a little
1696          * extra mangling of the vhandle on the alpha. This should
1697          * eventually be fixed! The whole idea here is to get rid
1698          * of platform dependencies.
1699          */
1700 #ifdef __alpha__
1701         if (pci_cvt_to_bwx(sc->bge_vhandle))
1702                 sc->bge_vhandle = pci_cvt_to_bwx(sc->bge_vhandle);
1703         else
1704                 sc->bge_vhandle = pci_cvt_to_dense(sc->bge_vhandle);
1705         sc->bge_vhandle = ALPHA_PHYS_TO_K0SEG(sc->bge_vhandle);
1706 #endif
1707
1708         /* Allocate interrupt */
1709         rid = 0;
1710         
1711         sc->bge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1712             RF_SHAREABLE | RF_ACTIVE);
1713
1714         if (sc->bge_irq == NULL) {
1715                 printf("bge%d: couldn't map interrupt\n", unit);
1716                 error = ENXIO;
1717                 goto fail;
1718         }
1719
1720         error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET,
1721            bge_intr, sc, &sc->bge_intrhand);
1722
1723         if (error) {
1724                 bge_release_resources(sc);
1725                 printf("bge%d: couldn't set up irq\n", unit);
1726                 goto fail;
1727         }
1728
1729         sc->bge_unit = unit;
1730
1731         /* Try to reset the chip. */
1732         bge_reset(sc);
1733
1734         if (bge_chipinit(sc)) {
1735                 printf("bge%d: chip initialization failed\n", sc->bge_unit);
1736                 bge_release_resources(sc);
1737                 error = ENXIO;
1738                 goto fail;
1739         }
1740
1741         /*
1742          * Get station address from the EEPROM.
1743          */
1744         mac_addr = bge_readmem_ind(sc, 0x0c14);
1745         if ((mac_addr >> 16) == 0x484b) {
1746                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
1747                 ether_addr[1] = (uint8_t)mac_addr;
1748                 mac_addr = bge_readmem_ind(sc, 0x0c18);
1749                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
1750                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
1751                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
1752                 ether_addr[5] = (uint8_t)mac_addr;
1753         } else if (bge_read_eeprom(sc, ether_addr,
1754             BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1755                 printf("bge%d: failed to read station address\n", unit);
1756                 bge_release_resources(sc);
1757                 error = ENXIO;
1758                 goto fail;
1759         }
1760
1761         /* Allocate the general information block and ring buffers. */
1762         sc->bge_rdata = contigmalloc(sizeof(struct bge_ring_data), M_DEVBUF,
1763             M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
1764
1765         if (sc->bge_rdata == NULL) {
1766                 bge_release_resources(sc);
1767                 error = ENXIO;
1768                 printf("bge%d: no memory for list buffers!\n", sc->bge_unit);
1769                 goto fail;
1770         }
1771
1772         bzero(sc->bge_rdata, sizeof(struct bge_ring_data));
1773
1774         /* Save ASIC rev. */
1775
1776         sc->bge_chipid =
1777             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
1778             BGE_PCIMISCCTL_ASICREV;
1779         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
1780         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
1781
1782         /*
1783          * Try to allocate memory for jumbo buffers.
1784          * The 5705 does not appear to support jumbo frames.
1785          */
1786         if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
1787                 if (bge_alloc_jumbo_mem(sc)) {
1788                         printf("bge%d: jumbo buffer allocation "
1789                             "failed\n", sc->bge_unit);
1790                         bge_release_resources(sc);
1791                         error = ENXIO;
1792                         goto fail;
1793                 }
1794         }
1795
1796         /* Set default tuneable values. */
1797         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1798         sc->bge_rx_coal_ticks = 150;
1799         sc->bge_tx_coal_ticks = 150;
1800         sc->bge_rx_max_coal_bds = 64;
1801         sc->bge_tx_max_coal_bds = 128;
1802
1803         /* 5705 limits RX return ring to 512 entries. */
1804         if (sc->bge_asicrev == BGE_ASICREV_BCM5705)
1805                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1806         else
1807                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1808
1809         /* Set up ifnet structure */
1810         ifp = &sc->arpcom.ac_if;
1811         ifp->if_softc = sc;
1812         if_initname(ifp, "bge", sc->bge_unit);
1813         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1814         ifp->if_ioctl = bge_ioctl;
1815         ifp->if_start = bge_start;
1816         ifp->if_watchdog = bge_watchdog;
1817         ifp->if_init = bge_init;
1818         ifp->if_mtu = ETHERMTU;
1819         ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
1820         ifq_set_ready(&ifp->if_snd);
1821         ifp->if_hwassist = BGE_CSUM_FEATURES;
1822         ifp->if_capabilities = IFCAP_HWCSUM;
1823         ifp->if_capenable = ifp->if_capabilities;
1824
1825         /*
1826          * Figure out what sort of media we have by checking the
1827          * hardware config word in the first 32k of NIC internal memory,
1828          * or fall back to examining the EEPROM if necessary.
1829          * Note: on some BCM5700 cards, this value appears to be unset.
1830          * If that's the case, we have to rely on identifying the NIC
1831          * by its PCI subsystem ID, as we do below for the SysKonnect
1832          * SK-9D41.
1833          */
1834         if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
1835                 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
1836         else {
1837                 bge_read_eeprom(sc, (caddr_t)&hwcfg,
1838                                 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
1839                 hwcfg = ntohl(hwcfg);
1840         }
1841
1842         if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
1843                 sc->bge_tbi = 1;
1844
1845         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
1846         if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
1847              PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41)
1848                 sc->bge_tbi = 1;
1849
1850         if (sc->bge_tbi) {
1851                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
1852                     bge_ifmedia_upd, bge_ifmedia_sts);
1853                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1854                 ifmedia_add(&sc->bge_ifmedia,
1855                     IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1856                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1857                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
1858         } else {
1859                 /*
1860                  * Do transceiver setup.
1861                  */
1862                 if (mii_phy_probe(dev, &sc->bge_miibus,
1863                     bge_ifmedia_upd, bge_ifmedia_sts)) {
1864                         printf("bge%d: MII without any PHY!\n", sc->bge_unit);
1865                         bge_release_resources(sc);
1866                         bge_free_jumbo_mem(sc);
1867                         error = ENXIO;
1868                         goto fail;
1869                 }
1870         }
1871
1872         /*
1873          * When using the BCM5701 in PCI-X mode, data corruption has
1874          * been observed in the first few bytes of some received packets.
1875          * Aligning the packet buffer in memory eliminates the corruption.
1876          * Unfortunately, this misaligns the packet payloads.  On platforms
1877          * which do not support unaligned accesses, we will realign the
1878          * payloads by copying the received packets.
1879          */
1880         switch (sc->bge_chipid) {
1881         case BGE_CHIPID_BCM5701_A0:
1882         case BGE_CHIPID_BCM5701_B0:
1883         case BGE_CHIPID_BCM5701_B2:
1884         case BGE_CHIPID_BCM5701_B5:
1885                 /* If in PCI-X mode, work around the alignment bug. */
1886                 if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
1887                     (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
1888                     BGE_PCISTATE_PCI_BUSSPEED)
1889                         sc->bge_rx_alignment_bug = 1;
1890                 break;
1891         }
1892
1893         /*
1894          * Call MI attach routine.
1895          */
1896         ether_ifattach(ifp, ether_addr);
1897
1898 fail:
1899         splx(s);
1900
1901         return(error);
1902 }
1903
1904 static int
1905 bge_detach(dev)
1906         device_t dev;
1907 {
1908         struct bge_softc *sc;
1909         struct ifnet *ifp;
1910         int s;
1911
1912         s = splimp();
1913
1914         sc = device_get_softc(dev);
1915         ifp = &sc->arpcom.ac_if;
1916
1917         ether_ifdetach(ifp);
1918         bge_stop(sc);
1919         bge_reset(sc);
1920
1921         if (sc->bge_tbi) {
1922                 ifmedia_removeall(&sc->bge_ifmedia);
1923         } else {
1924                 bus_generic_detach(dev);
1925                 device_delete_child(dev, sc->bge_miibus);
1926         }
1927
1928         bge_release_resources(sc);
1929         if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1930                 bge_free_jumbo_mem(sc);
1931
1932         splx(s);
1933
1934         return(0);
1935 }
1936
1937 static void
1938 bge_release_resources(sc)
1939         struct bge_softc *sc;
1940 {
1941         device_t dev;
1942
1943         dev = sc->bge_dev;
1944
1945         if (sc->bge_vpd_prodname != NULL)
1946                 free(sc->bge_vpd_prodname, M_DEVBUF);
1947
1948         if (sc->bge_vpd_readonly != NULL)
1949                 free(sc->bge_vpd_readonly, M_DEVBUF);
1950
1951         if (sc->bge_intrhand != NULL)
1952                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
1953
1954         if (sc->bge_irq != NULL)
1955                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
1956
1957         if (sc->bge_res != NULL)
1958                 bus_release_resource(dev, SYS_RES_MEMORY,
1959                     BGE_PCI_BAR0, sc->bge_res);
1960
1961         if (sc->bge_rdata != NULL)
1962                 contigfree(sc->bge_rdata,
1963                     sizeof(struct bge_ring_data), M_DEVBUF);
1964
1965         return;
1966 }
1967
1968 static void
1969 bge_reset(sc)
1970         struct bge_softc *sc;
1971 {
1972         device_t dev;
1973         u_int32_t cachesize, command, pcistate;
1974         int i, val = 0;
1975
1976         dev = sc->bge_dev;
1977
1978         /* Save some important PCI state. */
1979         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
1980         command = pci_read_config(dev, BGE_PCI_CMD, 4);
1981         pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
1982
1983         pci_write_config(dev, BGE_PCI_MISC_CTL,
1984             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1985             BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1986
1987         /* Issue global reset */
1988         bge_writereg_ind(sc, BGE_MISC_CFG,
1989             BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
1990
1991         DELAY(1000);
1992
1993         /* Reset some of the PCI state that got zapped by reset */
1994         pci_write_config(dev, BGE_PCI_MISC_CTL,
1995             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1996             BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1997         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
1998         pci_write_config(dev, BGE_PCI_CMD, command, 4);
1999         bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
2000
2001         /*
2002          * Prevent PXE restart: write a magic number to the
2003          * general communications memory at 0xB50.
2004          */
2005         bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2006         /*
2007          * Poll the value location we just wrote until
2008          * we see the 1's complement of the magic number.
2009          * This indicates that the firmware initialization
2010          * is complete.
2011          */
2012         for (i = 0; i < BGE_TIMEOUT; i++) {
2013                 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2014                 if (val == ~BGE_MAGIC_NUMBER)
2015                         break;
2016                 DELAY(10);
2017         }
2018         
2019         if (i == BGE_TIMEOUT) {
2020                 printf("bge%d: firmware handshake timed out\n", sc->bge_unit);
2021                 return;
2022         }
2023
2024         /*
2025          * XXX Wait for the value of the PCISTATE register to
2026          * return to its original pre-reset state. This is a
2027          * fairly good indicator of reset completion. If we don't
2028          * wait for the reset to fully complete, trying to read
2029          * from the device's non-PCI registers may yield garbage
2030          * results.
2031          */
2032         for (i = 0; i < BGE_TIMEOUT; i++) {
2033                 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
2034                         break;
2035                 DELAY(10);
2036         }
2037
2038         /* Enable memory arbiter. */
2039         if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
2040                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2041
2042         /* Fix up byte swapping */
2043         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_BYTESWAP_NONFRAME|
2044             BGE_MODECTL_BYTESWAP_DATA);
2045
2046         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2047
2048         DELAY(10000);
2049
2050         return;
2051 }
2052
2053 /*
2054  * Frame reception handling. This is called if there's a frame
2055  * on the receive return list.
2056  *
2057  * Note: we have to be able to handle two possibilities here:
2058  * 1) the frame is from the jumbo recieve ring
2059  * 2) the frame is from the standard receive ring
2060  */
2061
2062 static void
2063 bge_rxeof(sc)
2064         struct bge_softc *sc;
2065 {
2066         struct ifnet *ifp;
2067         int stdcnt = 0, jumbocnt = 0;
2068
2069         ifp = &sc->arpcom.ac_if;
2070
2071         while(sc->bge_rx_saved_considx !=
2072             sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2073                 struct bge_rx_bd        *cur_rx;
2074                 u_int32_t               rxidx;
2075                 struct mbuf             *m = NULL;
2076                 u_int16_t               vlan_tag = 0;
2077                 int                     have_tag = 0;
2078
2079                 cur_rx =
2080             &sc->bge_rdata->bge_rx_return_ring[sc->bge_rx_saved_considx];
2081
2082                 rxidx = cur_rx->bge_idx;
2083                 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2084
2085                 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2086                         have_tag = 1;
2087                         vlan_tag = cur_rx->bge_vlan_tag;
2088                 }
2089
2090                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2091                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2092                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2093                         sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2094                         jumbocnt++;
2095                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2096                                 ifp->if_ierrors++;
2097                                 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2098                                 continue;
2099                         }
2100                         if (bge_newbuf_jumbo(sc,
2101                             sc->bge_jumbo, NULL) == ENOBUFS) {
2102                                 ifp->if_ierrors++;
2103                                 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2104                                 continue;
2105                         }
2106                 } else {
2107                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2108                         m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2109                         sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2110                         stdcnt++;
2111                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2112                                 ifp->if_ierrors++;
2113                                 bge_newbuf_std(sc, sc->bge_std, m);
2114                                 continue;
2115                         }
2116                         if (bge_newbuf_std(sc, sc->bge_std,
2117                             NULL) == ENOBUFS) {
2118                                 ifp->if_ierrors++;
2119                                 bge_newbuf_std(sc, sc->bge_std, m);
2120                                 continue;
2121                         }
2122                 }
2123
2124                 ifp->if_ipackets++;
2125 #ifndef __i386__
2126                 /*
2127                  * The i386 allows unaligned accesses, but for other
2128                  * platforms we must make sure the payload is aligned.
2129                  */
2130                 if (sc->bge_rx_alignment_bug) {
2131                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
2132                             cur_rx->bge_len);
2133                         m->m_data += ETHER_ALIGN;
2134                 }
2135 #endif
2136                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2137                 m->m_pkthdr.rcvif = ifp;
2138
2139 #if 0 /* currently broken for some packets, possibly related to TCP options */
2140                 if (ifp->if_hwassist) {
2141                         m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2142                         if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
2143                                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2144                         if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
2145                                 m->m_pkthdr.csum_data =
2146                                     cur_rx->bge_tcp_udp_csum;
2147                                 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
2148                         }
2149                 }
2150 #endif
2151
2152                 /*
2153                  * If we received a packet with a vlan tag, pass it
2154                  * to vlan_input() instead of ether_input().
2155                  */
2156                 if (have_tag) {
2157                         VLAN_INPUT_TAG(m, vlan_tag);
2158                         have_tag = vlan_tag = 0;
2159                         continue;
2160                 }
2161
2162                 (*ifp->if_input)(ifp, m);
2163         }
2164
2165         CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2166         if (stdcnt)
2167                 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2168         if (jumbocnt)
2169                 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2170
2171         return;
2172 }
2173
2174 static void
2175 bge_txeof(sc)
2176         struct bge_softc *sc;
2177 {
2178         struct bge_tx_bd *cur_tx = NULL;
2179         struct ifnet *ifp;
2180
2181         ifp = &sc->arpcom.ac_if;
2182
2183         /*
2184          * Go through our tx ring and free mbufs for those
2185          * frames that have been sent.
2186          */
2187         while (sc->bge_tx_saved_considx !=
2188             sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2189                 u_int32_t               idx = 0;
2190
2191                 idx = sc->bge_tx_saved_considx;
2192                 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2193                 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2194                         ifp->if_opackets++;
2195                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
2196                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
2197                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
2198                 }
2199                 sc->bge_txcnt--;
2200                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2201                 ifp->if_timer = 0;
2202         }
2203
2204         if (cur_tx != NULL)
2205                 ifp->if_flags &= ~IFF_OACTIVE;
2206
2207         return;
2208 }
2209
2210 static void
2211 bge_intr(xsc)
2212         void *xsc;
2213 {
2214         struct bge_softc *sc;
2215         struct ifnet *ifp;
2216         u_int32_t status;
2217
2218         sc = xsc;
2219         ifp = &sc->arpcom.ac_if;
2220
2221 #ifdef notdef
2222         /* Avoid this for now -- checking this register is expensive. */
2223         /* Make sure this is really our interrupt. */
2224         if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2225                 return;
2226 #endif
2227         /* Ack interrupt and stop others from occuring. */
2228         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2229
2230         /*
2231          * Process link state changes.
2232          * Grrr. The link status word in the status block does
2233          * not work correctly on the BCM5700 rev AX and BX chips,
2234          * according to all available information. Hence, we have
2235          * to enable MII interrupts in order to properly obtain
2236          * async link changes. Unfortunately, this also means that
2237          * we have to read the MAC status register to detect link
2238          * changes, thereby adding an additional register access to
2239          * the interrupt handler.
2240          */
2241
2242         if (sc->bge_asicrev == BGE_ASICREV_BCM5700) {
2243                 status = CSR_READ_4(sc, BGE_MAC_STS);
2244                 if (status & BGE_MACSTAT_MI_INTERRUPT) {
2245                         sc->bge_link = 0;
2246                         callout_stop(&sc->bge_stat_timer);
2247                         bge_tick(sc);
2248                         /* Clear the interrupt */
2249                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2250                             BGE_EVTENB_MI_INTERRUPT);
2251                         bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
2252                         bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
2253                             BRGPHY_INTRS);
2254                 }
2255         } else {
2256                 if ((sc->bge_rdata->bge_status_block.bge_status &
2257                     BGE_STATFLAG_UPDATED) &&
2258                     (sc->bge_rdata->bge_status_block.bge_status &
2259                     BGE_STATFLAG_LINKSTATE_CHANGED)) {
2260                         sc->bge_rdata->bge_status_block.bge_status &=
2261                                 ~(BGE_STATFLAG_UPDATED|
2262                                 BGE_STATFLAG_LINKSTATE_CHANGED);
2263                         /*
2264                          * Sometimes PCS encoding errors are detected in
2265                          * TBI mode (on fiber NICs), and for some reason
2266                          * the chip will signal them as link changes.
2267                          * If we get a link change event, but the 'PCS
2268                          * encoding error' bit in the MAC status register
2269                          * is set, don't bother doing a link check.
2270                          * This avoids spurious "gigabit link up" messages
2271                          * that sometimes appear on fiber NICs during
2272                          * periods of heavy traffic. (There should be no
2273                          * effect on copper NICs.)
2274                          */
2275                         status = CSR_READ_4(sc, BGE_MAC_STS);
2276                         if (!(status & (BGE_MACSTAT_PORT_DECODE_ERROR|
2277                             BGE_MACSTAT_MI_COMPLETE))) {
2278                                 sc->bge_link = 0;
2279                                 callout_stop(&sc->bge_stat_timer);
2280                                 bge_tick(sc);
2281                         }
2282                         sc->bge_link = 0;
2283                         callout_stop(&sc->bge_stat_timer);
2284                         bge_tick(sc);
2285                         /* Clear the interrupt */
2286                         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2287                             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
2288                             BGE_MACSTAT_LINK_CHANGED);
2289
2290                         /* Force flush the status block cached by PCI bridge */
2291                         CSR_READ_4(sc, BGE_MBX_IRQ0_LO);
2292                 }
2293         }
2294
2295         if (ifp->if_flags & IFF_RUNNING) {
2296                 /* Check RX return ring producer/consumer */
2297                 bge_rxeof(sc);
2298
2299                 /* Check TX ring producer/consumer */
2300                 bge_txeof(sc);
2301         }
2302
2303         bge_handle_events(sc);
2304
2305         /* Re-enable interrupts. */
2306         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2307
2308         if ((ifp->if_flags & IFF_RUNNING) && !ifq_is_empty(&ifp->if_snd))
2309                 bge_start(ifp);
2310
2311         return;
2312 }
2313
2314 static void
2315 bge_tick(xsc)
2316         void *xsc;
2317 {
2318         struct bge_softc *sc;
2319         struct mii_data *mii = NULL;
2320         struct ifmedia *ifm = NULL;
2321         struct ifnet *ifp;
2322         int s;
2323
2324         sc = xsc;
2325         ifp = &sc->arpcom.ac_if;
2326
2327         s = splimp();
2328
2329         if (sc->bge_asicrev == BGE_ASICREV_BCM5705)
2330                 bge_stats_update_regs(sc);
2331         else
2332                 bge_stats_update(sc);
2333         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2334         if (sc->bge_link) {
2335                 splx(s);
2336                 return;
2337         }
2338
2339         if (sc->bge_tbi) {
2340                 ifm = &sc->bge_ifmedia;
2341                 if (CSR_READ_4(sc, BGE_MAC_STS) &
2342                     BGE_MACSTAT_TBI_PCS_SYNCHED) {
2343                         sc->bge_link++;
2344                         CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2345                         printf("bge%d: gigabit link up\n", sc->bge_unit);
2346                         if (!ifq_is_empty(&ifp->if_snd))
2347                                 bge_start(ifp);
2348                 }
2349                 splx(s);
2350                 return;
2351         }
2352
2353         mii = device_get_softc(sc->bge_miibus);
2354         mii_tick(mii);
2355  
2356         if (!sc->bge_link) {
2357                 mii_pollstat(mii);
2358                 if (mii->mii_media_status & IFM_ACTIVE &&
2359                     IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2360                         sc->bge_link++;
2361                         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
2362                             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
2363                                 printf("bge%d: gigabit link up\n",
2364                                    sc->bge_unit);
2365                         if (!ifq_is_empty(&ifp->if_snd))
2366                                 bge_start(ifp);
2367                 }
2368         }
2369
2370         splx(s);
2371
2372         return;
2373 }
2374
2375 static void
2376 bge_stats_update_regs(sc)
2377         struct bge_softc *sc;
2378 {
2379         struct ifnet *ifp;
2380         struct bge_mac_stats_regs stats;
2381         u_int32_t *s;
2382         int i;
2383
2384         ifp = &sc->arpcom.ac_if;
2385
2386         s = (u_int32_t *)&stats;
2387         for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
2388                 *s = CSR_READ_4(sc, BGE_RX_STATS + i);
2389                 s++;
2390         }
2391
2392         ifp->if_collisions +=
2393            (stats.dot3StatsSingleCollisionFrames +
2394            stats.dot3StatsMultipleCollisionFrames +
2395            stats.dot3StatsExcessiveCollisions +
2396            stats.dot3StatsLateCollisions) -
2397            ifp->if_collisions;
2398
2399         return;
2400 }
2401
2402 static void
2403 bge_stats_update(sc)
2404         struct bge_softc *sc;
2405 {
2406         struct ifnet *ifp;
2407         struct bge_stats *stats;
2408
2409         ifp = &sc->arpcom.ac_if;
2410
2411         stats = (struct bge_stats *)(sc->bge_vhandle +
2412             BGE_MEMWIN_START + BGE_STATS_BLOCK);
2413
2414         ifp->if_collisions +=
2415            (stats->txstats.dot3StatsSingleCollisionFrames.bge_addr_lo +
2416            stats->txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo +
2417            stats->txstats.dot3StatsExcessiveCollisions.bge_addr_lo +
2418            stats->txstats.dot3StatsLateCollisions.bge_addr_lo) -
2419            ifp->if_collisions;
2420
2421 #ifdef notdef
2422         ifp->if_collisions +=
2423            (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2424            sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2425            sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2426            sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2427            ifp->if_collisions;
2428 #endif
2429
2430         return;
2431 }
2432
2433 /*
2434  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2435  * pointers to descriptors.
2436  */
2437 static int
2438 bge_encap(sc, m_head, txidx)
2439         struct bge_softc *sc;
2440         struct mbuf *m_head;
2441         u_int32_t *txidx;
2442 {
2443         struct bge_tx_bd        *f = NULL;
2444         struct mbuf             *m;
2445         u_int32_t               frag, cur, cnt = 0;
2446         u_int16_t               csum_flags = 0;
2447         struct ifvlan           *ifv = NULL;
2448
2449         if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2450             m_head->m_pkthdr.rcvif != NULL &&
2451             m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
2452                 ifv = m_head->m_pkthdr.rcvif->if_softc;
2453
2454         m = m_head;
2455         cur = frag = *txidx;
2456
2457         if (m_head->m_pkthdr.csum_flags) {
2458                 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2459                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2460                 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2461                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2462                 if (m_head->m_flags & M_LASTFRAG)
2463                         csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
2464                 else if (m_head->m_flags & M_FRAG)
2465                         csum_flags |= BGE_TXBDFLAG_IP_FRAG;
2466         }
2467         /*
2468          * Start packing the mbufs in this chain into
2469          * the fragment pointers. Stop when we run out
2470          * of fragments or hit the end of the mbuf chain.
2471          */
2472         for (m = m_head; m != NULL; m = m->m_next) {
2473                 if (m->m_len != 0) {
2474                         f = &sc->bge_rdata->bge_tx_ring[frag];
2475                         if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2476                                 break;
2477                         BGE_HOSTADDR(f->bge_addr,
2478                             vtophys(mtod(m, vm_offset_t)));
2479                         f->bge_len = m->m_len;
2480                         f->bge_flags = csum_flags;
2481                         if (ifv != NULL) {
2482                                 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2483                                 f->bge_vlan_tag = ifv->ifv_tag;
2484                         } else {
2485                                 f->bge_vlan_tag = 0;
2486                         }
2487                         /*
2488                          * Sanity check: avoid coming within 16 descriptors
2489                          * of the end of the ring.
2490                          */
2491                         if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2492                                 return(ENOBUFS);
2493                         cur = frag;
2494                         BGE_INC(frag, BGE_TX_RING_CNT);
2495                         cnt++;
2496                 }
2497         }
2498
2499         if (m != NULL)
2500                 return(ENOBUFS);
2501
2502         if (frag == sc->bge_tx_saved_considx)
2503                 return(ENOBUFS);
2504
2505         sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2506         sc->bge_cdata.bge_tx_chain[cur] = m_head;
2507         sc->bge_txcnt += cnt;
2508
2509         *txidx = frag;
2510
2511         return(0);
2512 }
2513
2514 /*
2515  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2516  * to the mbuf data regions directly in the transmit descriptors.
2517  */
2518 static void
2519 bge_start(ifp)
2520         struct ifnet *ifp;
2521 {
2522         struct bge_softc *sc;
2523         struct mbuf *m_head = NULL;
2524         u_int32_t prodidx = 0;
2525
2526         sc = ifp->if_softc;
2527
2528         if (!sc->bge_link)
2529                 return;
2530
2531         prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
2532
2533         while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2534                 m_head = ifq_poll(&ifp->if_snd);
2535                 if (m_head == NULL)
2536                         break;
2537
2538                 /*
2539                  * XXX
2540                  * safety overkill.  If this is a fragmented packet chain
2541                  * with delayed TCP/UDP checksums, then only encapsulate
2542                  * it if we have enough descriptors to handle the entire
2543                  * chain at once.
2544                  * (paranoia -- may not actually be needed)
2545                  */
2546                 if (m_head->m_flags & M_FIRSTFRAG &&
2547                     m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2548                         if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2549                             m_head->m_pkthdr.csum_data + 16) {
2550                                 ifp->if_flags |= IFF_OACTIVE;
2551                                 break;
2552                         }
2553                 }
2554
2555                 /*
2556                  * Pack the data into the transmit ring. If we
2557                  * don't have room, set the OACTIVE flag and wait
2558                  * for the NIC to drain the ring.
2559                  */
2560                 if (bge_encap(sc, m_head, &prodidx)) {
2561                         ifp->if_flags |= IFF_OACTIVE;
2562                         break;
2563                 }
2564                 m_head = ifq_dequeue(&ifp->if_snd);
2565
2566                 BPF_MTAP(ifp, m_head);
2567         }
2568
2569         /* Transmit */
2570         CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2571         /* 5700 b2 errata */
2572         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
2573                 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2574
2575         /*
2576          * Set a timeout in case the chip goes out to lunch.
2577          */
2578         ifp->if_timer = 5;
2579
2580         return;
2581 }
2582
2583 static void
2584 bge_init(xsc)
2585         void *xsc;
2586 {
2587         struct bge_softc *sc = xsc;
2588         struct ifnet *ifp;
2589         u_int16_t *m;
2590         int s;
2591
2592         s = splimp();
2593
2594         ifp = &sc->arpcom.ac_if;
2595
2596         if (ifp->if_flags & IFF_RUNNING) {
2597                 splx(s);
2598                 return;
2599         }
2600
2601         /* Cancel pending I/O and flush buffers. */
2602         bge_stop(sc);
2603         bge_reset(sc);
2604         bge_chipinit(sc);
2605
2606         /*
2607          * Init the various state machines, ring
2608          * control blocks and firmware.
2609          */
2610         if (bge_blockinit(sc)) {
2611                 printf("bge%d: initialization failure\n", sc->bge_unit);
2612                 splx(s);
2613                 return;
2614         }
2615
2616         ifp = &sc->arpcom.ac_if;
2617
2618         /* Specify MTU. */
2619         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2620             ETHER_HDR_LEN + ETHER_CRC_LEN);
2621
2622         /* Load our MAC address. */
2623         m = (u_int16_t *)&sc->arpcom.ac_enaddr[0];
2624         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2625         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2626
2627         /* Enable or disable promiscuous mode as needed. */
2628         if (ifp->if_flags & IFF_PROMISC) {
2629                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2630         } else {
2631                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2632         }
2633
2634         /* Program multicast filter. */
2635         bge_setmulti(sc);
2636
2637         /* Init RX ring. */
2638         bge_init_rx_ring_std(sc);
2639
2640         /*
2641          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
2642          * memory to insure that the chip has in fact read the first
2643          * entry of the ring.
2644          */
2645         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
2646                 u_int32_t               v, i;
2647                 for (i = 0; i < 10; i++) {
2648                         DELAY(20);
2649                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
2650                         if (v == (MCLBYTES - ETHER_ALIGN))
2651                                 break;
2652                 }
2653                 if (i == 10)
2654                         printf ("bge%d: 5705 A0 chip failed to load RX ring\n",
2655                             sc->bge_unit);
2656         }
2657
2658         /* Init jumbo RX ring. */
2659         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2660                 bge_init_rx_ring_jumbo(sc);
2661
2662         /* Init our RX return ring index */
2663         sc->bge_rx_saved_considx = 0;
2664
2665         /* Init TX ring. */
2666         bge_init_tx_ring(sc);
2667
2668         /* Turn on transmitter */
2669         BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2670
2671         /* Turn on receiver */
2672         BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2673
2674         /* Tell firmware we're alive. */
2675         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2676
2677         /* Enable host interrupts. */
2678         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2679         BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2680         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2681
2682         bge_ifmedia_upd(ifp);
2683
2684         ifp->if_flags |= IFF_RUNNING;
2685         ifp->if_flags &= ~IFF_OACTIVE;
2686
2687         splx(s);
2688
2689         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2690 }
2691
2692 /*
2693  * Set media options.
2694  */
2695 static int
2696 bge_ifmedia_upd(ifp)
2697         struct ifnet *ifp;
2698 {
2699         struct bge_softc *sc;
2700         struct mii_data *mii;
2701         struct ifmedia *ifm;
2702
2703         sc = ifp->if_softc;
2704         ifm = &sc->bge_ifmedia;
2705
2706         /* If this is a 1000baseX NIC, enable the TBI port. */
2707         if (sc->bge_tbi) {
2708                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2709                         return(EINVAL);
2710                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2711                 case IFM_AUTO:
2712                         break;
2713                 case IFM_1000_SX:
2714                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2715                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
2716                                     BGE_MACMODE_HALF_DUPLEX);
2717                         } else {
2718                                 BGE_SETBIT(sc, BGE_MAC_MODE,
2719                                     BGE_MACMODE_HALF_DUPLEX);
2720                         }
2721                         break;
2722                 default:
2723                         return(EINVAL);
2724                 }
2725                 return(0);
2726         }
2727
2728         mii = device_get_softc(sc->bge_miibus);
2729         sc->bge_link = 0;
2730         if (mii->mii_instance) {
2731                 struct mii_softc *miisc;
2732                 for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
2733                     miisc = LIST_NEXT(miisc, mii_list))
2734                         mii_phy_reset(miisc);
2735         }
2736         mii_mediachg(mii);
2737
2738         return(0);
2739 }
2740
2741 /*
2742  * Report current media status.
2743  */
2744 static void
2745 bge_ifmedia_sts(ifp, ifmr)
2746         struct ifnet *ifp;
2747         struct ifmediareq *ifmr;
2748 {
2749         struct bge_softc *sc;
2750         struct mii_data *mii;
2751
2752         sc = ifp->if_softc;
2753
2754         if (sc->bge_tbi) {
2755                 ifmr->ifm_status = IFM_AVALID;
2756                 ifmr->ifm_active = IFM_ETHER;
2757                 if (CSR_READ_4(sc, BGE_MAC_STS) &
2758                     BGE_MACSTAT_TBI_PCS_SYNCHED)
2759                         ifmr->ifm_status |= IFM_ACTIVE;
2760                 ifmr->ifm_active |= IFM_1000_SX;
2761                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
2762                         ifmr->ifm_active |= IFM_HDX;    
2763                 else
2764                         ifmr->ifm_active |= IFM_FDX;
2765                 return;
2766         }
2767
2768         mii = device_get_softc(sc->bge_miibus);
2769         mii_pollstat(mii);
2770         ifmr->ifm_active = mii->mii_media_active;
2771         ifmr->ifm_status = mii->mii_media_status;
2772
2773         return;
2774 }
2775
2776 static int
2777 bge_ioctl(ifp, command, data, cr)
2778         struct ifnet *ifp;
2779         u_long command;
2780         caddr_t data;
2781         struct ucred *cr;
2782 {
2783         struct bge_softc *sc = ifp->if_softc;
2784         struct ifreq *ifr = (struct ifreq *) data;
2785         int s, mask, error = 0;
2786         struct mii_data *mii;
2787
2788         s = splimp();
2789
2790         switch(command) {
2791         case SIOCSIFADDR:
2792         case SIOCGIFADDR:
2793                 error = ether_ioctl(ifp, command, data);
2794                 break;
2795         case SIOCSIFMTU:
2796                 /* Disallow jumbo frames on 5705. */
2797                 if ((sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2798                     ifr->ifr_mtu > ETHERMTU) || ifr->ifr_mtu > BGE_JUMBO_MTU)
2799                         error = EINVAL;
2800                 else {
2801                         ifp->if_mtu = ifr->ifr_mtu;
2802                         ifp->if_flags &= ~IFF_RUNNING;
2803                         bge_init(sc);
2804                 }
2805                 break;
2806         case SIOCSIFFLAGS:
2807                 if (ifp->if_flags & IFF_UP) {
2808                         /*
2809                          * If only the state of the PROMISC flag changed,
2810                          * then just use the 'set promisc mode' command
2811                          * instead of reinitializing the entire NIC. Doing
2812                          * a full re-init means reloading the firmware and
2813                          * waiting for it to start up, which may take a
2814                          * second or two.
2815                          */
2816                         if (ifp->if_flags & IFF_RUNNING &&
2817                             ifp->if_flags & IFF_PROMISC &&
2818                             !(sc->bge_if_flags & IFF_PROMISC)) {
2819                                 BGE_SETBIT(sc, BGE_RX_MODE,
2820                                     BGE_RXMODE_RX_PROMISC);
2821                         } else if (ifp->if_flags & IFF_RUNNING &&
2822                             !(ifp->if_flags & IFF_PROMISC) &&
2823                             sc->bge_if_flags & IFF_PROMISC) {
2824                                 BGE_CLRBIT(sc, BGE_RX_MODE,
2825                                     BGE_RXMODE_RX_PROMISC);
2826                         } else
2827                                 bge_init(sc);
2828                 } else {
2829                         if (ifp->if_flags & IFF_RUNNING) {
2830                                 bge_stop(sc);
2831                         }
2832                 }
2833                 sc->bge_if_flags = ifp->if_flags;
2834                 error = 0;
2835                 break;
2836         case SIOCADDMULTI:
2837         case SIOCDELMULTI:
2838                 if (ifp->if_flags & IFF_RUNNING) {
2839                         bge_setmulti(sc);
2840                         error = 0;
2841                 }
2842                 break;
2843         case SIOCSIFMEDIA:
2844         case SIOCGIFMEDIA:
2845                 if (sc->bge_tbi) {
2846                         error = ifmedia_ioctl(ifp, ifr,
2847                             &sc->bge_ifmedia, command);
2848                 } else {
2849                         mii = device_get_softc(sc->bge_miibus);
2850                         error = ifmedia_ioctl(ifp, ifr,
2851                             &mii->mii_media, command);
2852                 }
2853                 break;
2854         case SIOCSIFCAP:
2855                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2856                 if (mask & IFCAP_HWCSUM) {
2857                         if (IFCAP_HWCSUM & ifp->if_capenable)
2858                                 ifp->if_capenable &= ~IFCAP_HWCSUM;
2859                         else
2860                                 ifp->if_capenable |= IFCAP_HWCSUM;
2861                 }
2862                 error = 0;
2863                 break;
2864         default:
2865                 error = EINVAL;
2866                 break;
2867         }
2868
2869         (void)splx(s);
2870
2871         return(error);
2872 }
2873
2874 static void
2875 bge_watchdog(ifp)
2876         struct ifnet *ifp;
2877 {
2878         struct bge_softc *sc;
2879
2880         sc = ifp->if_softc;
2881
2882         printf("bge%d: watchdog timeout -- resetting\n", sc->bge_unit);
2883
2884         ifp->if_flags &= ~IFF_RUNNING;
2885         bge_init(sc);
2886
2887         ifp->if_oerrors++;
2888
2889         return;
2890 }
2891
2892 /*
2893  * Stop the adapter and free any mbufs allocated to the
2894  * RX and TX lists.
2895  */
2896 static void
2897 bge_stop(sc)
2898         struct bge_softc *sc;
2899 {
2900         struct ifnet *ifp;
2901         struct ifmedia_entry *ifm;
2902         struct mii_data *mii = NULL;
2903         int mtmp, itmp;
2904
2905         ifp = &sc->arpcom.ac_if;
2906
2907         if (!sc->bge_tbi)
2908                 mii = device_get_softc(sc->bge_miibus);
2909
2910         callout_stop(&sc->bge_stat_timer);
2911
2912         /*
2913          * Disable all of the receiver blocks
2914          */
2915         BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2916         BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2917         BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2918         if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
2919                 BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2920         BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
2921         BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2922         BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
2923
2924         /*
2925          * Disable all of the transmit blocks
2926          */
2927         BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2928         BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2929         BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2930         BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
2931         BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
2932         if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
2933                 BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2934         BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2935
2936         /*
2937          * Shut down all of the memory managers and related
2938          * state machines.
2939          */
2940         BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2941         BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
2942         if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
2943                 BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2944         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2945         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2946         if (sc->bge_asicrev != BGE_ASICREV_BCM5705) {
2947                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
2948                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2949         }
2950
2951         /* Disable host interrupts. */
2952         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2953         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2954
2955         /*
2956          * Tell firmware we're shutting down.
2957          */
2958         BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2959
2960         /* Free the RX lists. */
2961         bge_free_rx_ring_std(sc);
2962
2963         /* Free jumbo RX list. */
2964         if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
2965                 bge_free_rx_ring_jumbo(sc);
2966
2967         /* Free TX buffers. */
2968         bge_free_tx_ring(sc);
2969
2970         /*
2971          * Isolate/power down the PHY, but leave the media selection
2972          * unchanged so that things will be put back to normal when
2973          * we bring the interface back up.
2974          */
2975         if (!sc->bge_tbi) {
2976                 itmp = ifp->if_flags;
2977                 ifp->if_flags |= IFF_UP;
2978                 ifm = mii->mii_media.ifm_cur;
2979                 mtmp = ifm->ifm_media;
2980                 ifm->ifm_media = IFM_ETHER|IFM_NONE;
2981                 mii_mediachg(mii);
2982                 ifm->ifm_media = mtmp;
2983                 ifp->if_flags = itmp;
2984         }
2985
2986         sc->bge_link = 0;
2987
2988         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
2989
2990         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2991
2992         return;
2993 }
2994
2995 /*
2996  * Stop all chip I/O so that the kernel's probe routines don't
2997  * get confused by errant DMAs when rebooting.
2998  */
2999 static void
3000 bge_shutdown(dev)
3001         device_t dev;
3002 {
3003         struct bge_softc *sc;
3004
3005         sc = device_get_softc(dev);
3006
3007         bge_stop(sc); 
3008         bge_reset(sc);
3009
3010         return;
3011 }