Merge branches 'master' and 'suser_to_priv'
[dragonfly.git] / sys / vfs / hammer / hammer_ondisk.c
1 /*
2  * Copyright (c) 2007-2008 The DragonFly Project.  All rights reserved.
3  * 
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  * 
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  * 
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  * 
34  * $DragonFly: src/sys/vfs/hammer/hammer_ondisk.c,v 1.76 2008/08/29 20:19:08 dillon Exp $
35  */
36 /*
37  * Manage HAMMER's on-disk structures.  These routines are primarily
38  * responsible for interfacing with the kernel's I/O subsystem and for
39  * managing in-memory structures.
40  */
41
42 #include "hammer.h"
43 #include <sys/fcntl.h>
44 #include <sys/nlookup.h>
45 #include <sys/buf.h>
46 #include <sys/buf2.h>
47
48 static void hammer_free_volume(hammer_volume_t volume);
49 static int hammer_load_volume(hammer_volume_t volume);
50 static int hammer_load_buffer(hammer_buffer_t buffer, int isnew);
51 static int hammer_load_node(hammer_node_t node, int isnew);
52
53 static int
54 hammer_vol_rb_compare(hammer_volume_t vol1, hammer_volume_t vol2)
55 {
56         if (vol1->vol_no < vol2->vol_no)
57                 return(-1);
58         if (vol1->vol_no > vol2->vol_no)
59                 return(1);
60         return(0);
61 }
62
63 static int
64 hammer_buf_rb_compare(hammer_buffer_t buf1, hammer_buffer_t buf2)
65 {
66         if (buf1->zoneX_offset < buf2->zoneX_offset)
67                 return(-1);
68         if (buf1->zoneX_offset > buf2->zoneX_offset)
69                 return(1);
70         return(0);
71 }
72
73 static int
74 hammer_nod_rb_compare(hammer_node_t node1, hammer_node_t node2)
75 {
76         if (node1->node_offset < node2->node_offset)
77                 return(-1);
78         if (node1->node_offset > node2->node_offset)
79                 return(1);
80         return(0);
81 }
82
83 RB_GENERATE2(hammer_vol_rb_tree, hammer_volume, rb_node,
84              hammer_vol_rb_compare, int32_t, vol_no);
85 RB_GENERATE2(hammer_buf_rb_tree, hammer_buffer, rb_node,
86              hammer_buf_rb_compare, hammer_off_t, zoneX_offset);
87 RB_GENERATE2(hammer_nod_rb_tree, hammer_node, rb_node,
88              hammer_nod_rb_compare, hammer_off_t, node_offset);
89
90 /************************************************************************
91  *                              VOLUMES                                 *
92  ************************************************************************
93  *
94  * Load a HAMMER volume by name.  Returns 0 on success or a positive error
95  * code on failure.  Volumes must be loaded at mount time, get_volume() will
96  * not load a new volume.
97  *
98  * Calls made to hammer_load_volume() or single-threaded
99  */
100 int
101 hammer_install_volume(struct hammer_mount *hmp, const char *volname,
102                       struct vnode *devvp)
103 {
104         struct mount *mp;
105         hammer_volume_t volume;
106         struct hammer_volume_ondisk *ondisk;
107         struct nlookupdata nd;
108         struct buf *bp = NULL;
109         int error;
110         int ronly;
111         int setmp = 0;
112
113         mp = hmp->mp;
114         ronly = ((mp->mnt_flag & MNT_RDONLY) ? 1 : 0);
115
116         /*
117          * Allocate a volume structure
118          */
119         ++hammer_count_volumes;
120         volume = kmalloc(sizeof(*volume), hmp->m_misc, M_WAITOK|M_ZERO);
121         volume->vol_name = kstrdup(volname, hmp->m_misc);
122         volume->io.hmp = hmp;   /* bootstrap */
123         hammer_io_init(&volume->io, volume, HAMMER_STRUCTURE_VOLUME);
124         volume->io.offset = 0LL;
125         volume->io.bytes = HAMMER_BUFSIZE;
126
127         /*
128          * Get the device vnode
129          */
130         if (devvp == NULL) {
131                 error = nlookup_init(&nd, volume->vol_name, UIO_SYSSPACE, NLC_FOLLOW);
132                 if (error == 0)
133                         error = nlookup(&nd);
134                 if (error == 0)
135                         error = cache_vref(&nd.nl_nch, nd.nl_cred, &volume->devvp);
136                 nlookup_done(&nd);
137         } else {
138                 error = 0;
139                 volume->devvp = devvp;
140         }
141
142         if (error == 0) {
143                 if (vn_isdisk(volume->devvp, &error)) {
144                         error = vfs_mountedon(volume->devvp);
145                 }
146         }
147         if (error == 0 &&
148             count_udev(volume->devvp->v_umajor, volume->devvp->v_uminor) > 0) {
149                 error = EBUSY;
150         }
151         if (error == 0) {
152                 vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
153                 error = vinvalbuf(volume->devvp, V_SAVE, 0, 0);
154                 if (error == 0) {
155                         error = VOP_OPEN(volume->devvp, 
156                                          (ronly ? FREAD : FREAD|FWRITE),
157                                          FSCRED, NULL);
158                 }
159                 vn_unlock(volume->devvp);
160         }
161         if (error) {
162                 hammer_free_volume(volume);
163                 return(error);
164         }
165         volume->devvp->v_rdev->si_mountpoint = mp;
166         setmp = 1;
167
168         /*
169          * Extract the volume number from the volume header and do various
170          * sanity checks.
171          */
172         error = bread(volume->devvp, 0LL, HAMMER_BUFSIZE, &bp);
173         if (error)
174                 goto late_failure;
175         ondisk = (void *)bp->b_data;
176         if (ondisk->vol_signature != HAMMER_FSBUF_VOLUME) {
177                 kprintf("hammer_mount: volume %s has an invalid header\n",
178                         volume->vol_name);
179                 error = EFTYPE;
180                 goto late_failure;
181         }
182         volume->vol_no = ondisk->vol_no;
183         volume->buffer_base = ondisk->vol_buf_beg;
184         volume->vol_flags = ondisk->vol_flags;
185         volume->nblocks = ondisk->vol_nblocks; 
186         volume->maxbuf_off = HAMMER_ENCODE_RAW_BUFFER(volume->vol_no,
187                                     ondisk->vol_buf_end - ondisk->vol_buf_beg);
188         volume->maxraw_off = ondisk->vol_buf_end;
189
190         if (RB_EMPTY(&hmp->rb_vols_root)) {
191                 hmp->fsid = ondisk->vol_fsid;
192         } else if (bcmp(&hmp->fsid, &ondisk->vol_fsid, sizeof(uuid_t))) {
193                 kprintf("hammer_mount: volume %s's fsid does not match "
194                         "other volumes\n", volume->vol_name);
195                 error = EFTYPE;
196                 goto late_failure;
197         }
198
199         /*
200          * Insert the volume structure into the red-black tree.
201          */
202         if (RB_INSERT(hammer_vol_rb_tree, &hmp->rb_vols_root, volume)) {
203                 kprintf("hammer_mount: volume %s has a duplicate vol_no %d\n",
204                         volume->vol_name, volume->vol_no);
205                 error = EEXIST;
206         }
207
208         /*
209          * Set the root volume .  HAMMER special cases rootvol the structure.
210          * We do not hold a ref because this would prevent related I/O
211          * from being flushed.
212          */
213         if (error == 0 && ondisk->vol_rootvol == ondisk->vol_no) {
214                 hmp->rootvol = volume;
215                 hmp->nvolumes = ondisk->vol_count;
216                 if (bp) {
217                         brelse(bp);
218                         bp = NULL;
219                 }
220                 hmp->mp->mnt_stat.f_blocks += ondisk->vol0_stat_bigblocks *
221                         (HAMMER_LARGEBLOCK_SIZE / HAMMER_BUFSIZE);
222                 hmp->mp->mnt_vstat.f_blocks += ondisk->vol0_stat_bigblocks *
223                         (HAMMER_LARGEBLOCK_SIZE / HAMMER_BUFSIZE);
224         }
225 late_failure:
226         if (bp)
227                 brelse(bp);
228         if (error) {
229                 /*vinvalbuf(volume->devvp, V_SAVE, 0, 0);*/
230                 if (setmp)
231                         volume->devvp->v_rdev->si_mountpoint = NULL;
232                 VOP_CLOSE(volume->devvp, ronly ? FREAD : FREAD|FWRITE);
233                 hammer_free_volume(volume);
234         }
235         return (error);
236 }
237
238 /*
239  * This is called for each volume when updating the mount point from
240  * read-write to read-only or vise-versa.
241  */
242 int
243 hammer_adjust_volume_mode(hammer_volume_t volume, void *data __unused)
244 {
245         if (volume->devvp) {
246                 vn_lock(volume->devvp, LK_EXCLUSIVE | LK_RETRY);
247                 if (volume->io.hmp->ronly) {
248                         /* do not call vinvalbuf */
249                         VOP_OPEN(volume->devvp, FREAD, FSCRED, NULL);
250                         VOP_CLOSE(volume->devvp, FREAD|FWRITE);
251                 } else {
252                         /* do not call vinvalbuf */
253                         VOP_OPEN(volume->devvp, FREAD|FWRITE, FSCRED, NULL);
254                         VOP_CLOSE(volume->devvp, FREAD);
255                 }
256                 vn_unlock(volume->devvp);
257         }
258         return(0);
259 }
260
261 /*
262  * Unload and free a HAMMER volume.  Must return >= 0 to continue scan
263  * so returns -1 on failure.
264  */
265 int
266 hammer_unload_volume(hammer_volume_t volume, void *data __unused)
267 {
268         hammer_mount_t hmp = volume->io.hmp;
269         int ronly = ((hmp->mp->mnt_flag & MNT_RDONLY) ? 1 : 0);
270         struct buf *bp;
271
272         /*
273          * Clean up the root volume pointer, which is held unlocked in hmp.
274          */
275         if (hmp->rootvol == volume)
276                 hmp->rootvol = NULL;
277
278         /*
279          * We must not flush a dirty buffer to disk on umount.  It should
280          * have already been dealt with by the flusher, or we may be in
281          * catastrophic failure.
282          */
283         hammer_io_clear_modify(&volume->io, 1);
284         volume->io.waitdep = 1;
285         bp = hammer_io_release(&volume->io, 1);
286
287         /*
288          * Clean up the persistent ref ioerror might have on the volume
289          */
290         if (volume->io.ioerror) {
291                 volume->io.ioerror = 0;
292                 hammer_unref(&volume->io.lock);
293         }
294
295         /*
296          * There should be no references on the volume, no clusters, and
297          * no super-clusters.
298          */
299         KKASSERT(volume->io.lock.refs == 0);
300         if (bp)
301                 brelse(bp);
302
303         volume->ondisk = NULL;
304         if (volume->devvp) {
305                 if (volume->devvp->v_rdev &&
306                     volume->devvp->v_rdev->si_mountpoint == hmp->mp
307                 ) {
308                         volume->devvp->v_rdev->si_mountpoint = NULL;
309                 }
310                 if (ronly) {
311                         /*
312                          * Make sure we don't sync anything to disk if we
313                          * are in read-only mode (1) or critically-errored
314                          * (2).  Note that there may be dirty buffers in
315                          * normal read-only mode from crash recovery.
316                          */
317                         vinvalbuf(volume->devvp, 0, 0, 0);
318                         VOP_CLOSE(volume->devvp, FREAD);
319                 } else {
320                         /*
321                          * Normal termination, save any dirty buffers
322                          * (XXX there really shouldn't be any).
323                          */
324                         vinvalbuf(volume->devvp, V_SAVE, 0, 0);
325                         VOP_CLOSE(volume->devvp, FREAD|FWRITE);
326                 }
327         }
328
329         /*
330          * Destroy the structure
331          */
332         RB_REMOVE(hammer_vol_rb_tree, &hmp->rb_vols_root, volume);
333         hammer_free_volume(volume);
334         return(0);
335 }
336
337 static
338 void
339 hammer_free_volume(hammer_volume_t volume)
340 {
341         hammer_mount_t hmp = volume->io.hmp;
342
343         if (volume->vol_name) {
344                 kfree(volume->vol_name, hmp->m_misc);
345                 volume->vol_name = NULL;
346         }
347         if (volume->devvp) {
348                 vrele(volume->devvp);
349                 volume->devvp = NULL;
350         }
351         --hammer_count_volumes;
352         kfree(volume, hmp->m_misc);
353 }
354
355 /*
356  * Get a HAMMER volume.  The volume must already exist.
357  */
358 hammer_volume_t
359 hammer_get_volume(struct hammer_mount *hmp, int32_t vol_no, int *errorp)
360 {
361         struct hammer_volume *volume;
362
363         /*
364          * Locate the volume structure
365          */
366         volume = RB_LOOKUP(hammer_vol_rb_tree, &hmp->rb_vols_root, vol_no);
367         if (volume == NULL) {
368                 *errorp = ENOENT;
369                 return(NULL);
370         }
371         hammer_ref(&volume->io.lock);
372
373         /*
374          * Deal with on-disk info
375          */
376         if (volume->ondisk == NULL || volume->io.loading) {
377                 *errorp = hammer_load_volume(volume);
378                 if (*errorp) {
379                         hammer_rel_volume(volume, 1);
380                         volume = NULL;
381                 }
382         } else {
383                 *errorp = 0;
384         }
385         return(volume);
386 }
387
388 int
389 hammer_ref_volume(hammer_volume_t volume)
390 {
391         int error;
392
393         hammer_ref(&volume->io.lock);
394
395         /*
396          * Deal with on-disk info
397          */
398         if (volume->ondisk == NULL || volume->io.loading) {
399                 error = hammer_load_volume(volume);
400                 if (error)
401                         hammer_rel_volume(volume, 1);
402         } else {
403                 error = 0;
404         }
405         return (error);
406 }
407
408 hammer_volume_t
409 hammer_get_root_volume(struct hammer_mount *hmp, int *errorp)
410 {
411         hammer_volume_t volume;
412
413         volume = hmp->rootvol;
414         KKASSERT(volume != NULL);
415         hammer_ref(&volume->io.lock);
416
417         /*
418          * Deal with on-disk info
419          */
420         if (volume->ondisk == NULL || volume->io.loading) {
421                 *errorp = hammer_load_volume(volume);
422                 if (*errorp) {
423                         hammer_rel_volume(volume, 1);
424                         volume = NULL;
425                 }
426         } else {
427                 *errorp = 0;
428         }
429         return (volume);
430 }
431
432 /*
433  * Load a volume's on-disk information.  The volume must be referenced and
434  * not locked.  We temporarily acquire an exclusive lock to interlock
435  * against releases or multiple get's.
436  */
437 static int
438 hammer_load_volume(hammer_volume_t volume)
439 {
440         int error;
441
442         ++volume->io.loading;
443         hammer_lock_ex(&volume->io.lock);
444
445         if (volume->ondisk == NULL) {
446                 error = hammer_io_read(volume->devvp, &volume->io,
447                                        volume->maxraw_off);
448                 if (error == 0)
449                         volume->ondisk = (void *)volume->io.bp->b_data;
450         } else {
451                 error = 0;
452         }
453         --volume->io.loading;
454         hammer_unlock(&volume->io.lock);
455         return(error);
456 }
457
458 /*
459  * Release a volume.  Call hammer_io_release on the last reference.  We have
460  * to acquire an exclusive lock to interlock against volume->ondisk tests
461  * in hammer_load_volume(), and hammer_io_release() also expects an exclusive
462  * lock to be held.
463  *
464  * Volumes are not unloaded from memory during normal operation.
465  */
466 void
467 hammer_rel_volume(hammer_volume_t volume, int flush)
468 {
469         struct buf *bp = NULL;
470
471         crit_enter();
472         if (volume->io.lock.refs == 1) {
473                 ++volume->io.loading;
474                 hammer_lock_ex(&volume->io.lock);
475                 if (volume->io.lock.refs == 1) {
476                         volume->ondisk = NULL;
477                         bp = hammer_io_release(&volume->io, flush);
478                 }
479                 --volume->io.loading;
480                 hammer_unlock(&volume->io.lock);
481         }
482         hammer_unref(&volume->io.lock);
483         if (bp)
484                 brelse(bp);
485         crit_exit();
486 }
487
488 int
489 hammer_mountcheck_volumes(struct hammer_mount *hmp)
490 {
491         hammer_volume_t vol;
492         int i;
493
494         for (i = 0; i < hmp->nvolumes; ++i) {
495                 vol = RB_LOOKUP(hammer_vol_rb_tree, &hmp->rb_vols_root, i);
496                 if (vol == NULL)
497                         return(EINVAL);
498         }
499         return(0);
500 }
501
502 /************************************************************************
503  *                              BUFFERS                                 *
504  ************************************************************************
505  *
506  * Manage buffers.  Currently all blockmap-backed zones are translated
507  * to zone-2 buffer offsets.
508  */
509 hammer_buffer_t
510 hammer_get_buffer(hammer_mount_t hmp, hammer_off_t buf_offset,
511                   int bytes, int isnew, int *errorp)
512 {
513         hammer_buffer_t buffer;
514         hammer_volume_t volume;
515         hammer_off_t    zone2_offset;
516         hammer_io_type_t iotype;
517         int vol_no;
518         int zone;
519
520         buf_offset &= ~HAMMER_BUFMASK64;
521 again:
522         /*
523          * Shortcut if the buffer is already cached
524          */
525         buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root, buf_offset);
526         if (buffer) {
527                 if (buffer->io.lock.refs == 0)
528                         ++hammer_count_refedbufs;
529                 hammer_ref(&buffer->io.lock);
530
531                 /*
532                  * Once refed the ondisk field will not be cleared by
533                  * any other action.
534                  */
535                 if (buffer->ondisk && buffer->io.loading == 0) {
536                         *errorp = 0;
537                         return(buffer);
538                 }
539
540                 /*
541                  * The buffer is no longer loose if it has a ref, and
542                  * cannot become loose once it gains a ref.  Loose
543                  * buffers will never be in a modified state.  This should
544                  * only occur on the 0->1 transition of refs.
545                  *
546                  * lose_list can be modified via a biodone() interrupt.
547                  */
548                 if (buffer->io.mod_list == &hmp->lose_list) {
549                         crit_enter();   /* biodone race against list */
550                         TAILQ_REMOVE(buffer->io.mod_list, &buffer->io,
551                                      mod_entry);
552                         crit_exit();
553                         buffer->io.mod_list = NULL;
554                         KKASSERT(buffer->io.modified == 0);
555                 }
556                 goto found;
557         }
558
559         /*
560          * What is the buffer class?
561          */
562         zone = HAMMER_ZONE_DECODE(buf_offset);
563
564         switch(zone) {
565         case HAMMER_ZONE_LARGE_DATA_INDEX:
566         case HAMMER_ZONE_SMALL_DATA_INDEX:
567                 iotype = HAMMER_STRUCTURE_DATA_BUFFER;
568                 break;
569         case HAMMER_ZONE_UNDO_INDEX:
570                 iotype = HAMMER_STRUCTURE_UNDO_BUFFER;
571                 break;
572         case HAMMER_ZONE_META_INDEX:
573         default:
574                 /*
575                  * NOTE: inode data and directory entries are placed in this
576                  * zone.  inode atime/mtime is updated in-place and thus
577                  * buffers containing inodes must be synchronized as
578                  * meta-buffers, same as buffers containing B-Tree info.
579                  */
580                 iotype = HAMMER_STRUCTURE_META_BUFFER;
581                 break;
582         }
583
584         /*
585          * Handle blockmap offset translations
586          */
587         if (zone >= HAMMER_ZONE_BTREE_INDEX) {
588                 zone2_offset = hammer_blockmap_lookup(hmp, buf_offset, errorp);
589         } else if (zone == HAMMER_ZONE_UNDO_INDEX) {
590                 zone2_offset = hammer_undo_lookup(hmp, buf_offset, errorp);
591         } else {
592                 KKASSERT(zone == HAMMER_ZONE_RAW_BUFFER_INDEX);
593                 zone2_offset = buf_offset;
594                 *errorp = 0;
595         }
596         if (*errorp)
597                 return(NULL);
598
599         /*
600          * NOTE: zone2_offset and maxbuf_off are both full zone-2 offset
601          * specifications.
602          */
603         KKASSERT((zone2_offset & HAMMER_OFF_ZONE_MASK) ==
604                  HAMMER_ZONE_RAW_BUFFER);
605         vol_no = HAMMER_VOL_DECODE(zone2_offset);
606         volume = hammer_get_volume(hmp, vol_no, errorp);
607         if (volume == NULL)
608                 return(NULL);
609
610         KKASSERT(zone2_offset < volume->maxbuf_off);
611
612         /*
613          * Allocate a new buffer structure.  We will check for races later.
614          */
615         ++hammer_count_buffers;
616         buffer = kmalloc(sizeof(*buffer), hmp->m_misc,
617                          M_WAITOK|M_ZERO|M_USE_RESERVE);
618         buffer->zone2_offset = zone2_offset;
619         buffer->zoneX_offset = buf_offset;
620
621         hammer_io_init(&buffer->io, volume, iotype);
622         buffer->io.offset = volume->ondisk->vol_buf_beg +
623                             (zone2_offset & HAMMER_OFF_SHORT_MASK);
624         buffer->io.bytes = bytes;
625         TAILQ_INIT(&buffer->clist);
626         hammer_ref(&buffer->io.lock);
627
628         /*
629          * Insert the buffer into the RB tree and handle late collisions.
630          */
631         if (RB_INSERT(hammer_buf_rb_tree, &hmp->rb_bufs_root, buffer)) {
632                 hammer_unref(&buffer->io.lock);
633                 --hammer_count_buffers;
634                 kfree(buffer, hmp->m_misc);
635                 goto again;
636         }
637         ++hammer_count_refedbufs;
638 found:
639
640         /*
641          * Deal with on-disk info and loading races.
642          */
643         if (buffer->ondisk == NULL || buffer->io.loading) {
644                 *errorp = hammer_load_buffer(buffer, isnew);
645                 if (*errorp) {
646                         hammer_rel_buffer(buffer, 1);
647                         buffer = NULL;
648                 }
649         } else {
650                 *errorp = 0;
651         }
652         return(buffer);
653 }
654
655 /*
656  * This is used by the direct-read code to deal with large-data buffers
657  * created by the reblocker and mirror-write code.  The direct-read code
658  * bypasses the HAMMER buffer subsystem and so any aliased dirty or write-
659  * running hammer buffers must be fully synced to disk before we can issue
660  * the direct-read.
661  *
662  * This code path is not considered critical as only the rebocker and
663  * mirror-write code will create large-data buffers via the HAMMER buffer
664  * subsystem.  They do that because they operate at the B-Tree level and
665  * do not access the vnode/inode structures.
666  */
667 void
668 hammer_sync_buffers(hammer_mount_t hmp, hammer_off_t base_offset, int bytes)
669 {
670         hammer_buffer_t buffer;
671         int error;
672
673         KKASSERT((base_offset & HAMMER_OFF_ZONE_MASK) ==
674                  HAMMER_ZONE_LARGE_DATA);
675
676         while (bytes > 0) {
677                 buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
678                                    base_offset);
679                 if (buffer && (buffer->io.modified || buffer->io.running)) {
680                         error = hammer_ref_buffer(buffer);
681                         if (error == 0) {
682                                 hammer_io_wait(&buffer->io);
683                                 if (buffer->io.modified) {
684                                         hammer_io_write_interlock(&buffer->io);
685                                         hammer_io_flush(&buffer->io);
686                                         hammer_io_done_interlock(&buffer->io);
687                                         hammer_io_wait(&buffer->io);
688                                 }
689                                 hammer_rel_buffer(buffer, 0);
690                         }
691                 }
692                 base_offset += HAMMER_BUFSIZE;
693                 bytes -= HAMMER_BUFSIZE;
694         }
695 }
696
697 /*
698  * Destroy all buffers covering the specified zoneX offset range.  This
699  * is called when the related blockmap layer2 entry is freed or when
700  * a direct write bypasses our buffer/buffer-cache subsystem.
701  *
702  * The buffers may be referenced by the caller itself.  Setting reclaim
703  * will cause the buffer to be destroyed when it's ref count reaches zero.
704  */
705 void
706 hammer_del_buffers(hammer_mount_t hmp, hammer_off_t base_offset,
707                    hammer_off_t zone2_offset, int bytes)
708 {
709         hammer_buffer_t buffer;
710         hammer_volume_t volume;
711         int vol_no;
712         int error;
713
714         vol_no = HAMMER_VOL_DECODE(zone2_offset);
715         volume = hammer_get_volume(hmp, vol_no, &error);
716         KKASSERT(error == 0);
717
718         while (bytes > 0) {
719                 buffer = RB_LOOKUP(hammer_buf_rb_tree, &hmp->rb_bufs_root,
720                                    base_offset);
721                 if (buffer) {
722                         error = hammer_ref_buffer(buffer);
723                         if (error == 0) {
724                                 KKASSERT(buffer->zone2_offset == zone2_offset);
725                                 hammer_io_clear_modify(&buffer->io, 1);
726                                 buffer->io.reclaim = 1;
727                                 buffer->io.waitdep = 1;
728                                 KKASSERT(buffer->io.volume == volume);
729                                 hammer_rel_buffer(buffer, 0);
730                         }
731                 } else {
732                         hammer_io_inval(volume, zone2_offset);
733                 }
734                 base_offset += HAMMER_BUFSIZE;
735                 zone2_offset += HAMMER_BUFSIZE;
736                 bytes -= HAMMER_BUFSIZE;
737         }
738         hammer_rel_volume(volume, 0);
739 }
740
741 static int
742 hammer_load_buffer(hammer_buffer_t buffer, int isnew)
743 {
744         hammer_volume_t volume;
745         int error;
746
747         /*
748          * Load the buffer's on-disk info
749          */
750         volume = buffer->io.volume;
751         ++buffer->io.loading;
752         hammer_lock_ex(&buffer->io.lock);
753
754         if (hammer_debug_io & 0x0001) {
755                 kprintf("load_buffer %016llx %016llx isnew=%d od=%p\n",
756                         buffer->zoneX_offset, buffer->zone2_offset, isnew,
757                         buffer->ondisk);
758         }
759
760         if (buffer->ondisk == NULL) {
761                 if (isnew) {
762                         error = hammer_io_new(volume->devvp, &buffer->io);
763                 } else {
764                         error = hammer_io_read(volume->devvp, &buffer->io,
765                                                volume->maxraw_off);
766                 }
767                 if (error == 0)
768                         buffer->ondisk = (void *)buffer->io.bp->b_data;
769         } else if (isnew) {
770                 error = hammer_io_new(volume->devvp, &buffer->io);
771         } else {
772                 error = 0;
773         }
774         --buffer->io.loading;
775         hammer_unlock(&buffer->io.lock);
776         return (error);
777 }
778
779 /*
780  * NOTE: Called from RB_SCAN, must return >= 0 for scan to continue.
781  * This routine is only called during unmount.
782  */
783 int
784 hammer_unload_buffer(hammer_buffer_t buffer, void *data __unused)
785 {
786         /*
787          * Clean up the persistent ref ioerror might have on the buffer
788          * and acquire a ref (steal ioerror's if we can).
789          */
790         if (buffer->io.ioerror) {
791                 buffer->io.ioerror = 0;
792         } else {
793                 if (buffer->io.lock.refs == 0)
794                         ++hammer_count_refedbufs;
795                 hammer_ref(&buffer->io.lock);
796         }
797
798         /*
799          * We must not flush a dirty buffer to disk on umount.  It should
800          * have already been dealt with by the flusher, or we may be in
801          * catastrophic failure.
802          */
803         hammer_io_clear_modify(&buffer->io, 1);
804         hammer_flush_buffer_nodes(buffer);
805         KKASSERT(buffer->io.lock.refs == 1);
806         hammer_rel_buffer(buffer, 2);
807         return(0);
808 }
809
810 /*
811  * Reference a buffer that is either already referenced or via a specially
812  * handled pointer (aka cursor->buffer).
813  */
814 int
815 hammer_ref_buffer(hammer_buffer_t buffer)
816 {
817         int error;
818
819         if (buffer->io.lock.refs == 0)
820                 ++hammer_count_refedbufs;
821         hammer_ref(&buffer->io.lock);
822
823         /*
824          * At this point a biodone() will not touch the buffer other then
825          * incidental bits.  However, lose_list can be modified via
826          * a biodone() interrupt.
827          *
828          * No longer loose
829          */
830         if (buffer->io.mod_list == &buffer->io.hmp->lose_list) {
831                 crit_enter();
832                 TAILQ_REMOVE(buffer->io.mod_list, &buffer->io, mod_entry);
833                 buffer->io.mod_list = NULL;
834                 crit_exit();
835         }
836
837         if (buffer->ondisk == NULL || buffer->io.loading) {
838                 error = hammer_load_buffer(buffer, 0);
839                 if (error) {
840                         hammer_rel_buffer(buffer, 1);
841                         /*
842                          * NOTE: buffer pointer can become stale after
843                          * the above release.
844                          */
845                 }
846         } else {
847                 error = 0;
848         }
849         return(error);
850 }
851
852 /*
853  * Release a buffer.  We have to deal with several places where
854  * another thread can ref the buffer.
855  *
856  * Only destroy the structure itself if the related buffer cache buffer
857  * was disassociated from it.  This ties the management of the structure
858  * to the buffer cache subsystem.  buffer->ondisk determines whether the
859  * embedded io is referenced or not.
860  */
861 void
862 hammer_rel_buffer(hammer_buffer_t buffer, int flush)
863 {
864         hammer_volume_t volume;
865         hammer_mount_t hmp;
866         struct buf *bp = NULL;
867         int freeme = 0;
868
869         hmp = buffer->io.hmp;
870
871         crit_enter();
872         if (buffer->io.lock.refs == 1) {
873                 ++buffer->io.loading;   /* force interlock check */
874                 hammer_lock_ex(&buffer->io.lock);
875                 if (buffer->io.lock.refs == 1) {
876                         bp = hammer_io_release(&buffer->io, flush);
877
878                         if (buffer->io.lock.refs == 1)
879                                 --hammer_count_refedbufs;
880
881                         if (buffer->io.bp == NULL &&
882                             buffer->io.lock.refs == 1) {
883                                 /*
884                                  * Final cleanup
885                                  *
886                                  * NOTE: It is impossible for any associated
887                                  * B-Tree nodes to have refs if the buffer
888                                  * has no additional refs.
889                                  */
890                                 RB_REMOVE(hammer_buf_rb_tree,
891                                           &buffer->io.hmp->rb_bufs_root,
892                                           buffer);
893                                 volume = buffer->io.volume;
894                                 buffer->io.volume = NULL; /* sanity */
895                                 hammer_rel_volume(volume, 0);
896                                 hammer_io_clear_modlist(&buffer->io);
897                                 hammer_flush_buffer_nodes(buffer);
898                                 KKASSERT(TAILQ_EMPTY(&buffer->clist));
899                                 freeme = 1;
900                         }
901                 }
902                 --buffer->io.loading;
903                 hammer_unlock(&buffer->io.lock);
904         }
905         hammer_unref(&buffer->io.lock);
906         crit_exit();
907         if (bp)
908                 brelse(bp);
909         if (freeme) {
910                 --hammer_count_buffers;
911                 kfree(buffer, hmp->m_misc);
912         }
913 }
914
915 /*
916  * Access the filesystem buffer containing the specified hammer offset.
917  * buf_offset is a conglomeration of the volume number and vol_buf_beg
918  * relative buffer offset.  It must also have bit 55 set to be valid.
919  * (see hammer_off_t in hammer_disk.h).
920  *
921  * Any prior buffer in *bufferp will be released and replaced by the
922  * requested buffer.
923  */
924 static __inline
925 void *
926 _hammer_bread(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
927              int *errorp, struct hammer_buffer **bufferp)
928 {
929         hammer_buffer_t buffer;
930         int32_t xoff = (int32_t)buf_offset & HAMMER_BUFMASK;
931
932         buf_offset &= ~HAMMER_BUFMASK64;
933         KKASSERT((buf_offset & HAMMER_OFF_ZONE_MASK) != 0);
934
935         buffer = *bufferp;
936         if (buffer == NULL || (buffer->zone2_offset != buf_offset &&
937                                buffer->zoneX_offset != buf_offset)) {
938                 if (buffer)
939                         hammer_rel_buffer(buffer, 0);
940                 buffer = hammer_get_buffer(hmp, buf_offset, bytes, 0, errorp);
941                 *bufferp = buffer;
942         } else {
943                 *errorp = 0;
944         }
945
946         /*
947          * Return a pointer to the buffer data.
948          */
949         if (buffer == NULL)
950                 return(NULL);
951         else
952                 return((char *)buffer->ondisk + xoff);
953 }
954
955 void *
956 hammer_bread(hammer_mount_t hmp, hammer_off_t buf_offset,
957              int *errorp, struct hammer_buffer **bufferp)
958 {
959         return(_hammer_bread(hmp, buf_offset, HAMMER_BUFSIZE, errorp, bufferp));
960 }
961
962 void *
963 hammer_bread_ext(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
964                  int *errorp, struct hammer_buffer **bufferp)
965 {
966         bytes = (bytes + HAMMER_BUFMASK) & ~HAMMER_BUFMASK;
967         return(_hammer_bread(hmp, buf_offset, bytes, errorp, bufferp));
968 }
969
970 /*
971  * Access the filesystem buffer containing the specified hammer offset.
972  * No disk read operation occurs.  The result buffer may contain garbage.
973  *
974  * Any prior buffer in *bufferp will be released and replaced by the
975  * requested buffer.
976  *
977  * This function marks the buffer dirty but does not increment its
978  * modify_refs count.
979  */
980 static __inline
981 void *
982 _hammer_bnew(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
983              int *errorp, struct hammer_buffer **bufferp)
984 {
985         hammer_buffer_t buffer;
986         int32_t xoff = (int32_t)buf_offset & HAMMER_BUFMASK;
987
988         buf_offset &= ~HAMMER_BUFMASK64;
989
990         buffer = *bufferp;
991         if (buffer == NULL || (buffer->zone2_offset != buf_offset &&
992                                buffer->zoneX_offset != buf_offset)) {
993                 if (buffer)
994                         hammer_rel_buffer(buffer, 0);
995                 buffer = hammer_get_buffer(hmp, buf_offset, bytes, 1, errorp);
996                 *bufferp = buffer;
997         } else {
998                 *errorp = 0;
999         }
1000
1001         /*
1002          * Return a pointer to the buffer data.
1003          */
1004         if (buffer == NULL)
1005                 return(NULL);
1006         else
1007                 return((char *)buffer->ondisk + xoff);
1008 }
1009
1010 void *
1011 hammer_bnew(hammer_mount_t hmp, hammer_off_t buf_offset,
1012              int *errorp, struct hammer_buffer **bufferp)
1013 {
1014         return(_hammer_bnew(hmp, buf_offset, HAMMER_BUFSIZE, errorp, bufferp));
1015 }
1016
1017 void *
1018 hammer_bnew_ext(hammer_mount_t hmp, hammer_off_t buf_offset, int bytes,
1019                 int *errorp, struct hammer_buffer **bufferp)
1020 {
1021         bytes = (bytes + HAMMER_BUFMASK) & ~HAMMER_BUFMASK;
1022         return(_hammer_bnew(hmp, buf_offset, bytes, errorp, bufferp));
1023 }
1024
1025 /************************************************************************
1026  *                              NODES                                   *
1027  ************************************************************************
1028  *
1029  * Manage B-Tree nodes.  B-Tree nodes represent the primary indexing
1030  * method used by the HAMMER filesystem.
1031  *
1032  * Unlike other HAMMER structures, a hammer_node can be PASSIVELY
1033  * associated with its buffer, and will only referenced the buffer while
1034  * the node itself is referenced.
1035  *
1036  * A hammer_node can also be passively associated with other HAMMER
1037  * structures, such as inodes, while retaining 0 references.  These
1038  * associations can be cleared backwards using a pointer-to-pointer in
1039  * the hammer_node.
1040  *
1041  * This allows the HAMMER implementation to cache hammer_nodes long-term
1042  * and short-cut a great deal of the infrastructure's complexity.  In
1043  * most cases a cached node can be reacquired without having to dip into
1044  * either the buffer or cluster management code.
1045  *
1046  * The caller must pass a referenced cluster on call and will retain
1047  * ownership of the reference on return.  The node will acquire its own
1048  * additional references, if necessary.
1049  */
1050 hammer_node_t
1051 hammer_get_node(hammer_transaction_t trans, hammer_off_t node_offset,
1052                 int isnew, int *errorp)
1053 {
1054         hammer_mount_t hmp = trans->hmp;
1055         hammer_node_t node;
1056
1057         KKASSERT((node_offset & HAMMER_OFF_ZONE_MASK) == HAMMER_ZONE_BTREE);
1058
1059         /*
1060          * Locate the structure, allocating one if necessary.
1061          */
1062 again:
1063         node = RB_LOOKUP(hammer_nod_rb_tree, &hmp->rb_nods_root, node_offset);
1064         if (node == NULL) {
1065                 ++hammer_count_nodes;
1066                 node = kmalloc(sizeof(*node), hmp->m_misc, M_WAITOK|M_ZERO|M_USE_RESERVE);
1067                 node->node_offset = node_offset;
1068                 node->hmp = hmp;
1069                 TAILQ_INIT(&node->cursor_list);
1070                 TAILQ_INIT(&node->cache_list);
1071                 if (RB_INSERT(hammer_nod_rb_tree, &hmp->rb_nods_root, node)) {
1072                         --hammer_count_nodes;
1073                         kfree(node, hmp->m_misc);
1074                         goto again;
1075                 }
1076         }
1077         hammer_ref(&node->lock);
1078         if (node->ondisk) {
1079                 *errorp = 0;
1080         } else {
1081                 *errorp = hammer_load_node(node, isnew);
1082                 trans->flags |= HAMMER_TRANSF_DIDIO;
1083         }
1084         if (*errorp) {
1085                 hammer_rel_node(node);
1086                 node = NULL;
1087         }
1088         return(node);
1089 }
1090
1091 /*
1092  * Reference an already-referenced node.
1093  */
1094 void
1095 hammer_ref_node(hammer_node_t node)
1096 {
1097         KKASSERT(node->lock.refs > 0 && node->ondisk != NULL);
1098         hammer_ref(&node->lock);
1099 }
1100
1101 /*
1102  * Load a node's on-disk data reference.
1103  */
1104 static int
1105 hammer_load_node(hammer_node_t node, int isnew)
1106 {
1107         hammer_buffer_t buffer;
1108         hammer_off_t buf_offset;
1109         int error;
1110
1111         error = 0;
1112         ++node->loading;
1113         hammer_lock_ex(&node->lock);
1114         if (node->ondisk == NULL) {
1115                 /*
1116                  * This is a little confusing but the jist is that
1117                  * node->buffer determines whether the node is on
1118                  * the buffer's clist and node->ondisk determines
1119                  * whether the buffer is referenced.
1120                  *
1121                  * We could be racing a buffer release, in which case
1122                  * node->buffer may become NULL while we are blocked
1123                  * referencing the buffer.
1124                  */
1125                 if ((buffer = node->buffer) != NULL) {
1126                         error = hammer_ref_buffer(buffer);
1127                         if (error == 0 && node->buffer == NULL) {
1128                                 TAILQ_INSERT_TAIL(&buffer->clist,
1129                                                   node, entry);
1130                                 node->buffer = buffer;
1131                         }
1132                 } else {
1133                         buf_offset = node->node_offset & ~HAMMER_BUFMASK64;
1134                         buffer = hammer_get_buffer(node->hmp, buf_offset,
1135                                                    HAMMER_BUFSIZE, 0, &error);
1136                         if (buffer) {
1137                                 KKASSERT(error == 0);
1138                                 TAILQ_INSERT_TAIL(&buffer->clist,
1139                                                   node, entry);
1140                                 node->buffer = buffer;
1141                         }
1142                 }
1143                 if (error)
1144                         goto failed;
1145                 node->ondisk = (void *)((char *)buffer->ondisk +
1146                                         (node->node_offset & HAMMER_BUFMASK));
1147                 if (isnew == 0 && 
1148                     (node->flags & HAMMER_NODE_CRCGOOD) == 0) {
1149                         if (hammer_crc_test_btree(node->ondisk) == 0)
1150                                 Debugger("CRC FAILED: B-TREE NODE");
1151                         node->flags |= HAMMER_NODE_CRCGOOD;
1152                 }
1153         }
1154 failed:
1155         --node->loading;
1156         hammer_unlock(&node->lock);
1157         return (error);
1158 }
1159
1160 /*
1161  * Safely reference a node, interlock against flushes via the IO subsystem.
1162  */
1163 hammer_node_t
1164 hammer_ref_node_safe(struct hammer_mount *hmp, hammer_node_cache_t cache,
1165                      int *errorp)
1166 {
1167         hammer_node_t node;
1168
1169         node = cache->node;
1170         if (node != NULL) {
1171                 hammer_ref(&node->lock);
1172                 if (node->ondisk)
1173                         *errorp = 0;
1174                 else
1175                         *errorp = hammer_load_node(node, 0);
1176                 if (*errorp) {
1177                         hammer_rel_node(node);
1178                         node = NULL;
1179                 }
1180         } else {
1181                 *errorp = ENOENT;
1182         }
1183         return(node);
1184 }
1185
1186 /*
1187  * Release a hammer_node.  On the last release the node dereferences
1188  * its underlying buffer and may or may not be destroyed.
1189  */
1190 void
1191 hammer_rel_node(hammer_node_t node)
1192 {
1193         hammer_buffer_t buffer;
1194
1195         /*
1196          * If this isn't the last ref just decrement the ref count and
1197          * return.
1198          */
1199         if (node->lock.refs > 1) {
1200                 hammer_unref(&node->lock);
1201                 return;
1202         }
1203
1204         /*
1205          * If there is no ondisk info or no buffer the node failed to load,
1206          * remove the last reference and destroy the node.
1207          */
1208         if (node->ondisk == NULL) {
1209                 hammer_unref(&node->lock);
1210                 hammer_flush_node(node);
1211                 /* node is stale now */
1212                 return;
1213         }
1214
1215         /*
1216          * Do not disassociate the node from the buffer if it represents
1217          * a modified B-Tree node that still needs its crc to be generated.
1218          */
1219         if (node->flags & HAMMER_NODE_NEEDSCRC)
1220                 return;
1221
1222         /*
1223          * Do final cleanups and then either destroy the node and leave it
1224          * passively cached.  The buffer reference is removed regardless.
1225          */
1226         buffer = node->buffer;
1227         node->ondisk = NULL;
1228
1229         if ((node->flags & HAMMER_NODE_FLUSH) == 0) {
1230                 hammer_unref(&node->lock);
1231                 hammer_rel_buffer(buffer, 0);
1232                 return;
1233         }
1234
1235         /*
1236          * Destroy the node.
1237          */
1238         hammer_unref(&node->lock);
1239         hammer_flush_node(node);
1240         /* node is stale */
1241         hammer_rel_buffer(buffer, 0);
1242 }
1243
1244 /*
1245  * Free space on-media associated with a B-Tree node.
1246  */
1247 void
1248 hammer_delete_node(hammer_transaction_t trans, hammer_node_t node)
1249 {
1250         KKASSERT((node->flags & HAMMER_NODE_DELETED) == 0);
1251         node->flags |= HAMMER_NODE_DELETED;
1252         hammer_blockmap_free(trans, node->node_offset, sizeof(*node->ondisk));
1253 }
1254
1255 /*
1256  * Passively cache a referenced hammer_node.  The caller may release
1257  * the node on return.
1258  */
1259 void
1260 hammer_cache_node(hammer_node_cache_t cache, hammer_node_t node)
1261 {
1262         /*
1263          * If the node doesn't exist, or is being deleted, don't cache it!
1264          *
1265          * The node can only ever be NULL in the I/O failure path.
1266          */
1267         if (node == NULL || (node->flags & HAMMER_NODE_DELETED))
1268                 return;
1269         if (cache->node == node)
1270                 return;
1271         while (cache->node)
1272                 hammer_uncache_node(cache);
1273         if (node->flags & HAMMER_NODE_DELETED)
1274                 return;
1275         cache->node = node;
1276         TAILQ_INSERT_TAIL(&node->cache_list, cache, entry);
1277 }
1278
1279 void
1280 hammer_uncache_node(hammer_node_cache_t cache)
1281 {
1282         hammer_node_t node;
1283
1284         if ((node = cache->node) != NULL) {
1285                 TAILQ_REMOVE(&node->cache_list, cache, entry);
1286                 cache->node = NULL;
1287                 if (TAILQ_EMPTY(&node->cache_list))
1288                         hammer_flush_node(node);
1289         }
1290 }
1291
1292 /*
1293  * Remove a node's cache references and destroy the node if it has no
1294  * other references or backing store.
1295  */
1296 void
1297 hammer_flush_node(hammer_node_t node)
1298 {
1299         hammer_node_cache_t cache;
1300         hammer_buffer_t buffer;
1301         hammer_mount_t hmp = node->hmp;
1302
1303         while ((cache = TAILQ_FIRST(&node->cache_list)) != NULL) {
1304                 TAILQ_REMOVE(&node->cache_list, cache, entry);
1305                 cache->node = NULL;
1306         }
1307         if (node->lock.refs == 0 && node->ondisk == NULL) {
1308                 KKASSERT((node->flags & HAMMER_NODE_NEEDSCRC) == 0);
1309                 RB_REMOVE(hammer_nod_rb_tree, &node->hmp->rb_nods_root, node);
1310                 if ((buffer = node->buffer) != NULL) {
1311                         node->buffer = NULL;
1312                         TAILQ_REMOVE(&buffer->clist, node, entry);
1313                         /* buffer is unreferenced because ondisk is NULL */
1314                 }
1315                 --hammer_count_nodes;
1316                 kfree(node, hmp->m_misc);
1317         }
1318 }
1319
1320 /*
1321  * Flush passively cached B-Tree nodes associated with this buffer.
1322  * This is only called when the buffer is about to be destroyed, so
1323  * none of the nodes should have any references.  The buffer is locked.
1324  *
1325  * We may be interlocked with the buffer.
1326  */
1327 void
1328 hammer_flush_buffer_nodes(hammer_buffer_t buffer)
1329 {
1330         hammer_node_t node;
1331
1332         while ((node = TAILQ_FIRST(&buffer->clist)) != NULL) {
1333                 KKASSERT(node->ondisk == NULL);
1334                 KKASSERT((node->flags & HAMMER_NODE_NEEDSCRC) == 0);
1335
1336                 if (node->lock.refs == 0) {
1337                         hammer_ref(&node->lock);
1338                         node->flags |= HAMMER_NODE_FLUSH;
1339                         hammer_rel_node(node);
1340                 } else {
1341                         KKASSERT(node->loading != 0);
1342                         KKASSERT(node->buffer != NULL);
1343                         buffer = node->buffer;
1344                         node->buffer = NULL;
1345                         TAILQ_REMOVE(&buffer->clist, node, entry);
1346                         /* buffer is unreferenced because ondisk is NULL */
1347                 }
1348         }
1349 }
1350
1351
1352 /************************************************************************
1353  *                              ALLOCATORS                              *
1354  ************************************************************************/
1355
1356 /*
1357  * Allocate a B-Tree node.
1358  */
1359 hammer_node_t
1360 hammer_alloc_btree(hammer_transaction_t trans, int *errorp)
1361 {
1362         hammer_buffer_t buffer = NULL;
1363         hammer_node_t node = NULL;
1364         hammer_off_t node_offset;
1365
1366         node_offset = hammer_blockmap_alloc(trans, HAMMER_ZONE_BTREE_INDEX,
1367                                             sizeof(struct hammer_node_ondisk),
1368                                             errorp);
1369         if (*errorp == 0) {
1370                 node = hammer_get_node(trans, node_offset, 1, errorp);
1371                 hammer_modify_node_noundo(trans, node);
1372                 bzero(node->ondisk, sizeof(*node->ondisk));
1373                 hammer_modify_node_done(node);
1374         }
1375         if (buffer)
1376                 hammer_rel_buffer(buffer, 0);
1377         return(node);
1378 }
1379
1380 /*
1381  * Allocate data.  If the address of a data buffer is supplied then
1382  * any prior non-NULL *data_bufferp will be released and *data_bufferp
1383  * will be set to the related buffer.  The caller must release it when
1384  * finally done.  The initial *data_bufferp should be set to NULL by
1385  * the caller.
1386  *
1387  * The caller is responsible for making hammer_modify*() calls on the
1388  * *data_bufferp.
1389  */
1390 void *
1391 hammer_alloc_data(hammer_transaction_t trans, int32_t data_len, 
1392                   u_int16_t rec_type, hammer_off_t *data_offsetp,
1393                   struct hammer_buffer **data_bufferp, int *errorp)
1394 {
1395         void *data;
1396         int zone;
1397
1398         /*
1399          * Allocate data
1400          */
1401         if (data_len) {
1402                 switch(rec_type) {
1403                 case HAMMER_RECTYPE_INODE:
1404                 case HAMMER_RECTYPE_DIRENTRY:
1405                 case HAMMER_RECTYPE_EXT:
1406                 case HAMMER_RECTYPE_FIX:
1407                 case HAMMER_RECTYPE_PFS:
1408                         zone = HAMMER_ZONE_META_INDEX;
1409                         break;
1410                 case HAMMER_RECTYPE_DATA:
1411                 case HAMMER_RECTYPE_DB:
1412                         if (data_len <= HAMMER_BUFSIZE / 2) {
1413                                 zone = HAMMER_ZONE_SMALL_DATA_INDEX;
1414                         } else {
1415                                 data_len = (data_len + HAMMER_BUFMASK) &
1416                                            ~HAMMER_BUFMASK;
1417                                 zone = HAMMER_ZONE_LARGE_DATA_INDEX;
1418                         }
1419                         break;
1420                 default:
1421                         panic("hammer_alloc_data: rec_type %04x unknown",
1422                               rec_type);
1423                         zone = 0;       /* NOT REACHED */
1424                         break;
1425                 }
1426                 *data_offsetp = hammer_blockmap_alloc(trans, zone,
1427                                                       data_len, errorp);
1428         } else {
1429                 *data_offsetp = 0;
1430         }
1431         if (*errorp == 0 && data_bufferp) {
1432                 if (data_len) {
1433                         data = hammer_bread_ext(trans->hmp, *data_offsetp,
1434                                                 data_len, errorp, data_bufferp);
1435                 } else {
1436                         data = NULL;
1437                 }
1438         } else {
1439                 data = NULL;
1440         }
1441         return(data);
1442 }
1443
1444 /*
1445  * Sync dirty buffers to the media and clean-up any loose ends.
1446  *
1447  * These functions do not start the flusher going, they simply
1448  * queue everything up to the flusher.
1449  */
1450 static int hammer_sync_scan1(struct mount *mp, struct vnode *vp, void *data);
1451 static int hammer_sync_scan2(struct mount *mp, struct vnode *vp, void *data);
1452
1453 int
1454 hammer_queue_inodes_flusher(hammer_mount_t hmp, int waitfor)
1455 {
1456         struct hammer_sync_info info;
1457
1458         info.error = 0;
1459         info.waitfor = waitfor;
1460         if (waitfor == MNT_WAIT) {
1461                 vmntvnodescan(hmp->mp, VMSC_GETVP|VMSC_ONEPASS,
1462                               hammer_sync_scan1, hammer_sync_scan2, &info);
1463         } else {
1464                 vmntvnodescan(hmp->mp, VMSC_GETVP|VMSC_ONEPASS|VMSC_NOWAIT,
1465                               hammer_sync_scan1, hammer_sync_scan2, &info);
1466         }
1467         return(info.error);
1468 }
1469
1470 /*
1471  * Filesystem sync.  If doing a synchronous sync make a second pass on
1472  * the vnodes in case any were already flushing during the first pass,
1473  * and activate the flusher twice (the second time brings the UNDO FIFO's
1474  * start position up to the end position after the first call).
1475  */
1476 int
1477 hammer_sync_hmp(hammer_mount_t hmp, int waitfor)
1478 {
1479         struct hammer_sync_info info;
1480
1481         info.error = 0;
1482         info.waitfor = MNT_NOWAIT;
1483         vmntvnodescan(hmp->mp, VMSC_GETVP|VMSC_NOWAIT,
1484                       hammer_sync_scan1, hammer_sync_scan2, &info);
1485         if (info.error == 0 && waitfor == MNT_WAIT) {
1486                 info.waitfor = waitfor;
1487                 vmntvnodescan(hmp->mp, VMSC_GETVP,
1488                               hammer_sync_scan1, hammer_sync_scan2, &info);
1489         }
1490         if (waitfor == MNT_WAIT) {
1491                 hammer_flusher_sync(hmp);
1492                 hammer_flusher_sync(hmp);
1493         } else {
1494                 hammer_flusher_async(hmp, NULL);
1495                 hammer_flusher_async(hmp, NULL);
1496         }
1497         return(info.error);
1498 }
1499
1500 static int
1501 hammer_sync_scan1(struct mount *mp, struct vnode *vp, void *data)
1502 {
1503         struct hammer_inode *ip;
1504
1505         ip = VTOI(vp);
1506         if (vp->v_type == VNON || ip == NULL ||
1507             ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1508              RB_EMPTY(&vp->v_rbdirty_tree))) {
1509                 return(-1);
1510         }
1511         return(0);
1512 }
1513
1514 static int
1515 hammer_sync_scan2(struct mount *mp, struct vnode *vp, void *data)
1516 {
1517         struct hammer_sync_info *info = data;
1518         struct hammer_inode *ip;
1519         int error;
1520
1521         ip = VTOI(vp);
1522         if (vp->v_type == VNON || vp->v_type == VBAD ||
1523             ((ip->flags & HAMMER_INODE_MODMASK) == 0 &&
1524              RB_EMPTY(&vp->v_rbdirty_tree))) {
1525                 return(0);
1526         }
1527         error = VOP_FSYNC(vp, MNT_NOWAIT);
1528         if (error)
1529                 info->error = error;
1530         return(0);
1531 }
1532