2 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved.
3 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved.
5 * This code is derived from software contributed to The DragonFly Project
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of The DragonFly Project nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific, prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved.
37 * License terms: all terms for the DragonFly license above plus the following:
39 * 4. All advertising materials mentioning features or use of this software
40 * must display the following acknowledgement:
42 * This product includes software developed by Jeffrey M. Hsu
43 * for the DragonFly Project.
45 * This requirement may be waived with permission from Jeffrey Hsu.
46 * This requirement will sunset and may be removed on July 8 2005,
47 * after which the standard DragonFly license (as shown above) will
52 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
53 * The Regents of the University of California. All rights reserved.
55 * Redistribution and use in source and binary forms, with or without
56 * modification, are permitted provided that the following conditions
58 * 1. Redistributions of source code must retain the above copyright
59 * notice, this list of conditions and the following disclaimer.
60 * 2. Redistributions in binary form must reproduce the above copyright
61 * notice, this list of conditions and the following disclaimer in the
62 * documentation and/or other materials provided with the distribution.
63 * 3. All advertising materials mentioning features or use of this software
64 * must display the following acknowledgement:
65 * This product includes software developed by the University of
66 * California, Berkeley and its contributors.
67 * 4. Neither the name of the University nor the names of its contributors
68 * may be used to endorse or promote products derived from this software
69 * without specific prior written permission.
71 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
72 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
74 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
75 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
76 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
77 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
78 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
79 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
80 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
83 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
84 * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.31 2003/01/24 05:11:34 sam Exp $
85 * $DragonFly: src/sys/netinet/tcp_subr.c,v 1.42 2004/12/20 11:03:16 joerg Exp $
88 #include "opt_compat.h"
89 #include "opt_inet6.h"
90 #include "opt_ipsec.h"
91 #include "opt_tcpdebug.h"
93 #include <sys/param.h>
94 #include <sys/systm.h>
95 #include <sys/callout.h>
96 #include <sys/kernel.h>
97 #include <sys/sysctl.h>
98 #include <sys/malloc.h>
99 #include <sys/mpipe.h>
100 #include <sys/mbuf.h>
102 #include <sys/domain.h>
104 #include <sys/proc.h>
105 #include <sys/socket.h>
106 #include <sys/socketvar.h>
107 #include <sys/protosw.h>
108 #include <sys/random.h>
109 #include <sys/in_cksum.h>
111 #include <vm/vm_zone.h>
113 #include <net/route.h>
115 #include <net/netisr.h>
118 #include <netinet/in.h>
119 #include <netinet/in_systm.h>
120 #include <netinet/ip.h>
121 #include <netinet/ip6.h>
122 #include <netinet/in_pcb.h>
123 #include <netinet6/in6_pcb.h>
124 #include <netinet/in_var.h>
125 #include <netinet/ip_var.h>
126 #include <netinet6/ip6_var.h>
127 #include <netinet/tcp.h>
128 #include <netinet/tcp_fsm.h>
129 #include <netinet/tcp_seq.h>
130 #include <netinet/tcp_timer.h>
131 #include <netinet/tcp_var.h>
132 #include <netinet6/tcp6_var.h>
133 #include <netinet/tcpip.h>
135 #include <netinet/tcp_debug.h>
137 #include <netinet6/ip6protosw.h>
140 #include <netinet6/ipsec.h>
142 #include <netinet6/ipsec6.h>
147 #include <netproto/ipsec/ipsec.h>
149 #include <netproto/ipsec/ipsec6.h>
156 #include <sys/msgport2.h>
158 #include <machine/smp.h>
160 struct inpcbinfo tcbinfo[MAXCPU];
161 struct tcpcbackqhead tcpcbackq[MAXCPU];
163 int tcp_mssdflt = TCP_MSS;
164 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
165 &tcp_mssdflt, 0, "Default TCP Maximum Segment Size");
168 int tcp_v6mssdflt = TCP6_MSS;
169 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt, CTLFLAG_RW,
170 &tcp_v6mssdflt, 0, "Default TCP Maximum Segment Size for IPv6");
174 static int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
175 SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
176 &tcp_rttdflt, 0, "Default maximum TCP Round Trip Time");
179 int tcp_do_rfc1323 = 1;
180 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
181 &tcp_do_rfc1323, 0, "Enable rfc1323 (high performance TCP) extensions");
183 int tcp_do_rfc1644 = 0;
184 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW,
185 &tcp_do_rfc1644, 0, "Enable rfc1644 (TTCP) extensions");
187 static int tcp_tcbhashsize = 0;
188 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD,
189 &tcp_tcbhashsize, 0, "Size of TCP control block hashtable");
191 static int do_tcpdrain = 1;
192 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
193 "Enable tcp_drain routine for extra help when low on mbufs");
196 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
197 &tcbinfo[0].ipi_count, 0, "Number of active PCBs");
199 static int icmp_may_rst = 1;
200 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
201 "Certain ICMP unreachable messages may abort connections in SYN_SENT");
203 static int tcp_isn_reseed_interval = 0;
204 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
205 &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
208 * TCP bandwidth limiting sysctls. Note that the default lower bound of
209 * 1024 exists only for debugging. A good production default would be
210 * something like 6100.
212 static int tcp_inflight_enable = 0;
213 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_enable, CTLFLAG_RW,
214 &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
216 static int tcp_inflight_debug = 0;
217 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_debug, CTLFLAG_RW,
218 &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
220 static int tcp_inflight_min = 6144;
221 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_min, CTLFLAG_RW,
222 &tcp_inflight_min, 0, "Lower bound for TCP inflight window");
224 static int tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
225 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_max, CTLFLAG_RW,
226 &tcp_inflight_max, 0, "Upper bound for TCP inflight window");
228 static int tcp_inflight_stab = 20;
229 SYSCTL_INT(_net_inet_tcp, OID_AUTO, inflight_stab, CTLFLAG_RW,
230 &tcp_inflight_stab, 0, "Slop in maximal packets / 10 (20 = 2 packets)");
232 static MALLOC_DEFINE(M_TCPTEMP, "tcptemp", "TCP Templates for Keepalives");
233 static struct malloc_pipe tcptemp_mpipe;
235 static void tcp_willblock(void);
236 static void tcp_cleartaocache (void);
237 static void tcp_notify (struct inpcb *, int);
239 struct tcp_stats tcpstats_ary[MAXCPU];
242 sysctl_tcpstats(SYSCTL_HANDLER_ARGS)
246 for (cpu = 0; cpu < ncpus; ++cpu) {
247 if ((error = SYSCTL_OUT(req, (void *)&tcpstats_ary[cpu],
248 sizeof(struct tcp_stats))))
250 if ((error = SYSCTL_IN(req, (void *)&tcpstats_ary[cpu],
251 sizeof(struct tcp_stats))))
257 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
258 0, 0, sysctl_tcpstats, "S,tcp_stats", "TCP statistics");
260 SYSCTL_STRUCT(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RW,
261 &tcpstat, tcp_stats, "TCP statistics");
265 * Target size of TCP PCB hash tables. Must be a power of two.
267 * Note that this can be overridden by the kernel environment
268 * variable net.inet.tcp.tcbhashsize
271 #define TCBHASHSIZE 512
275 * This is the actual shape of what we allocate using the zone
276 * allocator. Doing it this way allows us to protect both structures
277 * using the same generation count, and also eliminates the overhead
278 * of allocating tcpcbs separately. By hiding the structure here,
279 * we avoid changing most of the rest of the code (although it needs
280 * to be changed, eventually, for greater efficiency).
283 #define ALIGNM1 (ALIGNMENT - 1)
287 char align[(sizeof(struct inpcb) + ALIGNM1) & ~ALIGNM1];
290 struct callout inp_tp_rexmt, inp_tp_persist, inp_tp_keep, inp_tp_2msl;
291 struct callout inp_tp_delack;
302 struct inpcbporthead *porthashbase;
304 struct vm_zone *ipi_zone;
305 int hashsize = TCBHASHSIZE;
309 * note: tcptemp is used for keepalives, and it is ok for an
310 * allocation to fail so do not specify MPF_INT.
312 mpipe_init(&tcptemp_mpipe, M_TCPTEMP, sizeof(struct tcptemp),
318 tcp_delacktime = TCPTV_DELACK;
319 tcp_keepinit = TCPTV_KEEP_INIT;
320 tcp_keepidle = TCPTV_KEEP_IDLE;
321 tcp_keepintvl = TCPTV_KEEPINTVL;
322 tcp_maxpersistidle = TCPTV_KEEP_IDLE;
324 tcp_rexmit_min = TCPTV_MIN;
325 tcp_rexmit_slop = TCPTV_CPU_VAR;
327 TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
328 if (!powerof2(hashsize)) {
329 printf("WARNING: TCB hash size not a power of 2\n");
330 hashsize = 512; /* safe default */
332 tcp_tcbhashsize = hashsize;
333 porthashbase = hashinit(hashsize, M_PCB, &porthashmask);
334 ipi_zone = zinit("tcpcb", sizeof(struct inp_tp), maxsockets,
337 for (cpu = 0; cpu < ncpus2; cpu++) {
338 in_pcbinfo_init(&tcbinfo[cpu]);
339 tcbinfo[cpu].cpu = cpu;
340 tcbinfo[cpu].hashbase = hashinit(hashsize, M_PCB,
341 &tcbinfo[cpu].hashmask);
342 tcbinfo[cpu].porthashbase = porthashbase;
343 tcbinfo[cpu].porthashmask = porthashmask;
344 tcbinfo[cpu].wildcardhashbase = hashinit(hashsize, M_PCB,
345 &tcbinfo[cpu].wildcardhashmask);
346 tcbinfo[cpu].ipi_zone = ipi_zone;
347 TAILQ_INIT(&tcpcbackq[cpu]);
350 tcp_reass_maxseg = nmbclusters / 16;
351 TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments", &tcp_reass_maxseg);
354 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
356 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
358 if (max_protohdr < TCP_MINPROTOHDR)
359 max_protohdr = TCP_MINPROTOHDR;
360 if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
362 #undef TCP_MINPROTOHDR
365 * Initialize TCP statistics.
367 * It is layed out as an array which is has one element for UP,
368 * and SMP_MAXCPU elements for SMP. This allows us to retain
369 * the access mechanism from userland for both UP and SMP.
372 for (cpu = 0; cpu < ncpus; ++cpu) {
373 bzero(&tcpstats_ary[cpu], sizeof(struct tcp_stats));
376 bzero(&tcpstat, sizeof(struct tcp_stats));
385 tcpmsg_service_loop(void *dummy)
389 while ((msg = lwkt_waitport(&curthread->td_msgport, NULL))) {
391 msg->nm_lmsg.ms_cmd.cm_func(&msg->nm_lmsg);
392 } while ((msg = lwkt_getport(&curthread->td_msgport)) != NULL);
401 int cpu = mycpu->gd_cpuid;
403 while ((tp = TAILQ_FIRST(&tcpcbackq[cpu])) != NULL) {
404 KKASSERT(tp->t_flags & TF_ONOUTPUTQ);
405 tp->t_flags &= ~TF_ONOUTPUTQ;
406 TAILQ_REMOVE(&tcpcbackq[cpu], tp, t_outputq);
413 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
414 * tcp_template used to store this data in mbufs, but we now recopy it out
415 * of the tcpcb each time to conserve mbufs.
418 tcp_fillheaders(struct tcpcb *tp, void *ip_ptr, void *tcp_ptr)
420 struct inpcb *inp = tp->t_inpcb;
421 struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
424 if (inp->inp_vflag & INP_IPV6) {
427 ip6 = (struct ip6_hdr *)ip_ptr;
428 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
429 (inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
430 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
431 (IPV6_VERSION & IPV6_VERSION_MASK);
432 ip6->ip6_nxt = IPPROTO_TCP;
433 ip6->ip6_plen = sizeof(struct tcphdr);
434 ip6->ip6_src = inp->in6p_laddr;
435 ip6->ip6_dst = inp->in6p_faddr;
440 struct ip *ip = (struct ip *) ip_ptr;
442 ip->ip_vhl = IP_VHL_BORING;
449 ip->ip_p = IPPROTO_TCP;
450 ip->ip_src = inp->inp_laddr;
451 ip->ip_dst = inp->inp_faddr;
452 tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr,
454 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
457 tcp_hdr->th_sport = inp->inp_lport;
458 tcp_hdr->th_dport = inp->inp_fport;
463 tcp_hdr->th_flags = 0;
469 * Create template to be used to send tcp packets on a connection.
470 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only
471 * use for this function is in keepalives, which use tcp_respond.
474 tcp_maketemplate(struct tcpcb *tp)
478 if ((tmp = mpipe_alloc_nowait(&tcptemp_mpipe)) == NULL)
480 tcp_fillheaders(tp, (void *)&tmp->tt_ipgen, (void *)&tmp->tt_t);
485 tcp_freetemplate(struct tcptemp *tmp)
487 mpipe_free(&tcptemp_mpipe, tmp);
491 * Send a single message to the TCP at address specified by
492 * the given TCP/IP header. If m == NULL, then we make a copy
493 * of the tcpiphdr at ti and send directly to the addressed host.
494 * This is used to force keep alive messages out using the TCP
495 * template for a connection. If flags are given then we send
496 * a message back to the TCP which originated the * segment ti,
497 * and discard the mbuf containing it and any other attached mbufs.
499 * In any case the ack and sequence number of the transmitted
500 * segment are as specified by the parameters.
502 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
505 tcp_respond(struct tcpcb *tp, void *ipgen, struct tcphdr *th, struct mbuf *m,
506 tcp_seq ack, tcp_seq seq, int flags)
510 struct route *ro = NULL;
512 struct ip *ip = ipgen;
515 struct route_in6 *ro6 = NULL;
516 struct route_in6 sro6;
517 struct ip6_hdr *ip6 = ipgen;
519 boolean_t isipv6 = (IP_VHL_V(ip->ip_vhl) == 6);
521 const boolean_t isipv6 = FALSE;
525 if (!(flags & TH_RST)) {
526 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
527 if (win > (long)TCP_MAXWIN << tp->rcv_scale)
528 win = (long)TCP_MAXWIN << tp->rcv_scale;
531 ro6 = &tp->t_inpcb->in6p_route;
533 ro = &tp->t_inpcb->inp_route;
537 bzero(ro6, sizeof *ro6);
540 bzero(ro, sizeof *ro);
544 m = m_gethdr(MB_DONTWAIT, MT_HEADER);
548 m->m_data += max_linkhdr;
550 bcopy(ip6, mtod(m, caddr_t), sizeof(struct ip6_hdr));
551 ip6 = mtod(m, struct ip6_hdr *);
552 nth = (struct tcphdr *)(ip6 + 1);
554 bcopy(ip, mtod(m, caddr_t), sizeof(struct ip));
555 ip = mtod(m, struct ip *);
556 nth = (struct tcphdr *)(ip + 1);
558 bcopy(th, nth, sizeof(struct tcphdr));
563 m->m_data = (caddr_t)ipgen;
564 /* m_len is set later */
566 #define xchg(a, b, type) { type t; t = a; a = b; b = t; }
568 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
569 nth = (struct tcphdr *)(ip6 + 1);
571 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
572 nth = (struct tcphdr *)(ip + 1);
576 * this is usually a case when an extension header
577 * exists between the IPv6 header and the
580 nth->th_sport = th->th_sport;
581 nth->th_dport = th->th_dport;
583 xchg(nth->th_dport, nth->th_sport, n_short);
588 ip6->ip6_vfc = IPV6_VERSION;
589 ip6->ip6_nxt = IPPROTO_TCP;
590 ip6->ip6_plen = htons((u_short)(sizeof(struct tcphdr) + tlen));
591 tlen += sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
593 tlen += sizeof(struct tcpiphdr);
595 ip->ip_ttl = ip_defttl;
598 m->m_pkthdr.len = tlen;
599 m->m_pkthdr.rcvif = (struct ifnet *) NULL;
600 nth->th_seq = htonl(seq);
601 nth->th_ack = htonl(ack);
603 nth->th_off = sizeof(struct tcphdr) >> 2;
604 nth->th_flags = flags;
606 nth->th_win = htons((u_short) (win >> tp->rcv_scale));
608 nth->th_win = htons((u_short)win);
612 nth->th_sum = in6_cksum(m, IPPROTO_TCP,
613 sizeof(struct ip6_hdr),
614 tlen - sizeof(struct ip6_hdr));
615 ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
616 (ro6 && ro6->ro_rt) ?
617 ro6->ro_rt->rt_ifp : NULL);
619 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
620 htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
621 m->m_pkthdr.csum_flags = CSUM_TCP;
622 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
625 if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
626 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
629 (void)ip6_output(m, NULL, ro6, ipflags, NULL, NULL,
630 tp ? tp->t_inpcb : NULL);
631 if ((ro6 == &sro6) && (ro6->ro_rt != NULL)) {
636 (void)ip_output(m, NULL, ro, ipflags, NULL,
637 tp ? tp->t_inpcb : NULL);
638 if ((ro == &sro) && (ro->ro_rt != NULL)) {
646 * Create a new TCP control block, making an
647 * empty reassembly queue and hooking it to the argument
648 * protocol control block. The `inp' parameter must have
649 * come from the zone allocator set up in tcp_init().
652 tcp_newtcpcb(struct inpcb *inp)
657 boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
659 const boolean_t isipv6 = FALSE;
662 it = (struct inp_tp *)inp;
664 bzero(tp, sizeof(struct tcpcb));
665 LIST_INIT(&tp->t_segq);
666 tp->t_maxseg = tp->t_maxopd = isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
668 /* Set up our timeouts. */
669 callout_init(tp->tt_rexmt = &it->inp_tp_rexmt);
670 callout_init(tp->tt_persist = &it->inp_tp_persist);
671 callout_init(tp->tt_keep = &it->inp_tp_keep);
672 callout_init(tp->tt_2msl = &it->inp_tp_2msl);
673 callout_init(tp->tt_delack = &it->inp_tp_delack);
676 tp->t_flags = (TF_REQ_SCALE | TF_REQ_TSTMP);
678 tp->t_flags |= TF_REQ_CC;
679 tp->t_inpcb = inp; /* XXX */
680 tp->t_state = TCPS_CLOSED;
682 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
683 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives
684 * reasonable initial retransmit time.
686 tp->t_srtt = TCPTV_SRTTBASE;
688 ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
689 tp->t_rttmin = tcp_rexmit_min;
690 tp->t_rxtcur = TCPTV_RTOBASE;
691 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
692 tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
693 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
694 tp->t_rcvtime = ticks;
696 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
697 * because the socket may be bound to an IPv6 wildcard address,
698 * which may match an IPv4-mapped IPv6 address.
700 inp->inp_ip_ttl = ip_defttl;
701 inp->inp_ppcb = (caddr_t)tp;
702 tcp_sack_tcpcb_init(tp);
703 return (tp); /* XXX */
707 * Drop a TCP connection, reporting the specified error.
708 * If connection is synchronized, then send a RST to peer.
711 tcp_drop(struct tcpcb *tp, int errno)
713 struct socket *so = tp->t_inpcb->inp_socket;
715 if (TCPS_HAVERCVDSYN(tp->t_state)) {
716 tp->t_state = TCPS_CLOSED;
717 (void) tcp_output(tp);
718 tcpstat.tcps_drops++;
720 tcpstat.tcps_conndrops++;
721 if (errno == ETIMEDOUT && tp->t_softerror)
722 errno = tp->t_softerror;
723 so->so_error = errno;
724 return (tcp_close(tp));
729 struct netmsg_remwildcard {
730 struct lwkt_msg nm_lmsg;
731 struct inpcb *nm_inp;
732 struct inpcbinfo *nm_pcbinfo;
741 * Wildcard inpcb's on SMP boxes must be removed from all cpus before the
742 * inp can be detached. We do this by cycling through the cpus, ending up
743 * on the cpu controlling the inp last and then doing the disconnect.
746 in_pcbremwildcardhash_handler(struct lwkt_msg *msg0)
748 struct netmsg_remwildcard *msg = (struct netmsg_remwildcard *)msg0;
751 cpu = msg->nm_pcbinfo->cpu;
753 if (cpu == msg->nm_inp->inp_pcbinfo->cpu) {
754 /* note: detach removes any wildcard hash entry */
757 in6_pcbdetach(msg->nm_inp);
760 in_pcbdetach(msg->nm_inp);
761 lwkt_replymsg(&msg->nm_lmsg, 0);
763 in_pcbremwildcardhash_oncpu(msg->nm_inp, msg->nm_pcbinfo);
764 cpu = (cpu + 1) % ncpus2;
765 msg->nm_pcbinfo = &tcbinfo[cpu];
766 lwkt_forwardmsg(tcp_cport(cpu), &msg->nm_lmsg);
774 * Close a TCP control block:
775 * discard all space held by the tcp
776 * discard internet protocol block
777 * wake up any sleepers
780 tcp_close(struct tcpcb *tp)
783 struct inpcb *inp = tp->t_inpcb;
784 struct socket *so = inp->inp_socket;
786 boolean_t dosavessthresh;
791 boolean_t isipv6 = ((inp->inp_vflag & INP_IPV6) != 0);
792 boolean_t isafinet6 = (INP_CHECK_SOCKAF(so, AF_INET6) != 0);
794 const boolean_t isipv6 = FALSE;
798 * The tp is not instantly destroyed in the wildcard case. Setting
799 * the state to TCPS_TERMINATING will prevent the TCP stack from
800 * messing with it, though it should be noted that this change may
801 * not take effect on other cpus until we have chained the wildcard
804 * XXX we currently depend on the BGL to synchronize the tp->t_state
805 * update and prevent other tcp protocol threads from accepting new
806 * connections on the listen socket we might be trying to close down.
808 KKASSERT(tp->t_state != TCPS_TERMINATING);
809 tp->t_state = TCPS_TERMINATING;
812 * Make sure that all of our timers are stopped before we
815 callout_stop(tp->tt_rexmt);
816 callout_stop(tp->tt_persist);
817 callout_stop(tp->tt_keep);
818 callout_stop(tp->tt_2msl);
819 callout_stop(tp->tt_delack);
821 if (tp->t_flags & TF_ONOUTPUTQ) {
822 KKASSERT(tp->tt_cpu == mycpu->gd_cpuid);
823 TAILQ_REMOVE(&tcpcbackq[tp->tt_cpu], tp, t_outputq);
824 tp->t_flags &= ~TF_ONOUTPUTQ;
828 * If we got enough samples through the srtt filter,
829 * save the rtt and rttvar in the routing entry.
830 * 'Enough' is arbitrarily defined as the 16 samples.
831 * 16 samples is enough for the srtt filter to converge
832 * to within 5% of the correct value; fewer samples and
833 * we could save a very bogus rtt.
835 * Don't update the default route's characteristics and don't
836 * update anything that the user "locked".
838 if (tp->t_rttupdated >= 16) {
842 struct sockaddr_in6 *sin6;
844 if ((rt = inp->in6p_route.ro_rt) == NULL)
846 sin6 = (struct sockaddr_in6 *)rt_key(rt);
847 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
850 if ((rt = inp->inp_route.ro_rt) == NULL ||
851 ((struct sockaddr_in *)rt_key(rt))->
852 sin_addr.s_addr == INADDR_ANY)
855 if (!(rt->rt_rmx.rmx_locks & RTV_RTT)) {
856 i = tp->t_srtt * (RTM_RTTUNIT / (hz * TCP_RTT_SCALE));
857 if (rt->rt_rmx.rmx_rtt && i)
859 * filter this update to half the old & half
860 * the new values, converting scale.
861 * See route.h and tcp_var.h for a
862 * description of the scaling constants.
865 (rt->rt_rmx.rmx_rtt + i) / 2;
867 rt->rt_rmx.rmx_rtt = i;
868 tcpstat.tcps_cachedrtt++;
870 if (!(rt->rt_rmx.rmx_locks & RTV_RTTVAR)) {
872 (RTM_RTTUNIT / (hz * TCP_RTTVAR_SCALE));
873 if (rt->rt_rmx.rmx_rttvar && i)
874 rt->rt_rmx.rmx_rttvar =
875 (rt->rt_rmx.rmx_rttvar + i) / 2;
877 rt->rt_rmx.rmx_rttvar = i;
878 tcpstat.tcps_cachedrttvar++;
881 * The old comment here said:
882 * update the pipelimit (ssthresh) if it has been updated
883 * already or if a pipesize was specified & the threshhold
884 * got below half the pipesize. I.e., wait for bad news
885 * before we start updating, then update on both good
888 * But we want to save the ssthresh even if no pipesize is
889 * specified explicitly in the route, because such
890 * connections still have an implicit pipesize specified
891 * by the global tcp_sendspace. In the absence of a reliable
892 * way to calculate the pipesize, it will have to do.
894 i = tp->snd_ssthresh;
895 if (rt->rt_rmx.rmx_sendpipe != 0)
896 dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe/2);
898 dosavessthresh = (i < so->so_snd.sb_hiwat/2);
899 if (dosavessthresh ||
900 (!(rt->rt_rmx.rmx_locks & RTV_SSTHRESH) && (i != 0) &&
901 (rt->rt_rmx.rmx_ssthresh != 0))) {
903 * convert the limit from user data bytes to
904 * packets then to packet data bytes.
906 i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
911 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
912 sizeof(struct tcpiphdr));
913 if (rt->rt_rmx.rmx_ssthresh)
914 rt->rt_rmx.rmx_ssthresh =
915 (rt->rt_rmx.rmx_ssthresh + i) / 2;
917 rt->rt_rmx.rmx_ssthresh = i;
918 tcpstat.tcps_cachedssthresh++;
923 /* free the reassembly queue, if any */
924 while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
925 LIST_REMOVE(q, tqe_q);
930 /* throw away SACK blocks in scoreboard*/
932 tcp_sack_cleanup(&tp->scb);
934 inp->inp_ppcb = NULL;
935 soisdisconnected(so);
937 * Discard the inp. In the SMP case a wildcard inp's hash (created
938 * by a listen socket or an INADDR_ANY udp socket) is replicated
939 * for each protocol thread and must be removed in the context of
940 * that thread. This is accomplished by chaining the message
943 * If the inp is not wildcarded we simply detach, which will remove
944 * the any hashes still present for this inp.
947 if (inp->inp_flags & INP_WILDCARD_MP) {
948 struct netmsg_remwildcard *msg;
950 cpu = (inp->inp_pcbinfo->cpu + 1) % ncpus2;
951 msg = malloc(sizeof(struct netmsg_remwildcard),
952 M_LWKTMSG, M_INTWAIT);
953 lwkt_initmsg(&msg->nm_lmsg, &netisr_afree_rport, 0,
954 lwkt_cmd_func(in_pcbremwildcardhash_handler),
957 msg->nm_isinet6 = isafinet6;
960 msg->nm_pcbinfo = &tcbinfo[cpu];
961 lwkt_sendmsg(tcp_cport(cpu), &msg->nm_lmsg);
965 /* note: detach removes any wildcard hash entry */
973 tcpstat.tcps_closed++;
978 tcp_drain_oncpu(struct inpcbhead *head)
982 struct tseg_qent *te;
984 LIST_FOREACH(inpb, head, inp_list) {
985 if (inpb->inp_flags & INP_PLACEMARKER)
987 if ((tcpb = intotcpcb(inpb))) {
988 while ((te = LIST_FIRST(&tcpb->t_segq)) != NULL) {
989 LIST_REMOVE(te, tqe_q);
999 struct netmsg_tcp_drain {
1000 struct lwkt_msg nm_lmsg;
1001 struct inpcbhead *nm_head;
1005 tcp_drain_handler(lwkt_msg_t lmsg)
1007 struct netmsg_tcp_drain *nm = (void *)lmsg;
1009 tcp_drain_oncpu(nm->nm_head);
1010 lwkt_replymsg(lmsg, 0);
1026 * Walk the tcpbs, if existing, and flush the reassembly queue,
1027 * if there is one...
1028 * XXX: The "Net/3" implementation doesn't imply that the TCP
1029 * reassembly queue should be flushed, but in a situation
1030 * where we're really low on mbufs, this is potentially
1034 for (cpu = 0; cpu < ncpus2; cpu++) {
1035 struct netmsg_tcp_drain *msg;
1037 if (cpu == mycpu->gd_cpuid) {
1038 tcp_drain_oncpu(&tcbinfo[cpu].pcblisthead);
1040 msg = malloc(sizeof(struct netmsg_tcp_drain),
1041 M_LWKTMSG, M_NOWAIT);
1044 lwkt_initmsg(&msg->nm_lmsg, &netisr_afree_rport, 0,
1045 lwkt_cmd_func(tcp_drain_handler),
1047 msg->nm_head = &tcbinfo[cpu].pcblisthead;
1048 lwkt_sendmsg(tcp_cport(cpu), &msg->nm_lmsg);
1052 tcp_drain_oncpu(&tcbinfo[0].pcblisthead);
1057 * Notify a tcp user of an asynchronous error;
1058 * store error as soft error, but wake up user
1059 * (for now, won't do anything until can select for soft error).
1061 * Do not wake up user since there currently is no mechanism for
1062 * reporting soft errors (yet - a kqueue filter may be added).
1065 tcp_notify(struct inpcb *inp, int error)
1067 struct tcpcb *tp = intotcpcb(inp);
1070 * Ignore some errors if we are hooked up.
1071 * If connection hasn't completed, has retransmitted several times,
1072 * and receives a second error, give up now. This is better
1073 * than waiting a long time to establish a connection that
1074 * can never complete.
1076 if (tp->t_state == TCPS_ESTABLISHED &&
1077 (error == EHOSTUNREACH || error == ENETUNREACH ||
1078 error == EHOSTDOWN)) {
1080 } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1082 tcp_drop(tp, error);
1084 tp->t_softerror = error;
1086 wakeup((caddr_t) &so->so_timeo);
1093 tcp_pcblist(SYSCTL_HANDLER_ARGS)
1096 struct inpcb *marker;
1106 * The process of preparing the TCB list is too time-consuming and
1107 * resource-intensive to repeat twice on every request.
1109 if (req->oldptr == NULL) {
1110 for (ccpu = 0; ccpu < ncpus; ++ccpu) {
1111 gd = globaldata_find(ccpu);
1112 n += tcbinfo[gd->gd_cpuid].ipi_count;
1114 req->oldidx = (n + n/8 + 10) * sizeof(struct xtcpcb);
1118 if (req->newptr != NULL)
1121 marker = malloc(sizeof(struct inpcb), M_TEMP, M_WAITOK|M_ZERO);
1122 marker->inp_flags |= INP_PLACEMARKER;
1125 * OK, now we're committed to doing something. Run the inpcb list
1126 * for each cpu in the system and construct the output. Use a
1127 * list placemarker to deal with list changes occuring during
1128 * copyout blockages (but otherwise depend on being on the correct
1129 * cpu to avoid races).
1131 origcpu = mycpu->gd_cpuid;
1132 for (ccpu = 1; ccpu <= ncpus && error == 0; ++ccpu) {
1138 cpu_id = (origcpu + ccpu) % ncpus;
1139 if ((smp_active_mask & (1 << cpu_id)) == 0)
1141 rgd = globaldata_find(cpu_id);
1142 lwkt_setcpu_self(rgd);
1144 /* indicate change of CPU */
1147 gencnt = tcbinfo[cpu_id].ipi_gencnt;
1148 n = tcbinfo[cpu_id].ipi_count;
1150 LIST_INSERT_HEAD(&tcbinfo[cpu_id].pcblisthead, marker, inp_list);
1152 while ((inp = LIST_NEXT(marker, inp_list)) != NULL && i < n) {
1154 * process a snapshot of pcbs, ignoring placemarkers
1155 * and using our own to allow SYSCTL_OUT to block.
1157 LIST_REMOVE(marker, inp_list);
1158 LIST_INSERT_AFTER(inp, marker, inp_list);
1160 if (inp->inp_flags & INP_PLACEMARKER)
1162 if (inp->inp_gencnt > gencnt)
1164 if (prison_xinpcb(req->td, inp))
1167 xt.xt_len = sizeof xt;
1168 bcopy(inp, &xt.xt_inp, sizeof *inp);
1169 inp_ppcb = inp->inp_ppcb;
1170 if (inp_ppcb != NULL)
1171 bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1173 bzero(&xt.xt_tp, sizeof xt.xt_tp);
1174 if (inp->inp_socket)
1175 sotoxsocket(inp->inp_socket, &xt.xt_socket);
1176 if ((error = SYSCTL_OUT(req, &xt, sizeof xt)) != 0)
1180 LIST_REMOVE(marker, inp_list);
1181 if (error == 0 && i < n) {
1182 bzero(&xt, sizeof(xt));
1183 xt.xt_len = sizeof(xt);
1185 error = SYSCTL_OUT(req, &xt, sizeof (xt));
1194 * Make sure we are on the same cpu we were on originally, since
1195 * higher level callers expect this. Also don't pollute caches with
1196 * migrated userland data by (eventually) returning to userland
1197 * on a different cpu.
1199 lwkt_setcpu_self(globaldata_find(origcpu));
1200 free(marker, M_TEMP);
1204 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1205 tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1208 tcp_getcred(SYSCTL_HANDLER_ARGS)
1210 struct sockaddr_in addrs[2];
1215 error = suser(req->td);
1218 error = SYSCTL_IN(req, addrs, sizeof addrs);
1223 cpu = tcp_addrcpu(addrs[1].sin_addr.s_addr, addrs[1].sin_port,
1224 addrs[0].sin_addr.s_addr, addrs[0].sin_port);
1225 inp = in_pcblookup_hash(&tcbinfo[cpu], addrs[1].sin_addr,
1226 addrs[1].sin_port, addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1227 if (inp == NULL || inp->inp_socket == NULL) {
1231 error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1237 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1238 0, 0, tcp_getcred, "S,ucred", "Get the ucred of a TCP connection");
1242 tcp6_getcred(SYSCTL_HANDLER_ARGS)
1244 struct sockaddr_in6 addrs[2];
1247 boolean_t mapped = FALSE;
1249 error = suser(req->td);
1252 error = SYSCTL_IN(req, addrs, sizeof addrs);
1255 if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1256 if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1263 inp = in_pcblookup_hash(&tcbinfo[0],
1264 *(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1266 *(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1270 inp = in6_pcblookup_hash(&tcbinfo[0],
1271 &addrs[1].sin6_addr, addrs[1].sin6_port,
1272 &addrs[0].sin6_addr, addrs[0].sin6_port,
1275 if (inp == NULL || inp->inp_socket == NULL) {
1279 error = SYSCTL_OUT(req, inp->inp_socket->so_cred, sizeof(struct ucred));
1285 SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred, (CTLTYPE_OPAQUE | CTLFLAG_RW),
1287 tcp6_getcred, "S,ucred", "Get the ucred of a TCP6 connection");
1291 tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1293 struct ip *ip = vip;
1295 struct in_addr faddr;
1298 void (*notify)(struct inpcb *, int) = tcp_notify;
1303 faddr = ((struct sockaddr_in *)sa)->sin_addr;
1304 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1307 if (cmd == PRC_QUENCH)
1308 notify = tcp_quench;
1309 else if (icmp_may_rst &&
1310 (cmd == PRC_UNREACH_ADMIN_PROHIB || cmd == PRC_UNREACH_PORT ||
1311 cmd == PRC_TIMXCEED_INTRANS) &&
1313 notify = tcp_drop_syn_sent;
1314 else if (cmd == PRC_MSGSIZE)
1315 notify = tcp_mtudisc;
1316 else if (PRC_IS_REDIRECT(cmd)) {
1318 notify = in_rtchange;
1319 } else if (cmd == PRC_HOSTDEAD)
1321 else if ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0)
1325 th = (struct tcphdr *)((caddr_t)ip +
1326 (IP_VHL_HL(ip->ip_vhl) << 2));
1327 cpu = tcp_addrcpu(faddr.s_addr, th->th_dport,
1328 ip->ip_src.s_addr, th->th_sport);
1329 inp = in_pcblookup_hash(&tcbinfo[cpu], faddr, th->th_dport,
1330 ip->ip_src, th->th_sport, 0, NULL);
1331 if ((inp != NULL) && (inp->inp_socket != NULL)) {
1332 icmp_seq = htonl(th->th_seq);
1333 tp = intotcpcb(inp);
1334 if (SEQ_GEQ(icmp_seq, tp->snd_una) &&
1335 SEQ_LT(icmp_seq, tp->snd_max))
1336 (*notify)(inp, inetctlerrmap[cmd]);
1338 struct in_conninfo inc;
1340 inc.inc_fport = th->th_dport;
1341 inc.inc_lport = th->th_sport;
1342 inc.inc_faddr = faddr;
1343 inc.inc_laddr = ip->ip_src;
1347 syncache_unreach(&inc, th);
1351 for (cpu = 0; cpu < ncpus2; cpu++) {
1352 in_pcbnotifyall(&tcbinfo[cpu].pcblisthead, faddr,
1353 inetctlerrmap[cmd], notify);
1360 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1363 void (*notify) (struct inpcb *, int) = tcp_notify;
1364 struct ip6_hdr *ip6;
1366 struct ip6ctlparam *ip6cp = NULL;
1367 const struct sockaddr_in6 *sa6_src = NULL;
1369 struct tcp_portonly {
1374 if (sa->sa_family != AF_INET6 ||
1375 sa->sa_len != sizeof(struct sockaddr_in6))
1378 if (cmd == PRC_QUENCH)
1379 notify = tcp_quench;
1380 else if (cmd == PRC_MSGSIZE)
1381 notify = tcp_mtudisc;
1382 else if (!PRC_IS_REDIRECT(cmd) &&
1383 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1386 /* if the parameter is from icmp6, decode it. */
1388 ip6cp = (struct ip6ctlparam *)d;
1390 ip6 = ip6cp->ip6c_ip6;
1391 off = ip6cp->ip6c_off;
1392 sa6_src = ip6cp->ip6c_src;
1396 off = 0; /* fool gcc */
1401 struct in_conninfo inc;
1403 * XXX: We assume that when IPV6 is non NULL,
1404 * M and OFF are valid.
1407 /* check if we can safely examine src and dst ports */
1408 if (m->m_pkthdr.len < off + sizeof *thp)
1411 bzero(&th, sizeof th);
1412 m_copydata(m, off, sizeof *thp, (caddr_t)&th);
1414 in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, th.th_dport,
1415 (struct sockaddr *)ip6cp->ip6c_src,
1416 th.th_sport, cmd, notify);
1418 inc.inc_fport = th.th_dport;
1419 inc.inc_lport = th.th_sport;
1420 inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1421 inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1423 syncache_unreach(&inc, &th);
1425 in6_pcbnotify(&tcbinfo[0].pcblisthead, sa, 0,
1426 (const struct sockaddr *)sa6_src, 0, cmd, notify);
1431 * Following is where TCP initial sequence number generation occurs.
1433 * There are two places where we must use initial sequence numbers:
1434 * 1. In SYN-ACK packets.
1435 * 2. In SYN packets.
1437 * All ISNs for SYN-ACK packets are generated by the syncache. See
1438 * tcp_syncache.c for details.
1440 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1441 * depends on this property. In addition, these ISNs should be
1442 * unguessable so as to prevent connection hijacking. To satisfy
1443 * the requirements of this situation, the algorithm outlined in
1444 * RFC 1948 is used to generate sequence numbers.
1446 * Implementation details:
1448 * Time is based off the system timer, and is corrected so that it
1449 * increases by one megabyte per second. This allows for proper
1450 * recycling on high speed LANs while still leaving over an hour
1453 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1454 * between seeding of isn_secret. This is normally set to zero,
1455 * as reseeding should not be necessary.
1459 #define ISN_BYTES_PER_SECOND 1048576
1461 u_char isn_secret[32];
1462 int isn_last_reseed;
1466 tcp_new_isn(struct tcpcb *tp)
1468 u_int32_t md5_buffer[4];
1471 /* Seed if this is the first use, reseed if requested. */
1472 if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1473 (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1475 read_random_unlimited(&isn_secret, sizeof isn_secret);
1476 isn_last_reseed = ticks;
1479 /* Compute the md5 hash and return the ISN. */
1481 MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
1482 MD5Update(&isn_ctx, (u_char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
1484 if (tp->t_inpcb->inp_vflag & INP_IPV6) {
1485 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1486 sizeof(struct in6_addr));
1487 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1488 sizeof(struct in6_addr));
1492 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1493 sizeof(struct in_addr));
1494 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1495 sizeof(struct in_addr));
1497 MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1498 MD5Final((u_char *) &md5_buffer, &isn_ctx);
1499 new_isn = (tcp_seq) md5_buffer[0];
1500 new_isn += ticks * (ISN_BYTES_PER_SECOND / hz);
1505 * When a source quench is received, close congestion window
1506 * to one segment. We will gradually open it again as we proceed.
1509 tcp_quench(struct inpcb *inp, int errno)
1511 struct tcpcb *tp = intotcpcb(inp);
1514 tp->snd_cwnd = tp->t_maxseg;
1518 * When a specific ICMP unreachable message is received and the
1519 * connection state is SYN-SENT, drop the connection. This behavior
1520 * is controlled by the icmp_may_rst sysctl.
1523 tcp_drop_syn_sent(struct inpcb *inp, int errno)
1525 struct tcpcb *tp = intotcpcb(inp);
1527 if ((tp != NULL) && (tp->t_state == TCPS_SYN_SENT))
1528 tcp_drop(tp, errno);
1532 * When `need fragmentation' ICMP is received, update our idea of the MSS
1533 * based on the new value in the route. Also nudge TCP to send something,
1534 * since we know the packet we just sent was dropped.
1535 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1538 tcp_mtudisc(struct inpcb *inp, int errno)
1540 struct tcpcb *tp = intotcpcb(inp);
1542 struct rmxp_tao *taop;
1543 struct socket *so = inp->inp_socket;
1547 boolean_t isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0);
1549 const boolean_t isipv6 = FALSE;
1554 rt = tcp_rtlookup6(&inp->inp_inc);
1556 rt = tcp_rtlookup(&inp->inp_inc);
1557 if (rt == NULL || rt->rt_rmx.rmx_mtu == 0) {
1558 tp->t_maxopd = tp->t_maxseg =
1559 isipv6 ? tcp_v6mssdflt : tcp_mssdflt;
1562 taop = rmx_taop(rt->rt_rmx);
1563 offered = taop->tao_mssopt;
1564 mss = rt->rt_rmx.rmx_mtu -
1566 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1567 sizeof(struct tcpiphdr));
1570 mss = min(mss, offered);
1572 * XXX - The above conditional probably violates the TCP
1573 * spec. The problem is that, since we don't know the
1574 * other end's MSS, we are supposed to use a conservative
1575 * default. But, if we do that, then MTU discovery will
1576 * never actually take place, because the conservative
1577 * default is much less than the MTUs typically seen
1578 * on the Internet today. For the moment, we'll sweep
1579 * this under the carpet.
1581 * The conservative default might not actually be a problem
1582 * if the only case this occurs is when sending an initial
1583 * SYN with options and data to a host we've never talked
1584 * to before. Then, they will reply with an MSS value which
1585 * will get recorded and the new parameters should get
1586 * recomputed. For Further Study.
1588 if (tp->t_maxopd <= mss)
1592 if ((tp->t_flags & (TF_REQ_TSTMP | TF_NOOPT)) == TF_REQ_TSTMP &&
1593 (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1594 mss -= TCPOLEN_TSTAMP_APPA;
1595 if ((tp->t_flags & (TF_REQ_CC | TF_NOOPT)) == TF_REQ_CC &&
1596 (tp->t_flags & TF_RCVD_CC) == TF_RCVD_CC)
1597 mss -= TCPOLEN_CC_APPA;
1598 #if (MCLBYTES & (MCLBYTES - 1)) == 0
1600 mss &= ~(MCLBYTES - 1);
1603 mss = mss / MCLBYTES * MCLBYTES;
1605 if (so->so_snd.sb_hiwat < mss)
1606 mss = so->so_snd.sb_hiwat;
1610 tcpstat.tcps_mturesent++;
1612 tp->snd_nxt = tp->snd_una;
1618 * Look-up the routing entry to the peer of this inpcb. If no route
1619 * is found and it cannot be allocated the return NULL. This routine
1620 * is called by TCP routines that access the rmx structure and by tcp_mss
1621 * to get the interface MTU.
1624 tcp_rtlookup(struct in_conninfo *inc)
1629 ro = &inc->inc_route;
1631 if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1632 /* No route yet, so try to acquire one */
1633 if (inc->inc_faddr.s_addr != INADDR_ANY) {
1635 * unused portions of the structure MUST be zero'd
1636 * out because rtalloc() treats it as opaque data
1638 bzero(&ro->ro_dst, sizeof(struct sockaddr_in));
1639 ro->ro_dst.sa_family = AF_INET;
1640 ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
1641 ((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
1652 tcp_rtlookup6(struct in_conninfo *inc)
1654 struct route_in6 *ro6;
1657 ro6 = &inc->inc6_route;
1659 if (rt == NULL || !(rt->rt_flags & RTF_UP)) {
1660 /* No route yet, so try to acquire one */
1661 if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1663 * unused portions of the structure MUST be zero'd
1664 * out because rtalloc() treats it as opaque data
1666 bzero(&ro6->ro_dst, sizeof(struct sockaddr_in6));
1667 ro6->ro_dst.sin6_family = AF_INET6;
1668 ro6->ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1669 ro6->ro_dst.sin6_addr = inc->inc6_faddr;
1670 rtalloc((struct route *)ro6);
1679 /* compute ESP/AH header size for TCP, including outer IP header. */
1681 ipsec_hdrsiz_tcp(struct tcpcb *tp)
1689 if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1691 MGETHDR(m, MB_DONTWAIT, MT_DATA);
1696 if (inp->inp_vflag & INP_IPV6) {
1697 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1699 th = (struct tcphdr *)(ip6 + 1);
1700 m->m_pkthdr.len = m->m_len =
1701 sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1702 tcp_fillheaders(tp, ip6, th);
1703 hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1707 ip = mtod(m, struct ip *);
1708 th = (struct tcphdr *)(ip + 1);
1709 m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1710 tcp_fillheaders(tp, ip, th);
1711 hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1720 * Return a pointer to the cached information about the remote host.
1721 * The cached information is stored in the protocol specific part of
1722 * the route metrics.
1725 tcp_gettaocache(struct in_conninfo *inc)
1730 if (inc->inc_isipv6)
1731 rt = tcp_rtlookup6(inc);
1734 rt = tcp_rtlookup(inc);
1736 /* Make sure this is a host route and is up. */
1738 (rt->rt_flags & (RTF_UP | RTF_HOST)) != (RTF_UP | RTF_HOST))
1741 return (rmx_taop(rt->rt_rmx));
1745 * Clear all the TAO cache entries, called from tcp_init.
1748 * This routine is just an empty one, because we assume that the routing
1749 * routing tables are initialized at the same time when TCP, so there is
1750 * nothing in the cache left over.
1758 * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
1760 * This code attempts to calculate the bandwidth-delay product as a
1761 * means of determining the optimal window size to maximize bandwidth,
1762 * minimize RTT, and avoid the over-allocation of buffers on interfaces and
1763 * routers. This code also does a fairly good job keeping RTTs in check
1764 * across slow links like modems. We implement an algorithm which is very
1765 * similar (but not meant to be) TCP/Vegas. The code operates on the
1766 * transmitter side of a TCP connection and so only effects the transmit
1767 * side of the connection.
1769 * BACKGROUND: TCP makes no provision for the management of buffer space
1770 * at the end points or at the intermediate routers and switches. A TCP
1771 * stream, whether using NewReno or not, will eventually buffer as
1772 * many packets as it is able and the only reason this typically works is
1773 * due to the fairly small default buffers made available for a connection
1774 * (typicaly 16K or 32K). As machines use larger windows and/or window
1775 * scaling it is now fairly easy for even a single TCP connection to blow-out
1776 * all available buffer space not only on the local interface, but on
1777 * intermediate routers and switches as well. NewReno makes a misguided
1778 * attempt to 'solve' this problem by waiting for an actual failure to occur,
1779 * then backing off, then steadily increasing the window again until another
1780 * failure occurs, ad-infinitum. This results in terrible oscillation that
1781 * is only made worse as network loads increase and the idea of intentionally
1782 * blowing out network buffers is, frankly, a terrible way to manage network
1785 * It is far better to limit the transmit window prior to the failure
1786 * condition being achieved. There are two general ways to do this: First
1787 * you can 'scan' through different transmit window sizes and locate the
1788 * point where the RTT stops increasing, indicating that you have filled the
1789 * pipe, then scan backwards until you note that RTT stops decreasing, then
1790 * repeat ad-infinitum. This method works in principle but has severe
1791 * implementation issues due to RTT variances, timer granularity, and
1792 * instability in the algorithm which can lead to many false positives and
1793 * create oscillations as well as interact badly with other TCP streams
1794 * implementing the same algorithm.
1796 * The second method is to limit the window to the bandwidth delay product
1797 * of the link. This is the method we implement. RTT variances and our
1798 * own manipulation of the congestion window, bwnd, can potentially
1799 * destabilize the algorithm. For this reason we have to stabilize the
1800 * elements used to calculate the window. We do this by using the minimum
1801 * observed RTT, the long term average of the observed bandwidth, and
1802 * by adding two segments worth of slop. It isn't perfect but it is able
1803 * to react to changing conditions and gives us a very stable basis on
1804 * which to extend the algorithm.
1807 tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
1815 * If inflight_enable is disabled in the middle of a tcp connection,
1816 * make sure snd_bwnd is effectively disabled.
1818 if (!tcp_inflight_enable) {
1819 tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
1820 tp->snd_bandwidth = 0;
1825 * Validate the delta time. If a connection is new or has been idle
1826 * a long time we have to reset the bandwidth calculator.
1829 delta_ticks = save_ticks - tp->t_bw_rtttime;
1830 if (tp->t_bw_rtttime == 0 || delta_ticks < 0 || delta_ticks > hz * 10) {
1831 tp->t_bw_rtttime = ticks;
1832 tp->t_bw_rtseq = ack_seq;
1833 if (tp->snd_bandwidth == 0)
1834 tp->snd_bandwidth = tcp_inflight_min;
1837 if (delta_ticks == 0)
1841 * Sanity check, plus ignore pure window update acks.
1843 if ((int)(ack_seq - tp->t_bw_rtseq) <= 0)
1847 * Figure out the bandwidth. Due to the tick granularity this
1848 * is a very rough number and it MUST be averaged over a fairly
1849 * long period of time. XXX we need to take into account a link
1850 * that is not using all available bandwidth, but for now our
1851 * slop will ramp us up if this case occurs and the bandwidth later
1854 bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz / delta_ticks;
1855 tp->t_bw_rtttime = save_ticks;
1856 tp->t_bw_rtseq = ack_seq;
1857 bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
1859 tp->snd_bandwidth = bw;
1862 * Calculate the semi-static bandwidth delay product, plus two maximal
1863 * segments. The additional slop puts us squarely in the sweet
1864 * spot and also handles the bandwidth run-up case. Without the
1865 * slop we could be locking ourselves into a lower bandwidth.
1867 * Situations Handled:
1868 * (1) Prevents over-queueing of packets on LANs, especially on
1869 * high speed LANs, allowing larger TCP buffers to be
1870 * specified, and also does a good job preventing
1871 * over-queueing of packets over choke points like modems
1872 * (at least for the transmit side).
1874 * (2) Is able to handle changing network loads (bandwidth
1875 * drops so bwnd drops, bandwidth increases so bwnd
1878 * (3) Theoretically should stabilize in the face of multiple
1879 * connections implementing the same algorithm (this may need
1882 * (4) Stability value (defaults to 20 = 2 maximal packets) can
1883 * be adjusted with a sysctl but typically only needs to be on
1884 * very slow connections. A value no smaller then 5 should
1885 * be used, but only reduce this default if you have no other
1889 #define USERTT ((tp->t_srtt + tp->t_rttbest) / 2)
1890 bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) +
1891 tcp_inflight_stab * (int)tp->t_maxseg / 10;
1894 if (tcp_inflight_debug > 0) {
1896 if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
1898 printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
1899 tp, bw, tp->t_rttbest, tp->t_srtt, bwnd);
1902 if ((long)bwnd < tcp_inflight_min)
1903 bwnd = tcp_inflight_min;
1904 if (bwnd > tcp_inflight_max)
1905 bwnd = tcp_inflight_max;
1906 if ((long)bwnd < tp->t_maxseg * 2)
1907 bwnd = tp->t_maxseg * 2;
1908 tp->snd_bwnd = bwnd;