2 * Copyright (c) 2001 Networks Associates Technologies, Inc.
5 * This software was developed for the FreeBSD Project by Jonathan Lemon
6 * and NAI Labs, the Security Research Division of Network Associates, Inc.
7 * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
8 * DARPA CHATS research program.
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior written
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * $FreeBSD: src/sys/netinet/tcp_syncache.c,v 1.5.2.14 2003/02/24 04:02:27 silby Exp $
35 * $DragonFly: src/sys/netinet/tcp_syncache.c,v 1.9 2004/01/24 05:24:15 hsu Exp $
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/sysctl.h>
45 #include <sys/malloc.h>
48 #include <sys/proc.h> /* for proc0 declaration */
49 #include <sys/random.h>
50 #include <sys/socket.h>
51 #include <sys/socketvar.h>
54 #include <net/route.h>
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/ip.h>
59 #include <netinet/in_var.h>
60 #include <netinet/in_pcb.h>
61 #include <netinet/ip_var.h>
63 #include <netinet/ip6.h>
64 #include <netinet/icmp6.h>
65 #include <netinet6/nd6.h>
66 #include <netinet6/ip6_var.h>
67 #include <netinet6/in6_pcb.h>
69 #include <netinet/tcp.h>
70 #include <netinet/tcp_fsm.h>
71 #include <netinet/tcp_seq.h>
72 #include <netinet/tcp_timer.h>
73 #include <netinet/tcp_var.h>
75 #include <netinet6/tcp6_var.h>
79 #include <netinet6/ipsec.h>
81 #include <netinet6/ipsec6.h>
83 #include <netproto/key/key.h>
87 #include <netipsec/ipsec.h>
89 #include <netipsec/ipsec6.h>
91 #include <netipsec/key.h>
95 #include <machine/in_cksum.h>
96 #include <vm/vm_zone.h>
98 static int tcp_syncookies = 1;
99 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
101 "Use TCP SYN cookies if the syncache overflows");
103 static void syncache_drop(struct syncache *, struct syncache_head *);
104 static void syncache_free(struct syncache *);
105 static void syncache_insert(struct syncache *, struct syncache_head *);
106 struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
107 static int syncache_respond(struct syncache *, struct mbuf *);
108 static struct socket *syncache_socket(struct syncache *, struct socket *);
109 static void syncache_timer(void *);
110 static u_int32_t syncookie_generate(struct syncache *);
111 static struct syncache *syncookie_lookup(struct in_conninfo *,
112 struct tcphdr *, struct socket *);
115 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
116 * 3 retransmits corresponds to a timeout of (1 + 2 + 4 + 8 == 15) seconds,
117 * the odds are that the user has given up attempting to connect by then.
119 #define SYNCACHE_MAXREXMTS 3
121 /* Arbitrary values */
122 #define TCP_SYNCACHE_HASHSIZE 512
123 #define TCP_SYNCACHE_BUCKETLIMIT 30
125 struct tcp_syncache {
126 struct syncache_head *hashbase;
127 struct vm_zone *zone;
135 TAILQ_HEAD(, syncache) timerq[SYNCACHE_MAXREXMTS + 1];
136 struct callout tt_timerq[SYNCACHE_MAXREXMTS + 1];
138 static struct tcp_syncache tcp_syncache;
140 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
142 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RD,
143 &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
145 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RD,
146 &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
148 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
149 &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
151 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RD,
152 &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
154 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
155 &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
157 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
159 #define SYNCACHE_HASH(inc, mask) \
160 ((tcp_syncache.hash_secret ^ \
161 (inc)->inc_faddr.s_addr ^ \
162 ((inc)->inc_faddr.s_addr >> 16) ^ \
163 (inc)->inc_fport ^ (inc)->inc_lport) & mask)
165 #define SYNCACHE_HASH6(inc, mask) \
166 ((tcp_syncache.hash_secret ^ \
167 (inc)->inc6_faddr.s6_addr32[0] ^ \
168 (inc)->inc6_faddr.s6_addr32[3] ^ \
169 (inc)->inc_fport ^ (inc)->inc_lport) & mask)
171 #define ENDPTS_EQ(a, b) ( \
172 (a)->ie_fport == (b)->ie_fport && \
173 (a)->ie_lport == (b)->ie_lport && \
174 (a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr && \
175 (a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr \
178 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
180 #define SYNCACHE_TIMEOUT(sc, slot) do { \
181 sc->sc_rxtslot = slot; \
182 sc->sc_rxttime = ticks + TCPTV_RTOBASE * tcp_backoff[slot]; \
183 TAILQ_INSERT_TAIL(&tcp_syncache.timerq[slot], sc, sc_timerq); \
184 if (!callout_active(&tcp_syncache.tt_timerq[slot])) \
185 callout_reset(&tcp_syncache.tt_timerq[slot], \
186 TCPTV_RTOBASE * tcp_backoff[slot], \
187 syncache_timer, (void *)((intptr_t)slot)); \
191 syncache_free(struct syncache *sc)
196 (void) m_free(sc->sc_ipopts);
198 if (sc->sc_inc.inc_isipv6)
199 rt = sc->sc_route6.ro_rt;
202 rt = sc->sc_route.ro_rt;
205 * If this is the only reference to a protocol cloned
206 * route, remove it immediately.
208 if (rt->rt_flags & RTF_WASCLONED &&
209 (sc->sc_flags & SCF_KEEPROUTE) == 0 &&
211 rtrequest(RTM_DELETE, rt_key(rt),
212 rt->rt_gateway, rt_mask(rt),
216 zfree(tcp_syncache.zone, sc);
224 tcp_syncache.cache_count = 0;
225 tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
226 tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
227 tcp_syncache.cache_limit =
228 tcp_syncache.hashsize * tcp_syncache.bucket_limit;
229 tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
230 tcp_syncache.hash_secret = arc4random();
232 TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
233 &tcp_syncache.hashsize);
234 TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
235 &tcp_syncache.cache_limit);
236 TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
237 &tcp_syncache.bucket_limit);
238 if (!powerof2(tcp_syncache.hashsize)) {
239 printf("WARNING: syncache hash size is not a power of 2.\n");
240 tcp_syncache.hashsize = 512; /* safe default */
242 tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
244 /* Allocate the hash table. */
245 MALLOC(tcp_syncache.hashbase, struct syncache_head *,
246 tcp_syncache.hashsize * sizeof(struct syncache_head),
247 M_SYNCACHE, M_WAITOK);
249 /* Initialize the hash buckets. */
250 for (i = 0; i < tcp_syncache.hashsize; i++) {
251 TAILQ_INIT(&tcp_syncache.hashbase[i].sch_bucket);
252 tcp_syncache.hashbase[i].sch_length = 0;
255 /* Initialize the timer queues. */
256 for (i = 0; i <= SYNCACHE_MAXREXMTS; i++) {
257 TAILQ_INIT(&tcp_syncache.timerq[i]);
258 callout_init(&tcp_syncache.tt_timerq[i]);
262 * Allocate the syncache entries. Allow the zone to allocate one
263 * more entry than cache limit, so a new entry can bump out an
266 tcp_syncache.zone = zinit("syncache", sizeof(struct syncache),
267 tcp_syncache.cache_limit, ZONE_INTERRUPT, 0);
268 tcp_syncache.cache_limit -= 1;
272 syncache_insert(sc, sch)
274 struct syncache_head *sch;
276 struct syncache *sc2;
280 * Make sure that we don't overflow the per-bucket
281 * limit or the total cache size limit.
283 if (sch->sch_length >= tcp_syncache.bucket_limit) {
285 * The bucket is full, toss the oldest element.
287 sc2 = TAILQ_FIRST(&sch->sch_bucket);
288 sc2->sc_tp->ts_recent = ticks;
289 syncache_drop(sc2, sch);
290 tcpstat.tcps_sc_bucketoverflow++;
291 } else if (tcp_syncache.cache_count >= tcp_syncache.cache_limit) {
293 * The cache is full. Toss the oldest entry in the
294 * entire cache. This is the front entry in the
295 * first non-empty timer queue with the largest
298 for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
299 sc2 = TAILQ_FIRST(&tcp_syncache.timerq[i]);
303 sc2->sc_tp->ts_recent = ticks;
304 syncache_drop(sc2, NULL);
305 tcpstat.tcps_sc_cacheoverflow++;
308 /* Initialize the entry's timer. */
309 SYNCACHE_TIMEOUT(sc, 0);
311 /* Put it into the bucket. */
312 TAILQ_INSERT_TAIL(&sch->sch_bucket, sc, sc_hash);
314 tcp_syncache.cache_count++;
315 tcpstat.tcps_sc_added++;
319 syncache_drop(sc, sch)
321 struct syncache_head *sch;
326 if (sc->sc_inc.inc_isipv6) {
327 sch = &tcp_syncache.hashbase[
328 SYNCACHE_HASH6(&sc->sc_inc, tcp_syncache.hashmask)];
332 sch = &tcp_syncache.hashbase[
333 SYNCACHE_HASH(&sc->sc_inc, tcp_syncache.hashmask)];
337 TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
339 tcp_syncache.cache_count--;
341 TAILQ_REMOVE(&tcp_syncache.timerq[sc->sc_rxtslot], sc, sc_timerq);
342 if (TAILQ_EMPTY(&tcp_syncache.timerq[sc->sc_rxtslot]))
343 callout_stop(&tcp_syncache.tt_timerq[sc->sc_rxtslot]);
349 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
350 * If we have retransmitted an entry the maximum number of times, expire it.
353 syncache_timer(xslot)
356 intptr_t slot = (intptr_t)xslot;
357 struct syncache *sc, *nsc;
362 if (callout_pending(&tcp_syncache.tt_timerq[slot]) ||
363 !callout_active(&tcp_syncache.tt_timerq[slot])) {
367 callout_deactivate(&tcp_syncache.tt_timerq[slot]);
369 nsc = TAILQ_FIRST(&tcp_syncache.timerq[slot]);
370 while (nsc != NULL) {
371 if (ticks < nsc->sc_rxttime)
374 inp = sc->sc_tp->t_inpcb;
375 if (slot == SYNCACHE_MAXREXMTS ||
376 slot >= tcp_syncache.rexmt_limit ||
377 inp->inp_gencnt != sc->sc_inp_gencnt) {
378 nsc = TAILQ_NEXT(sc, sc_timerq);
379 syncache_drop(sc, NULL);
380 tcpstat.tcps_sc_stale++;
384 * syncache_respond() may call back into the syncache to
385 * to modify another entry, so do not obtain the next
386 * entry on the timer chain until it has completed.
388 (void) syncache_respond(sc, NULL);
389 nsc = TAILQ_NEXT(sc, sc_timerq);
390 tcpstat.tcps_sc_retransmitted++;
391 TAILQ_REMOVE(&tcp_syncache.timerq[slot], sc, sc_timerq);
392 SYNCACHE_TIMEOUT(sc, slot + 1);
395 callout_reset(&tcp_syncache.tt_timerq[slot],
396 nsc->sc_rxttime - ticks, syncache_timer, (void *)(slot));
401 * Find an entry in the syncache.
404 syncache_lookup(inc, schp)
405 struct in_conninfo *inc;
406 struct syncache_head **schp;
409 struct syncache_head *sch;
412 if (inc->inc_isipv6) {
413 sch = &tcp_syncache.hashbase[
414 SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
416 TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
417 if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
422 sch = &tcp_syncache.hashbase[
423 SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
425 TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
427 if (sc->sc_inc.inc_isipv6)
430 if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
438 * This function is called when we get a RST for a
439 * non-existent connection, so that we can see if the
440 * connection is in the syn cache. If it is, zap it.
443 syncache_chkrst(inc, th)
444 struct in_conninfo *inc;
448 struct syncache_head *sch;
450 sc = syncache_lookup(inc, &sch);
454 * If the RST bit is set, check the sequence number to see
455 * if this is a valid reset segment.
457 * In all states except SYN-SENT, all reset (RST) segments
458 * are validated by checking their SEQ-fields. A reset is
459 * valid if its sequence number is in the window.
461 * The sequence number in the reset segment is normally an
462 * echo of our outgoing acknowlegement numbers, but some hosts
463 * send a reset with the sequence number at the rightmost edge
464 * of our receive window, and we have to handle this case.
466 if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
467 SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
468 syncache_drop(sc, sch);
469 tcpstat.tcps_sc_reset++;
475 struct in_conninfo *inc;
478 struct syncache_head *sch;
480 sc = syncache_lookup(inc, &sch);
482 syncache_drop(sc, sch);
483 tcpstat.tcps_sc_badack++;
488 syncache_unreach(inc, th)
489 struct in_conninfo *inc;
493 struct syncache_head *sch;
495 /* we are called at splnet() here */
496 sc = syncache_lookup(inc, &sch);
500 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
501 if (ntohl(th->th_seq) != sc->sc_iss)
505 * If we've rertransmitted 3 times and this is our second error,
506 * we remove the entry. Otherwise, we allow it to continue on.
507 * This prevents us from incorrectly nuking an entry during a
508 * spurious network outage.
512 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtslot < 3) {
513 sc->sc_flags |= SCF_UNREACH;
516 syncache_drop(sc, sch);
517 tcpstat.tcps_sc_unreach++;
521 * Build a new TCP socket structure from a syncache entry.
523 static struct socket *
524 syncache_socket(sc, lso)
528 struct inpcb *inp = NULL;
533 * Ok, create the full blown connection, and set things up
534 * as they would have been set up if we had created the
535 * connection when the SYN arrived. If we can't create
536 * the connection, abort it.
538 so = sonewconn(lso, SS_ISCONNECTED);
541 * Drop the connection; we will send a RST if the peer
542 * retransmits the ACK,
544 tcpstat.tcps_listendrop++;
551 * Insert new socket into hash list.
553 inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
555 if (sc->sc_inc.inc_isipv6) {
556 inp->in6p_laddr = sc->sc_inc.inc6_laddr;
558 inp->inp_vflag &= ~INP_IPV6;
559 inp->inp_vflag |= INP_IPV4;
561 inp->inp_laddr = sc->sc_inc.inc_laddr;
565 inp->inp_lport = sc->sc_inc.inc_lport;
566 if (in_pcbinshash(inp) != 0) {
568 * Undo the assignments above if we failed to
569 * put the PCB on the hash lists.
572 if (sc->sc_inc.inc_isipv6)
573 inp->in6p_laddr = in6addr_any;
576 inp->inp_laddr.s_addr = INADDR_ANY;
581 /* copy old policy into new socket's */
582 if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
583 printf("syncache_expand: could not copy policy\n");
586 if (sc->sc_inc.inc_isipv6) {
587 struct inpcb *oinp = sotoinpcb(lso);
588 struct in6_addr laddr6;
589 struct sockaddr_in6 sin6;
591 * Inherit socket options from the listening socket.
592 * Note that in6p_inputopts are not (and should not be)
593 * copied, since it stores previously received options and is
594 * used to detect if each new option is different than the
595 * previous one and hence should be passed to a user.
596 * If we copied in6p_inputopts, a user would not be able to
597 * receive options just after calling the accept system call.
599 inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
600 if (oinp->in6p_outputopts)
601 inp->in6p_outputopts =
602 ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
603 inp->in6p_route = sc->sc_route6;
604 sc->sc_route6.ro_rt = NULL;
606 sin6.sin6_family = AF_INET6;
607 sin6.sin6_len = sizeof sin6;
608 sin6.sin6_addr = sc->sc_inc.inc6_faddr;
609 sin6.sin6_port = sc->sc_inc.inc_fport;
610 sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
611 laddr6 = inp->in6p_laddr;
612 if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
613 inp->in6p_laddr = sc->sc_inc.inc6_laddr;
614 if (in6_pcbconnect(inp, (struct sockaddr *)&sin6, &thread0)) {
615 inp->in6p_laddr = laddr6;
621 struct in_addr laddr;
622 struct sockaddr_in sin;
624 inp->inp_options = ip_srcroute();
625 if (inp->inp_options == NULL) {
626 inp->inp_options = sc->sc_ipopts;
627 sc->sc_ipopts = NULL;
629 inp->inp_route = sc->sc_route;
630 sc->sc_route.ro_rt = NULL;
632 sin.sin_family = AF_INET;
633 sin.sin_len = sizeof sin;
634 sin.sin_addr = sc->sc_inc.inc_faddr;
635 sin.sin_port = sc->sc_inc.inc_fport;
636 bzero(sin.sin_zero, sizeof sin.sin_zero);
637 laddr = inp->inp_laddr;
638 if (inp->inp_laddr.s_addr == INADDR_ANY)
639 inp->inp_laddr = sc->sc_inc.inc_laddr;
640 if (in_pcbconnect(inp, (struct sockaddr *)&sin, &thread0)) {
641 inp->inp_laddr = laddr;
647 tp->t_state = TCPS_SYN_RECEIVED;
648 tp->iss = sc->sc_iss;
649 tp->irs = sc->sc_irs;
652 tp->snd_wl1 = sc->sc_irs;
653 tp->rcv_up = sc->sc_irs + 1;
654 tp->rcv_wnd = sc->sc_wnd;
655 tp->rcv_adv += tp->rcv_wnd;
657 tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
658 if (sc->sc_flags & SCF_NOOPT)
659 tp->t_flags |= TF_NOOPT;
660 if (sc->sc_flags & SCF_WINSCALE) {
661 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
662 tp->requested_s_scale = sc->sc_requested_s_scale;
663 tp->request_r_scale = sc->sc_request_r_scale;
665 if (sc->sc_flags & SCF_TIMESTAMP) {
666 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
667 tp->ts_recent = sc->sc_tsrecent;
668 tp->ts_recent_age = ticks;
670 if (sc->sc_flags & SCF_CC) {
672 * Initialization of the tcpcb for transaction;
673 * set SND.WND = SEG.WND,
674 * initialize CCsend and CCrecv.
676 tp->t_flags |= TF_REQ_CC|TF_RCVD_CC;
677 tp->cc_send = sc->sc_cc_send;
678 tp->cc_recv = sc->sc_cc_recv;
681 tcp_mss(tp, sc->sc_peer_mss);
684 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
686 if (sc->sc_rxtslot != 0)
687 tp->snd_cwnd = tp->t_maxseg;
688 callout_reset(tp->tt_keep, tcp_keepinit, tcp_timer_keep, tp);
690 tcpstat.tcps_accepts++;
700 * This function gets called when we receive an ACK for a
701 * socket in the LISTEN state. We look up the connection
702 * in the syncache, and if its there, we pull it out of
703 * the cache and turn it into a full-blown connection in
704 * the SYN-RECEIVED state.
707 syncache_expand(inc, th, sop, m)
708 struct in_conninfo *inc;
714 struct syncache_head *sch;
717 sc = syncache_lookup(inc, &sch);
720 * There is no syncache entry, so see if this ACK is
721 * a returning syncookie. To do this, first:
722 * A. See if this socket has had a syncache entry dropped in
723 * the past. We don't want to accept a bogus syncookie
724 * if we've never received a SYN.
725 * B. check that the syncookie is valid. If it is, then
726 * cobble up a fake syncache entry, and return.
730 sc = syncookie_lookup(inc, th, *sop);
734 tcpstat.tcps_sc_recvcookie++;
738 * If seg contains an ACK, but not for our SYN/ACK, send a RST.
740 if (th->th_ack != sc->sc_iss + 1)
743 so = syncache_socket(sc, *sop);
747 /* XXXjlemon check this - is this correct? */
748 (void) tcp_respond(NULL, m, m, th,
749 th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
751 m_freem(m); /* XXX only needed for above */
752 tcpstat.tcps_sc_aborted++;
754 sc->sc_flags |= SCF_KEEPROUTE;
755 tcpstat.tcps_sc_completed++;
760 syncache_drop(sc, sch);
766 * Given a LISTEN socket and an inbound SYN request, add
767 * this to the syn cache, and send back a segment:
768 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
771 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
772 * Doing so would require that we hold onto the data and deliver it
773 * to the application. However, if we are the target of a SYN-flood
774 * DoS attack, an attacker could send data which would eventually
775 * consume all available buffer space if it were ACKed. By not ACKing
776 * the data, we avoid this DoS scenario.
779 syncache_add(inc, to, th, sop, m)
780 struct in_conninfo *inc;
788 struct syncache *sc = NULL;
789 struct syncache_head *sch;
790 struct mbuf *ipopts = NULL;
791 struct rmxp_tao *taop;
798 * Remember the IP options, if any.
801 if (!inc->inc_isipv6)
803 ipopts = ip_srcroute();
806 * See if we already have an entry for this connection.
807 * If we do, resend the SYN,ACK, and reset the retransmit timer.
810 * should the syncache be re-initialized with the contents
811 * of the new SYN here (which may have different options?)
813 sc = syncache_lookup(inc, &sch);
815 tcpstat.tcps_sc_dupsyn++;
818 * If we were remembering a previous source route,
819 * forget it and use the new one we've been given.
822 (void) m_free(sc->sc_ipopts);
823 sc->sc_ipopts = ipopts;
826 * Update timestamp if present.
828 if (sc->sc_flags & SCF_TIMESTAMP)
829 sc->sc_tsrecent = to->to_tsval;
831 * PCB may have changed, pick up new values.
834 sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
835 if (syncache_respond(sc, m) == 0) {
836 TAILQ_REMOVE(&tcp_syncache.timerq[sc->sc_rxtslot],
838 SYNCACHE_TIMEOUT(sc, sc->sc_rxtslot);
839 tcpstat.tcps_sndacks++;
840 tcpstat.tcps_sndtotal++;
847 * This allocation is guaranteed to succeed because we
848 * preallocate one more syncache entry than cache_limit.
850 sc = zalloc(tcp_syncache.zone);
853 * Fill in the syncache values.
856 sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
857 sc->sc_ipopts = ipopts;
858 sc->sc_inc.inc_fport = inc->inc_fport;
859 sc->sc_inc.inc_lport = inc->inc_lport;
861 sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
862 if (inc->inc_isipv6) {
863 sc->sc_inc.inc6_faddr = inc->inc6_faddr;
864 sc->sc_inc.inc6_laddr = inc->inc6_laddr;
865 sc->sc_route6.ro_rt = NULL;
869 sc->sc_inc.inc_faddr = inc->inc_faddr;
870 sc->sc_inc.inc_laddr = inc->inc_laddr;
871 sc->sc_route.ro_rt = NULL;
873 sc->sc_irs = th->th_seq;
875 sc->sc_peer_mss = to->to_flags & TOF_MSS ? to->to_mss : 0;
877 sc->sc_iss = syncookie_generate(sc);
879 sc->sc_iss = arc4random();
881 /* Initial receive window: clip sbspace to [0 .. TCP_MAXWIN] */
882 win = sbspace(&so->so_rcv);
884 win = imin(win, TCP_MAXWIN);
887 if (tcp_do_rfc1323) {
889 * A timestamp received in a SYN makes
890 * it ok to send timestamp requests and replies.
892 if (to->to_flags & TOF_TS) {
893 sc->sc_tsrecent = to->to_tsval;
894 sc->sc_flags |= SCF_TIMESTAMP;
896 if (to->to_flags & TOF_SCALE) {
899 /* Compute proper scaling value from buffer space */
900 while (wscale < TCP_MAX_WINSHIFT &&
901 (TCP_MAXWIN << wscale) < so->so_rcv.sb_hiwat)
903 sc->sc_request_r_scale = wscale;
904 sc->sc_requested_s_scale = to->to_requested_s_scale;
905 sc->sc_flags |= SCF_WINSCALE;
908 if (tcp_do_rfc1644) {
910 * A CC or CC.new option received in a SYN makes
911 * it ok to send CC in subsequent segments.
913 if (to->to_flags & (TOF_CC|TOF_CCNEW)) {
914 sc->sc_cc_recv = to->to_cc;
915 sc->sc_cc_send = CC_INC(tcp_ccgen);
916 sc->sc_flags |= SCF_CC;
919 if (tp->t_flags & TF_NOOPT)
920 sc->sc_flags = SCF_NOOPT;
924 * We have the option here of not doing TAO (even if the segment
925 * qualifies) and instead fall back to a normal 3WHS via the syncache.
926 * This allows us to apply synflood protection to TAO-qualifying SYNs
927 * also. However, there should be a hueristic to determine when to
928 * do this, and is not present at the moment.
932 * Perform TAO test on incoming CC (SEG.CC) option, if any.
933 * - compare SEG.CC against cached CC from the same host, if any.
934 * - if SEG.CC > chached value, SYN must be new and is accepted
935 * immediately: save new CC in the cache, mark the socket
936 * connected, enter ESTABLISHED state, turn on flag to
937 * send a SYN in the next segment.
938 * A virtual advertised window is set in rcv_adv to
939 * initialize SWS prevention. Then enter normal segment
940 * processing: drop SYN, process data and FIN.
941 * - otherwise do a normal 3-way handshake.
943 taop = tcp_gettaocache(&sc->sc_inc);
944 if ((to->to_flags & TOF_CC) != 0) {
945 if (((tp->t_flags & TF_NOPUSH) != 0) &&
946 sc->sc_flags & SCF_CC &&
947 taop != NULL && taop->tao_cc != 0 &&
948 CC_GT(to->to_cc, taop->tao_cc)) {
950 so = syncache_socket(sc, *sop);
952 sc->sc_flags |= SCF_KEEPROUTE;
953 taop->tao_cc = to->to_cc;
961 * No CC option, but maybe CC.NEW: invalidate cached value.
967 * TAO test failed or there was no CC option,
968 * do a standard 3-way handshake.
970 if (syncache_respond(sc, m) == 0) {
971 syncache_insert(sc, sch);
972 tcpstat.tcps_sndacks++;
973 tcpstat.tcps_sndtotal++;
976 tcpstat.tcps_sc_dropped++;
983 syncache_respond(sc, m)
989 u_int16_t tlen, hlen, mssopt;
990 struct ip *ip = NULL;
994 struct ip6_hdr *ip6 = NULL;
998 if (sc->sc_inc.inc_isipv6) {
999 rt = tcp_rtlookup6(&sc->sc_inc);
1001 mssopt = rt->rt_ifp->if_mtu -
1002 (sizeof(struct ip6_hdr) + sizeof(struct tcphdr));
1004 mssopt = tcp_v6mssdflt;
1005 hlen = sizeof(struct ip6_hdr);
1009 rt = tcp_rtlookup(&sc->sc_inc);
1011 mssopt = rt->rt_ifp->if_mtu -
1012 (sizeof(struct ip) + sizeof(struct tcphdr));
1014 mssopt = tcp_mssdflt;
1015 hlen = sizeof(struct ip);
1018 /* Compute the size of the TCP options. */
1019 if (sc->sc_flags & SCF_NOOPT) {
1022 optlen = TCPOLEN_MAXSEG +
1023 ((sc->sc_flags & SCF_WINSCALE) ? 4 : 0) +
1024 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0) +
1025 ((sc->sc_flags & SCF_CC) ? TCPOLEN_CC_APPA * 2 : 0);
1027 tlen = hlen + sizeof(struct tcphdr) + optlen;
1031 * assume that the entire packet will fit in a header mbuf
1033 KASSERT(max_linkhdr + tlen <= MHLEN, ("syncache: mbuf too small"));
1036 * XXX shouldn't this reuse the mbuf if possible ?
1037 * Create the IP+TCP header from scratch.
1042 m = m_gethdr(M_DONTWAIT, MT_HEADER);
1045 m->m_data += max_linkhdr;
1047 m->m_pkthdr.len = tlen;
1048 m->m_pkthdr.rcvif = NULL;
1051 if (sc->sc_inc.inc_isipv6) {
1052 ip6 = mtod(m, struct ip6_hdr *);
1053 ip6->ip6_vfc = IPV6_VERSION;
1054 ip6->ip6_nxt = IPPROTO_TCP;
1055 ip6->ip6_src = sc->sc_inc.inc6_laddr;
1056 ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1057 ip6->ip6_plen = htons(tlen - hlen);
1058 /* ip6_hlim is set after checksum */
1059 /* ip6_flow = ??? */
1061 th = (struct tcphdr *)(ip6 + 1);
1065 ip = mtod(m, struct ip *);
1066 ip->ip_v = IPVERSION;
1067 ip->ip_hl = sizeof(struct ip) >> 2;
1072 ip->ip_p = IPPROTO_TCP;
1073 ip->ip_src = sc->sc_inc.inc_laddr;
1074 ip->ip_dst = sc->sc_inc.inc_faddr;
1075 ip->ip_ttl = sc->sc_tp->t_inpcb->inp_ip_ttl; /* XXX */
1076 ip->ip_tos = sc->sc_tp->t_inpcb->inp_ip_tos; /* XXX */
1079 * See if we should do MTU discovery. Route lookups are expensive,
1080 * so we will only unset the DF bit if:
1082 * 1) path_mtu_discovery is disabled
1083 * 2) the SCF_UNREACH flag has been set
1085 if (path_mtu_discovery
1086 && ((sc->sc_flags & SCF_UNREACH) == 0)) {
1087 ip->ip_off |= IP_DF;
1090 th = (struct tcphdr *)(ip + 1);
1092 th->th_sport = sc->sc_inc.inc_lport;
1093 th->th_dport = sc->sc_inc.inc_fport;
1095 th->th_seq = htonl(sc->sc_iss);
1096 th->th_ack = htonl(sc->sc_irs + 1);
1097 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1099 th->th_flags = TH_SYN|TH_ACK;
1100 th->th_win = htons(sc->sc_wnd);
1103 /* Tack on the TCP options. */
1106 optp = (u_int8_t *)(th + 1);
1107 *optp++ = TCPOPT_MAXSEG;
1108 *optp++ = TCPOLEN_MAXSEG;
1109 *optp++ = (mssopt >> 8) & 0xff;
1110 *optp++ = mssopt & 0xff;
1112 if (sc->sc_flags & SCF_WINSCALE) {
1113 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
1114 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
1115 sc->sc_request_r_scale);
1119 if (sc->sc_flags & SCF_TIMESTAMP) {
1120 u_int32_t *lp = (u_int32_t *)(optp);
1122 /* Form timestamp option as shown in appendix A of RFC 1323. */
1123 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
1124 *lp++ = htonl(ticks);
1125 *lp = htonl(sc->sc_tsrecent);
1126 optp += TCPOLEN_TSTAMP_APPA;
1130 * Send CC and CC.echo if we received CC from our peer.
1132 if (sc->sc_flags & SCF_CC) {
1133 u_int32_t *lp = (u_int32_t *)(optp);
1135 *lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CC));
1136 *lp++ = htonl(sc->sc_cc_send);
1137 *lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CCECHO));
1138 *lp = htonl(sc->sc_cc_recv);
1139 optp += TCPOLEN_CC_APPA * 2;
1144 if (sc->sc_inc.inc_isipv6) {
1145 struct route_in6 *ro6 = &sc->sc_route6;
1148 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
1149 ip6->ip6_hlim = in6_selecthlim(NULL,
1150 ro6->ro_rt ? ro6->ro_rt->rt_ifp : NULL);
1151 error = ip6_output(m, NULL, ro6, 0, NULL, NULL,
1152 sc->sc_tp->t_inpcb);
1156 th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1157 htons(tlen - hlen + IPPROTO_TCP));
1158 m->m_pkthdr.csum_flags = CSUM_TCP;
1159 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1160 error = ip_output(m, sc->sc_ipopts, &sc->sc_route, 0, NULL,
1161 sc->sc_tp->t_inpcb);
1169 * |. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|
1171 * | MD5(laddr,faddr,secret,lport,fport) |. . . . . . .|
1173 * (A): peer mss index
1177 * The values below are chosen to minimize the size of the tcp_secret
1178 * table, as well as providing roughly a 16 second lifetime for the cookie.
1181 #define SYNCOOKIE_WNDBITS 5 /* exposed bits for window indexing */
1182 #define SYNCOOKIE_TIMESHIFT 1 /* scale ticks to window time units */
1184 #define SYNCOOKIE_WNDMASK ((1 << SYNCOOKIE_WNDBITS) - 1)
1185 #define SYNCOOKIE_NSECRETS (1 << SYNCOOKIE_WNDBITS)
1186 #define SYNCOOKIE_TIMEOUT \
1187 (hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT))
1188 #define SYNCOOKIE_DATAMASK ((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK)
1191 u_int32_t ts_secbits[4];
1193 } tcp_secret[SYNCOOKIE_NSECRETS];
1195 static int tcp_msstab[] = { 0, 536, 1460, 8960 };
1197 static MD5_CTX syn_ctx;
1199 #define MD5Add(v) MD5Update(&syn_ctx, (u_char *)&v, sizeof(v))
1202 u_int32_t laddr, faddr;
1203 u_int32_t secbits[4];
1204 u_int16_t lport, fport;
1208 CTASSERT(sizeof(struct md5_add) == 28);
1212 * Consider the problem of a recreated (and retransmitted) cookie. If the
1213 * original SYN was accepted, the connection is established. The second
1214 * SYN is inflight, and if it arrives with an ISN that falls within the
1215 * receive window, the connection is killed.
1217 * However, since cookies have other problems, this may not be worth
1222 syncookie_generate(struct syncache *sc)
1224 u_int32_t md5_buffer[4];
1229 idx = ((ticks << SYNCOOKIE_TIMESHIFT) / hz) & SYNCOOKIE_WNDMASK;
1230 if (tcp_secret[idx].ts_expire < ticks) {
1231 for (i = 0; i < 4; i++)
1232 tcp_secret[idx].ts_secbits[i] = arc4random();
1233 tcp_secret[idx].ts_expire = ticks + SYNCOOKIE_TIMEOUT;
1235 for (data = sizeof(tcp_msstab) / sizeof(int) - 1; data > 0; data--)
1236 if (tcp_msstab[data] <= sc->sc_peer_mss)
1238 data = (data << SYNCOOKIE_WNDBITS) | idx;
1239 data ^= sc->sc_irs; /* peer's iss */
1242 if (sc->sc_inc.inc_isipv6) {
1243 MD5Add(sc->sc_inc.inc6_laddr);
1244 MD5Add(sc->sc_inc.inc6_faddr);
1250 add.laddr = sc->sc_inc.inc_laddr.s_addr;
1251 add.faddr = sc->sc_inc.inc_faddr.s_addr;
1253 add.lport = sc->sc_inc.inc_lport;
1254 add.fport = sc->sc_inc.inc_fport;
1255 add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1256 add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1257 add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1258 add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1260 MD5Final((u_char *)&md5_buffer, &syn_ctx);
1261 data ^= (md5_buffer[0] & ~SYNCOOKIE_WNDMASK);
1265 static struct syncache *
1266 syncookie_lookup(inc, th, so)
1267 struct in_conninfo *inc;
1271 u_int32_t md5_buffer[4];
1272 struct syncache *sc;
1277 data = (th->th_ack - 1) ^ (th->th_seq - 1); /* remove ISS */
1278 idx = data & SYNCOOKIE_WNDMASK;
1279 if (tcp_secret[idx].ts_expire < ticks ||
1280 sototcpcb(so)->ts_recent + SYNCOOKIE_TIMEOUT < ticks)
1284 if (inc->inc_isipv6) {
1285 MD5Add(inc->inc6_laddr);
1286 MD5Add(inc->inc6_faddr);
1292 add.laddr = inc->inc_laddr.s_addr;
1293 add.faddr = inc->inc_faddr.s_addr;
1295 add.lport = inc->inc_lport;
1296 add.fport = inc->inc_fport;
1297 add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1298 add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1299 add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1300 add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1302 MD5Final((u_char *)&md5_buffer, &syn_ctx);
1303 data ^= md5_buffer[0];
1304 if ((data & ~SYNCOOKIE_DATAMASK) != 0)
1306 data = data >> SYNCOOKIE_WNDBITS;
1309 * This allocation is guaranteed to succeed because we
1310 * preallocate one more syncache entry than cache_limit.
1312 sc = zalloc(tcp_syncache.zone);
1315 * Fill in the syncache values.
1316 * XXX duplicate code from syncache_add
1318 sc->sc_ipopts = NULL;
1319 sc->sc_inc.inc_fport = inc->inc_fport;
1320 sc->sc_inc.inc_lport = inc->inc_lport;
1322 sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1323 if (inc->inc_isipv6) {
1324 sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1325 sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1326 sc->sc_route6.ro_rt = NULL;
1330 sc->sc_inc.inc_faddr = inc->inc_faddr;
1331 sc->sc_inc.inc_laddr = inc->inc_laddr;
1332 sc->sc_route.ro_rt = NULL;
1334 sc->sc_irs = th->th_seq - 1;
1335 sc->sc_iss = th->th_ack - 1;
1336 wnd = sbspace(&so->so_rcv);
1338 wnd = imin(wnd, TCP_MAXWIN);
1342 sc->sc_peer_mss = tcp_msstab[data];