Merge branch 'vendor/BMAKE'
[dragonfly.git] / sys / vm / vm_object.c
1 /*
2  * Copyright (c) 1991, 1993, 2013
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  *
60  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
61  */
62
63 /*
64  *      Virtual memory object module.
65  */
66
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/proc.h>           /* for curproc, pageproc */
70 #include <sys/thread.h>
71 #include <sys/vnode.h>
72 #include <sys/vmmeter.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/refcount.h>
78
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <vm/pmap.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_object.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_pageout.h>
86 #include <vm/vm_pager.h>
87 #include <vm/swap_pager.h>
88 #include <vm/vm_kern.h>
89 #include <vm/vm_extern.h>
90 #include <vm/vm_zone.h>
91
92 #include <vm/vm_page2.h>
93
94 #include <machine/specialreg.h>
95
96 #define EASY_SCAN_FACTOR        8
97
98 static void     vm_object_qcollapse(vm_object_t object,
99                                     vm_object_t backing_object);
100 static void     vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
101                                              int pagerflags);
102 static void     vm_object_lock_init(vm_object_t);
103
104
105 /*
106  *      Virtual memory objects maintain the actual data
107  *      associated with allocated virtual memory.  A given
108  *      page of memory exists within exactly one object.
109  *
110  *      An object is only deallocated when all "references"
111  *      are given up.  Only one "reference" to a given
112  *      region of an object should be writeable.
113  *
114  *      Associated with each object is a list of all resident
115  *      memory pages belonging to that object; this list is
116  *      maintained by the "vm_page" module, and locked by the object's
117  *      lock.
118  *
119  *      Each object also records a "pager" routine which is
120  *      used to retrieve (and store) pages to the proper backing
121  *      storage.  In addition, objects may be backed by other
122  *      objects from which they were virtual-copied.
123  *
124  *      The only items within the object structure which are
125  *      modified after time of creation are:
126  *              reference count         locked by object's lock
127  *              pager routine           locked by object's lock
128  *
129  */
130
131 struct vm_object kernel_object;
132
133 static long vm_object_count;
134
135 static long object_collapses;
136 static long object_bypasses;
137 static int next_index;
138 static vm_zone_t obj_zone;
139 static struct vm_zone obj_zone_store;
140 #define VM_OBJECTS_INIT 256
141 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
142
143 struct object_q vm_object_lists[VMOBJ_HSIZE];
144 struct lwkt_token vmobj_tokens[VMOBJ_HSIZE];
145
146 /*
147  * Misc low level routines
148  */
149 static void
150 vm_object_lock_init(vm_object_t obj)
151 {
152 #if defined(DEBUG_LOCKS)
153         int i;
154
155         obj->debug_hold_bitmap = 0;
156         obj->debug_hold_ovfl = 0;
157         for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
158                 obj->debug_hold_thrs[i] = NULL;
159                 obj->debug_hold_file[i] = NULL;
160                 obj->debug_hold_line[i] = 0;
161         }
162 #endif
163 }
164
165 void
166 vm_object_lock_swap(void)
167 {
168         lwkt_token_swap();
169 }
170
171 void
172 vm_object_lock(vm_object_t obj)
173 {
174         lwkt_gettoken(&obj->token);
175 }
176
177 /*
178  * Returns TRUE on sucesss
179  */
180 static int
181 vm_object_lock_try(vm_object_t obj)
182 {
183         return(lwkt_trytoken(&obj->token));
184 }
185
186 void
187 vm_object_lock_shared(vm_object_t obj)
188 {
189         lwkt_gettoken_shared(&obj->token);
190 }
191
192 void
193 vm_object_unlock(vm_object_t obj)
194 {
195         lwkt_reltoken(&obj->token);
196 }
197
198 void
199 vm_object_upgrade(vm_object_t obj)
200 {
201         lwkt_reltoken(&obj->token);
202         lwkt_gettoken(&obj->token);
203 }
204
205 void
206 vm_object_downgrade(vm_object_t obj)
207 {
208         lwkt_reltoken(&obj->token);
209         lwkt_gettoken_shared(&obj->token);
210 }
211
212 static __inline void
213 vm_object_assert_held(vm_object_t obj)
214 {
215         ASSERT_LWKT_TOKEN_HELD(&obj->token);
216 }
217
218 void
219 #ifndef DEBUG_LOCKS
220 vm_object_hold(vm_object_t obj)
221 #else
222 debugvm_object_hold(vm_object_t obj, char *file, int line)
223 #endif
224 {
225         KKASSERT(obj != NULL);
226
227         /*
228          * Object must be held (object allocation is stable due to callers
229          * context, typically already holding the token on a parent object)
230          * prior to potentially blocking on the lock, otherwise the object
231          * can get ripped away from us.
232          */
233         refcount_acquire(&obj->hold_count);
234         vm_object_lock(obj);
235
236 #if defined(DEBUG_LOCKS)
237         int i;
238         u_int mask;
239
240         for (;;) {
241                 mask = ~obj->debug_hold_bitmap;
242                 cpu_ccfence();
243                 if (mask == 0xFFFFFFFFU) {
244                         if (obj->debug_hold_ovfl == 0)
245                                 obj->debug_hold_ovfl = 1;
246                         break;
247                 }
248                 i = ffs(mask) - 1;
249                 if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
250                                       ~mask | (1 << i))) {
251                         obj->debug_hold_bitmap |= (1 << i);
252                         obj->debug_hold_thrs[i] = curthread;
253                         obj->debug_hold_file[i] = file;
254                         obj->debug_hold_line[i] = line;
255                         break;
256                 }
257         }
258 #endif
259 }
260
261 int
262 #ifndef DEBUG_LOCKS
263 vm_object_hold_try(vm_object_t obj)
264 #else
265 debugvm_object_hold_try(vm_object_t obj, char *file, int line)
266 #endif
267 {
268         KKASSERT(obj != NULL);
269
270         /*
271          * Object must be held (object allocation is stable due to callers
272          * context, typically already holding the token on a parent object)
273          * prior to potentially blocking on the lock, otherwise the object
274          * can get ripped away from us.
275          */
276         refcount_acquire(&obj->hold_count);
277         if (vm_object_lock_try(obj) == 0) {
278                 if (refcount_release(&obj->hold_count)) {
279                         if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD))
280                                 zfree(obj_zone, obj);
281                 }
282                 return(0);
283         }
284
285 #if defined(DEBUG_LOCKS)
286         int i;
287         u_int mask;
288
289         for (;;) {
290                 mask = ~obj->debug_hold_bitmap;
291                 cpu_ccfence();
292                 if (mask == 0xFFFFFFFFU) {
293                         if (obj->debug_hold_ovfl == 0)
294                                 obj->debug_hold_ovfl = 1;
295                         break;
296                 }
297                 i = ffs(mask) - 1;
298                 if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
299                                       ~mask | (1 << i))) {
300                         obj->debug_hold_bitmap |= (1 << i);
301                         obj->debug_hold_thrs[i] = curthread;
302                         obj->debug_hold_file[i] = file;
303                         obj->debug_hold_line[i] = line;
304                         break;
305                 }
306         }
307 #endif
308         return(1);
309 }
310
311 void
312 #ifndef DEBUG_LOCKS
313 vm_object_hold_shared(vm_object_t obj)
314 #else
315 debugvm_object_hold_shared(vm_object_t obj, char *file, int line)
316 #endif
317 {
318         KKASSERT(obj != NULL);
319
320         /*
321          * Object must be held (object allocation is stable due to callers
322          * context, typically already holding the token on a parent object)
323          * prior to potentially blocking on the lock, otherwise the object
324          * can get ripped away from us.
325          */
326         refcount_acquire(&obj->hold_count);
327         vm_object_lock_shared(obj);
328
329 #if defined(DEBUG_LOCKS)
330         int i;
331         u_int mask;
332
333         for (;;) {
334                 mask = ~obj->debug_hold_bitmap;
335                 cpu_ccfence();
336                 if (mask == 0xFFFFFFFFU) {
337                         if (obj->debug_hold_ovfl == 0)
338                                 obj->debug_hold_ovfl = 1;
339                         break;
340                 }
341                 i = ffs(mask) - 1;
342                 if (atomic_cmpset_int(&obj->debug_hold_bitmap, ~mask,
343                                       ~mask | (1 << i))) {
344                         obj->debug_hold_bitmap |= (1 << i);
345                         obj->debug_hold_thrs[i] = curthread;
346                         obj->debug_hold_file[i] = file;
347                         obj->debug_hold_line[i] = line;
348                         break;
349                 }
350         }
351 #endif
352 }
353
354 /*
355  * Drop the token and hold_count on the object.
356  *
357  * WARNING! Token might be shared.
358  */
359 void
360 vm_object_drop(vm_object_t obj)
361 {
362         if (obj == NULL)
363                 return;
364
365 #if defined(DEBUG_LOCKS)
366         int found = 0;
367         int i;
368
369         for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
370                 if ((obj->debug_hold_bitmap & (1 << i)) &&
371                     (obj->debug_hold_thrs[i] == curthread)) {
372                         obj->debug_hold_bitmap &= ~(1 << i);
373                         obj->debug_hold_thrs[i] = NULL;
374                         obj->debug_hold_file[i] = NULL;
375                         obj->debug_hold_line[i] = 0;
376                         found = 1;
377                         break;
378                 }
379         }
380
381         if (found == 0 && obj->debug_hold_ovfl == 0)
382                 panic("vm_object: attempt to drop hold on non-self-held obj");
383 #endif
384
385         /*
386          * No new holders should be possible once we drop hold_count 1->0 as
387          * there is no longer any way to reference the object.
388          */
389         KKASSERT(obj->hold_count > 0);
390         if (refcount_release(&obj->hold_count)) {
391                 if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) {
392                         vm_object_unlock(obj);
393                         zfree(obj_zone, obj);
394                 } else {
395                         vm_object_unlock(obj);
396                 }
397         } else {
398                 vm_object_unlock(obj);
399         }
400 }
401
402 /*
403  * Initialize a freshly allocated object, returning a held object.
404  *
405  * Used only by vm_object_allocate() and zinitna().
406  *
407  * No requirements.
408  */
409 void
410 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
411 {
412         int incr;
413         int n;
414
415         RB_INIT(&object->rb_memq);
416         LIST_INIT(&object->shadow_head);
417         lwkt_token_init(&object->token, "vmobj");
418
419         object->type = type;
420         object->size = size;
421         object->ref_count = 1;
422         object->memattr = VM_MEMATTR_DEFAULT;
423         object->hold_count = 0;
424         object->flags = 0;
425         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
426                 vm_object_set_flag(object, OBJ_ONEMAPPING);
427         object->paging_in_progress = 0;
428         object->resident_page_count = 0;
429         object->agg_pv_list_count = 0;
430         object->shadow_count = 0;
431         /* cpu localization twist */
432         object->pg_color = (int)(intptr_t)curthread;
433         if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
434                 incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
435         else
436                 incr = size;
437         next_index = (next_index + incr) & PQ_L2_MASK;
438         object->handle = NULL;
439         object->backing_object = NULL;
440         object->backing_object_offset = (vm_ooffset_t)0;
441
442         object->generation++;
443         object->swblock_count = 0;
444         RB_INIT(&object->swblock_root);
445         vm_object_lock_init(object);
446         pmap_object_init(object);
447
448         vm_object_hold(object);
449
450         n = VMOBJ_HASH(object);
451         atomic_add_long(&vm_object_count, 1);
452         lwkt_gettoken(&vmobj_tokens[n]);
453         TAILQ_INSERT_TAIL(&vm_object_lists[n], object, object_list);
454         lwkt_reltoken(&vmobj_tokens[n]);
455 }
456
457 /*
458  * Initialize the VM objects module.
459  *
460  * Called from the low level boot code only.
461  */
462 void
463 vm_object_init(void)
464 {
465         int i;
466
467         for (i = 0; i < VMOBJ_HSIZE; ++i) {
468                 TAILQ_INIT(&vm_object_lists[i]);
469                 lwkt_token_init(&vmobj_tokens[i], "vmobjlst");
470         }
471         
472         _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
473                             &kernel_object);
474         vm_object_drop(&kernel_object);
475
476         obj_zone = &obj_zone_store;
477         zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
478                 vm_objects_init, VM_OBJECTS_INIT);
479 }
480
481 void
482 vm_object_init2(void)
483 {
484         zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
485 }
486
487 /*
488  * Allocate and return a new object of the specified type and size.
489  *
490  * No requirements.
491  */
492 vm_object_t
493 vm_object_allocate(objtype_t type, vm_pindex_t size)
494 {
495         vm_object_t result;
496
497         result = (vm_object_t) zalloc(obj_zone);
498
499         _vm_object_allocate(type, size, result);
500         vm_object_drop(result);
501
502         return (result);
503 }
504
505 /*
506  * This version returns a held object, allowing further atomic initialization
507  * of the object.
508  */
509 vm_object_t
510 vm_object_allocate_hold(objtype_t type, vm_pindex_t size)
511 {
512         vm_object_t result;
513
514         result = (vm_object_t) zalloc(obj_zone);
515
516         _vm_object_allocate(type, size, result);
517
518         return (result);
519 }
520
521 /*
522  * Add an additional reference to a vm_object.  The object must already be
523  * held.  The original non-lock version is no longer supported.  The object
524  * must NOT be chain locked by anyone at the time the reference is added.
525  *
526  * Referencing a chain-locked object can blow up the fairly sensitive
527  * ref_count and shadow_count tests in the deallocator.  Most callers
528  * will call vm_object_chain_wait() prior to calling
529  * vm_object_reference_locked() to avoid the case.
530  *
531  * The object must be held, but may be held shared if desired (hence why
532  * we use an atomic op).
533  */
534 void
535 vm_object_reference_locked(vm_object_t object)
536 {
537         KKASSERT(object != NULL);
538         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
539         KKASSERT((object->chainlk & (CHAINLK_EXCL | CHAINLK_MASK)) == 0);
540         atomic_add_int(&object->ref_count, 1);
541         if (object->type == OBJT_VNODE) {
542                 vref(object->handle);
543                 /* XXX what if the vnode is being destroyed? */
544         }
545 }
546
547 /*
548  * This version is only allowed for vnode objects.
549  */
550 void
551 vm_object_reference_quick(vm_object_t object)
552 {
553         KKASSERT(object->type == OBJT_VNODE);
554         atomic_add_int(&object->ref_count, 1);
555         vref(object->handle);
556 }
557
558 /*
559  * Object OBJ_CHAINLOCK lock handling.
560  *
561  * The caller can chain-lock backing objects recursively and then
562  * use vm_object_chain_release_all() to undo the whole chain.
563  *
564  * Chain locks are used to prevent collapses and are only applicable
565  * to OBJT_DEFAULT and OBJT_SWAP objects.  Chain locking operations
566  * on other object types are ignored.  This is also important because
567  * it allows e.g. the vnode underlying a memory mapping to take concurrent
568  * faults.
569  *
570  * The object must usually be held on entry, though intermediate
571  * objects need not be held on release.  The object must be held exclusively,
572  * NOT shared.  Note that the prefault path checks the shared state and
573  * avoids using the chain functions.
574  */
575 void
576 vm_object_chain_wait(vm_object_t object, int shared)
577 {
578         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
579         for (;;) {
580                 uint32_t chainlk = object->chainlk;
581
582                 cpu_ccfence();
583                 if (shared) {
584                         if (chainlk & (CHAINLK_EXCL | CHAINLK_EXCLREQ)) {
585                                 tsleep_interlock(object, 0);
586                                 if (atomic_cmpset_int(&object->chainlk,
587                                                       chainlk,
588                                                       chainlk | CHAINLK_WAIT)) {
589                                         tsleep(object, PINTERLOCKED,
590                                                "objchns", 0);
591                                 }
592                                 /* retry */
593                         } else {
594                                 break;
595                         }
596                         /* retry */
597                 } else {
598                         if (chainlk & (CHAINLK_MASK | CHAINLK_EXCL)) {
599                                 tsleep_interlock(object, 0);
600                                 if (atomic_cmpset_int(&object->chainlk,
601                                                       chainlk,
602                                                       chainlk | CHAINLK_WAIT))
603                                 {
604                                         tsleep(object, PINTERLOCKED,
605                                                "objchnx", 0);
606                                 }
607                                 /* retry */
608                         } else {
609                                 if (atomic_cmpset_int(&object->chainlk,
610                                                       chainlk,
611                                                       chainlk & ~CHAINLK_WAIT))
612                                 {
613                                         if (chainlk & CHAINLK_WAIT)
614                                                 wakeup(object);
615                                         break;
616                                 }
617                                 /* retry */
618                         }
619                 }
620                 /* retry */
621         }
622 }
623
624 void
625 vm_object_chain_acquire(vm_object_t object, int shared)
626 {
627         if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP)
628                 return;
629         if (vm_shared_fault == 0)
630                 shared = 0;
631
632         for (;;) {
633                 uint32_t chainlk = object->chainlk;
634
635                 cpu_ccfence();
636                 if (shared) {
637                         if (chainlk & (CHAINLK_EXCL | CHAINLK_EXCLREQ)) {
638                                 tsleep_interlock(object, 0);
639                                 if (atomic_cmpset_int(&object->chainlk,
640                                                       chainlk,
641                                                       chainlk | CHAINLK_WAIT)) {
642                                         tsleep(object, PINTERLOCKED,
643                                                "objchns", 0);
644                                 }
645                                 /* retry */
646                         } else if (atomic_cmpset_int(&object->chainlk,
647                                               chainlk, chainlk + 1)) {
648                                 break;
649                         }
650                         /* retry */
651                 } else {
652                         if (chainlk & (CHAINLK_MASK | CHAINLK_EXCL)) {
653                                 tsleep_interlock(object, 0);
654                                 if (atomic_cmpset_int(&object->chainlk,
655                                                       chainlk,
656                                                       chainlk |
657                                                        CHAINLK_WAIT |
658                                                        CHAINLK_EXCLREQ)) {
659                                         tsleep(object, PINTERLOCKED,
660                                                "objchnx", 0);
661                                 }
662                                 /* retry */
663                         } else {
664                                 if (atomic_cmpset_int(&object->chainlk,
665                                                       chainlk,
666                                                       (chainlk | CHAINLK_EXCL) &
667                                                       ~(CHAINLK_EXCLREQ |
668                                                         CHAINLK_WAIT))) {
669                                         if (chainlk & CHAINLK_WAIT)
670                                                 wakeup(object);
671                                         break;
672                                 }
673                                 /* retry */
674                         }
675                 }
676                 /* retry */
677         }
678 }
679
680 void
681 vm_object_chain_release(vm_object_t object)
682 {
683         /*ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));*/
684         if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP)
685                 return;
686         KKASSERT(object->chainlk & (CHAINLK_MASK | CHAINLK_EXCL));
687         for (;;) {
688                 uint32_t chainlk = object->chainlk;
689
690                 cpu_ccfence();
691                 if (chainlk & CHAINLK_MASK) {
692                         if ((chainlk & CHAINLK_MASK) == 1 &&
693                             atomic_cmpset_int(&object->chainlk,
694                                               chainlk,
695                                               (chainlk - 1) & ~CHAINLK_WAIT)) {
696                                 if (chainlk & CHAINLK_WAIT)
697                                         wakeup(object);
698                                 break;
699                         }
700                         if ((chainlk & CHAINLK_MASK) > 1 &&
701                             atomic_cmpset_int(&object->chainlk,
702                                               chainlk, chainlk - 1)) {
703                                 break;
704                         }
705                         /* retry */
706                 } else {
707                         KKASSERT(chainlk & CHAINLK_EXCL);
708                         if (atomic_cmpset_int(&object->chainlk,
709                                               chainlk,
710                                               chainlk & ~(CHAINLK_EXCL |
711                                                           CHAINLK_WAIT))) {
712                                 if (chainlk & CHAINLK_WAIT)
713                                         wakeup(object);
714                                 break;
715                         }
716                 }
717         }
718 }
719
720 /*
721  * Release the chain from first_object through and including stopobj.
722  * The caller is typically holding the first and last object locked
723  * (shared or exclusive) to prevent destruction races.
724  *
725  * We release stopobj first as an optimization as this object is most
726  * likely to be shared across multiple processes.
727  */
728 void
729 vm_object_chain_release_all(vm_object_t first_object, vm_object_t stopobj)
730 {
731         vm_object_t backing_object;
732         vm_object_t object;
733
734         vm_object_chain_release(stopobj);
735         object = first_object;
736
737         while (object != stopobj) {
738                 KKASSERT(object);
739                 backing_object = object->backing_object;
740                 vm_object_chain_release(object);
741                 object = backing_object;
742         }
743 }
744
745 /*
746  * Dereference an object and its underlying vnode.  The object may be
747  * held shared.  On return the object will remain held.
748  *
749  * This function may return a vnode in *vpp which the caller must release
750  * after the caller drops its own lock.  If vpp is NULL, we assume that
751  * the caller was holding an exclusive lock on the object and we vrele()
752  * the vp ourselves.
753  */
754 static void
755 vm_object_vndeallocate(vm_object_t object, struct vnode **vpp)
756 {
757         struct vnode *vp = (struct vnode *) object->handle;
758
759         KASSERT(object->type == OBJT_VNODE,
760             ("vm_object_vndeallocate: not a vnode object"));
761         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
762         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
763 #ifdef INVARIANTS
764         if (object->ref_count == 0) {
765                 vprint("vm_object_vndeallocate", vp);
766                 panic("vm_object_vndeallocate: bad object reference count");
767         }
768 #endif
769         for (;;) {
770                 int count = object->ref_count;
771                 cpu_ccfence();
772                 if (count == 1) {
773                         vm_object_upgrade(object);
774                         if (atomic_cmpset_int(&object->ref_count, count, 0)) {
775                                 vclrflags(vp, VTEXT);
776                                 break;
777                         }
778                 } else {
779                         if (atomic_cmpset_int(&object->ref_count,
780                                               count, count - 1)) {
781                                 break;
782                         }
783                 }
784                 /* retry */
785         }
786
787         /*
788          * vrele or return the vp to vrele.  We can only safely vrele(vp)
789          * if the object was locked exclusively.  But there are two races
790          * here.
791          *
792          * We had to upgrade the object above to safely clear VTEXT
793          * but the alternative path where the shared lock is retained
794          * can STILL race to 0 in other paths and cause our own vrele()
795          * to terminate the vnode.  We can't allow that if the VM object
796          * is still locked shared.
797          */
798         if (vpp)
799                 *vpp = vp;
800         else
801                 vrele(vp);
802 }
803
804 /*
805  * Release a reference to the specified object, gained either through a
806  * vm_object_allocate or a vm_object_reference call.  When all references
807  * are gone, storage associated with this object may be relinquished.
808  *
809  * The caller does not have to hold the object locked but must have control
810  * over the reference in question in order to guarantee that the object
811  * does not get ripped out from under us.
812  *
813  * XXX Currently all deallocations require an exclusive lock.
814  */
815 void
816 vm_object_deallocate(vm_object_t object)
817 {
818         struct vnode *vp;
819         int count;
820
821         if (object == NULL)
822                 return;
823         for (;;) {
824                 count = object->ref_count;
825                 cpu_ccfence();
826
827                 /*
828                  * If decrementing the count enters into special handling
829                  * territory (0, 1, or 2) we have to do it the hard way.
830                  * Fortunate though, objects with only a few refs like this
831                  * are not likely to be heavily contended anyway.
832                  *
833                  * For vnode objects we only care about 1->0 transitions.
834                  */
835                 if (count <= 3 || (object->type == OBJT_VNODE && count <= 1)) {
836                         vm_object_hold(object);
837                         vm_object_deallocate_locked(object);
838                         vm_object_drop(object);
839                         break;
840                 }
841
842                 /*
843                  * Try to decrement ref_count without acquiring a hold on
844                  * the object.  This is particularly important for the exec*()
845                  * and exit*() code paths because the program binary may
846                  * have a great deal of sharing and an exclusive lock will
847                  * crowbar performance in those circumstances.
848                  */
849                 if (object->type == OBJT_VNODE) {
850                         vp = (struct vnode *)object->handle;
851                         if (atomic_cmpset_int(&object->ref_count,
852                                               count, count - 1)) {
853                                 vrele(vp);
854                                 break;
855                         }
856                         /* retry */
857                 } else {
858                         if (atomic_cmpset_int(&object->ref_count,
859                                               count, count - 1)) {
860                                 break;
861                         }
862                         /* retry */
863                 }
864                 /* retry */
865         }
866 }
867
868 void
869 vm_object_deallocate_locked(vm_object_t object)
870 {
871         struct vm_object_dealloc_list *dlist = NULL;
872         struct vm_object_dealloc_list *dtmp;
873         vm_object_t temp;
874         int must_drop = 0;
875
876         /*
877          * We may chain deallocate object, but additional objects may
878          * collect on the dlist which also have to be deallocated.  We
879          * must avoid a recursion, vm_object chains can get deep.
880          */
881
882 again:
883         while (object != NULL) {
884                 /*
885                  * vnode case, caller either locked the object exclusively
886                  * or this is a recursion with must_drop != 0 and the vnode
887                  * object will be locked shared.
888                  *
889                  * If locked shared we have to drop the object before we can
890                  * call vrele() or risk a shared/exclusive livelock.
891                  */
892                 if (object->type == OBJT_VNODE) {
893                         ASSERT_LWKT_TOKEN_HELD(&object->token);
894                         if (must_drop) {
895                                 struct vnode *tmp_vp;
896
897                                 vm_object_vndeallocate(object, &tmp_vp);
898                                 vm_object_drop(object);
899                                 must_drop = 0;
900                                 object = NULL;
901                                 vrele(tmp_vp);
902                         } else {
903                                 vm_object_vndeallocate(object, NULL);
904                         }
905                         break;
906                 }
907                 ASSERT_LWKT_TOKEN_HELD_EXCL(&object->token);
908
909                 /*
910                  * Normal case (object is locked exclusively)
911                  */
912                 if (object->ref_count == 0) {
913                         panic("vm_object_deallocate: object deallocated "
914                               "too many times: %d", object->type);
915                 }
916                 if (object->ref_count > 2) {
917                         atomic_add_int(&object->ref_count, -1);
918                         break;
919                 }
920
921                 /*
922                  * Here on ref_count of one or two, which are special cases for
923                  * objects.
924                  *
925                  * Nominal ref_count > 1 case if the second ref is not from
926                  * a shadow.
927                  *
928                  * (ONEMAPPING only applies to DEFAULT AND SWAP objects)
929                  */
930                 if (object->ref_count == 2 && object->shadow_count == 0) {
931                         if (object->type == OBJT_DEFAULT ||
932                             object->type == OBJT_SWAP) {
933                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
934                         }
935                         atomic_add_int(&object->ref_count, -1);
936                         break;
937                 }
938
939                 /*
940                  * If the second ref is from a shadow we chain along it
941                  * upwards if object's handle is exhausted.
942                  *
943                  * We have to decrement object->ref_count before potentially
944                  * collapsing the first shadow object or the collapse code
945                  * will not be able to handle the degenerate case to remove
946                  * object.  However, if we do it too early the object can
947                  * get ripped out from under us.
948                  */
949                 if (object->ref_count == 2 && object->shadow_count == 1 &&
950                     object->handle == NULL && (object->type == OBJT_DEFAULT ||
951                                                object->type == OBJT_SWAP)) {
952                         temp = LIST_FIRST(&object->shadow_head);
953                         KKASSERT(temp != NULL);
954                         vm_object_hold(temp);
955
956                         /*
957                          * Wait for any paging to complete so the collapse
958                          * doesn't (or isn't likely to) qcollapse.  pip
959                          * waiting must occur before we acquire the
960                          * chainlock.
961                          */
962                         while (
963                                 temp->paging_in_progress ||
964                                 object->paging_in_progress
965                         ) {
966                                 vm_object_pip_wait(temp, "objde1");
967                                 vm_object_pip_wait(object, "objde2");
968                         }
969
970                         /*
971                          * If the parent is locked we have to give up, as
972                          * otherwise we would be acquiring locks in the
973                          * wrong order and potentially deadlock.
974                          */
975                         if (temp->chainlk & (CHAINLK_EXCL | CHAINLK_MASK)) {
976                                 vm_object_drop(temp);
977                                 goto skip;
978                         }
979                         vm_object_chain_acquire(temp, 0);
980
981                         /*
982                          * Recheck/retry after the hold and the paging
983                          * wait, both of which can block us.
984                          */
985                         if (object->ref_count != 2 ||
986                             object->shadow_count != 1 ||
987                             object->handle ||
988                             LIST_FIRST(&object->shadow_head) != temp ||
989                             (object->type != OBJT_DEFAULT &&
990                              object->type != OBJT_SWAP)) {
991                                 vm_object_chain_release(temp);
992                                 vm_object_drop(temp);
993                                 continue;
994                         }
995
996                         /*
997                          * We can safely drop object's ref_count now.
998                          */
999                         KKASSERT(object->ref_count == 2);
1000                         atomic_add_int(&object->ref_count, -1);
1001
1002                         /*
1003                          * If our single parent is not collapseable just
1004                          * decrement ref_count (2->1) and stop.
1005                          */
1006                         if (temp->handle || (temp->type != OBJT_DEFAULT &&
1007                                              temp->type != OBJT_SWAP)) {
1008                                 vm_object_chain_release(temp);
1009                                 vm_object_drop(temp);
1010                                 break;
1011                         }
1012
1013                         /*
1014                          * At this point we have already dropped object's
1015                          * ref_count so it is possible for a race to
1016                          * deallocate obj out from under us.  Any collapse
1017                          * will re-check the situation.  We must not block
1018                          * until we are able to collapse.
1019                          *
1020                          * Bump temp's ref_count to avoid an unwanted
1021                          * degenerate recursion (can't call
1022                          * vm_object_reference_locked() because it asserts
1023                          * that CHAINLOCK is not set).
1024                          */
1025                         atomic_add_int(&temp->ref_count, 1);
1026                         KKASSERT(temp->ref_count > 1);
1027
1028                         /*
1029                          * Collapse temp, then deallocate the extra ref
1030                          * formally.
1031                          */
1032                         vm_object_collapse(temp, &dlist);
1033                         vm_object_chain_release(temp);
1034                         if (must_drop) {
1035                                 vm_object_lock_swap();
1036                                 vm_object_drop(object);
1037                         }
1038                         object = temp;
1039                         must_drop = 1;
1040                         continue;
1041                 }
1042
1043                 /*
1044                  * Drop the ref and handle termination on the 1->0 transition.
1045                  * We may have blocked above so we have to recheck.
1046                  */
1047 skip:
1048                 KKASSERT(object->ref_count != 0);
1049                 if (object->ref_count >= 2) {
1050                         atomic_add_int(&object->ref_count, -1);
1051                         break;
1052                 }
1053                 KKASSERT(object->ref_count == 1);
1054
1055                 /*
1056                  * 1->0 transition.  Chain through the backing_object.
1057                  * Maintain the ref until we've located the backing object,
1058                  * then re-check.
1059                  */
1060                 while ((temp = object->backing_object) != NULL) {
1061                         if (temp->type == OBJT_VNODE)
1062                                 vm_object_hold_shared(temp);
1063                         else
1064                                 vm_object_hold(temp);
1065                         if (temp == object->backing_object)
1066                                 break;
1067                         vm_object_drop(temp);
1068                 }
1069
1070                 /*
1071                  * 1->0 transition verified, retry if ref_count is no longer
1072                  * 1.  Otherwise disconnect the backing_object (temp) and
1073                  * clean up.
1074                  */
1075                 if (object->ref_count != 1) {
1076                         vm_object_drop(temp);
1077                         continue;
1078                 }
1079
1080                 /*
1081                  * It shouldn't be possible for the object to be chain locked
1082                  * if we're removing the last ref on it.
1083                  */
1084                 KKASSERT((object->chainlk & (CHAINLK_EXCL|CHAINLK_MASK)) == 0);
1085
1086                 if (temp) {
1087                         if (object->flags & OBJ_ONSHADOW) {
1088                                 LIST_REMOVE(object, shadow_list);
1089                                 temp->shadow_count--;
1090                                 temp->generation++;
1091                                 vm_object_clear_flag(object, OBJ_ONSHADOW);
1092                         }
1093                         object->backing_object = NULL;
1094                 }
1095
1096                 atomic_add_int(&object->ref_count, -1);
1097                 if ((object->flags & OBJ_DEAD) == 0)
1098                         vm_object_terminate(object);
1099                 if (must_drop && temp)
1100                         vm_object_lock_swap();
1101                 if (must_drop)
1102                         vm_object_drop(object);
1103                 object = temp;
1104                 must_drop = 1;
1105         }
1106
1107         if (must_drop && object)
1108                 vm_object_drop(object);
1109
1110         /*
1111          * Additional tail recursion on dlist.  Avoid a recursion.  Objects
1112          * on the dlist have a hold count but are not locked.
1113          */
1114         if ((dtmp = dlist) != NULL) {
1115                 dlist = dtmp->next;
1116                 object = dtmp->object;
1117                 kfree(dtmp, M_TEMP);
1118
1119                 vm_object_lock(object); /* already held, add lock */
1120                 must_drop = 1;          /* and we're responsible for it */
1121                 goto again;
1122         }
1123 }
1124
1125 /*
1126  * Destroy the specified object, freeing up related resources.
1127  *
1128  * The object must have zero references.
1129  *
1130  * The object must held.  The caller is responsible for dropping the object
1131  * after terminate returns.  Terminate does NOT drop the object.
1132  */
1133 static int vm_object_terminate_callback(vm_page_t p, void *data);
1134
1135 void
1136 vm_object_terminate(vm_object_t object)
1137 {
1138         int n;
1139
1140         /*
1141          * Make sure no one uses us.  Once we set OBJ_DEAD we should be
1142          * able to safely block.
1143          */
1144         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1145         KKASSERT((object->flags & OBJ_DEAD) == 0);
1146         vm_object_set_flag(object, OBJ_DEAD);
1147
1148         /*
1149          * Wait for the pageout daemon to be done with the object
1150          */
1151         vm_object_pip_wait(object, "objtrm1");
1152
1153         KASSERT(!object->paging_in_progress,
1154                 ("vm_object_terminate: pageout in progress"));
1155
1156         /*
1157          * Clean and free the pages, as appropriate. All references to the
1158          * object are gone, so we don't need to lock it.
1159          */
1160         if (object->type == OBJT_VNODE) {
1161                 struct vnode *vp;
1162
1163                 /*
1164                  * Clean pages and flush buffers.
1165                  *
1166                  * NOTE!  TMPFS buffer flushes do not typically flush the
1167                  *        actual page to swap as this would be highly
1168                  *        inefficient, and normal filesystems usually wrap
1169                  *        page flushes with buffer cache buffers.
1170                  *
1171                  *        To deal with this we have to call vinvalbuf() both
1172                  *        before and after the vm_object_page_clean().
1173                  */
1174                 vp = (struct vnode *) object->handle;
1175                 vinvalbuf(vp, V_SAVE, 0, 0);
1176                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
1177                 vinvalbuf(vp, V_SAVE, 0, 0);
1178         }
1179
1180         /*
1181          * Wait for any I/O to complete, after which there had better not
1182          * be any references left on the object.
1183          */
1184         vm_object_pip_wait(object, "objtrm2");
1185
1186         if (object->ref_count != 0) {
1187                 panic("vm_object_terminate: object with references, "
1188                       "ref_count=%d", object->ref_count);
1189         }
1190
1191         /*
1192          * Cleanup any shared pmaps associated with this object.
1193          */
1194         pmap_object_free(object);
1195
1196         /*
1197          * Now free any remaining pages. For internal objects, this also
1198          * removes them from paging queues. Don't free wired pages, just
1199          * remove them from the object. 
1200          */
1201         vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1202                                 vm_object_terminate_callback, NULL);
1203
1204         /*
1205          * Let the pager know object is dead.
1206          */
1207         vm_pager_deallocate(object);
1208
1209         /*
1210          * Wait for the object hold count to hit 1, clean out pages as
1211          * we go.  vmobj_token interlocks any race conditions that might
1212          * pick the object up from the vm_object_list after we have cleared
1213          * rb_memq.
1214          */
1215         for (;;) {
1216                 if (RB_ROOT(&object->rb_memq) == NULL)
1217                         break;
1218                 kprintf("vm_object_terminate: Warning, object %p "
1219                         "still has %d pages\n",
1220                         object, object->resident_page_count);
1221                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1222                                         vm_object_terminate_callback, NULL);
1223         }
1224
1225         /*
1226          * There had better not be any pages left
1227          */
1228         KKASSERT(object->resident_page_count == 0);
1229
1230         /*
1231          * Remove the object from the global object list.
1232          */
1233         n = VMOBJ_HASH(object);
1234         lwkt_gettoken(&vmobj_tokens[n]);
1235         TAILQ_REMOVE(&vm_object_lists[n], object, object_list);
1236         lwkt_reltoken(&vmobj_tokens[n]);
1237         atomic_add_long(&vm_object_count, -1);
1238
1239         if (object->ref_count != 0) {
1240                 panic("vm_object_terminate2: object with references, "
1241                       "ref_count=%d", object->ref_count);
1242         }
1243
1244         /*
1245          * NOTE: The object hold_count is at least 1, so we cannot zfree()
1246          *       the object here.  See vm_object_drop().
1247          */
1248 }
1249
1250 /*
1251  * The caller must hold the object.
1252  */
1253 static int
1254 vm_object_terminate_callback(vm_page_t p, void *data __unused)
1255 {
1256         vm_object_t object;
1257
1258         object = p->object;
1259         vm_page_busy_wait(p, TRUE, "vmpgtrm");
1260         if (object != p->object) {
1261                 kprintf("vm_object_terminate: Warning: Encountered "
1262                         "busied page %p on queue %d\n", p, p->queue);
1263                 vm_page_wakeup(p);
1264         } else if (p->wire_count == 0) {
1265                 /*
1266                  * NOTE: p->dirty and PG_NEED_COMMIT are ignored.
1267                  */
1268                 vm_page_free(p);
1269                 mycpu->gd_cnt.v_pfree++;
1270         } else {
1271                 if (p->queue != PQ_NONE)
1272                         kprintf("vm_object_terminate: Warning: Encountered "
1273                                 "wired page %p on queue %d\n", p, p->queue);
1274                 vm_page_remove(p);
1275                 vm_page_wakeup(p);
1276         }
1277         lwkt_yield();
1278         return(0);
1279 }
1280
1281 /*
1282  * Clean all dirty pages in the specified range of object.  Leaves page
1283  * on whatever queue it is currently on.   If NOSYNC is set then do not
1284  * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
1285  * leaving the object dirty.
1286  *
1287  * When stuffing pages asynchronously, allow clustering.  XXX we need a
1288  * synchronous clustering mode implementation.
1289  *
1290  * Odd semantics: if start == end, we clean everything.
1291  *
1292  * The object must be locked? XXX
1293  */
1294 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
1295 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
1296
1297 void
1298 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1299                      int flags)
1300 {
1301         struct rb_vm_page_scan_info info;
1302         struct vnode *vp;
1303         int wholescan;
1304         int pagerflags;
1305         int generation;
1306
1307         vm_object_hold(object);
1308         if (object->type != OBJT_VNODE ||
1309             (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
1310                 vm_object_drop(object);
1311                 return;
1312         }
1313
1314         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? 
1315                         VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1316         pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
1317
1318         vp = object->handle;
1319
1320         /*
1321          * Interlock other major object operations.  This allows us to 
1322          * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
1323          */
1324         vm_object_set_flag(object, OBJ_CLEANING);
1325
1326         /*
1327          * Handle 'entire object' case
1328          */
1329         info.start_pindex = start;
1330         if (end == 0) {
1331                 info.end_pindex = object->size - 1;
1332         } else {
1333                 info.end_pindex = end - 1;
1334         }
1335         wholescan = (start == 0 && info.end_pindex == object->size - 1);
1336         info.limit = flags;
1337         info.pagerflags = pagerflags;
1338         info.object = object;
1339
1340         /*
1341          * If cleaning the entire object do a pass to mark the pages read-only.
1342          * If everything worked out ok, clear OBJ_WRITEABLE and
1343          * OBJ_MIGHTBEDIRTY.
1344          */
1345         if (wholescan) {
1346                 info.error = 0;
1347                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1348                                         vm_object_page_clean_pass1, &info);
1349                 if (info.error == 0) {
1350                         vm_object_clear_flag(object,
1351                                              OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1352                         if (object->type == OBJT_VNODE &&
1353                             (vp = (struct vnode *)object->handle) != NULL) {
1354                                 /*
1355                                  * Use new-style interface to clear VISDIRTY
1356                                  * because the vnode is not necessarily removed
1357                                  * from the syncer list(s) as often as it was
1358                                  * under the old interface, which can leave
1359                                  * the vnode on the syncer list after reclaim.
1360                                  */
1361                                 vclrobjdirty(vp);
1362                         }
1363                 }
1364         }
1365
1366         /*
1367          * Do a pass to clean all the dirty pages we find.
1368          */
1369         do {
1370                 info.error = 0;
1371                 generation = object->generation;
1372                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1373                                         vm_object_page_clean_pass2, &info);
1374         } while (info.error || generation != object->generation);
1375
1376         vm_object_clear_flag(object, OBJ_CLEANING);
1377         vm_object_drop(object);
1378 }
1379
1380 /*
1381  * The caller must hold the object.
1382  */
1383 static 
1384 int
1385 vm_object_page_clean_pass1(struct vm_page *p, void *data)
1386 {
1387         struct rb_vm_page_scan_info *info = data;
1388
1389         vm_page_flag_set(p, PG_CLEANCHK);
1390         if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1391                 info->error = 1;
1392         } else if (vm_page_busy_try(p, FALSE) == 0) {
1393                 vm_page_protect(p, VM_PROT_READ);       /* must not block */
1394                 vm_page_wakeup(p);
1395         } else {
1396                 info->error = 1;
1397         }
1398         lwkt_yield();
1399         return(0);
1400 }
1401
1402 /*
1403  * The caller must hold the object
1404  */
1405 static 
1406 int
1407 vm_object_page_clean_pass2(struct vm_page *p, void *data)
1408 {
1409         struct rb_vm_page_scan_info *info = data;
1410         int generation;
1411
1412         /*
1413          * Do not mess with pages that were inserted after we started
1414          * the cleaning pass.
1415          */
1416         if ((p->flags & PG_CLEANCHK) == 0)
1417                 goto done;
1418
1419         generation = info->object->generation;
1420         vm_page_busy_wait(p, TRUE, "vpcwai");
1421         if (p->object != info->object ||
1422             info->object->generation != generation) {
1423                 info->error = 1;
1424                 vm_page_wakeup(p);
1425                 goto done;
1426         }
1427
1428         /*
1429          * Before wasting time traversing the pmaps, check for trivial
1430          * cases where the page cannot be dirty.
1431          */
1432         if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
1433                 KKASSERT((p->dirty & p->valid) == 0 &&
1434                          (p->flags & PG_NEED_COMMIT) == 0);
1435                 vm_page_wakeup(p);
1436                 goto done;
1437         }
1438
1439         /*
1440          * Check whether the page is dirty or not.  The page has been set
1441          * to be read-only so the check will not race a user dirtying the
1442          * page.
1443          */
1444         vm_page_test_dirty(p);
1445         if ((p->dirty & p->valid) == 0 && (p->flags & PG_NEED_COMMIT) == 0) {
1446                 vm_page_flag_clear(p, PG_CLEANCHK);
1447                 vm_page_wakeup(p);
1448                 goto done;
1449         }
1450
1451         /*
1452          * If we have been asked to skip nosync pages and this is a
1453          * nosync page, skip it.  Note that the object flags were
1454          * not cleared in this case (because pass1 will have returned an
1455          * error), so we do not have to set them.
1456          */
1457         if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1458                 vm_page_flag_clear(p, PG_CLEANCHK);
1459                 vm_page_wakeup(p);
1460                 goto done;
1461         }
1462
1463         /*
1464          * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
1465          * the pages that get successfully flushed.  Set info->error if
1466          * we raced an object modification.
1467          */
1468         vm_object_page_collect_flush(info->object, p, info->pagerflags);
1469         vm_wait_nominal();
1470 done:
1471         lwkt_yield();
1472         return(0);
1473 }
1474
1475 /*
1476  * Collect the specified page and nearby pages and flush them out.
1477  * The number of pages flushed is returned.  The passed page is busied
1478  * by the caller and we are responsible for its disposition.
1479  *
1480  * The caller must hold the object.
1481  */
1482 static void
1483 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
1484 {
1485         int error;
1486         int is;
1487         int ib;
1488         int i;
1489         int page_base;
1490         vm_pindex_t pi;
1491         vm_page_t ma[BLIST_MAX_ALLOC];
1492
1493         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1494
1495         pi = p->pindex;
1496         page_base = pi % BLIST_MAX_ALLOC;
1497         ma[page_base] = p;
1498         ib = page_base - 1;
1499         is = page_base + 1;
1500
1501         while (ib >= 0) {
1502                 vm_page_t tp;
1503
1504                 tp = vm_page_lookup_busy_try(object, pi - page_base + ib,
1505                                              TRUE, &error);
1506                 if (error)
1507                         break;
1508                 if (tp == NULL)
1509                         break;
1510                 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1511                     (tp->flags & PG_CLEANCHK) == 0) {
1512                         vm_page_wakeup(tp);
1513                         break;
1514                 }
1515                 if ((tp->queue - tp->pc) == PQ_CACHE) {
1516                         vm_page_flag_clear(tp, PG_CLEANCHK);
1517                         vm_page_wakeup(tp);
1518                         break;
1519                 }
1520                 vm_page_test_dirty(tp);
1521                 if ((tp->dirty & tp->valid) == 0 &&
1522                     (tp->flags & PG_NEED_COMMIT) == 0) {
1523                         vm_page_flag_clear(tp, PG_CLEANCHK);
1524                         vm_page_wakeup(tp);
1525                         break;
1526                 }
1527                 ma[ib] = tp;
1528                 --ib;
1529         }
1530         ++ib;   /* fixup */
1531
1532         while (is < BLIST_MAX_ALLOC &&
1533                pi - page_base + is < object->size) {
1534                 vm_page_t tp;
1535
1536                 tp = vm_page_lookup_busy_try(object, pi - page_base + is,
1537                                              TRUE, &error);
1538                 if (error)
1539                         break;
1540                 if (tp == NULL)
1541                         break;
1542                 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1543                     (tp->flags & PG_CLEANCHK) == 0) {
1544                         vm_page_wakeup(tp);
1545                         break;
1546                 }
1547                 if ((tp->queue - tp->pc) == PQ_CACHE) {
1548                         vm_page_flag_clear(tp, PG_CLEANCHK);
1549                         vm_page_wakeup(tp);
1550                         break;
1551                 }
1552                 vm_page_test_dirty(tp);
1553                 if ((tp->dirty & tp->valid) == 0 &&
1554                     (tp->flags & PG_NEED_COMMIT) == 0) {
1555                         vm_page_flag_clear(tp, PG_CLEANCHK);
1556                         vm_page_wakeup(tp);
1557                         break;
1558                 }
1559                 ma[is] = tp;
1560                 ++is;
1561         }
1562
1563         /*
1564          * All pages in the ma[] array are busied now
1565          */
1566         for (i = ib; i < is; ++i) {
1567                 vm_page_flag_clear(ma[i], PG_CLEANCHK);
1568                 vm_page_hold(ma[i]);    /* XXX need this any more? */
1569         }
1570         vm_pageout_flush(&ma[ib], is - ib, pagerflags);
1571         for (i = ib; i < is; ++i)       /* XXX need this any more? */
1572                 vm_page_unhold(ma[i]);
1573 }
1574
1575 /*
1576  * Same as vm_object_pmap_copy, except range checking really
1577  * works, and is meant for small sections of an object.
1578  *
1579  * This code protects resident pages by making them read-only
1580  * and is typically called on a fork or split when a page
1581  * is converted to copy-on-write.  
1582  *
1583  * NOTE: If the page is already at VM_PROT_NONE, calling
1584  * vm_page_protect will have no effect.
1585  */
1586 void
1587 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1588 {
1589         vm_pindex_t idx;
1590         vm_page_t p;
1591
1592         if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
1593                 return;
1594
1595         vm_object_hold(object);
1596         for (idx = start; idx < end; idx++) {
1597                 p = vm_page_lookup(object, idx);
1598                 if (p == NULL)
1599                         continue;
1600                 vm_page_protect(p, VM_PROT_READ);
1601         }
1602         vm_object_drop(object);
1603 }
1604
1605 /*
1606  * Removes all physical pages in the specified object range from all
1607  * physical maps.
1608  *
1609  * The object must *not* be locked.
1610  */
1611
1612 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
1613
1614 void
1615 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1616 {
1617         struct rb_vm_page_scan_info info;
1618
1619         if (object == NULL)
1620                 return;
1621         info.start_pindex = start;
1622         info.end_pindex = end - 1;
1623
1624         vm_object_hold(object);
1625         vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1626                                 vm_object_pmap_remove_callback, &info);
1627         if (start == 0 && end == object->size)
1628                 vm_object_clear_flag(object, OBJ_WRITEABLE);
1629         vm_object_drop(object);
1630 }
1631
1632 /*
1633  * The caller must hold the object
1634  */
1635 static int
1636 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
1637 {
1638         vm_page_protect(p, VM_PROT_NONE);
1639         return(0);
1640 }
1641
1642 /*
1643  * Implements the madvise function at the object/page level.
1644  *
1645  * MADV_WILLNEED        (any object)
1646  *
1647  *      Activate the specified pages if they are resident.
1648  *
1649  * MADV_DONTNEED        (any object)
1650  *
1651  *      Deactivate the specified pages if they are resident.
1652  *
1653  * MADV_FREE    (OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
1654  *
1655  *      Deactivate and clean the specified pages if they are
1656  *      resident.  This permits the process to reuse the pages
1657  *      without faulting or the kernel to reclaim the pages
1658  *      without I/O.
1659  *
1660  * No requirements.
1661  */
1662 void
1663 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1664 {
1665         vm_pindex_t end, tpindex;
1666         vm_object_t tobject;
1667         vm_object_t xobj;
1668         vm_page_t m;
1669         int error;
1670
1671         if (object == NULL)
1672                 return;
1673
1674         end = pindex + count;
1675
1676         vm_object_hold(object);
1677         tobject = object;
1678
1679         /*
1680          * Locate and adjust resident pages
1681          */
1682         for (; pindex < end; pindex += 1) {
1683 relookup:
1684                 if (tobject != object)
1685                         vm_object_drop(tobject);
1686                 tobject = object;
1687                 tpindex = pindex;
1688 shadowlookup:
1689                 /*
1690                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1691                  * and those pages must be OBJ_ONEMAPPING.
1692                  */
1693                 if (advise == MADV_FREE) {
1694                         if ((tobject->type != OBJT_DEFAULT &&
1695                              tobject->type != OBJT_SWAP) ||
1696                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1697                                 continue;
1698                         }
1699                 }
1700
1701                 m = vm_page_lookup_busy_try(tobject, tpindex, TRUE, &error);
1702
1703                 if (error) {
1704                         vm_page_sleep_busy(m, TRUE, "madvpo");
1705                         goto relookup;
1706                 }
1707                 if (m == NULL) {
1708                         /*
1709                          * There may be swap even if there is no backing page
1710                          */
1711                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1712                                 swap_pager_freespace(tobject, tpindex, 1);
1713
1714                         /*
1715                          * next object
1716                          */
1717                         while ((xobj = tobject->backing_object) != NULL) {
1718                                 KKASSERT(xobj != object);
1719                                 vm_object_hold(xobj);
1720                                 if (xobj == tobject->backing_object)
1721                                         break;
1722                                 vm_object_drop(xobj);
1723                         }
1724                         if (xobj == NULL)
1725                                 continue;
1726                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1727                         if (tobject != object) {
1728                                 vm_object_lock_swap();
1729                                 vm_object_drop(tobject);
1730                         }
1731                         tobject = xobj;
1732                         goto shadowlookup;
1733                 }
1734
1735                 /*
1736                  * If the page is not in a normal active state, we skip it.
1737                  * If the page is not managed there are no page queues to
1738                  * mess with.  Things can break if we mess with pages in
1739                  * any of the below states.
1740                  */
1741                 if (m->wire_count ||
1742                     (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
1743                     m->valid != VM_PAGE_BITS_ALL
1744                 ) {
1745                         vm_page_wakeup(m);
1746                         continue;
1747                 }
1748
1749                 /*
1750                  * Theoretically once a page is known not to be busy, an
1751                  * interrupt cannot come along and rip it out from under us.
1752                  */
1753
1754                 if (advise == MADV_WILLNEED) {
1755                         vm_page_activate(m);
1756                 } else if (advise == MADV_DONTNEED) {
1757                         vm_page_dontneed(m);
1758                 } else if (advise == MADV_FREE) {
1759                         /*
1760                          * Mark the page clean.  This will allow the page
1761                          * to be freed up by the system.  However, such pages
1762                          * are often reused quickly by malloc()/free()
1763                          * so we do not do anything that would cause
1764                          * a page fault if we can help it.
1765                          *
1766                          * Specifically, we do not try to actually free
1767                          * the page now nor do we try to put it in the
1768                          * cache (which would cause a page fault on reuse).
1769                          *
1770                          * But we do make the page is freeable as we
1771                          * can without actually taking the step of unmapping
1772                          * it.
1773                          */
1774                         pmap_clear_modify(m);
1775                         m->dirty = 0;
1776                         m->act_count = 0;
1777                         vm_page_dontneed(m);
1778                         if (tobject->type == OBJT_SWAP)
1779                                 swap_pager_freespace(tobject, tpindex, 1);
1780                 }
1781                 vm_page_wakeup(m);
1782         }       
1783         if (tobject != object)
1784                 vm_object_drop(tobject);
1785         vm_object_drop(object);
1786 }
1787
1788 /*
1789  * Create a new object which is backed by the specified existing object
1790  * range.  Replace the pointer and offset that was pointing at the existing
1791  * object with the pointer/offset for the new object.
1792  *
1793  * No other requirements.
1794  */
1795 void
1796 vm_object_shadow(vm_object_t *objectp, vm_ooffset_t *offset, vm_size_t length,
1797                  int addref)
1798 {
1799         vm_object_t source;
1800         vm_object_t result;
1801         int useshadowlist;
1802
1803         source = *objectp;
1804
1805         /*
1806          * Don't create the new object if the old object isn't shared.
1807          * We have to chain wait before adding the reference to avoid
1808          * racing a collapse or deallocation.
1809          *
1810          * Add the additional ref to source here to avoid racing a later
1811          * collapse or deallocation. Clear the ONEMAPPING flag whether
1812          * addref is TRUE or not in this case because the original object
1813          * will be shadowed.
1814          */
1815         useshadowlist = 0;
1816         if (source) {
1817                 if (source->type != OBJT_VNODE) {
1818                         useshadowlist = 1;
1819                         vm_object_hold(source);
1820                         vm_object_chain_wait(source, 0);
1821                         if (source->ref_count == 1 &&
1822                             source->handle == NULL &&
1823                             (source->type == OBJT_DEFAULT ||
1824                              source->type == OBJT_SWAP)) {
1825                                 if (addref) {
1826                                         vm_object_reference_locked(source);
1827                                         vm_object_clear_flag(source, OBJ_ONEMAPPING);
1828                                 }
1829                                 vm_object_drop(source);
1830                                 return;
1831                         }
1832                         vm_object_reference_locked(source);
1833                         vm_object_clear_flag(source, OBJ_ONEMAPPING);
1834                 } else {
1835                         vm_object_reference_quick(source);
1836                         vm_object_clear_flag(source, OBJ_ONEMAPPING);
1837                 }
1838         }
1839
1840         /*
1841          * Allocate a new object with the given length.  The new object
1842          * is returned referenced but we may have to add another one.
1843          * If we are adding a second reference we must clear OBJ_ONEMAPPING.
1844          * (typically because the caller is about to clone a vm_map_entry).
1845          *
1846          * The source object currently has an extra reference to prevent
1847          * collapses into it while we mess with its shadow list, which
1848          * we will remove later in this routine.
1849          */
1850         if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1851                 panic("vm_object_shadow: no object for shadowing");
1852         vm_object_hold(result);
1853         if (addref) {
1854                 vm_object_reference_locked(result);
1855                 vm_object_clear_flag(result, OBJ_ONEMAPPING);
1856         }
1857
1858         /*
1859          * The new object shadows the source object.  Chain wait before
1860          * adjusting shadow_count or the shadow list to avoid races.
1861          *
1862          * Try to optimize the result object's page color when shadowing
1863          * in order to maintain page coloring consistency in the combined 
1864          * shadowed object.
1865          *
1866          * SHADOWING IS NOT APPLICABLE TO OBJT_VNODE OBJECTS
1867          */
1868         KKASSERT(result->backing_object == NULL);
1869         result->backing_object = source;
1870         if (source) {
1871                 if (useshadowlist) {
1872                         vm_object_chain_wait(source, 0);
1873                         LIST_INSERT_HEAD(&source->shadow_head,
1874                                          result, shadow_list);
1875                         source->shadow_count++;
1876                         source->generation++;
1877                         vm_object_set_flag(result, OBJ_ONSHADOW);
1878                 }
1879                 /* cpu localization twist */
1880                 result->pg_color = (int)(intptr_t)curthread;
1881         }
1882
1883         /*
1884          * Adjust the return storage.  Drop the ref on source before
1885          * returning.
1886          */
1887         result->backing_object_offset = *offset;
1888         vm_object_drop(result);
1889         *offset = 0;
1890         if (source) {
1891                 if (useshadowlist) {
1892                         vm_object_deallocate_locked(source);
1893                         vm_object_drop(source);
1894                 } else {
1895                         vm_object_deallocate(source);
1896                 }
1897         }
1898
1899         /*
1900          * Return the new things
1901          */
1902         *objectp = result;
1903 }
1904
1905 #define OBSC_TEST_ALL_SHADOWED  0x0001
1906 #define OBSC_COLLAPSE_NOWAIT    0x0002
1907 #define OBSC_COLLAPSE_WAIT      0x0004
1908
1909 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1910
1911 /*
1912  * The caller must hold the object.
1913  */
1914 static __inline int
1915 vm_object_backing_scan(vm_object_t object, vm_object_t backing_object, int op)
1916 {
1917         struct rb_vm_page_scan_info info;
1918         int n;
1919
1920         vm_object_assert_held(object);
1921         vm_object_assert_held(backing_object);
1922
1923         KKASSERT(backing_object == object->backing_object);
1924         info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1925
1926         /*
1927          * Initial conditions
1928          */
1929         if (op & OBSC_TEST_ALL_SHADOWED) {
1930                 /*
1931                  * We do not want to have to test for the existence of
1932                  * swap pages in the backing object.  XXX but with the
1933                  * new swapper this would be pretty easy to do.
1934                  *
1935                  * XXX what about anonymous MAP_SHARED memory that hasn't
1936                  * been ZFOD faulted yet?  If we do not test for this, the
1937                  * shadow test may succeed! XXX
1938                  */
1939                 if (backing_object->type != OBJT_DEFAULT)
1940                         return(0);
1941         }
1942         if (op & OBSC_COLLAPSE_WAIT) {
1943                 KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1944                 vm_object_set_flag(backing_object, OBJ_DEAD);
1945
1946                 n = VMOBJ_HASH(backing_object);
1947                 lwkt_gettoken(&vmobj_tokens[n]);
1948                 TAILQ_REMOVE(&vm_object_lists[n], backing_object, object_list);
1949                 lwkt_reltoken(&vmobj_tokens[n]);
1950                 atomic_add_long(&vm_object_count, -1);
1951         }
1952
1953         /*
1954          * Our scan.   We have to retry if a negative error code is returned,
1955          * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
1956          * the scan had to be stopped because the parent does not completely
1957          * shadow the child.
1958          */
1959         info.object = object;
1960         info.backing_object = backing_object;
1961         info.limit = op;
1962         do {
1963                 info.error = 1;
1964                 vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1965                                         vm_object_backing_scan_callback,
1966                                         &info);
1967         } while (info.error < 0);
1968
1969         return(info.error);
1970 }
1971
1972 /*
1973  * The caller must hold the object.
1974  */
1975 static int
1976 vm_object_backing_scan_callback(vm_page_t p, void *data)
1977 {
1978         struct rb_vm_page_scan_info *info = data;
1979         vm_object_t backing_object;
1980         vm_object_t object;
1981         vm_pindex_t pindex;
1982         vm_pindex_t new_pindex;
1983         vm_pindex_t backing_offset_index;
1984         int op;
1985
1986         pindex = p->pindex;
1987         new_pindex = pindex - info->backing_offset_index;
1988         op = info->limit;
1989         object = info->object;
1990         backing_object = info->backing_object;
1991         backing_offset_index = info->backing_offset_index;
1992
1993         if (op & OBSC_TEST_ALL_SHADOWED) {
1994                 vm_page_t pp;
1995
1996                 /*
1997                  * Ignore pages outside the parent object's range
1998                  * and outside the parent object's mapping of the 
1999                  * backing object.
2000                  *
2001                  * note that we do not busy the backing object's
2002                  * page.
2003                  */
2004                 if (pindex < backing_offset_index ||
2005                     new_pindex >= object->size
2006                 ) {
2007                         return(0);
2008                 }
2009
2010                 /*
2011                  * See if the parent has the page or if the parent's
2012                  * object pager has the page.  If the parent has the
2013                  * page but the page is not valid, the parent's
2014                  * object pager must have the page.
2015                  *
2016                  * If this fails, the parent does not completely shadow
2017                  * the object and we might as well give up now.
2018                  */
2019                 pp = vm_page_lookup(object, new_pindex);
2020                 if ((pp == NULL || pp->valid == 0) &&
2021                     !vm_pager_has_page(object, new_pindex)
2022                 ) {
2023                         info->error = 0;        /* problemo */
2024                         return(-1);             /* stop the scan */
2025                 }
2026         }
2027
2028         /*
2029          * Check for busy page.  Note that we may have lost (p) when we
2030          * possibly blocked above.
2031          */
2032         if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
2033                 vm_page_t pp;
2034
2035                 if (vm_page_busy_try(p, TRUE)) {
2036                         if (op & OBSC_COLLAPSE_NOWAIT) {
2037                                 return(0);
2038                         } else {
2039                                 /*
2040                                  * If we slept, anything could have
2041                                  * happened.   Ask that the scan be restarted.
2042                                  *
2043                                  * Since the object is marked dead, the
2044                                  * backing offset should not have changed.  
2045                                  */
2046                                 vm_page_sleep_busy(p, TRUE, "vmocol");
2047                                 info->error = -1;
2048                                 return(-1);
2049                         }
2050                 }
2051
2052                 /*
2053                  * If (p) is no longer valid restart the scan.
2054                  */
2055                 if (p->object != backing_object || p->pindex != pindex) {
2056                         kprintf("vm_object_backing_scan: Warning: page "
2057                                 "%p ripped out from under us\n", p);
2058                         vm_page_wakeup(p);
2059                         info->error = -1;
2060                         return(-1);
2061                 }
2062
2063                 if (op & OBSC_COLLAPSE_NOWAIT) {
2064                         if (p->valid == 0 ||
2065                             p->wire_count ||
2066                             (p->flags & PG_NEED_COMMIT)) {
2067                                 vm_page_wakeup(p);
2068                                 return(0);
2069                         }
2070                 } else {
2071                         /* XXX what if p->valid == 0 , hold_count, etc? */
2072                 }
2073
2074                 KASSERT(
2075                     p->object == backing_object,
2076                     ("vm_object_qcollapse(): object mismatch")
2077                 );
2078
2079                 /*
2080                  * Destroy any associated swap
2081                  */
2082                 if (backing_object->type == OBJT_SWAP)
2083                         swap_pager_freespace(backing_object, p->pindex, 1);
2084
2085                 if (
2086                     p->pindex < backing_offset_index ||
2087                     new_pindex >= object->size
2088                 ) {
2089                         /*
2090                          * Page is out of the parent object's range, we 
2091                          * can simply destroy it. 
2092                          */
2093                         vm_page_protect(p, VM_PROT_NONE);
2094                         vm_page_free(p);
2095                         return(0);
2096                 }
2097
2098                 pp = vm_page_lookup(object, new_pindex);
2099                 if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
2100                         /*
2101                          * page already exists in parent OR swap exists
2102                          * for this location in the parent.  Destroy 
2103                          * the original page from the backing object.
2104                          *
2105                          * Leave the parent's page alone
2106                          */
2107                         vm_page_protect(p, VM_PROT_NONE);
2108                         vm_page_free(p);
2109                         return(0);
2110                 }
2111
2112                 /*
2113                  * Page does not exist in parent, rename the
2114                  * page from the backing object to the main object. 
2115                  *
2116                  * If the page was mapped to a process, it can remain 
2117                  * mapped through the rename.
2118                  */
2119                 if ((p->queue - p->pc) == PQ_CACHE)
2120                         vm_page_deactivate(p);
2121
2122                 vm_page_rename(p, object, new_pindex);
2123                 vm_page_wakeup(p);
2124                 /* page automatically made dirty by rename */
2125         }
2126         return(0);
2127 }
2128
2129 /*
2130  * This version of collapse allows the operation to occur earlier and
2131  * when paging_in_progress is true for an object...  This is not a complete
2132  * operation, but should plug 99.9% of the rest of the leaks.
2133  *
2134  * The caller must hold the object and backing_object and both must be
2135  * chainlocked.
2136  *
2137  * (only called from vm_object_collapse)
2138  */
2139 static void
2140 vm_object_qcollapse(vm_object_t object, vm_object_t backing_object)
2141 {
2142         if (backing_object->ref_count == 1) {
2143                 atomic_add_int(&backing_object->ref_count, 2);
2144                 vm_object_backing_scan(object, backing_object,
2145                                        OBSC_COLLAPSE_NOWAIT);
2146                 atomic_add_int(&backing_object->ref_count, -2);
2147         }
2148 }
2149
2150 /*
2151  * Collapse an object with the object backing it.  Pages in the backing
2152  * object are moved into the parent, and the backing object is deallocated.
2153  * Any conflict is resolved in favor of the parent's existing pages.
2154  *
2155  * object must be held and chain-locked on call.
2156  *
2157  * The caller must have an extra ref on object to prevent a race from
2158  * destroying it during the collapse.
2159  */
2160 void
2161 vm_object_collapse(vm_object_t object, struct vm_object_dealloc_list **dlistp)
2162 {
2163         struct vm_object_dealloc_list *dlist = NULL;
2164         vm_object_t backing_object;
2165
2166         /*
2167          * Only one thread is attempting a collapse at any given moment.
2168          * There are few restrictions for (object) that callers of this
2169          * function check so reentrancy is likely.
2170          */
2171         KKASSERT(object != NULL);
2172         vm_object_assert_held(object);
2173         KKASSERT(object->chainlk & (CHAINLK_MASK | CHAINLK_EXCL));
2174
2175         for (;;) {
2176                 vm_object_t bbobj;
2177                 int dodealloc;
2178
2179                 /*
2180                  * We can only collapse a DEFAULT/SWAP object with a
2181                  * DEFAULT/SWAP object.
2182                  */
2183                 if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP) {
2184                         backing_object = NULL;
2185                         break;
2186                 }
2187
2188                 backing_object = object->backing_object;
2189                 if (backing_object == NULL)
2190                         break;
2191                 if (backing_object->type != OBJT_DEFAULT &&
2192                     backing_object->type != OBJT_SWAP) {
2193                         backing_object = NULL;
2194                         break;
2195                 }
2196
2197                 /*
2198                  * Hold the backing_object and check for races
2199                  */
2200                 vm_object_hold(backing_object);
2201                 if (backing_object != object->backing_object ||
2202                     (backing_object->type != OBJT_DEFAULT &&
2203                      backing_object->type != OBJT_SWAP)) {
2204                         vm_object_drop(backing_object);
2205                         continue;
2206                 }
2207
2208                 /*
2209                  * Chain-lock the backing object too because if we
2210                  * successfully merge its pages into the top object we
2211                  * will collapse backing_object->backing_object as the
2212                  * new backing_object.  Re-check that it is still our
2213                  * backing object.
2214                  */
2215                 vm_object_chain_acquire(backing_object, 0);
2216                 if (backing_object != object->backing_object) {
2217                         vm_object_chain_release(backing_object);
2218                         vm_object_drop(backing_object);
2219                         continue;
2220                 }
2221
2222                 /*
2223                  * we check the backing object first, because it is most likely
2224                  * not collapsable.
2225                  */
2226                 if (backing_object->handle != NULL ||
2227                     (backing_object->type != OBJT_DEFAULT &&
2228                      backing_object->type != OBJT_SWAP) ||
2229                     (backing_object->flags & OBJ_DEAD) ||
2230                     object->handle != NULL ||
2231                     (object->type != OBJT_DEFAULT &&
2232                      object->type != OBJT_SWAP) ||
2233                     (object->flags & OBJ_DEAD)) {
2234                         break;
2235                 }
2236
2237                 /*
2238                  * If paging is in progress we can't do a normal collapse.
2239                  */
2240                 if (
2241                     object->paging_in_progress != 0 ||
2242                     backing_object->paging_in_progress != 0
2243                 ) {
2244                         vm_object_qcollapse(object, backing_object);
2245                         break;
2246                 }
2247
2248                 /*
2249                  * We know that we can either collapse the backing object (if
2250                  * the parent is the only reference to it) or (perhaps) have
2251                  * the parent bypass the object if the parent happens to shadow
2252                  * all the resident pages in the entire backing object.
2253                  *
2254                  * This is ignoring pager-backed pages such as swap pages.
2255                  * vm_object_backing_scan fails the shadowing test in this
2256                  * case.
2257                  */
2258                 if (backing_object->ref_count == 1) {
2259                         /*
2260                          * If there is exactly one reference to the backing
2261                          * object, we can collapse it into the parent.  
2262                          */
2263                         KKASSERT(object->backing_object == backing_object);
2264                         vm_object_backing_scan(object, backing_object,
2265                                                OBSC_COLLAPSE_WAIT);
2266
2267                         /*
2268                          * Move the pager from backing_object to object.
2269                          */
2270                         if (backing_object->type == OBJT_SWAP) {
2271                                 vm_object_pip_add(backing_object, 1);
2272
2273                                 /*
2274                                  * scrap the paging_offset junk and do a 
2275                                  * discrete copy.  This also removes major 
2276                                  * assumptions about how the swap-pager 
2277                                  * works from where it doesn't belong.  The
2278                                  * new swapper is able to optimize the
2279                                  * destroy-source case.
2280                                  */
2281                                 vm_object_pip_add(object, 1);
2282                                 swap_pager_copy(backing_object, object,
2283                                     OFF_TO_IDX(object->backing_object_offset),
2284                                     TRUE);
2285                                 vm_object_pip_wakeup(object);
2286                                 vm_object_pip_wakeup(backing_object);
2287                         }
2288
2289                         /*
2290                          * Object now shadows whatever backing_object did.
2291                          * Remove object from backing_object's shadow_list.
2292                          */
2293                         KKASSERT(object->backing_object == backing_object);
2294                         if (object->flags & OBJ_ONSHADOW) {
2295                                 LIST_REMOVE(object, shadow_list);
2296                                 backing_object->shadow_count--;
2297                                 backing_object->generation++;
2298                                 vm_object_clear_flag(object, OBJ_ONSHADOW);
2299                         }
2300
2301                         /*
2302                          * backing_object->backing_object moves from within
2303                          * backing_object to within object.
2304                          *
2305                          * OBJT_VNODE bbobj's should have empty shadow lists.
2306                          */
2307                         while ((bbobj = backing_object->backing_object) != NULL) {
2308                                 if (bbobj->type == OBJT_VNODE)
2309                                         vm_object_hold_shared(bbobj);
2310                                 else
2311                                         vm_object_hold(bbobj);
2312                                 if (bbobj == backing_object->backing_object)
2313                                         break;
2314                                 vm_object_drop(bbobj);
2315                         }
2316                         if (bbobj) {
2317                                 if (backing_object->flags & OBJ_ONSHADOW) {
2318                                         /* not locked exclusively if vnode */
2319                                         KKASSERT(bbobj->type != OBJT_VNODE);
2320                                         LIST_REMOVE(backing_object,
2321                                                     shadow_list);
2322                                         bbobj->shadow_count--;
2323                                         bbobj->generation++;
2324                                         vm_object_clear_flag(backing_object,
2325                                                              OBJ_ONSHADOW);
2326                                 }
2327                                 backing_object->backing_object = NULL;
2328                         }
2329                         object->backing_object = bbobj;
2330                         if (bbobj) {
2331                                 if (bbobj->type != OBJT_VNODE) {
2332                                         LIST_INSERT_HEAD(&bbobj->shadow_head,
2333                                                          object, shadow_list);
2334                                         bbobj->shadow_count++;
2335                                         bbobj->generation++;
2336                                         vm_object_set_flag(object,
2337                                                            OBJ_ONSHADOW);
2338                                 }
2339                         }
2340
2341                         object->backing_object_offset +=
2342                                 backing_object->backing_object_offset;
2343
2344                         vm_object_drop(bbobj);
2345
2346                         /*
2347                          * Discard the old backing_object.  Nothing should be
2348                          * able to ref it, other than a vm_map_split(),
2349                          * and vm_map_split() will stall on our chain lock.
2350                          * And we control the parent so it shouldn't be
2351                          * possible for it to go away either.
2352                          *
2353                          * Since the backing object has no pages, no pager
2354                          * left, and no object references within it, all
2355                          * that is necessary is to dispose of it.
2356                          */
2357                         KASSERT(backing_object->ref_count == 1,
2358                                 ("backing_object %p was somehow "
2359                                  "re-referenced during collapse!",
2360                                  backing_object));
2361                         KASSERT(RB_EMPTY(&backing_object->rb_memq),
2362                                 ("backing_object %p somehow has left "
2363                                  "over pages during collapse!",
2364                                  backing_object));
2365
2366                         /*
2367                          * The object can be destroyed.
2368                          *
2369                          * XXX just fall through and dodealloc instead
2370                          *     of forcing destruction?
2371                          */
2372                         atomic_add_int(&backing_object->ref_count, -1);
2373                         if ((backing_object->flags & OBJ_DEAD) == 0)
2374                                 vm_object_terminate(backing_object);
2375                         object_collapses++;
2376                         dodealloc = 0;
2377                 } else {
2378                         /*
2379                          * If we do not entirely shadow the backing object,
2380                          * there is nothing we can do so we give up.
2381                          */
2382                         if (vm_object_backing_scan(object, backing_object,
2383                                                 OBSC_TEST_ALL_SHADOWED) == 0) {
2384                                 break;
2385                         }
2386
2387                         /*
2388                          * bbobj is backing_object->backing_object.  Since
2389                          * object completely shadows backing_object we can
2390                          * bypass it and become backed by bbobj instead.
2391                          *
2392                          * The shadow list for vnode backing objects is not
2393                          * used and a shared hold is allowed.
2394                          */
2395                         while ((bbobj = backing_object->backing_object) != NULL) {
2396                                 if (bbobj->type == OBJT_VNODE)
2397                                         vm_object_hold_shared(bbobj);
2398                                 else
2399                                         vm_object_hold(bbobj);
2400                                 if (bbobj == backing_object->backing_object)
2401                                         break;
2402                                 vm_object_drop(bbobj);
2403                         }
2404
2405                         /*
2406                          * Make object shadow bbobj instead of backing_object.
2407                          * Remove object from backing_object's shadow list.
2408                          *
2409                          * Deallocating backing_object will not remove
2410                          * it, since its reference count is at least 2.
2411                          */
2412                         KKASSERT(object->backing_object == backing_object);
2413                         if (object->flags & OBJ_ONSHADOW) {
2414                                 LIST_REMOVE(object, shadow_list);
2415                                 backing_object->shadow_count--;
2416                                 backing_object->generation++;
2417                                 vm_object_clear_flag(object, OBJ_ONSHADOW);
2418                         }
2419
2420                         /*
2421                          * Add a ref to bbobj, bbobj now shadows object.
2422                          *
2423                          * NOTE: backing_object->backing_object still points
2424                          *       to bbobj.  That relationship remains intact
2425                          *       because backing_object has > 1 ref, so
2426                          *       someone else is pointing to it (hence why
2427                          *       we can't collapse it into object and can
2428                          *       only handle the all-shadowed bypass case).
2429                          */
2430                         if (bbobj) {
2431                                 if (bbobj->type != OBJT_VNODE) {
2432                                         vm_object_chain_wait(bbobj, 0);
2433                                         vm_object_reference_locked(bbobj);
2434                                         LIST_INSERT_HEAD(&bbobj->shadow_head,
2435                                                          object, shadow_list);
2436                                         bbobj->shadow_count++;
2437                                         bbobj->generation++;
2438                                         vm_object_set_flag(object,
2439                                                            OBJ_ONSHADOW);
2440                                 } else {
2441                                         vm_object_reference_quick(bbobj);
2442                                 }
2443                                 object->backing_object_offset +=
2444                                         backing_object->backing_object_offset;
2445                                 object->backing_object = bbobj;
2446                                 vm_object_drop(bbobj);
2447                         } else {
2448                                 object->backing_object = NULL;
2449                         }
2450
2451                         /*
2452                          * Drop the reference count on backing_object.  To
2453                          * handle ref_count races properly we can't assume
2454                          * that the ref_count is still at least 2 so we
2455                          * have to actually call vm_object_deallocate()
2456                          * (after clearing the chainlock).
2457                          */
2458                         object_bypasses++;
2459                         dodealloc = 1;
2460                 }
2461
2462                 /*
2463                  * Ok, we want to loop on the new object->bbobj association,
2464                  * possibly collapsing it further.  However if dodealloc is
2465                  * non-zero we have to deallocate the backing_object which
2466                  * itself can potentially undergo a collapse, creating a
2467                  * recursion depth issue with the LWKT token subsystem.
2468                  *
2469                  * In the case where we must deallocate the backing_object
2470                  * it is possible now that the backing_object has a single
2471                  * shadow count on some other object (not represented here
2472                  * as yet), since it no longer shadows us.  Thus when we
2473                  * call vm_object_deallocate() it may attempt to collapse
2474                  * itself into its remaining parent.
2475                  */
2476                 if (dodealloc) {
2477                         struct vm_object_dealloc_list *dtmp;
2478
2479                         vm_object_chain_release(backing_object);
2480                         vm_object_unlock(backing_object);
2481                         /* backing_object remains held */
2482
2483                         /*
2484                          * Auto-deallocation list for caller convenience.
2485                          */
2486                         if (dlistp == NULL)
2487                                 dlistp = &dlist;
2488
2489                         dtmp = kmalloc(sizeof(*dtmp), M_TEMP, M_WAITOK);
2490                         dtmp->object = backing_object;
2491                         dtmp->next = *dlistp;
2492                         *dlistp = dtmp;
2493                 } else {
2494                         vm_object_chain_release(backing_object);
2495                         vm_object_drop(backing_object);
2496                 }
2497                 /* backing_object = NULL; not needed */
2498                 /* loop */
2499         }
2500
2501         /*
2502          * Clean up any left over backing_object
2503          */
2504         if (backing_object) {
2505                 vm_object_chain_release(backing_object);
2506                 vm_object_drop(backing_object);
2507         }
2508
2509         /*
2510          * Clean up any auto-deallocation list.  This is a convenience
2511          * for top-level callers so they don't have to pass &dlist.
2512          * Do not clean up any caller-passed dlistp, the caller will
2513          * do that.
2514          */
2515         if (dlist)
2516                 vm_object_deallocate_list(&dlist);
2517
2518 }
2519
2520 /*
2521  * vm_object_collapse() may collect additional objects in need of
2522  * deallocation.  This routine deallocates these objects.  The
2523  * deallocation itself can trigger additional collapses (which the
2524  * deallocate function takes care of).  This procedure is used to
2525  * reduce procedural recursion since these vm_object shadow chains
2526  * can become quite long.
2527  */
2528 void
2529 vm_object_deallocate_list(struct vm_object_dealloc_list **dlistp)
2530 {
2531         struct vm_object_dealloc_list *dlist;
2532
2533         while ((dlist = *dlistp) != NULL) {
2534                 *dlistp = dlist->next;
2535                 vm_object_lock(dlist->object);
2536                 vm_object_deallocate_locked(dlist->object);
2537                 vm_object_drop(dlist->object);
2538                 kfree(dlist, M_TEMP);
2539         }
2540 }
2541
2542 /*
2543  * Removes all physical pages in the specified object range from the
2544  * object's list of pages.
2545  *
2546  * No requirements.
2547  */
2548 static int vm_object_page_remove_callback(vm_page_t p, void *data);
2549
2550 void
2551 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2552                       boolean_t clean_only)
2553 {
2554         struct rb_vm_page_scan_info info;
2555         int all;
2556
2557         /*
2558          * Degenerate cases and assertions
2559          */
2560         vm_object_hold(object);
2561         if (object == NULL ||
2562             (object->resident_page_count == 0 && object->swblock_count == 0)) {
2563                 vm_object_drop(object);
2564                 return;
2565         }
2566         KASSERT(object->type != OBJT_PHYS, 
2567                 ("attempt to remove pages from a physical object"));
2568
2569         /*
2570          * Indicate that paging is occuring on the object
2571          */
2572         vm_object_pip_add(object, 1);
2573
2574         /*
2575          * Figure out the actual removal range and whether we are removing
2576          * the entire contents of the object or not.  If removing the entire
2577          * contents, be sure to get all pages, even those that might be 
2578          * beyond the end of the object.
2579          */
2580         info.start_pindex = start;
2581         if (end == 0)
2582                 info.end_pindex = (vm_pindex_t)-1;
2583         else
2584                 info.end_pindex = end - 1;
2585         info.limit = clean_only;
2586         all = (start == 0 && info.end_pindex >= object->size - 1);
2587
2588         /*
2589          * Loop until we are sure we have gotten them all.
2590          */
2591         do {
2592                 info.error = 0;
2593                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2594                                         vm_object_page_remove_callback, &info);
2595         } while (info.error);
2596
2597         /*
2598          * Remove any related swap if throwing away pages, or for
2599          * non-swap objects (the swap is a clean copy in that case).
2600          */
2601         if (object->type != OBJT_SWAP || clean_only == FALSE) {
2602                 if (all)
2603                         swap_pager_freespace_all(object);
2604                 else
2605                         swap_pager_freespace(object, info.start_pindex,
2606                              info.end_pindex - info.start_pindex + 1);
2607         }
2608
2609         /*
2610          * Cleanup
2611          */
2612         vm_object_pip_wakeup(object);
2613         vm_object_drop(object);
2614 }
2615
2616 /*
2617  * The caller must hold the object
2618  */
2619 static int
2620 vm_object_page_remove_callback(vm_page_t p, void *data)
2621 {
2622         struct rb_vm_page_scan_info *info = data;
2623
2624         if (vm_page_busy_try(p, TRUE)) {
2625                 vm_page_sleep_busy(p, TRUE, "vmopar");
2626                 info->error = 1;
2627                 return(0);
2628         }
2629
2630         /*
2631          * Wired pages cannot be destroyed, but they can be invalidated
2632          * and we do so if clean_only (limit) is not set.
2633          *
2634          * WARNING!  The page may be wired due to being part of a buffer
2635          *           cache buffer, and the buffer might be marked B_CACHE.
2636          *           This is fine as part of a truncation but VFSs must be
2637          *           sure to fix the buffer up when re-extending the file.
2638          *
2639          * NOTE!     PG_NEED_COMMIT is ignored.
2640          */
2641         if (p->wire_count != 0) {
2642                 vm_page_protect(p, VM_PROT_NONE);
2643                 if (info->limit == 0)
2644                         p->valid = 0;
2645                 vm_page_wakeup(p);
2646                 return(0);
2647         }
2648
2649         /*
2650          * limit is our clean_only flag.  If set and the page is dirty or
2651          * requires a commit, do not free it.  If set and the page is being
2652          * held by someone, do not free it.
2653          */
2654         if (info->limit && p->valid) {
2655                 vm_page_test_dirty(p);
2656                 if ((p->valid & p->dirty) || (p->flags & PG_NEED_COMMIT)) {
2657                         vm_page_wakeup(p);
2658                         return(0);
2659                 }
2660         }
2661
2662         /*
2663          * Destroy the page
2664          */
2665         vm_page_protect(p, VM_PROT_NONE);
2666         vm_page_free(p);
2667         return(0);
2668 }
2669
2670 /*
2671  * Coalesces two objects backing up adjoining regions of memory into a
2672  * single object.
2673  *
2674  * returns TRUE if objects were combined.
2675  *
2676  * NOTE: Only works at the moment if the second object is NULL -
2677  *       if it's not, which object do we lock first?
2678  *
2679  * Parameters:
2680  *      prev_object     First object to coalesce
2681  *      prev_offset     Offset into prev_object
2682  *      next_object     Second object into coalesce
2683  *      next_offset     Offset into next_object
2684  *
2685  *      prev_size       Size of reference to prev_object
2686  *      next_size       Size of reference to next_object
2687  *
2688  * The caller does not need to hold (prev_object) but must have a stable
2689  * pointer to it (typically by holding the vm_map locked).
2690  */
2691 boolean_t
2692 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
2693                    vm_size_t prev_size, vm_size_t next_size)
2694 {
2695         vm_pindex_t next_pindex;
2696
2697         if (prev_object == NULL)
2698                 return (TRUE);
2699
2700         vm_object_hold(prev_object);
2701
2702         if (prev_object->type != OBJT_DEFAULT &&
2703             prev_object->type != OBJT_SWAP) {
2704                 vm_object_drop(prev_object);
2705                 return (FALSE);
2706         }
2707
2708         /*
2709          * Try to collapse the object first
2710          */
2711         vm_object_chain_acquire(prev_object, 0);
2712         vm_object_collapse(prev_object, NULL);
2713
2714         /*
2715          * Can't coalesce if: . more than one reference . paged out . shadows
2716          * another object . has a copy elsewhere (any of which mean that the
2717          * pages not mapped to prev_entry may be in use anyway)
2718          */
2719
2720         if (prev_object->backing_object != NULL) {
2721                 vm_object_chain_release(prev_object);
2722                 vm_object_drop(prev_object);
2723                 return (FALSE);
2724         }
2725
2726         prev_size >>= PAGE_SHIFT;
2727         next_size >>= PAGE_SHIFT;
2728         next_pindex = prev_pindex + prev_size;
2729
2730         if ((prev_object->ref_count > 1) &&
2731             (prev_object->size != next_pindex)) {
2732                 vm_object_chain_release(prev_object);
2733                 vm_object_drop(prev_object);
2734                 return (FALSE);
2735         }
2736
2737         /*
2738          * Remove any pages that may still be in the object from a previous
2739          * deallocation.
2740          */
2741         if (next_pindex < prev_object->size) {
2742                 vm_object_page_remove(prev_object,
2743                                       next_pindex,
2744                                       next_pindex + next_size, FALSE);
2745                 if (prev_object->type == OBJT_SWAP)
2746                         swap_pager_freespace(prev_object,
2747                                              next_pindex, next_size);
2748         }
2749
2750         /*
2751          * Extend the object if necessary.
2752          */
2753         if (next_pindex + next_size > prev_object->size)
2754                 prev_object->size = next_pindex + next_size;
2755
2756         vm_object_chain_release(prev_object);
2757         vm_object_drop(prev_object);
2758         return (TRUE);
2759 }
2760
2761 /*
2762  * Make the object writable and flag is being possibly dirty.
2763  *
2764  * The object might not be held (or might be held but held shared),
2765  * the related vnode is probably not held either.  Object and vnode are
2766  * stable by virtue of the vm_page busied by the caller preventing
2767  * destruction.
2768  *
2769  * If the related mount is flagged MNTK_THR_SYNC we need to call
2770  * vsetobjdirty().  Filesystems using this option usually shortcut
2771  * synchronization by only scanning the syncer list.
2772  */
2773 void
2774 vm_object_set_writeable_dirty(vm_object_t object)
2775 {
2776         struct vnode *vp;
2777
2778         /*vm_object_assert_held(object);*/
2779         /*
2780          * Avoid contention in vm fault path by checking the state before
2781          * issuing an atomic op on it.
2782          */
2783         if ((object->flags & (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) !=
2784             (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) {
2785                 vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
2786         }
2787         if (object->type == OBJT_VNODE &&
2788             (vp = (struct vnode *)object->handle) != NULL) {
2789                 if ((vp->v_flag & VOBJDIRTY) == 0) {
2790                         if (vp->v_mount &&
2791                             (vp->v_mount->mnt_kern_flag & MNTK_THR_SYNC)) {
2792                                 /*
2793                                  * New style THR_SYNC places vnodes on the
2794                                  * syncer list more deterministically.
2795                                  */
2796                                 vsetobjdirty(vp);
2797                         } else {
2798                                 /*
2799                                  * Old style scan would not necessarily place
2800                                  * a vnode on the syncer list when possibly
2801                                  * modified via mmap.
2802                                  */
2803                                 vsetflags(vp, VOBJDIRTY);
2804                         }
2805                 }
2806         }
2807 }
2808
2809 #include "opt_ddb.h"
2810 #ifdef DDB
2811 #include <sys/kernel.h>
2812
2813 #include <sys/cons.h>
2814
2815 #include <ddb/ddb.h>
2816
2817 static int      _vm_object_in_map (vm_map_t map, vm_object_t object,
2818                                        vm_map_entry_t entry);
2819 static int      vm_object_in_map (vm_object_t object);
2820
2821 /*
2822  * The caller must hold the object.
2823  */
2824 static int
2825 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2826 {
2827         vm_map_t tmpm;
2828         vm_map_entry_t tmpe;
2829         vm_object_t obj, nobj;
2830         int entcount;
2831
2832         if (map == 0)
2833                 return 0;
2834         if (entry == 0) {
2835                 tmpe = map->header.next;
2836                 entcount = map->nentries;
2837                 while (entcount-- && (tmpe != &map->header)) {
2838                         if( _vm_object_in_map(map, object, tmpe)) {
2839                                 return 1;
2840                         }
2841                         tmpe = tmpe->next;
2842                 }
2843                 return (0);
2844         }
2845         switch(entry->maptype) {
2846         case VM_MAPTYPE_SUBMAP:
2847                 tmpm = entry->object.sub_map;
2848                 tmpe = tmpm->header.next;
2849                 entcount = tmpm->nentries;
2850                 while (entcount-- && tmpe != &tmpm->header) {
2851                         if( _vm_object_in_map(tmpm, object, tmpe)) {
2852                                 return 1;
2853                         }
2854                         tmpe = tmpe->next;
2855                 }
2856                 break;
2857         case VM_MAPTYPE_NORMAL:
2858         case VM_MAPTYPE_VPAGETABLE:
2859                 obj = entry->object.vm_object;
2860                 while (obj) {
2861                         if (obj == object) {
2862                                 if (obj != entry->object.vm_object)
2863                                         vm_object_drop(obj);
2864                                 return 1;
2865                         }
2866                         while ((nobj = obj->backing_object) != NULL) {
2867                                 vm_object_hold(nobj);
2868                                 if (nobj == obj->backing_object)
2869                                         break;
2870                                 vm_object_drop(nobj);
2871                         }
2872                         if (obj != entry->object.vm_object) {
2873                                 if (nobj)
2874                                         vm_object_lock_swap();
2875                                 vm_object_drop(obj);
2876                         }
2877                         obj = nobj;
2878                 }
2879                 break;
2880         default:
2881                 break;
2882         }
2883         return 0;
2884 }
2885
2886 static int vm_object_in_map_callback(struct proc *p, void *data);
2887
2888 struct vm_object_in_map_info {
2889         vm_object_t object;
2890         int rv;
2891 };
2892
2893 /*
2894  * Debugging only
2895  */
2896 static int
2897 vm_object_in_map(vm_object_t object)
2898 {
2899         struct vm_object_in_map_info info;
2900
2901         info.rv = 0;
2902         info.object = object;
2903
2904         allproc_scan(vm_object_in_map_callback, &info);
2905         if (info.rv)
2906                 return 1;
2907         if( _vm_object_in_map(&kernel_map, object, 0))
2908                 return 1;
2909         if( _vm_object_in_map(&pager_map, object, 0))
2910                 return 1;
2911         if( _vm_object_in_map(&buffer_map, object, 0))
2912                 return 1;
2913         return 0;
2914 }
2915
2916 /*
2917  * Debugging only
2918  */
2919 static int
2920 vm_object_in_map_callback(struct proc *p, void *data)
2921 {
2922         struct vm_object_in_map_info *info = data;
2923
2924         if (p->p_vmspace) {
2925                 if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
2926                         info->rv = 1;
2927                         return -1;
2928                 }
2929         }
2930         return (0);
2931 }
2932
2933 DB_SHOW_COMMAND(vmochk, vm_object_check)
2934 {
2935         vm_object_t object;
2936         int n;
2937
2938         /*
2939          * make sure that internal objs are in a map somewhere
2940          * and none have zero ref counts.
2941          */
2942         for (n = 0; n < VMOBJ_HSIZE; ++n) {
2943                 for (object = TAILQ_FIRST(&vm_object_lists[n]);
2944                                 object != NULL;
2945                                 object = TAILQ_NEXT(object, object_list)) {
2946                         if (object->type == OBJT_MARKER)
2947                                 continue;
2948                         if (object->handle != NULL ||
2949                             (object->type != OBJT_DEFAULT &&
2950                              object->type != OBJT_SWAP)) {
2951                                 continue;
2952                         }
2953                         if (object->ref_count == 0) {
2954                                 db_printf("vmochk: internal obj has "
2955                                           "zero ref count: %ld\n",
2956                                           (long)object->size);
2957                         }
2958                         if (vm_object_in_map(object))
2959                                 continue;
2960                         db_printf("vmochk: internal obj is not in a map: "
2961                                   "ref: %d, size: %lu: 0x%lx, "
2962                                   "backing_object: %p\n",
2963                                   object->ref_count, (u_long)object->size,
2964                                   (u_long)object->size,
2965                                   (void *)object->backing_object);
2966                 }
2967         }
2968 }
2969
2970 /*
2971  * Debugging only
2972  */
2973 DB_SHOW_COMMAND(object, vm_object_print_static)
2974 {
2975         /* XXX convert args. */
2976         vm_object_t object = (vm_object_t)addr;
2977         boolean_t full = have_addr;
2978
2979         vm_page_t p;
2980
2981         /* XXX count is an (unused) arg.  Avoid shadowing it. */
2982 #define count   was_count
2983
2984         int count;
2985
2986         if (object == NULL)
2987                 return;
2988
2989         db_iprintf(
2990             "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
2991             object, (int)object->type, (u_long)object->size,
2992             object->resident_page_count, object->ref_count, object->flags);
2993         /*
2994          * XXX no %qd in kernel.  Truncate object->backing_object_offset.
2995          */
2996         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
2997             object->shadow_count, 
2998             object->backing_object ? object->backing_object->ref_count : 0,
2999             object->backing_object, (long)object->backing_object_offset);
3000
3001         if (!full)
3002                 return;
3003
3004         db_indent += 2;
3005         count = 0;
3006         RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
3007                 if (count == 0)
3008                         db_iprintf("memory:=");
3009                 else if (count == 6) {
3010                         db_printf("\n");
3011                         db_iprintf(" ...");
3012                         count = 0;
3013                 } else
3014                         db_printf(",");
3015                 count++;
3016
3017                 db_printf("(off=0x%lx,page=0x%lx)",
3018                     (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
3019         }
3020         if (count != 0)
3021                 db_printf("\n");
3022         db_indent -= 2;
3023 }
3024
3025 /* XXX. */
3026 #undef count
3027
3028 /*
3029  * XXX need this non-static entry for calling from vm_map_print.
3030  *
3031  * Debugging only
3032  */
3033 void
3034 vm_object_print(/* db_expr_t */ long addr,
3035                 boolean_t have_addr,
3036                 /* db_expr_t */ long count,
3037                 char *modif)
3038 {
3039         vm_object_print_static(addr, have_addr, count, modif);
3040 }
3041
3042 /*
3043  * Debugging only
3044  */
3045 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
3046 {
3047         vm_object_t object;
3048         int nl = 0;
3049         int c;
3050         int n;
3051
3052         for (n = 0; n < VMOBJ_HSIZE; ++n) {
3053                 for (object = TAILQ_FIRST(&vm_object_lists[n]);
3054                                 object != NULL;
3055                                 object = TAILQ_NEXT(object, object_list)) {
3056                         vm_pindex_t idx, fidx;
3057                         vm_pindex_t osize;
3058                         vm_paddr_t pa = -1, padiff;
3059                         int rcount;
3060                         vm_page_t m;
3061
3062                         if (object->type == OBJT_MARKER)
3063                                 continue;
3064                         db_printf("new object: %p\n", (void *)object);
3065                         if ( nl > 18) {
3066                                 c = cngetc();
3067                                 if (c != ' ')
3068                                         return;
3069                                 nl = 0;
3070                         }
3071                         nl++;
3072                         rcount = 0;
3073                         fidx = 0;
3074                         osize = object->size;
3075                         if (osize > 128)
3076                                 osize = 128;
3077                         for (idx = 0; idx < osize; idx++) {
3078                                 m = vm_page_lookup(object, idx);
3079                                 if (m == NULL) {
3080                                         if (rcount) {
3081                                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
3082                                                         (long)fidx, rcount, (long)pa);
3083                                                 if ( nl > 18) {
3084                                                         c = cngetc();
3085                                                         if (c != ' ')
3086                                                                 return;
3087                                                         nl = 0;
3088                                                 }
3089                                                 nl++;
3090                                                 rcount = 0;
3091                                         }
3092                                         continue;
3093                                 }
3094
3095                                 if (rcount &&
3096                                         (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
3097                                         ++rcount;
3098                                         continue;
3099                                 }
3100                                 if (rcount) {
3101                                         padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
3102                                         padiff >>= PAGE_SHIFT;
3103                                         padiff &= PQ_L2_MASK;
3104                                         if (padiff == 0) {
3105                                                 pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
3106                                                 ++rcount;
3107                                                 continue;
3108                                         }
3109                                         db_printf(" index(%ld)run(%d)pa(0x%lx)",
3110                                                 (long)fidx, rcount, (long)pa);
3111                                         db_printf("pd(%ld)\n", (long)padiff);
3112                                         if ( nl > 18) {
3113                                                 c = cngetc();
3114                                                 if (c != ' ')
3115                                                         return;
3116                                                 nl = 0;
3117                                         }
3118                                         nl++;
3119                                 }
3120                                 fidx = idx;
3121                                 pa = VM_PAGE_TO_PHYS(m);
3122                                 rcount = 1;
3123                         }
3124                         if (rcount) {
3125                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
3126                                         (long)fidx, rcount, (long)pa);
3127                                 if ( nl > 18) {
3128                                         c = cngetc();
3129                                         if (c != ' ')
3130                                                 return;
3131                                         nl = 0;
3132                                 }
3133                                 nl++;
3134                         }
3135                 }
3136         }
3137 }
3138 #endif /* DDB */