BGE_MBX_TX_HOST_PROD0_LO is write-only, avoid reading it.
[dragonfly.git] / sys / dev / netif / bge / if_bge.c
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $
34  * $DragonFly: src/sys/dev/netif/bge/if_bge.c,v 1.65 2007/04/14 04:22:14 sephe Exp $
35  *
36  */
37
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
40  * 
41  * Written by Bill Paul <wpaul@windriver.com>
42  * Senior Engineer, Wind River Systems
43  */
44
45 /*
46  * The Broadcom BCM5700 is based on technology originally developed by
47  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
48  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
49  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
50  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
51  * frames, highly configurable RX filtering, and 16 RX and TX queues
52  * (which, along with RX filter rules, can be used for QOS applications).
53  * Other features, such as TCP segmentation, may be available as part
54  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
55  * firmware images can be stored in hardware and need not be compiled
56  * into the driver.
57  *
58  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
59  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
60  * 
61  * The BCM5701 is a single-chip solution incorporating both the BCM5700
62  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
63  * does not support external SSRAM.
64  *
65  * Broadcom also produces a variation of the BCM5700 under the "Altima"
66  * brand name, which is functionally similar but lacks PCI-X support.
67  *
68  * Without external SSRAM, you can only have at most 4 TX rings,
69  * and the use of the mini RX ring is disabled. This seems to imply
70  * that these features are simply not available on the BCM5701. As a
71  * result, this driver does not implement any support for the mini RX
72  * ring.
73  */
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/sockio.h>
78 #include <sys/mbuf.h>
79 #include <sys/malloc.h>
80 #include <sys/kernel.h>
81 #include <sys/socket.h>
82 #include <sys/queue.h>
83 #include <sys/serialize.h>
84 #include <sys/thread2.h>
85
86 #include <net/if.h>
87 #include <net/ifq_var.h>
88 #include <net/if_arp.h>
89 #include <net/ethernet.h>
90 #include <net/if_dl.h>
91 #include <net/if_media.h>
92
93 #include <net/bpf.h>
94
95 #include <net/if_types.h>
96 #include <net/vlan/if_vlan_var.h>
97
98 #include <netinet/in_systm.h>
99 #include <netinet/in.h>
100 #include <netinet/ip.h>
101
102 #include <vm/vm.h>              /* for vtophys */
103 #include <vm/pmap.h>            /* for vtophys */
104 #include <sys/bus.h>
105 #include <sys/rman.h>
106
107 #include <dev/netif/mii_layer/mii.h>
108 #include <dev/netif/mii_layer/miivar.h>
109 #include <dev/netif/mii_layer/miidevs.h>
110 #include <dev/netif/mii_layer/brgphyreg.h>
111
112 #include <bus/pci/pcidevs.h>
113 #include <bus/pci/pcireg.h>
114 #include <bus/pci/pcivar.h>
115
116 #include "if_bgereg.h"
117
118 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP | CSUM_UDP)
119
120 /* "controller miibus0" required.  See GENERIC if you get errors here. */
121 #include "miibus_if.h"
122
123 /*
124  * Various supported device vendors/types and their names. Note: the
125  * spec seems to indicate that the hardware still has Alteon's vendor
126  * ID burned into it, though it will always be overriden by the vendor
127  * ID in the EEPROM. Just to be safe, we cover all possibilities.
128  */
129 #define BGE_DEVDESC_MAX         64      /* Maximum device description length */
130
131 static struct bge_type bge_devs[] = {
132         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
133                 "Alteon BCM5700 Gigabit Ethernet" },
134         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
135                 "Alteon BCM5701 Gigabit Ethernet" },
136         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
137                 "Broadcom BCM5700 Gigabit Ethernet" },
138         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
139                 "Broadcom BCM5701 Gigabit Ethernet" },
140         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
141                 "Broadcom BCM5702X Gigabit Ethernet" },
142         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
143                 "Broadcom BCM5702 Gigabit Ethernet" },
144         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
145                 "Broadcom BCM5703X Gigabit Ethernet" },
146         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
147                 "Broadcom BCM5703 Gigabit Ethernet" },
148         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
149                 "Broadcom BCM5704C Dual Gigabit Ethernet" },
150         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
151                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
152         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
153                 "Broadcom BCM5705 Gigabit Ethernet" },
154         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
155                 "Broadcom BCM5705K Gigabit Ethernet" },
156         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
157                 "Broadcom BCM5705M Gigabit Ethernet" },
158         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
159                 "Broadcom BCM5705M Gigabit Ethernet" },
160         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714,
161                 "Broadcom BCM5714C Gigabit Ethernet" },
162         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
163                 "Broadcom BCM5721 Gigabit Ethernet" },
164         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
165                 "Broadcom BCM5750 Gigabit Ethernet" },
166         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
167                 "Broadcom BCM5750M Gigabit Ethernet" },
168         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
169                 "Broadcom BCM5751 Gigabit Ethernet" },
170         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
171                 "Broadcom BCM5751M Gigabit Ethernet" },
172         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752,
173                 "Broadcom BCM5752 Gigabit Ethernet" },
174         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
175                 "Broadcom BCM5782 Gigabit Ethernet" },
176         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
177                 "Broadcom BCM5788 Gigabit Ethernet" },
178         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
179                 "Broadcom BCM5789 Gigabit Ethernet" },
180         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
181                 "Broadcom BCM5901 Fast Ethernet" },
182         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
183                 "Broadcom BCM5901A2 Fast Ethernet" },
184         { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
185                 "SysKonnect Gigabit Ethernet" },
186         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
187                 "Altima AC1000 Gigabit Ethernet" },
188         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
189                 "Altima AC1002 Gigabit Ethernet" },
190         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
191                 "Altima AC9100 Gigabit Ethernet" },
192         { 0, 0, NULL }
193 };
194
195 static int      bge_probe(device_t);
196 static int      bge_attach(device_t);
197 static int      bge_detach(device_t);
198 static void     bge_release_resources(struct bge_softc *);
199 static void     bge_txeof(struct bge_softc *);
200 static void     bge_rxeof(struct bge_softc *);
201
202 static void     bge_tick(void *);
203 static void     bge_tick_serialized(void *);
204 static void     bge_stats_update(struct bge_softc *);
205 static void     bge_stats_update_regs(struct bge_softc *);
206 static int      bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
207
208 static void     bge_intr(void *);
209 static void     bge_start(struct ifnet *);
210 static int      bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
211 static void     bge_init(void *);
212 static void     bge_stop(struct bge_softc *);
213 static void     bge_watchdog(struct ifnet *);
214 static void     bge_shutdown(device_t);
215 static int      bge_suspend(device_t);
216 static int      bge_resume(device_t);
217 static int      bge_ifmedia_upd(struct ifnet *);
218 static void     bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
219
220 static uint8_t  bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
221 static int      bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
222
223 static void     bge_setmulti(struct bge_softc *);
224 static void     bge_setpromisc(struct bge_softc *);
225
226 static void     bge_handle_events(struct bge_softc *);
227 static int      bge_alloc_jumbo_mem(struct bge_softc *);
228 static void     bge_free_jumbo_mem(struct bge_softc *);
229 static struct bge_jslot
230                 *bge_jalloc(struct bge_softc *);
231 static void     bge_jfree(void *);
232 static void     bge_jref(void *);
233 static int      bge_newbuf_std(struct bge_softc *, int, struct mbuf *);
234 static int      bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
235 static int      bge_init_rx_ring_std(struct bge_softc *);
236 static void     bge_free_rx_ring_std(struct bge_softc *);
237 static int      bge_init_rx_ring_jumbo(struct bge_softc *);
238 static void     bge_free_rx_ring_jumbo(struct bge_softc *);
239 static void     bge_free_tx_ring(struct bge_softc *);
240 static int      bge_init_tx_ring(struct bge_softc *);
241
242 static int      bge_chipinit(struct bge_softc *);
243 static int      bge_blockinit(struct bge_softc *);
244
245 #ifdef notdef
246 static uint8_t  bge_vpd_readbyte(struct bge_softc *, uint32_t);
247 static void     bge_vpd_read_res(struct bge_softc *, struct vpd_res *, uint32_t);
248 static void     bge_vpd_read(struct bge_softc *);
249 #endif
250
251 static uint32_t bge_readmem_ind(struct bge_softc *, uint32_t);
252 static void     bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
253 #ifdef notdef
254 static uint32_t bge_readreg_ind(struct bge_softc *, uint32_t);
255 #endif
256 static void     bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
257
258 static int      bge_miibus_readreg(device_t, int, int);
259 static int      bge_miibus_writereg(device_t, int, int, int);
260 static void     bge_miibus_statchg(device_t);
261
262 static void     bge_reset(struct bge_softc *);
263
264 /*
265  * Set following tunable to 1 for some IBM blade servers with the DNLK
266  * switch module. Auto negotiation is broken for those configurations.
267  */
268 static int      bge_fake_autoneg = 0;
269 TUNABLE_INT("hw.bge.fake_autoneg", &bge_fake_autoneg);
270
271 static device_method_t bge_methods[] = {
272         /* Device interface */
273         DEVMETHOD(device_probe,         bge_probe),
274         DEVMETHOD(device_attach,        bge_attach),
275         DEVMETHOD(device_detach,        bge_detach),
276         DEVMETHOD(device_shutdown,      bge_shutdown),
277         DEVMETHOD(device_suspend,       bge_suspend),
278         DEVMETHOD(device_resume,        bge_resume),
279
280         /* bus interface */
281         DEVMETHOD(bus_print_child,      bus_generic_print_child),
282         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
283
284         /* MII interface */
285         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
286         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
287         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
288
289         { 0, 0 }
290 };
291
292 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
293 static devclass_t bge_devclass;
294
295 DECLARE_DUMMY_MODULE(if_bge);
296 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, 0, 0);
297 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0);
298
299 static uint32_t
300 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
301 {
302         device_t dev = sc->bge_dev;
303
304         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
305         return(pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4));
306 }
307
308 static void
309 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
310 {
311         device_t dev = sc->bge_dev;
312
313         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
314         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
315 }
316
317 #ifdef notdef
318 static uint32_t
319 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
320 {
321         device_t dev = sc->bge_dev;
322
323         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
324         return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
325 }
326 #endif
327
328 static void
329 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
330 {
331         device_t dev = sc->bge_dev;
332
333         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
334         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
335 }
336
337 #ifdef notdef
338 static uint8_t
339 bge_vpd_readbyte(struct bge_softc *sc, uint32_t addr)
340 {
341         device_t dev = sc->bge_dev;
342         uint32_t val;
343         int i;
344
345         pci_write_config(dev, BGE_PCI_VPD_ADDR, addr, 2);
346         for (i = 0; i < BGE_TIMEOUT * 10; i++) {
347                 DELAY(10);
348                 if (pci_read_config(dev, BGE_PCI_VPD_ADDR, 2) & BGE_VPD_FLAG)
349                         break;
350         }
351
352         if (i == BGE_TIMEOUT) {
353                 device_printf(sc->bge_dev, "VPD read timed out\n");
354                 return(0);
355         }
356
357         val = pci_read_config(dev, BGE_PCI_VPD_DATA, 4);
358
359         return((val >> ((addr % 4) * 8)) & 0xFF);
360 }
361
362 static void
363 bge_vpd_read_res(struct bge_softc *sc, struct vpd_res *res, uint32_t addr)
364 {
365         size_t i;
366         uint8_t *ptr;
367
368         ptr = (uint8_t *)res;
369         for (i = 0; i < sizeof(struct vpd_res); i++)
370                 ptr[i] = bge_vpd_readbyte(sc, i + addr);
371
372         return;
373 }
374
375 static void
376 bge_vpd_read(struct bge_softc *sc)
377 {
378         int pos = 0, i;
379         struct vpd_res res;
380
381         if (sc->bge_vpd_prodname != NULL)
382                 kfree(sc->bge_vpd_prodname, M_DEVBUF);
383         if (sc->bge_vpd_readonly != NULL)
384                 kfree(sc->bge_vpd_readonly, M_DEVBUF);
385         sc->bge_vpd_prodname = NULL;
386         sc->bge_vpd_readonly = NULL;
387
388         bge_vpd_read_res(sc, &res, pos);
389
390         if (res.vr_id != VPD_RES_ID) {
391                 device_printf(sc->bge_dev,
392                               "bad VPD resource id: expected %x got %x\n",
393                               VPD_RES_ID, res.vr_id);
394                 return;
395         }
396
397         pos += sizeof(res);
398         sc->bge_vpd_prodname = kmalloc(res.vr_len + 1, M_DEVBUF, M_INTWAIT);
399         for (i = 0; i < res.vr_len; i++)
400                 sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
401         sc->bge_vpd_prodname[i] = '\0';
402         pos += i;
403
404         bge_vpd_read_res(sc, &res, pos);
405
406         if (res.vr_id != VPD_RES_READ) {
407                 device_printf(sc->bge_dev,
408                               "bad VPD resource id: expected %x got %x\n",
409                               VPD_RES_READ, res.vr_id);
410                 return;
411         }
412
413         pos += sizeof(res);
414         sc->bge_vpd_readonly = kmalloc(res.vr_len, M_DEVBUF, M_INTWAIT);
415         for (i = 0; i < res.vr_len + 1; i++)
416                 sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
417 }
418 #endif
419
420 /*
421  * Read a byte of data stored in the EEPROM at address 'addr.' The
422  * BCM570x supports both the traditional bitbang interface and an
423  * auto access interface for reading the EEPROM. We use the auto
424  * access method.
425  */
426 static uint8_t
427 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
428 {
429         int i;
430         uint32_t byte = 0;
431
432         /*
433          * Enable use of auto EEPROM access so we can avoid
434          * having to use the bitbang method.
435          */
436         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
437
438         /* Reset the EEPROM, load the clock period. */
439         CSR_WRITE_4(sc, BGE_EE_ADDR,
440             BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
441         DELAY(20);
442
443         /* Issue the read EEPROM command. */
444         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
445
446         /* Wait for completion */
447         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
448                 DELAY(10);
449                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
450                         break;
451         }
452
453         if (i == BGE_TIMEOUT) {
454                 if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
455                 return(0);
456         }
457
458         /* Get result. */
459         byte = CSR_READ_4(sc, BGE_EE_DATA);
460
461         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
462
463         return(0);
464 }
465
466 /*
467  * Read a sequence of bytes from the EEPROM.
468  */
469 static int
470 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
471 {
472         size_t i;
473         int err;
474         uint8_t byte;
475
476         for (byte = 0, err = 0, i = 0; i < len; i++) {
477                 err = bge_eeprom_getbyte(sc, off + i, &byte);
478                 if (err)
479                         break;
480                 *(dest + i) = byte;
481         }
482
483         return(err ? 1 : 0);
484 }
485
486 static int
487 bge_miibus_readreg(device_t dev, int phy, int reg)
488 {
489         struct bge_softc *sc;
490         struct ifnet *ifp;
491         uint32_t val, autopoll;
492         int i;
493
494         sc = device_get_softc(dev);
495         ifp = &sc->arpcom.ac_if;
496
497         /*
498          * Broadcom's own driver always assumes the internal
499          * PHY is at GMII address 1. On some chips, the PHY responds
500          * to accesses at all addresses, which could cause us to
501          * bogusly attach the PHY 32 times at probe type. Always
502          * restricting the lookup to address 1 is simpler than
503          * trying to figure out which chips revisions should be
504          * special-cased.
505          */
506         if (phy != 1)
507                 return(0);
508
509         /* Reading with autopolling on may trigger PCI errors */
510         autopoll = CSR_READ_4(sc, BGE_MI_MODE);
511         if (autopoll & BGE_MIMODE_AUTOPOLL) {
512                 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
513                 DELAY(40);
514         }
515
516         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
517             BGE_MIPHY(phy)|BGE_MIREG(reg));
518
519         for (i = 0; i < BGE_TIMEOUT; i++) {
520                 val = CSR_READ_4(sc, BGE_MI_COMM);
521                 if (!(val & BGE_MICOMM_BUSY))
522                         break;
523         }
524
525         if (i == BGE_TIMEOUT) {
526                 if_printf(ifp, "PHY read timed out\n");
527                 val = 0;
528                 goto done;
529         }
530
531         val = CSR_READ_4(sc, BGE_MI_COMM);
532
533 done:
534         if (autopoll & BGE_MIMODE_AUTOPOLL) {
535                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
536                 DELAY(40);
537         }
538
539         if (val & BGE_MICOMM_READFAIL)
540                 return(0);
541
542         return(val & 0xFFFF);
543 }
544
545 static int
546 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
547 {
548         struct bge_softc *sc;
549         uint32_t autopoll;
550         int i;
551
552         sc = device_get_softc(dev);
553
554         /* Reading with autopolling on may trigger PCI errors */
555         autopoll = CSR_READ_4(sc, BGE_MI_MODE);
556         if (autopoll & BGE_MIMODE_AUTOPOLL) {
557                 BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
558                 DELAY(40);
559         }
560
561         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
562             BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
563
564         for (i = 0; i < BGE_TIMEOUT; i++) {
565                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
566                         break;
567         }
568
569         if (autopoll & BGE_MIMODE_AUTOPOLL) {
570                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
571                 DELAY(40);
572         }
573
574         if (i == BGE_TIMEOUT) {
575                 if_printf(&sc->arpcom.ac_if, "PHY read timed out\n");
576                 return(0);
577         }
578
579         return(0);
580 }
581
582 static void
583 bge_miibus_statchg(device_t dev)
584 {
585         struct bge_softc *sc;
586         struct mii_data *mii;
587
588         sc = device_get_softc(dev);
589         mii = device_get_softc(sc->bge_miibus);
590
591         BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
592         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
593                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
594         } else {
595                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
596         }
597
598         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
599                 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
600         } else {
601                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
602         }
603 }
604
605 /*
606  * Handle events that have triggered interrupts.
607  */
608 static void
609 bge_handle_events(struct bge_softc *sc)
610 {
611 }
612
613 /*
614  * Memory management for jumbo frames.
615  */
616 static int
617 bge_alloc_jumbo_mem(struct bge_softc *sc)
618 {
619         struct bge_jslot *entry;
620         caddr_t ptr;
621         int i;
622
623         /* Grab a big chunk o' storage. */
624         sc->bge_cdata.bge_jumbo_buf = contigmalloc(BGE_JMEM, M_DEVBUF,
625                 M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
626
627         if (sc->bge_cdata.bge_jumbo_buf == NULL) {
628                 if_printf(&sc->arpcom.ac_if, "no memory for jumbo buffers!\n");
629                 return(ENOBUFS);
630         }
631
632         SLIST_INIT(&sc->bge_jfree_listhead);
633
634         /*
635          * Now divide it up into 9K pieces and save the addresses
636          * in an array. Note that we play an evil trick here by using
637          * the first few bytes in the buffer to hold the the address
638          * of the softc structure for this interface. This is because
639          * bge_jfree() needs it, but it is called by the mbuf management
640          * code which will not pass it to us explicitly.
641          */
642         ptr = sc->bge_cdata.bge_jumbo_buf;
643         for (i = 0; i < BGE_JSLOTS; i++) {
644                 entry = &sc->bge_cdata.bge_jslots[i];
645                 entry->bge_sc = sc;
646                 entry->bge_buf = ptr;
647                 entry->bge_inuse = 0;
648                 entry->bge_slot = i;
649                 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
650                 ptr += BGE_JLEN;
651         }
652
653         return(0);
654 }
655
656 static void
657 bge_free_jumbo_mem(struct bge_softc *sc)
658 {
659         if (sc->bge_cdata.bge_jumbo_buf)
660                 contigfree(sc->bge_cdata.bge_jumbo_buf, BGE_JMEM, M_DEVBUF);
661 }
662
663 /*
664  * Allocate a jumbo buffer.
665  */
666 static struct bge_jslot *
667 bge_jalloc(struct bge_softc *sc)
668 {
669         struct bge_jslot *entry;
670
671         lwkt_serialize_enter(&sc->bge_jslot_serializer);
672         entry = SLIST_FIRST(&sc->bge_jfree_listhead);
673         if (entry) {
674                 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
675                 entry->bge_inuse = 1;
676         } else {
677                 if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
678         }
679         lwkt_serialize_exit(&sc->bge_jslot_serializer);
680         return(entry);
681 }
682
683 /*
684  * Adjust usage count on a jumbo buffer.
685  */
686 static void
687 bge_jref(void *arg)
688 {
689         struct bge_jslot *entry = (struct bge_jslot *)arg;
690         struct bge_softc *sc = entry->bge_sc;
691
692         if (sc == NULL)
693                 panic("bge_jref: can't find softc pointer!");
694
695         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
696                 panic("bge_jref: asked to reference buffer "
697                     "that we don't manage!");
698         } else if (entry->bge_inuse == 0) {
699                 panic("bge_jref: buffer already free!");
700         } else {
701                 atomic_add_int(&entry->bge_inuse, 1);
702         }
703 }
704
705 /*
706  * Release a jumbo buffer.
707  */
708 static void
709 bge_jfree(void *arg)
710 {
711         struct bge_jslot *entry = (struct bge_jslot *)arg;
712         struct bge_softc *sc = entry->bge_sc;
713
714         if (sc == NULL)
715                 panic("bge_jfree: can't find softc pointer!");
716
717         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
718                 panic("bge_jfree: asked to free buffer that we don't manage!");
719         } else if (entry->bge_inuse == 0) {
720                 panic("bge_jfree: buffer already free!");
721         } else {
722                 /*
723                  * Possible MP race to 0, use the serializer.  The atomic insn
724                  * is still needed for races against bge_jref().
725                  */
726                 lwkt_serialize_enter(&sc->bge_jslot_serializer);
727                 atomic_subtract_int(&entry->bge_inuse, 1);
728                 if (entry->bge_inuse == 0) {
729                         SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, 
730                                           entry, jslot_link);
731                 }
732                 lwkt_serialize_exit(&sc->bge_jslot_serializer);
733         }
734 }
735
736
737 /*
738  * Intialize a standard receive ring descriptor.
739  */
740 static int
741 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m)
742 {
743         struct mbuf *m_new = NULL;
744         struct bge_rx_bd *r;
745
746         if (m == NULL) {
747                 m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
748                 if (m_new == NULL)
749                         return (ENOBUFS);
750                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
751         } else {
752                 m_new = m;
753                 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
754                 m_new->m_data = m_new->m_ext.ext_buf;
755         }
756
757         if (!sc->bge_rx_alignment_bug)
758                 m_adj(m_new, ETHER_ALIGN);
759         sc->bge_cdata.bge_rx_std_chain[i] = m_new;
760         r = &sc->bge_rdata->bge_rx_std_ring[i];
761         BGE_HOSTADDR(r->bge_addr, vtophys(mtod(m_new, caddr_t)));
762         r->bge_flags = BGE_RXBDFLAG_END;
763         r->bge_len = m_new->m_len;
764         r->bge_idx = i;
765
766         return(0);
767 }
768
769 /*
770  * Initialize a jumbo receive ring descriptor. This allocates
771  * a jumbo buffer from the pool managed internally by the driver.
772  */
773 static int
774 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
775 {
776         struct mbuf *m_new = NULL;
777         struct bge_rx_bd *r;
778
779         if (m == NULL) {
780                 struct bge_jslot *buf;
781
782                 /* Allocate the mbuf. */
783                 MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
784                 if (m_new == NULL)
785                         return(ENOBUFS);
786
787                 /* Allocate the jumbo buffer */
788                 buf = bge_jalloc(sc);
789                 if (buf == NULL) {
790                         m_freem(m_new);
791                         if_printf(&sc->arpcom.ac_if, "jumbo allocation failed "
792                             "-- packet dropped!\n");
793                         return(ENOBUFS);
794                 }
795
796                 /* Attach the buffer to the mbuf. */
797                 m_new->m_ext.ext_arg = buf;
798                 m_new->m_ext.ext_buf = buf->bge_buf;
799                 m_new->m_ext.ext_free = bge_jfree;
800                 m_new->m_ext.ext_ref = bge_jref;
801                 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
802
803                 m_new->m_data = m_new->m_ext.ext_buf;
804                 m_new->m_flags |= M_EXT;
805                 m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
806         } else {
807                 m_new = m;
808                 m_new->m_data = m_new->m_ext.ext_buf;
809                 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
810         }
811
812         if (!sc->bge_rx_alignment_bug)
813                 m_adj(m_new, ETHER_ALIGN);
814         /* Set up the descriptor. */
815         r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
816         sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
817         BGE_HOSTADDR(r->bge_addr, vtophys(mtod(m_new, caddr_t)));
818         r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
819         r->bge_len = m_new->m_len;
820         r->bge_idx = i;
821
822         return(0);
823 }
824
825 /*
826  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
827  * that's 1MB or memory, which is a lot. For now, we fill only the first
828  * 256 ring entries and hope that our CPU is fast enough to keep up with
829  * the NIC.
830  */
831 static int
832 bge_init_rx_ring_std(struct bge_softc *sc)
833 {
834         int i;
835
836         for (i = 0; i < BGE_SSLOTS; i++) {
837                 if (bge_newbuf_std(sc, i, NULL) == ENOBUFS)
838                         return(ENOBUFS);
839         };
840
841         sc->bge_std = i - 1;
842         CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
843
844         return(0);
845 }
846
847 static void
848 bge_free_rx_ring_std(struct bge_softc *sc)
849 {
850         int i;
851
852         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
853                 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
854                         m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
855                         sc->bge_cdata.bge_rx_std_chain[i] = NULL;
856                 }
857                 bzero(&sc->bge_rdata->bge_rx_std_ring[i],
858                     sizeof(struct bge_rx_bd));
859         }
860 }
861
862 static int
863 bge_init_rx_ring_jumbo(struct bge_softc *sc)
864 {
865         int i;
866         struct bge_rcb *rcb;
867
868         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
869                 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
870                         return(ENOBUFS);
871         };
872
873         sc->bge_jumbo = i - 1;
874
875         rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
876         rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
877         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
878
879         CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
880
881         return(0);
882 }
883
884 static void
885 bge_free_rx_ring_jumbo(struct bge_softc *sc)
886 {
887         int i;
888
889         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
890                 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
891                         m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
892                         sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
893                 }
894                 bzero(&sc->bge_rdata->bge_rx_jumbo_ring[i],
895                     sizeof(struct bge_rx_bd));
896         }
897 }
898
899 static void
900 bge_free_tx_ring(struct bge_softc *sc)
901 {
902         int i;
903
904         if (sc->bge_rdata->bge_tx_ring == NULL)
905                 return;
906
907         for (i = 0; i < BGE_TX_RING_CNT; i++) {
908                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
909                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
910                         sc->bge_cdata.bge_tx_chain[i] = NULL;
911                 }
912                 bzero(&sc->bge_rdata->bge_tx_ring[i],
913                     sizeof(struct bge_tx_bd));
914         }
915 }
916
917 static int
918 bge_init_tx_ring(struct bge_softc *sc)
919 {
920         sc->bge_txcnt = 0;
921         sc->bge_tx_saved_considx = 0;
922         sc->bge_tx_prodidx = 0;
923
924         /* Initialize transmit producer index for host-memory send ring. */
925         CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
926
927         /* 5700 b2 errata */
928         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
929                 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
930
931         CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
932         /* 5700 b2 errata */
933         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
934                 CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
935
936         return(0);
937 }
938
939 static void
940 bge_setmulti(struct bge_softc *sc)
941 {
942         struct ifnet *ifp;
943         struct ifmultiaddr *ifma;
944         uint32_t hashes[4] = { 0, 0, 0, 0 };
945         int h, i;
946
947         ifp = &sc->arpcom.ac_if;
948
949         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
950                 for (i = 0; i < 4; i++)
951                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
952                 return;
953         }
954
955         /* First, zot all the existing filters. */
956         for (i = 0; i < 4; i++)
957                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
958
959         /* Now program new ones. */
960         LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
961                 if (ifma->ifma_addr->sa_family != AF_LINK)
962                         continue;
963                 h = ether_crc32_le(
964                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
965                     ETHER_ADDR_LEN) & 0x7f;
966                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
967         }
968
969         for (i = 0; i < 4; i++)
970                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
971 }
972
973 /*
974  * Do endian, PCI and DMA initialization. Also check the on-board ROM
975  * self-test results.
976  */
977 static int
978 bge_chipinit(struct bge_softc *sc)
979 {
980         int i;
981         uint32_t dma_rw_ctl;
982
983         /* Set endianness before we access any non-PCI registers. */
984 #if BYTE_ORDER == BIG_ENDIAN
985         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
986             BGE_BIGENDIAN_INIT, 4);
987 #else
988         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
989             BGE_LITTLEENDIAN_INIT, 4);
990 #endif
991
992         /*
993          * Check the 'ROM failed' bit on the RX CPU to see if
994          * self-tests passed.
995          */
996         if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
997                 if_printf(&sc->arpcom.ac_if,
998                           "RX CPU self-diagnostics failed!\n");
999                 return(ENODEV);
1000         }
1001
1002         /* Clear the MAC control register */
1003         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1004
1005         /*
1006          * Clear the MAC statistics block in the NIC's
1007          * internal memory.
1008          */
1009         for (i = BGE_STATS_BLOCK;
1010             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1011                 BGE_MEMWIN_WRITE(sc, i, 0);
1012
1013         for (i = BGE_STATUS_BLOCK;
1014             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1015                 BGE_MEMWIN_WRITE(sc, i, 0);
1016
1017         /* Set up the PCI DMA control register. */
1018         if (sc->bge_pcie) {
1019                 /* PCI Express */
1020                 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1021                     (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1022                     (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1023         } else if (pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
1024                    BGE_PCISTATE_PCI_BUSMODE) {
1025                 /* Conventional PCI bus */
1026                 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1027                     (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1028                     (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1029                     (0x0F);
1030         } else {
1031                 /* PCI-X bus */
1032                 /*
1033                  * The 5704 uses a different encoding of read/write
1034                  * watermarks.
1035                  */
1036                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1037                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1038                             (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1039                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1040                 else
1041                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1042                             (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1043                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1044                             (0x0F);
1045
1046                 /*
1047                  * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1048                  * for hardware bugs.
1049                  */
1050                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1051                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1052                         uint32_t tmp;
1053
1054                         tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1055                         if (tmp == 0x6 || tmp == 0x7)
1056                                 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1057                 }
1058         }
1059
1060         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1061             sc->bge_asicrev == BGE_ASICREV_BCM5704 ||
1062             sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
1063             sc->bge_asicrev == BGE_ASICREV_BCM5750)
1064                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1065         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1066
1067         /*
1068          * Set up general mode register.
1069          */
1070         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_WORDSWAP_NONFRAME|
1071             BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1072             BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1073             BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1074
1075         /*
1076          * Disable memory write invalidate.  Apparently it is not supported
1077          * properly by these devices.
1078          */
1079         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1080
1081         /* Set the timer prescaler (always 66Mhz) */
1082         CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1083
1084         return(0);
1085 }
1086
1087 static int
1088 bge_blockinit(struct bge_softc *sc)
1089 {
1090         struct bge_rcb *rcb;
1091         volatile struct bge_rcb *vrcb;
1092         int i;
1093
1094         /*
1095          * Initialize the memory window pointer register so that
1096          * we can access the first 32K of internal NIC RAM. This will
1097          * allow us to set up the TX send ring RCBs and the RX return
1098          * ring RCBs, plus other things which live in NIC memory.
1099          */
1100         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1101
1102         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1103
1104         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1105             sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1106                 /* Configure mbuf memory pool */
1107                 if (sc->bge_extram) {
1108                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1109                             BGE_EXT_SSRAM);
1110                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1111                                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1112                         else
1113                                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1114                 } else {
1115                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1116                             BGE_BUFFPOOL_1);
1117                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1118                                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1119                         else
1120                                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1121                 }
1122
1123                 /* Configure DMA resource pool */
1124                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1125                     BGE_DMA_DESCRIPTORS);
1126                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1127         }
1128
1129         /* Configure mbuf pool watermarks */
1130         if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
1131             sc->bge_asicrev == BGE_ASICREV_BCM5750) {
1132                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1133                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1134         } else {
1135                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1136                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1137         }
1138         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1139
1140         /* Configure DMA resource watermarks */
1141         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1142         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1143
1144         /* Enable buffer manager */
1145         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1146             sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1147                 CSR_WRITE_4(sc, BGE_BMAN_MODE,
1148                     BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1149
1150                 /* Poll for buffer manager start indication */
1151                 for (i = 0; i < BGE_TIMEOUT; i++) {
1152                         if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1153                                 break;
1154                         DELAY(10);
1155                 }
1156
1157                 if (i == BGE_TIMEOUT) {
1158                         if_printf(&sc->arpcom.ac_if,
1159                                   "buffer manager failed to start\n");
1160                         return(ENXIO);
1161                 }
1162         }
1163
1164         /* Enable flow-through queues */
1165         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1166         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1167
1168         /* Wait until queue initialization is complete */
1169         for (i = 0; i < BGE_TIMEOUT; i++) {
1170                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1171                         break;
1172                 DELAY(10);
1173         }
1174
1175         if (i == BGE_TIMEOUT) {
1176                 if_printf(&sc->arpcom.ac_if,
1177                           "flow-through queue init failed\n");
1178                 return(ENXIO);
1179         }
1180
1181         /* Initialize the standard RX ring control block */
1182         rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1183         BGE_HOSTADDR(rcb->bge_hostaddr,
1184             vtophys(&sc->bge_rdata->bge_rx_std_ring));
1185         if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
1186             sc->bge_asicrev == BGE_ASICREV_BCM5750)
1187                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1188         else
1189                 rcb->bge_maxlen_flags =
1190                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1191         if (sc->bge_extram)
1192                 rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1193         else
1194                 rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1195         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1196         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1197         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1198         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1199
1200         /*
1201          * Initialize the jumbo RX ring control block
1202          * We set the 'ring disabled' bit in the flags
1203          * field until we're actually ready to start
1204          * using this ring (i.e. once we set the MTU
1205          * high enough to require it).
1206          */
1207         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1208             sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1209                 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1210                 BGE_HOSTADDR(rcb->bge_hostaddr,
1211                     vtophys(&sc->bge_rdata->bge_rx_jumbo_ring));
1212                 rcb->bge_maxlen_flags =
1213                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1214                     BGE_RCB_FLAG_RING_DISABLED);
1215                 if (sc->bge_extram)
1216                         rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1217                 else
1218                         rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1219                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1220                     rcb->bge_hostaddr.bge_addr_hi);
1221                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1222                     rcb->bge_hostaddr.bge_addr_lo);
1223                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1224                     rcb->bge_maxlen_flags);
1225                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1226
1227                 /* Set up dummy disabled mini ring RCB */
1228                 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1229                 rcb->bge_maxlen_flags =
1230                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1231                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1232                     rcb->bge_maxlen_flags);
1233         }
1234
1235         /*
1236          * Set the BD ring replentish thresholds. The recommended
1237          * values are 1/8th the number of descriptors allocated to
1238          * each ring.
1239          */
1240         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1241         CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1242
1243         /*
1244          * Disable all unused send rings by setting the 'ring disabled'
1245          * bit in the flags field of all the TX send ring control blocks.
1246          * These are located in NIC memory.
1247          */
1248         vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1249             BGE_SEND_RING_RCB);
1250         for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1251                 vrcb->bge_maxlen_flags =
1252                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1253                 vrcb->bge_nicaddr = 0;
1254                 vrcb++;
1255         }
1256
1257         /* Configure TX RCB 0 (we use only the first ring) */
1258         vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1259             BGE_SEND_RING_RCB);
1260         vrcb->bge_hostaddr.bge_addr_hi = 0;
1261         BGE_HOSTADDR(vrcb->bge_hostaddr, vtophys(&sc->bge_rdata->bge_tx_ring));
1262         vrcb->bge_nicaddr = BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT);
1263         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1264             sc->bge_asicrev != BGE_ASICREV_BCM5750)
1265                 vrcb->bge_maxlen_flags =
1266                     BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0);
1267
1268         /* Disable all unused RX return rings */
1269         vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1270             BGE_RX_RETURN_RING_RCB);
1271         for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1272                 vrcb->bge_hostaddr.bge_addr_hi = 0;
1273                 vrcb->bge_hostaddr.bge_addr_lo = 0;
1274                 vrcb->bge_maxlen_flags =
1275                     BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1276                     BGE_RCB_FLAG_RING_DISABLED);
1277                 vrcb->bge_nicaddr = 0;
1278                 CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1279                     (i * (sizeof(uint64_t))), 0);
1280                 vrcb++;
1281         }
1282
1283         /* Initialize RX ring indexes */
1284         CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1285         CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1286         CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1287
1288         /*
1289          * Set up RX return ring 0
1290          * Note that the NIC address for RX return rings is 0x00000000.
1291          * The return rings live entirely within the host, so the
1292          * nicaddr field in the RCB isn't used.
1293          */
1294         vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START +
1295             BGE_RX_RETURN_RING_RCB);
1296         vrcb->bge_hostaddr.bge_addr_hi = 0;
1297         BGE_HOSTADDR(vrcb->bge_hostaddr,
1298             vtophys(&sc->bge_rdata->bge_rx_return_ring));
1299         vrcb->bge_nicaddr = 0x00000000;
1300         vrcb->bge_maxlen_flags =
1301             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0);
1302
1303         /* Set random backoff seed for TX */
1304         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1305             sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1306             sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1307             sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1308             BGE_TX_BACKOFF_SEED_MASK);
1309
1310         /* Set inter-packet gap */
1311         CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1312
1313         /*
1314          * Specify which ring to use for packets that don't match
1315          * any RX rules.
1316          */
1317         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1318
1319         /*
1320          * Configure number of RX lists. One interrupt distribution
1321          * list, sixteen active lists, one bad frames class.
1322          */
1323         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1324
1325         /* Inialize RX list placement stats mask. */
1326         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1327         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1328
1329         /* Disable host coalescing until we get it set up */
1330         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1331
1332         /* Poll to make sure it's shut down. */
1333         for (i = 0; i < BGE_TIMEOUT; i++) {
1334                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1335                         break;
1336                 DELAY(10);
1337         }
1338
1339         if (i == BGE_TIMEOUT) {
1340                 if_printf(&sc->arpcom.ac_if,
1341                           "host coalescing engine failed to idle\n");
1342                 return(ENXIO);
1343         }
1344
1345         /* Set up host coalescing defaults */
1346         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1347         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1348         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1349         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1350         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1351             sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1352                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1353                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1354         }
1355         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1356         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1357
1358         /* Set up address of statistics block */
1359         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1360             sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1361                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 0);
1362                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1363                     vtophys(&sc->bge_rdata->bge_info.bge_stats));
1364
1365                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1366                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1367                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1368         }
1369
1370         /* Set up address of status block */
1371         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 0);
1372         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1373             vtophys(&sc->bge_rdata->bge_status_block));
1374
1375         sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1376         sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1377
1378         /* Turn on host coalescing state machine */
1379         CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1380
1381         /* Turn on RX BD completion state machine and enable attentions */
1382         CSR_WRITE_4(sc, BGE_RBDC_MODE,
1383             BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1384
1385         /* Turn on RX list placement state machine */
1386         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1387
1388         /* Turn on RX list selector state machine. */
1389         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1390             sc->bge_asicrev != BGE_ASICREV_BCM5750)
1391                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1392
1393         /* Turn on DMA, clear stats */
1394         CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1395             BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1396             BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1397             BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1398             (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1399
1400         /* Set misc. local control, enable interrupts on attentions */
1401         CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1402
1403 #ifdef notdef
1404         /* Assert GPIO pins for PHY reset */
1405         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1406             BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1407         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1408             BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1409 #endif
1410
1411         /* Turn on DMA completion state machine */
1412         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1413             sc->bge_asicrev != BGE_ASICREV_BCM5750)
1414                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1415
1416         /* Turn on write DMA state machine */
1417         CSR_WRITE_4(sc, BGE_WDMA_MODE,
1418             BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1419         
1420         /* Turn on read DMA state machine */
1421         CSR_WRITE_4(sc, BGE_RDMA_MODE,
1422             BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1423
1424         /* Turn on RX data completion state machine */
1425         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1426
1427         /* Turn on RX BD initiator state machine */
1428         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1429
1430         /* Turn on RX data and RX BD initiator state machine */
1431         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1432
1433         /* Turn on Mbuf cluster free state machine */
1434         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1435             sc->bge_asicrev != BGE_ASICREV_BCM5750)
1436                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1437
1438         /* Turn on send BD completion state machine */
1439         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1440
1441         /* Turn on send data completion state machine */
1442         CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1443
1444         /* Turn on send data initiator state machine */
1445         CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1446
1447         /* Turn on send BD initiator state machine */
1448         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1449
1450         /* Turn on send BD selector state machine */
1451         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1452
1453         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1454         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1455             BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1456
1457         /* ack/clear link change events */
1458         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1459             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1460             BGE_MACSTAT_LINK_CHANGED);
1461
1462         /* Enable PHY auto polling (for MII/GMII only) */
1463         if (sc->bge_tbi) {
1464                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1465         } else {
1466                 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1467                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700)
1468                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1469                             BGE_EVTENB_MI_INTERRUPT);
1470         }
1471
1472         /* Enable link state change attentions. */
1473         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1474
1475         return(0);
1476 }
1477
1478 /*
1479  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1480  * against our list and return its name if we find a match. Note
1481  * that since the Broadcom controller contains VPD support, we
1482  * can get the device name string from the controller itself instead
1483  * of the compiled-in string. This is a little slow, but it guarantees
1484  * we'll always announce the right product name.
1485  */
1486 static int
1487 bge_probe(device_t dev)
1488 {
1489         struct bge_softc *sc;
1490         struct bge_type *t;
1491         char *descbuf;
1492         uint16_t product, vendor;
1493
1494         product = pci_get_device(dev);
1495         vendor = pci_get_vendor(dev);
1496
1497         for (t = bge_devs; t->bge_name != NULL; t++) {
1498                 if (vendor == t->bge_vid && product == t->bge_did)
1499                         break;
1500         }
1501
1502         if (t->bge_name == NULL)
1503                 return(ENXIO);
1504
1505         sc = device_get_softc(dev);
1506 #ifdef notdef
1507         sc->bge_dev = dev;
1508
1509         bge_vpd_read(sc);
1510         device_set_desc(dev, sc->bge_vpd_prodname);
1511 #endif
1512         descbuf = kmalloc(BGE_DEVDESC_MAX, M_TEMP, M_WAITOK);
1513         ksnprintf(descbuf, BGE_DEVDESC_MAX, "%s, ASIC rev. %#04x", t->bge_name,
1514             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 16);
1515         device_set_desc_copy(dev, descbuf);
1516         if (pci_get_subvendor(dev) == PCI_VENDOR_DELL)
1517                 sc->bge_no_3_led = 1;
1518         kfree(descbuf, M_TEMP);
1519         return(0);
1520 }
1521
1522 static int
1523 bge_attach(device_t dev)
1524 {
1525         struct ifnet *ifp;
1526         struct bge_softc *sc;
1527         uint32_t hwcfg = 0;
1528         uint32_t mac_addr = 0;
1529         int error = 0, rid;
1530         uint8_t ether_addr[ETHER_ADDR_LEN];
1531
1532         sc = device_get_softc(dev);
1533         sc->bge_dev = dev;
1534         callout_init(&sc->bge_stat_timer);
1535         lwkt_serialize_init(&sc->bge_jslot_serializer);
1536
1537         /*
1538          * Map control/status registers.
1539          */
1540         pci_enable_busmaster(dev);
1541
1542         rid = BGE_PCI_BAR0;
1543         sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1544             RF_ACTIVE);
1545
1546         if (sc->bge_res == NULL) {
1547                 device_printf(dev, "couldn't map memory\n");
1548                 error = ENXIO;
1549                 return(error);
1550         }
1551
1552         sc->bge_btag = rman_get_bustag(sc->bge_res);
1553         sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
1554         sc->bge_vhandle = (vm_offset_t)rman_get_virtual(sc->bge_res);
1555
1556         /* Allocate interrupt */
1557         rid = 0;
1558
1559         sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1560             RF_SHAREABLE | RF_ACTIVE);
1561
1562         if (sc->bge_irq == NULL) {
1563                 device_printf(dev, "couldn't map interrupt\n");
1564                 error = ENXIO;
1565                 goto fail;
1566         }
1567
1568         /* Save ASIC rev. */
1569         sc->bge_chipid =
1570             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) &
1571             BGE_PCIMISCCTL_ASICREV;
1572         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
1573         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
1574
1575         /*
1576          * Treat the 5714 and the 5752 like the 5750 until we have more info
1577          * on this chip.
1578          */
1579         if (sc->bge_asicrev == BGE_ASICREV_BCM5714 ||
1580             sc->bge_asicrev == BGE_ASICREV_BCM5752)
1581                 sc->bge_asicrev = BGE_ASICREV_BCM5750;
1582
1583         /*
1584          * XXX: Broadcom Linux driver.  Not in specs or eratta.
1585          * PCI-Express?
1586          */
1587         if (sc->bge_asicrev == BGE_ASICREV_BCM5750) {
1588                 uint32_t v;
1589
1590                 v = pci_read_config(dev, BGE_PCI_MSI_CAPID, 4);
1591                 if (((v >> 8) & 0xff) == BGE_PCIE_MSI_CAPID) {
1592                         v = pci_read_config(dev, BGE_PCIE_MSI_CAPID, 4);
1593                         if ((v & 0xff) == BGE_PCIE_MSI_CAPID_VAL)
1594                                 sc->bge_pcie = 1;
1595                 }
1596         }
1597
1598         ifp = &sc->arpcom.ac_if;
1599         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1600
1601         /* Try to reset the chip. */
1602         bge_reset(sc);
1603
1604         if (bge_chipinit(sc)) {
1605                 device_printf(dev, "chip initialization failed\n");
1606                 error = ENXIO;
1607                 goto fail;
1608         }
1609
1610         /*
1611          * Get station address from the EEPROM.
1612          */
1613         mac_addr = bge_readmem_ind(sc, 0x0c14);
1614         if ((mac_addr >> 16) == 0x484b) {
1615                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
1616                 ether_addr[1] = (uint8_t)mac_addr;
1617                 mac_addr = bge_readmem_ind(sc, 0x0c18);
1618                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
1619                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
1620                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
1621                 ether_addr[5] = (uint8_t)mac_addr;
1622         } else if (bge_read_eeprom(sc, ether_addr,
1623             BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1624                 device_printf(dev, "failed to read station address\n");
1625                 error = ENXIO;
1626                 goto fail;
1627         }
1628
1629         /* Allocate the general information block and ring buffers. */
1630         sc->bge_rdata = contigmalloc(sizeof(struct bge_ring_data), M_DEVBUF,
1631             M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
1632
1633         if (sc->bge_rdata == NULL) {
1634                 error = ENXIO;
1635                 device_printf(dev, "no memory for list buffers!\n");
1636                 goto fail;
1637         }
1638
1639         bzero(sc->bge_rdata, sizeof(struct bge_ring_data));
1640
1641         /*
1642          * Try to allocate memory for jumbo buffers.
1643          * The 5705/5750 does not appear to support jumbo frames.
1644          */
1645         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1646             sc->bge_asicrev != BGE_ASICREV_BCM5750) {
1647                 if (bge_alloc_jumbo_mem(sc)) {
1648                         device_printf(dev, "jumbo buffer allocation failed\n");
1649                         error = ENXIO;
1650                         goto fail;
1651                 }
1652         }
1653
1654         /* Set default tuneable values. */
1655         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
1656         sc->bge_rx_coal_ticks = 150;
1657         sc->bge_tx_coal_ticks = 150;
1658         sc->bge_rx_max_coal_bds = 64;
1659         sc->bge_tx_max_coal_bds = 128;
1660
1661         /* 5705/5750 limits RX return ring to 512 entries. */
1662         if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
1663             sc->bge_asicrev == BGE_ASICREV_BCM5750)
1664                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1665         else
1666                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1667
1668         /* Set up ifnet structure */
1669         ifp->if_softc = sc;
1670         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1671         ifp->if_ioctl = bge_ioctl;
1672         ifp->if_start = bge_start;
1673         ifp->if_watchdog = bge_watchdog;
1674         ifp->if_init = bge_init;
1675         ifp->if_mtu = ETHERMTU;
1676         ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
1677         ifq_set_ready(&ifp->if_snd);
1678         ifp->if_hwassist = BGE_CSUM_FEATURES;
1679         ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
1680             IFCAP_VLAN_MTU;
1681         ifp->if_capenable = ifp->if_capabilities;
1682
1683         /*
1684          * Figure out what sort of media we have by checking the
1685          * hardware config word in the first 32k of NIC internal memory,
1686          * or fall back to examining the EEPROM if necessary.
1687          * Note: on some BCM5700 cards, this value appears to be unset.
1688          * If that's the case, we have to rely on identifying the NIC
1689          * by its PCI subsystem ID, as we do below for the SysKonnect
1690          * SK-9D41.
1691          */
1692         if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER)
1693                 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
1694         else {
1695                 bge_read_eeprom(sc, (caddr_t)&hwcfg,
1696                                 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
1697                 hwcfg = ntohl(hwcfg);
1698         }
1699
1700         if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
1701                 sc->bge_tbi = 1;
1702
1703         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
1704         if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41)
1705                 sc->bge_tbi = 1;
1706
1707         if (sc->bge_tbi) {
1708                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
1709                     bge_ifmedia_upd, bge_ifmedia_sts);
1710                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1711                 ifmedia_add(&sc->bge_ifmedia,
1712                     IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1713                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1714                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
1715                 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
1716         } else {
1717                 /*
1718                  * Do transceiver setup.
1719                  */
1720                 if (mii_phy_probe(dev, &sc->bge_miibus,
1721                     bge_ifmedia_upd, bge_ifmedia_sts)) {
1722                         device_printf(dev, "MII without any PHY!\n");
1723                         error = ENXIO;
1724                         goto fail;
1725                 }
1726         }
1727
1728         /*
1729          * When using the BCM5701 in PCI-X mode, data corruption has
1730          * been observed in the first few bytes of some received packets.
1731          * Aligning the packet buffer in memory eliminates the corruption.
1732          * Unfortunately, this misaligns the packet payloads.  On platforms
1733          * which do not support unaligned accesses, we will realign the
1734          * payloads by copying the received packets.
1735          */
1736         switch (sc->bge_chipid) {
1737         case BGE_CHIPID_BCM5701_A0:
1738         case BGE_CHIPID_BCM5701_B0:
1739         case BGE_CHIPID_BCM5701_B2:
1740         case BGE_CHIPID_BCM5701_B5:
1741                 /* If in PCI-X mode, work around the alignment bug. */
1742                 if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
1743                     (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
1744                     BGE_PCISTATE_PCI_BUSSPEED)
1745                         sc->bge_rx_alignment_bug = 1;
1746                 break;
1747         }
1748
1749         /*
1750          * Call MI attach routine.
1751          */
1752         ether_ifattach(ifp, ether_addr, NULL);
1753
1754         error = bus_setup_intr(dev, sc->bge_irq, INTR_NETSAFE,
1755                                bge_intr, sc, &sc->bge_intrhand, 
1756                                ifp->if_serializer);
1757         if (error) {
1758                 ether_ifdetach(ifp);
1759                 device_printf(dev, "couldn't set up irq\n");
1760                 goto fail;
1761         }
1762
1763         return(0);
1764
1765 fail:
1766         bge_detach(dev);
1767
1768         return(error);
1769 }
1770
1771 static int
1772 bge_detach(device_t dev)
1773 {
1774         struct bge_softc *sc = device_get_softc(dev);
1775         struct ifnet *ifp = &sc->arpcom.ac_if;
1776
1777         if (device_is_attached(dev)) {
1778                 lwkt_serialize_enter(ifp->if_serializer);
1779                 bge_stop(sc);
1780                 bge_reset(sc);
1781                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
1782                 lwkt_serialize_exit(ifp->if_serializer);
1783
1784                 ether_ifdetach(ifp);
1785         }
1786         if (sc->bge_tbi)
1787                 ifmedia_removeall(&sc->bge_ifmedia);
1788         if (sc->bge_miibus)
1789                 device_delete_child(dev, sc->bge_miibus);
1790         bus_generic_detach(dev);
1791
1792         bge_release_resources(sc);
1793
1794         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1795             sc->bge_asicrev != BGE_ASICREV_BCM5750)
1796                 bge_free_jumbo_mem(sc);
1797
1798         return(0);
1799 }
1800
1801 static void
1802 bge_release_resources(struct bge_softc *sc)
1803 {
1804         device_t dev;
1805
1806         dev = sc->bge_dev;
1807
1808         if (sc->bge_vpd_prodname != NULL)
1809                 kfree(sc->bge_vpd_prodname, M_DEVBUF);
1810
1811         if (sc->bge_vpd_readonly != NULL)
1812                 kfree(sc->bge_vpd_readonly, M_DEVBUF);
1813
1814         if (sc->bge_irq != NULL)
1815                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
1816
1817         if (sc->bge_res != NULL)
1818                 bus_release_resource(dev, SYS_RES_MEMORY,
1819                     BGE_PCI_BAR0, sc->bge_res);
1820
1821         if (sc->bge_rdata != NULL)
1822                 contigfree(sc->bge_rdata, sizeof(struct bge_ring_data),
1823                            M_DEVBUF);
1824
1825         return;
1826 }
1827
1828 static void
1829 bge_reset(struct bge_softc *sc)
1830 {
1831         device_t dev;
1832         uint32_t cachesize, command, pcistate, reset;
1833         int i, val = 0;
1834
1835         dev = sc->bge_dev;
1836
1837         /* Save some important PCI state. */
1838         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
1839         command = pci_read_config(dev, BGE_PCI_CMD, 4);
1840         pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
1841
1842         pci_write_config(dev, BGE_PCI_MISC_CTL,
1843             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1844             BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1845
1846         reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
1847
1848         /* XXX: Broadcom Linux driver. */
1849         if (sc->bge_pcie) {
1850                 if (CSR_READ_4(sc, 0x7e2c) == 0x60)     /* PCIE 1.0 */
1851                         CSR_WRITE_4(sc, 0x7e2c, 0x20);
1852                 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
1853                         /* Prevent PCIE link training during global reset */
1854                         CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
1855                         reset |= (1<<29);
1856                 }
1857         }
1858
1859         /* Issue global reset */
1860         bge_writereg_ind(sc, BGE_MISC_CFG, reset);
1861
1862         DELAY(1000);
1863
1864         /* XXX: Broadcom Linux driver. */
1865         if (sc->bge_pcie) {
1866                 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
1867                         uint32_t v;
1868
1869                         DELAY(500000); /* wait for link training to complete */
1870                         v = pci_read_config(dev, 0xc4, 4);
1871                         pci_write_config(dev, 0xc4, v | (1<<15), 4);
1872                 }
1873                 /* Set PCIE max payload size and clear error status. */
1874                 pci_write_config(dev, 0xd8, 0xf5000, 4);
1875         }
1876
1877         /* Reset some of the PCI state that got zapped by reset */
1878         pci_write_config(dev, BGE_PCI_MISC_CTL,
1879             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
1880             BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4);
1881         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
1882         pci_write_config(dev, BGE_PCI_CMD, command, 4);
1883         bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
1884
1885         /* Enable memory arbiter. */
1886         if (sc->bge_asicrev != BGE_ASICREV_BCM5705)
1887                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
1888
1889         /*
1890          * Prevent PXE restart: write a magic number to the
1891          * general communications memory at 0xB50.
1892          */
1893         bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1894         /*
1895          * Poll the value location we just wrote until
1896          * we see the 1's complement of the magic number.
1897          * This indicates that the firmware initialization
1898          * is complete.
1899          */
1900         for (i = 0; i < BGE_TIMEOUT; i++) {
1901                 val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
1902                 if (val == ~BGE_MAGIC_NUMBER)
1903                         break;
1904                 DELAY(10);
1905         }
1906         
1907         if (i == BGE_TIMEOUT) {
1908                 if_printf(&sc->arpcom.ac_if, "firmware handshake timed out\n");
1909                 return;
1910         }
1911
1912         /*
1913          * XXX Wait for the value of the PCISTATE register to
1914          * return to its original pre-reset state. This is a
1915          * fairly good indicator of reset completion. If we don't
1916          * wait for the reset to fully complete, trying to read
1917          * from the device's non-PCI registers may yield garbage
1918          * results.
1919          */
1920         for (i = 0; i < BGE_TIMEOUT; i++) {
1921                 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
1922                         break;
1923                 DELAY(10);
1924         }
1925
1926         /* Fix up byte swapping */
1927         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_BYTESWAP_NONFRAME|
1928             BGE_MODECTL_BYTESWAP_DATA);
1929
1930         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1931
1932         /*
1933          * The 5704 in TBI mode apparently needs some special
1934          * adjustment to insure the SERDES drive level is set
1935          * to 1.2V.
1936          */
1937         if (sc->bge_asicrev == BGE_ASICREV_BCM5704 && sc->bge_tbi) {
1938                 uint32_t serdescfg;
1939
1940                 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
1941                 serdescfg = (serdescfg & ~0xFFF) | 0x880;
1942                 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
1943         }
1944
1945         /* XXX: Broadcom Linux driver. */
1946         if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
1947                 uint32_t v;
1948
1949                 v = CSR_READ_4(sc, 0x7c00);
1950                 CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
1951         }
1952
1953         DELAY(10000);
1954 }
1955
1956 /*
1957  * Frame reception handling. This is called if there's a frame
1958  * on the receive return list.
1959  *
1960  * Note: we have to be able to handle two possibilities here:
1961  * 1) the frame is from the jumbo recieve ring
1962  * 2) the frame is from the standard receive ring
1963  */
1964
1965 static void
1966 bge_rxeof(struct bge_softc *sc)
1967 {
1968         struct ifnet *ifp;
1969         int stdcnt = 0, jumbocnt = 0;
1970
1971         ifp = &sc->arpcom.ac_if;
1972
1973         while(sc->bge_rx_saved_considx !=
1974             sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
1975                 struct bge_rx_bd        *cur_rx;
1976                 uint32_t                rxidx;
1977                 struct mbuf             *m = NULL;
1978                 uint16_t                vlan_tag = 0;
1979                 int                     have_tag = 0;
1980
1981                 cur_rx =
1982             &sc->bge_rdata->bge_rx_return_ring[sc->bge_rx_saved_considx];
1983
1984                 rxidx = cur_rx->bge_idx;
1985                 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
1986
1987                 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
1988                         have_tag = 1;
1989                         vlan_tag = cur_rx->bge_vlan_tag;
1990                 }
1991
1992                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
1993                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1994                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
1995                         sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
1996                         jumbocnt++;
1997                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
1998                                 ifp->if_ierrors++;
1999                                 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2000                                 continue;
2001                         }
2002                         if (bge_newbuf_jumbo(sc,
2003                             sc->bge_jumbo, NULL) == ENOBUFS) {
2004                                 ifp->if_ierrors++;
2005                                 bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2006                                 continue;
2007                         }
2008                 } else {
2009                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2010                         m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2011                         sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2012                         stdcnt++;
2013                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2014                                 ifp->if_ierrors++;
2015                                 bge_newbuf_std(sc, sc->bge_std, m);
2016                                 continue;
2017                         }
2018                         if (bge_newbuf_std(sc, sc->bge_std,
2019                             NULL) == ENOBUFS) {
2020                                 ifp->if_ierrors++;
2021                                 bge_newbuf_std(sc, sc->bge_std, m);
2022                                 continue;
2023                         }
2024                 }
2025
2026                 ifp->if_ipackets++;
2027 #ifndef __i386__
2028                 /*
2029                  * The i386 allows unaligned accesses, but for other
2030                  * platforms we must make sure the payload is aligned.
2031                  */
2032                 if (sc->bge_rx_alignment_bug) {
2033                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
2034                             cur_rx->bge_len);
2035                         m->m_data += ETHER_ALIGN;
2036                 }
2037 #endif
2038                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2039                 m->m_pkthdr.rcvif = ifp;
2040
2041 #if 0 /* currently broken for some packets, possibly related to TCP options */
2042                 if (ifp->if_hwassist) {
2043                         m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2044                         if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
2045                                 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2046                         if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
2047                                 m->m_pkthdr.csum_data =
2048                                     cur_rx->bge_tcp_udp_csum;
2049                                 m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
2050                         }
2051                 }
2052 #endif
2053
2054                 /*
2055                  * If we received a packet with a vlan tag, pass it
2056                  * to vlan_input() instead of ether_input().
2057                  */
2058                 if (have_tag) {
2059                         VLAN_INPUT_TAG(m, vlan_tag);
2060                         have_tag = vlan_tag = 0;
2061                 } else {
2062                         ifp->if_input(ifp, m);
2063                 }
2064         }
2065
2066         CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2067         if (stdcnt)
2068                 CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2069         if (jumbocnt)
2070                 CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2071 }
2072
2073 static void
2074 bge_txeof(struct bge_softc *sc)
2075 {
2076         struct bge_tx_bd *cur_tx = NULL;
2077         struct ifnet *ifp;
2078
2079         ifp = &sc->arpcom.ac_if;
2080
2081         /*
2082          * Go through our tx ring and free mbufs for those
2083          * frames that have been sent.
2084          */
2085         while (sc->bge_tx_saved_considx !=
2086             sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2087                 uint32_t                idx = 0;
2088
2089                 idx = sc->bge_tx_saved_considx;
2090                 cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2091                 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2092                         ifp->if_opackets++;
2093                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
2094                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
2095                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
2096                 }
2097                 sc->bge_txcnt--;
2098                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2099                 ifp->if_timer = 0;
2100         }
2101
2102         if (cur_tx != NULL)
2103                 ifp->if_flags &= ~IFF_OACTIVE;
2104 }
2105
2106 static void
2107 bge_intr(void *xsc)
2108 {
2109         struct bge_softc *sc = xsc;
2110         struct ifnet *ifp = &sc->arpcom.ac_if;
2111         uint32_t status, statusword, mimode;
2112
2113         /* XXX */
2114         statusword = loadandclear(&sc->bge_rdata->bge_status_block.bge_status);
2115
2116 #ifdef notdef
2117         /* Avoid this for now -- checking this register is expensive. */
2118         /* Make sure this is really our interrupt. */
2119         if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2120                 return;
2121 #endif
2122         /* Ack interrupt and stop others from occuring. */
2123         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2124
2125         /*
2126          * Process link state changes.
2127          * Grrr. The link status word in the status block does
2128          * not work correctly on the BCM5700 rev AX and BX chips,
2129          * according to all available information. Hence, we have
2130          * to enable MII interrupts in order to properly obtain
2131          * async link changes. Unfortunately, this also means that
2132          * we have to read the MAC status register to detect link
2133          * changes, thereby adding an additional register access to
2134          * the interrupt handler.
2135          */
2136
2137         if (sc->bge_asicrev == BGE_ASICREV_BCM5700) {
2138                 status = CSR_READ_4(sc, BGE_MAC_STS);
2139                 if (status & BGE_MACSTAT_MI_INTERRUPT) {
2140                         sc->bge_link = 0;
2141                         callout_stop(&sc->bge_stat_timer);
2142                         bge_tick_serialized(sc);
2143                         /* Clear the interrupt */
2144                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2145                             BGE_EVTENB_MI_INTERRUPT);
2146                         bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
2147                         bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
2148                             BRGPHY_INTRS);
2149                 }
2150         } else {
2151                 if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED) {
2152                         /*
2153                          * Sometimes PCS encoding errors are detected in
2154                          * TBI mode (on fiber NICs), and for some reason
2155                          * the chip will signal them as link changes.
2156                          * If we get a link change event, but the 'PCS
2157                          * encoding error' bit in the MAC status register
2158                          * is set, don't bother doing a link check.
2159                          * This avoids spurious "gigabit link up" messages
2160                          * that sometimes appear on fiber NICs during
2161                          * periods of heavy traffic. (There should be no
2162                          * effect on copper NICs.)
2163                          *
2164                          * If we do have a copper NIC (bge_tbi == 0) then
2165                          * check that the AUTOPOLL bit is set before
2166                          * processing the event as a real link change.
2167                          * Turning AUTOPOLL on and off in the MII read/write
2168                          * functions will often trigger a link status
2169                          * interrupt for no reason.
2170                          */
2171                         status = CSR_READ_4(sc, BGE_MAC_STS);
2172                         mimode = CSR_READ_4(sc, BGE_MI_MODE);
2173                         if (!(status & (BGE_MACSTAT_PORT_DECODE_ERROR |
2174                                         BGE_MACSTAT_MI_COMPLETE)) &&
2175                             (!sc->bge_tbi && (mimode & BGE_MIMODE_AUTOPOLL))) {
2176                                 sc->bge_link = 0;
2177                                 callout_stop(&sc->bge_stat_timer);
2178                                 bge_tick_serialized(sc);
2179                         }
2180                         sc->bge_link = 0;
2181                         callout_stop(&sc->bge_stat_timer);
2182                         bge_tick_serialized(sc);
2183                         /* Clear the interrupt */
2184                         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2185                             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
2186                             BGE_MACSTAT_LINK_CHANGED);
2187
2188                         /* Force flush the status block cached by PCI bridge */
2189                         CSR_READ_4(sc, BGE_MBX_IRQ0_LO);
2190                 }
2191         }
2192
2193         if (ifp->if_flags & IFF_RUNNING) {
2194                 /* Check RX return ring producer/consumer */
2195                 bge_rxeof(sc);
2196
2197                 /* Check TX ring producer/consumer */
2198                 bge_txeof(sc);
2199         }
2200
2201         bge_handle_events(sc);
2202
2203         /* Re-enable interrupts. */
2204         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2205
2206         if ((ifp->if_flags & IFF_RUNNING) && !ifq_is_empty(&ifp->if_snd))
2207                 (*ifp->if_start)(ifp);
2208 }
2209
2210 static void
2211 bge_tick(void *xsc)
2212 {
2213         struct bge_softc *sc = xsc;
2214         struct ifnet *ifp = &sc->arpcom.ac_if;
2215
2216         lwkt_serialize_enter(ifp->if_serializer);
2217         bge_tick_serialized(xsc);
2218         lwkt_serialize_exit(ifp->if_serializer);
2219 }
2220
2221 static void
2222 bge_tick_serialized(void *xsc)
2223 {
2224         struct bge_softc *sc = xsc;
2225         struct ifnet *ifp = &sc->arpcom.ac_if;
2226         struct mii_data *mii = NULL;
2227         struct ifmedia *ifm = NULL;
2228
2229         if (sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
2230             sc->bge_asicrev == BGE_ASICREV_BCM5750)
2231                 bge_stats_update_regs(sc);
2232         else
2233                 bge_stats_update(sc);
2234
2235         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2236
2237         if (sc->bge_link) {
2238                 return;
2239         }
2240
2241         if (sc->bge_tbi) {
2242                 ifm = &sc->bge_ifmedia;
2243                 if (CSR_READ_4(sc, BGE_MAC_STS) &
2244                     BGE_MACSTAT_TBI_PCS_SYNCHED) {
2245                         sc->bge_link++;
2246                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2247                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
2248                                            BGE_MACMODE_TBI_SEND_CFGS);
2249                         }
2250                         CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2251                         if_printf(ifp, "gigabit link up\n");
2252                         if (!ifq_is_empty(&ifp->if_snd))
2253                                 (*ifp->if_start)(ifp);
2254                 }
2255                 return;
2256         }
2257
2258         mii = device_get_softc(sc->bge_miibus);
2259         mii_tick(mii);
2260  
2261         if (!sc->bge_link) {
2262                 mii_pollstat(mii);
2263                 if (mii->mii_media_status & IFM_ACTIVE &&
2264                     IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2265                         sc->bge_link++;
2266                         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
2267                             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
2268                                 if_printf(ifp, "gigabit link up\n");
2269                         if (!ifq_is_empty(&ifp->if_snd))
2270                                 (*ifp->if_start)(ifp);
2271                 }
2272         }
2273 }
2274
2275 static void
2276 bge_stats_update_regs(struct bge_softc *sc)
2277 {
2278         struct ifnet *ifp = &sc->arpcom.ac_if;
2279         struct bge_mac_stats_regs stats;
2280         uint32_t *s;
2281         int i;
2282
2283         s = (uint32_t *)&stats;
2284         for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
2285                 *s = CSR_READ_4(sc, BGE_RX_STATS + i);
2286                 s++;
2287         }
2288
2289         ifp->if_collisions +=
2290            (stats.dot3StatsSingleCollisionFrames +
2291            stats.dot3StatsMultipleCollisionFrames +
2292            stats.dot3StatsExcessiveCollisions +
2293            stats.dot3StatsLateCollisions) -
2294            ifp->if_collisions;
2295 }
2296
2297 static void
2298 bge_stats_update(struct bge_softc *sc)
2299 {
2300         struct ifnet *ifp = &sc->arpcom.ac_if;
2301         struct bge_stats *stats;
2302
2303         stats = (struct bge_stats *)(sc->bge_vhandle +
2304             BGE_MEMWIN_START + BGE_STATS_BLOCK);
2305
2306         ifp->if_collisions +=
2307            (stats->txstats.dot3StatsSingleCollisionFrames.bge_addr_lo +
2308            stats->txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo +
2309            stats->txstats.dot3StatsExcessiveCollisions.bge_addr_lo +
2310            stats->txstats.dot3StatsLateCollisions.bge_addr_lo) -
2311            ifp->if_collisions;
2312
2313 #ifdef notdef
2314         ifp->if_collisions +=
2315            (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2316            sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2317            sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2318            sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2319            ifp->if_collisions;
2320 #endif
2321 }
2322
2323 /*
2324  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2325  * pointers to descriptors.
2326  */
2327 static int
2328 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
2329 {
2330         struct bge_tx_bd *f = NULL;
2331         struct mbuf *m;
2332         uint32_t frag, cur, cnt = 0;
2333         uint16_t csum_flags = 0;
2334         struct ifvlan *ifv = NULL;
2335
2336         if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
2337             m_head->m_pkthdr.rcvif != NULL &&
2338             m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
2339                 ifv = m_head->m_pkthdr.rcvif->if_softc;
2340
2341         m = m_head;
2342         cur = frag = *txidx;
2343
2344         if (m_head->m_pkthdr.csum_flags) {
2345                 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
2346                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2347                 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
2348                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2349                 if (m_head->m_flags & M_LASTFRAG)
2350                         csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
2351                 else if (m_head->m_flags & M_FRAG)
2352                         csum_flags |= BGE_TXBDFLAG_IP_FRAG;
2353         }
2354         /*
2355          * Start packing the mbufs in this chain into
2356          * the fragment pointers. Stop when we run out
2357          * of fragments or hit the end of the mbuf chain.
2358          */
2359         for (m = m_head; m != NULL; m = m->m_next) {
2360                 if (m->m_len != 0) {
2361                         f = &sc->bge_rdata->bge_tx_ring[frag];
2362                         if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2363                                 break;
2364                         BGE_HOSTADDR(f->bge_addr,
2365                             vtophys(mtod(m, vm_offset_t)));
2366                         f->bge_len = m->m_len;
2367                         f->bge_flags = csum_flags;
2368                         if (ifv != NULL) {
2369                                 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2370                                 f->bge_vlan_tag = ifv->ifv_tag;
2371                         } else {
2372                                 f->bge_vlan_tag = 0;
2373                         }
2374                         /*
2375                          * Sanity check: avoid coming within 16 descriptors
2376                          * of the end of the ring.
2377                          */
2378                         if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2379                                 return(ENOBUFS);
2380                         cur = frag;
2381                         BGE_INC(frag, BGE_TX_RING_CNT);
2382                         cnt++;
2383                 }
2384         }
2385
2386         if (m != NULL)
2387                 return(ENOBUFS);
2388
2389         if (frag == sc->bge_tx_saved_considx)
2390                 return(ENOBUFS);
2391
2392         sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2393         sc->bge_cdata.bge_tx_chain[cur] = m_head;
2394         sc->bge_txcnt += cnt;
2395
2396         *txidx = frag;
2397
2398         return(0);
2399 }
2400
2401 /*
2402  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2403  * to the mbuf data regions directly in the transmit descriptors.
2404  */
2405 static void
2406 bge_start(struct ifnet *ifp)
2407 {
2408         struct bge_softc *sc;
2409         struct mbuf *m_head = NULL;
2410         uint32_t prodidx = 0;
2411         int need_trans;
2412
2413         sc = ifp->if_softc;
2414
2415         if (!sc->bge_link)
2416                 return;
2417
2418         prodidx = sc->bge_tx_prodidx;
2419
2420         need_trans = 0;
2421         while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2422                 m_head = ifq_poll(&ifp->if_snd);
2423                 if (m_head == NULL)
2424                         break;
2425
2426                 /*
2427                  * XXX
2428                  * safety overkill.  If this is a fragmented packet chain
2429                  * with delayed TCP/UDP checksums, then only encapsulate
2430                  * it if we have enough descriptors to handle the entire
2431                  * chain at once.
2432                  * (paranoia -- may not actually be needed)
2433                  */
2434                 if (m_head->m_flags & M_FIRSTFRAG &&
2435                     m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2436                         if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2437                             m_head->m_pkthdr.csum_data + 16) {
2438                                 ifp->if_flags |= IFF_OACTIVE;
2439                                 break;
2440                         }
2441                 }
2442
2443                 /*
2444                  * Pack the data into the transmit ring. If we
2445                  * don't have room, set the OACTIVE flag and wait
2446                  * for the NIC to drain the ring.
2447                  */
2448                 if (bge_encap(sc, m_head, &prodidx)) {
2449                         ifp->if_flags |= IFF_OACTIVE;
2450                         break;
2451                 }
2452                 ifq_dequeue(&ifp->if_snd, m_head);
2453                 need_trans = 1;
2454
2455                 BPF_MTAP(ifp, m_head);
2456         }
2457
2458         if (!need_trans)
2459                 return;
2460
2461         /* Transmit */
2462         CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2463         /* 5700 b2 errata */
2464         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
2465                 CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2466
2467         sc->bge_tx_prodidx = prodidx;
2468
2469         /*
2470          * Set a timeout in case the chip goes out to lunch.
2471          */
2472         ifp->if_timer = 5;
2473 }
2474
2475 static void
2476 bge_init(void *xsc)
2477 {
2478         struct bge_softc *sc = xsc;
2479         struct ifnet *ifp = &sc->arpcom.ac_if;
2480         uint16_t *m;
2481
2482         ASSERT_SERIALIZED(ifp->if_serializer);
2483
2484         if (ifp->if_flags & IFF_RUNNING)
2485                 return;
2486
2487         /* Cancel pending I/O and flush buffers. */
2488         bge_stop(sc);
2489         bge_reset(sc);
2490         bge_chipinit(sc);
2491
2492         /*
2493          * Init the various state machines, ring
2494          * control blocks and firmware.
2495          */
2496         if (bge_blockinit(sc)) {
2497                 if_printf(ifp, "initialization failure\n");
2498                 return;
2499         }
2500
2501         /* Specify MTU. */
2502         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2503             ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN);
2504
2505         /* Load our MAC address. */
2506         m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
2507         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2508         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2509
2510         /* Enable or disable promiscuous mode as needed. */
2511         bge_setpromisc(sc);
2512
2513         /* Program multicast filter. */
2514         bge_setmulti(sc);
2515
2516         /* Init RX ring. */
2517         bge_init_rx_ring_std(sc);
2518
2519         /*
2520          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
2521          * memory to insure that the chip has in fact read the first
2522          * entry of the ring.
2523          */
2524         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
2525                 uint32_t                v, i;
2526                 for (i = 0; i < 10; i++) {
2527                         DELAY(20);
2528                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
2529                         if (v == (MCLBYTES - ETHER_ALIGN))
2530                                 break;
2531                 }
2532                 if (i == 10)
2533                         if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
2534         }
2535
2536         /* Init jumbo RX ring. */
2537         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2538                 bge_init_rx_ring_jumbo(sc);
2539
2540         /* Init our RX return ring index */
2541         sc->bge_rx_saved_considx = 0;
2542
2543         /* Init TX ring. */
2544         bge_init_tx_ring(sc);
2545
2546         /* Turn on transmitter */
2547         BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2548
2549         /* Turn on receiver */
2550         BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2551
2552         /* Tell firmware we're alive. */
2553         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2554
2555         /* Enable host interrupts. */
2556         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2557         BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2558         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2559
2560         bge_ifmedia_upd(ifp);
2561
2562         ifp->if_flags |= IFF_RUNNING;
2563         ifp->if_flags &= ~IFF_OACTIVE;
2564
2565         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
2566 }
2567
2568 /*
2569  * Set media options.
2570  */
2571 static int
2572 bge_ifmedia_upd(struct ifnet *ifp)
2573 {
2574         struct bge_softc *sc = ifp->if_softc;
2575         struct ifmedia *ifm = &sc->bge_ifmedia;
2576         struct mii_data *mii;
2577
2578         /* If this is a 1000baseX NIC, enable the TBI port. */
2579         if (sc->bge_tbi) {
2580                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2581                         return(EINVAL);
2582                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2583                 case IFM_AUTO:
2584                         /*
2585                          * The BCM5704 ASIC appears to have a special
2586                          * mechanism for programming the autoneg
2587                          * advertisement registers in TBI mode.
2588                          */
2589                         if (!bge_fake_autoneg &&
2590                             sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2591                                 uint32_t sgdig;
2592
2593                                 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
2594                                 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
2595                                 sgdig |= BGE_SGDIGCFG_AUTO |
2596                                          BGE_SGDIGCFG_PAUSE_CAP |
2597                                          BGE_SGDIGCFG_ASYM_PAUSE;
2598                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG,
2599                                             sgdig | BGE_SGDIGCFG_SEND);
2600                                 DELAY(5);
2601                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
2602                         }
2603                         break;
2604                 case IFM_1000_SX:
2605                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2606                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
2607                                     BGE_MACMODE_HALF_DUPLEX);
2608                         } else {
2609                                 BGE_SETBIT(sc, BGE_MAC_MODE,
2610                                     BGE_MACMODE_HALF_DUPLEX);
2611                         }
2612                         break;
2613                 default:
2614                         return(EINVAL);
2615                 }
2616                 return(0);
2617         }
2618
2619         mii = device_get_softc(sc->bge_miibus);
2620         sc->bge_link = 0;
2621         if (mii->mii_instance) {
2622                 struct mii_softc *miisc;
2623                 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2624                         mii_phy_reset(miisc);
2625         }
2626         mii_mediachg(mii);
2627
2628         return(0);
2629 }
2630
2631 /*
2632  * Report current media status.
2633  */
2634 static void
2635 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2636 {
2637         struct bge_softc *sc = ifp->if_softc;
2638         struct mii_data *mii;
2639
2640         if (sc->bge_tbi) {
2641                 ifmr->ifm_status = IFM_AVALID;
2642                 ifmr->ifm_active = IFM_ETHER;
2643                 if (CSR_READ_4(sc, BGE_MAC_STS) &
2644                     BGE_MACSTAT_TBI_PCS_SYNCHED)
2645                         ifmr->ifm_status |= IFM_ACTIVE;
2646                 ifmr->ifm_active |= IFM_1000_SX;
2647                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
2648                         ifmr->ifm_active |= IFM_HDX;    
2649                 else
2650                         ifmr->ifm_active |= IFM_FDX;
2651                 return;
2652         }
2653
2654         mii = device_get_softc(sc->bge_miibus);
2655         mii_pollstat(mii);
2656         ifmr->ifm_active = mii->mii_media_active;
2657         ifmr->ifm_status = mii->mii_media_status;
2658 }
2659
2660 static int
2661 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2662 {
2663         struct bge_softc *sc = ifp->if_softc;
2664         struct ifreq *ifr = (struct ifreq *) data;
2665         int mask, error = 0;
2666         struct mii_data *mii;
2667
2668         ASSERT_SERIALIZED(ifp->if_serializer);
2669
2670         switch(command) {
2671         case SIOCSIFMTU:
2672                 /* Disallow jumbo frames on 5705/5750. */
2673                 if (((sc->bge_asicrev == BGE_ASICREV_BCM5705 ||
2674                       sc->bge_asicrev == BGE_ASICREV_BCM5750) &&
2675                      ifr->ifr_mtu > ETHERMTU) || ifr->ifr_mtu > BGE_JUMBO_MTU)
2676                         error = EINVAL;
2677                 else {
2678                         ifp->if_mtu = ifr->ifr_mtu;
2679                         ifp->if_flags &= ~IFF_RUNNING;
2680                         bge_init(sc);
2681                 }
2682                 break;
2683         case SIOCSIFFLAGS:
2684                 if (ifp->if_flags & IFF_UP) {
2685                         if (ifp->if_flags & IFF_RUNNING) {
2686                                 int flags = ifp->if_flags & sc->bge_if_flags;
2687
2688                                 /*
2689                                  * If only the state of the PROMISC flag
2690                                  * changed, then just use the 'set promisc
2691                                  * mode' command instead of reinitializing
2692                                  * the entire NIC. Doing a full re-init
2693                                  * means reloading the firmware and waiting
2694                                  * for it to start up, which may take a
2695                                  * second or two.  Similarly for ALLMULTI.
2696                                  */
2697                                 if (flags & IFF_PROMISC)
2698                                         bge_setpromisc(sc);
2699                                 if (flags & IFF_ALLMULTI)
2700                                         bge_setmulti(sc);
2701                         } else {
2702                                 bge_init(sc);
2703                         }
2704                 } else {
2705                         if (ifp->if_flags & IFF_RUNNING)
2706                                 bge_stop(sc);
2707                 }
2708                 sc->bge_if_flags = ifp->if_flags;
2709                 error = 0;
2710                 break;
2711         case SIOCADDMULTI:
2712         case SIOCDELMULTI:
2713                 if (ifp->if_flags & IFF_RUNNING) {
2714                         bge_setmulti(sc);
2715                         error = 0;
2716                 }
2717                 break;
2718         case SIOCSIFMEDIA:
2719         case SIOCGIFMEDIA:
2720                 if (sc->bge_tbi) {
2721                         error = ifmedia_ioctl(ifp, ifr,
2722                             &sc->bge_ifmedia, command);
2723                 } else {
2724                         mii = device_get_softc(sc->bge_miibus);
2725                         error = ifmedia_ioctl(ifp, ifr,
2726                             &mii->mii_media, command);
2727                 }
2728                 break;
2729         case SIOCSIFCAP:
2730                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2731                 if (mask & IFCAP_HWCSUM) {
2732                         if (IFCAP_HWCSUM & ifp->if_capenable)
2733                                 ifp->if_capenable &= ~IFCAP_HWCSUM;
2734                         else
2735                                 ifp->if_capenable |= IFCAP_HWCSUM;
2736                 }
2737                 error = 0;
2738                 break;
2739         default:
2740                 error = ether_ioctl(ifp, command, data);
2741                 break;
2742         }
2743         return(error);
2744 }
2745
2746 static void
2747 bge_watchdog(struct ifnet *ifp)
2748 {
2749         struct bge_softc *sc = ifp->if_softc;
2750
2751         if_printf(ifp, "watchdog timeout -- resetting\n");
2752
2753         ifp->if_flags &= ~IFF_RUNNING;
2754         bge_init(sc);
2755
2756         ifp->if_oerrors++;
2757
2758         if (!ifq_is_empty(&ifp->if_snd))
2759                 ifp->if_start(ifp);
2760 }
2761
2762 /*
2763  * Stop the adapter and free any mbufs allocated to the
2764  * RX and TX lists.
2765  */
2766 static void
2767 bge_stop(struct bge_softc *sc)
2768 {
2769         struct ifnet *ifp = &sc->arpcom.ac_if;
2770         struct ifmedia_entry *ifm;
2771         struct mii_data *mii = NULL;
2772         int mtmp, itmp;
2773
2774         ASSERT_SERIALIZED(ifp->if_serializer);
2775
2776         if (!sc->bge_tbi)
2777                 mii = device_get_softc(sc->bge_miibus);
2778
2779         callout_stop(&sc->bge_stat_timer);
2780
2781         /*
2782          * Disable all of the receiver blocks
2783          */
2784         BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2785         BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2786         BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2787         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2788             sc->bge_asicrev != BGE_ASICREV_BCM5750)
2789                 BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2790         BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
2791         BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2792         BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
2793
2794         /*
2795          * Disable all of the transmit blocks
2796          */
2797         BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2798         BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2799         BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2800         BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
2801         BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
2802         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2803             sc->bge_asicrev != BGE_ASICREV_BCM5750)
2804                 BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2805         BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2806
2807         /*
2808          * Shut down all of the memory managers and related
2809          * state machines.
2810          */
2811         BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2812         BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
2813         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2814             sc->bge_asicrev != BGE_ASICREV_BCM5750)
2815                 BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2816         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2817         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2818         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2819             sc->bge_asicrev != BGE_ASICREV_BCM5750) {
2820                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
2821                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2822         }
2823
2824         /* Disable host interrupts. */
2825         BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2826         CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2827
2828         /*
2829          * Tell firmware we're shutting down.
2830          */
2831         BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2832
2833         /* Free the RX lists. */
2834         bge_free_rx_ring_std(sc);
2835
2836         /* Free jumbo RX list. */
2837         if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
2838             sc->bge_asicrev != BGE_ASICREV_BCM5750)
2839                 bge_free_rx_ring_jumbo(sc);
2840
2841         /* Free TX buffers. */
2842         bge_free_tx_ring(sc);
2843
2844         /*
2845          * Isolate/power down the PHY, but leave the media selection
2846          * unchanged so that things will be put back to normal when
2847          * we bring the interface back up.
2848          */
2849         if (!sc->bge_tbi) {
2850                 itmp = ifp->if_flags;
2851                 ifp->if_flags |= IFF_UP;
2852                 ifm = mii->mii_media.ifm_cur;
2853                 mtmp = ifm->ifm_media;
2854                 ifm->ifm_media = IFM_ETHER|IFM_NONE;
2855                 mii_mediachg(mii);
2856                 ifm->ifm_media = mtmp;
2857                 ifp->if_flags = itmp;
2858         }
2859
2860         sc->bge_link = 0;
2861
2862         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
2863
2864         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2865 }
2866
2867 /*
2868  * Stop all chip I/O so that the kernel's probe routines don't
2869  * get confused by errant DMAs when rebooting.
2870  */
2871 static void
2872 bge_shutdown(device_t dev)
2873 {
2874         struct bge_softc *sc = device_get_softc(dev);
2875         struct ifnet *ifp = &sc->arpcom.ac_if;
2876
2877         lwkt_serialize_enter(ifp->if_serializer);
2878         bge_stop(sc);
2879         bge_reset(sc);
2880         lwkt_serialize_exit(ifp->if_serializer);
2881 }
2882
2883 static int
2884 bge_suspend(device_t dev)
2885 {
2886         struct bge_softc *sc = device_get_softc(dev);
2887         struct ifnet *ifp = &sc->arpcom.ac_if;
2888
2889         lwkt_serialize_enter(ifp->if_serializer);
2890         bge_stop(sc);
2891         lwkt_serialize_exit(ifp->if_serializer);
2892
2893         return 0;
2894 }
2895
2896 static int
2897 bge_resume(device_t dev)
2898 {
2899         struct bge_softc *sc = device_get_softc(dev);
2900         struct ifnet *ifp = &sc->arpcom.ac_if;
2901
2902         lwkt_serialize_enter(ifp->if_serializer);
2903
2904         if (ifp->if_flags & IFF_UP) {
2905                 bge_init(sc);
2906
2907                 if (ifp->if_flags & IFF_RUNNING)
2908                         ifp->if_start(ifp);
2909         }
2910
2911         lwkt_serialize_exit(ifp->if_serializer);
2912
2913         return 0;
2914 }
2915
2916 static void
2917 bge_setpromisc(struct bge_softc *sc)
2918 {
2919         struct ifnet *ifp = &sc->arpcom.ac_if;
2920
2921         if (ifp->if_flags & IFF_PROMISC)
2922                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2923         else
2924                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2925 }