kernel - SWAP CACHE part 1/many - Convert swblock to a Red-Black tree
[dragonfly.git] / sys / vm / vm_object.c
1 /*
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by the University of
19  *      California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
65  * $DragonFly: src/sys/vm/vm_object.c,v 1.33 2008/05/09 07:24:48 dillon Exp $
66  */
67
68 /*
69  *      Virtual memory object module.
70  */
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>           /* for curproc, pageproc */
75 #include <sys/vnode.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/mount.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
81
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_pager.h>
90 #include <vm/swap_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/vm_zone.h>
94
95 #define EASY_SCAN_FACTOR        8
96
97 static void     vm_object_qcollapse(vm_object_t object);
98 static int      vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
99                                              int pagerflags);
100
101 /*
102  *      Virtual memory objects maintain the actual data
103  *      associated with allocated virtual memory.  A given
104  *      page of memory exists within exactly one object.
105  *
106  *      An object is only deallocated when all "references"
107  *      are given up.  Only one "reference" to a given
108  *      region of an object should be writeable.
109  *
110  *      Associated with each object is a list of all resident
111  *      memory pages belonging to that object; this list is
112  *      maintained by the "vm_page" module, and locked by the object's
113  *      lock.
114  *
115  *      Each object also records a "pager" routine which is
116  *      used to retrieve (and store) pages to the proper backing
117  *      storage.  In addition, objects may be backed by other
118  *      objects from which they were virtual-copied.
119  *
120  *      The only items within the object structure which are
121  *      modified after time of creation are:
122  *              reference count         locked by object's lock
123  *              pager routine           locked by object's lock
124  *
125  */
126
127 struct object_q vm_object_list;
128 struct vm_object kernel_object;
129
130 static long vm_object_count;            /* count of all objects */
131 extern int vm_pageout_page_count;
132
133 static long object_collapses;
134 static long object_bypasses;
135 static int next_index;
136 static vm_zone_t obj_zone;
137 static struct vm_zone obj_zone_store;
138 static int object_hash_rand;
139 #define VM_OBJECTS_INIT 256
140 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
141
142 void
143 _vm_object_allocate(objtype_t type, vm_size_t size, vm_object_t object)
144 {
145         int incr;
146         RB_INIT(&object->rb_memq);
147         LIST_INIT(&object->shadow_head);
148
149         object->type = type;
150         object->size = size;
151         object->ref_count = 1;
152         object->flags = 0;
153         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
154                 vm_object_set_flag(object, OBJ_ONEMAPPING);
155         object->paging_in_progress = 0;
156         object->resident_page_count = 0;
157         object->shadow_count = 0;
158         object->pg_color = next_index;
159         if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
160                 incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
161         else
162                 incr = size;
163         next_index = (next_index + incr) & PQ_L2_MASK;
164         object->handle = NULL;
165         object->backing_object = NULL;
166         object->backing_object_offset = (vm_ooffset_t) 0;
167         /*
168          * Try to generate a number that will spread objects out in the
169          * hash table.  We 'wipe' new objects across the hash in 128 page
170          * increments plus 1 more to offset it a little more by the time
171          * it wraps around.
172          */
173         object->hash_rand = object_hash_rand - 129;
174
175         object->generation++;
176         object->swblock_count = 0;
177         RB_INIT(&object->swblock_root);
178
179         crit_enter();
180         TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
181         vm_object_count++;
182         object_hash_rand = object->hash_rand;
183         crit_exit();
184 }
185
186 /*
187  *      vm_object_init:
188  *
189  *      Initialize the VM objects module.
190  */
191 void
192 vm_object_init(void)
193 {
194         TAILQ_INIT(&vm_object_list);
195         
196         _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
197                             &kernel_object);
198
199         obj_zone = &obj_zone_store;
200         zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
201                 vm_objects_init, VM_OBJECTS_INIT);
202 }
203
204 void
205 vm_object_init2(void)
206 {
207         zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
208 }
209
210 /*
211  *      vm_object_allocate:
212  *
213  *      Returns a new object with the given size.
214  */
215
216 vm_object_t
217 vm_object_allocate(objtype_t type, vm_size_t size)
218 {
219         vm_object_t result;
220
221         result = (vm_object_t) zalloc(obj_zone);
222
223         _vm_object_allocate(type, size, result);
224
225         return (result);
226 }
227
228
229 /*
230  *      vm_object_reference:
231  *
232  *      Gets another reference to the given object.
233  */
234 void
235 vm_object_reference(vm_object_t object)
236 {
237         if (object == NULL)
238                 return;
239
240         object->ref_count++;
241         if (object->type == OBJT_VNODE) {
242                 vref(object->handle);
243                 /* XXX what if the vnode is being destroyed? */
244         }
245 }
246
247 static void
248 vm_object_vndeallocate(vm_object_t object)
249 {
250         struct vnode *vp = (struct vnode *) object->handle;
251
252         KASSERT(object->type == OBJT_VNODE,
253             ("vm_object_vndeallocate: not a vnode object"));
254         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
255 #ifdef INVARIANTS
256         if (object->ref_count == 0) {
257                 vprint("vm_object_vndeallocate", vp);
258                 panic("vm_object_vndeallocate: bad object reference count");
259         }
260 #endif
261
262         object->ref_count--;
263         if (object->ref_count == 0)
264                 vclrflags(vp, VTEXT);
265         vrele(vp);
266 }
267
268 /*
269  *      vm_object_deallocate:
270  *
271  *      Release a reference to the specified object,
272  *      gained either through a vm_object_allocate
273  *      or a vm_object_reference call.  When all references
274  *      are gone, storage associated with this object
275  *      may be relinquished.
276  *
277  *      No object may be locked.
278  */
279 void
280 vm_object_deallocate(vm_object_t object)
281 {
282         vm_object_t temp;
283
284         while (object != NULL) {
285                 if (object->type == OBJT_VNODE) {
286                         vm_object_vndeallocate(object);
287                         return;
288                 }
289
290                 if (object->ref_count == 0) {
291                         panic("vm_object_deallocate: object deallocated too many times: %d", object->type);
292                 } else if (object->ref_count > 2) {
293                         object->ref_count--;
294                         return;
295                 }
296
297                 /*
298                  * Here on ref_count of one or two, which are special cases for
299                  * objects.
300                  */
301                 if ((object->ref_count == 2) && (object->shadow_count == 0)) {
302                         vm_object_set_flag(object, OBJ_ONEMAPPING);
303                         object->ref_count--;
304                         return;
305                 } else if ((object->ref_count == 2) && (object->shadow_count == 1)) {
306                         object->ref_count--;
307                         if ((object->handle == NULL) &&
308                             (object->type == OBJT_DEFAULT ||
309                              object->type == OBJT_SWAP)) {
310                                 vm_object_t robject;
311
312                                 robject = LIST_FIRST(&object->shadow_head);
313                                 KASSERT(robject != NULL,
314                                     ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
315                                          object->ref_count,
316                                          object->shadow_count));
317                                 if ((robject->handle == NULL) &&
318                                     (robject->type == OBJT_DEFAULT ||
319                                      robject->type == OBJT_SWAP)) {
320
321                                         robject->ref_count++;
322
323                                         while (
324                                                 robject->paging_in_progress ||
325                                                 object->paging_in_progress
326                                         ) {
327                                                 vm_object_pip_sleep(robject, "objde1");
328                                                 vm_object_pip_sleep(object, "objde2");
329                                         }
330
331                                         if (robject->ref_count == 1) {
332                                                 robject->ref_count--;
333                                                 object = robject;
334                                                 goto doterm;
335                                         }
336
337                                         object = robject;
338                                         vm_object_collapse(object);
339                                         continue;
340                                 }
341                         }
342
343                         return;
344
345                 } else {
346                         object->ref_count--;
347                         if (object->ref_count != 0)
348                                 return;
349                 }
350
351 doterm:
352
353                 temp = object->backing_object;
354                 if (temp) {
355                         LIST_REMOVE(object, shadow_list);
356                         temp->shadow_count--;
357                         temp->generation++;
358                         object->backing_object = NULL;
359                 }
360
361                 /*
362                  * Don't double-terminate, we could be in a termination
363                  * recursion due to the terminate having to sync data
364                  * to disk.
365                  */
366                 if ((object->flags & OBJ_DEAD) == 0)
367                         vm_object_terminate(object);
368                 object = temp;
369         }
370 }
371
372 /*
373  *      vm_object_terminate actually destroys the specified object, freeing
374  *      up all previously used resources.
375  *
376  *      The object must be locked.
377  *      This routine may block.
378  */
379 static int vm_object_terminate_callback(vm_page_t p, void *data);
380
381 void
382 vm_object_terminate(vm_object_t object)
383 {
384         /*
385          * Make sure no one uses us.
386          */
387         vm_object_set_flag(object, OBJ_DEAD);
388
389         /*
390          * wait for the pageout daemon to be done with the object
391          */
392         vm_object_pip_wait(object, "objtrm");
393
394         KASSERT(!object->paging_in_progress,
395                 ("vm_object_terminate: pageout in progress"));
396
397         /*
398          * Clean and free the pages, as appropriate. All references to the
399          * object are gone, so we don't need to lock it.
400          */
401         if (object->type == OBJT_VNODE) {
402                 struct vnode *vp;
403
404                 /*
405                  * Clean pages and flush buffers.
406                  */
407                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
408
409                 vp = (struct vnode *) object->handle;
410                 vinvalbuf(vp, V_SAVE, 0, 0);
411         }
412
413         /*
414          * Wait for any I/O to complete, after which there had better not
415          * be any references left on the object.
416          */
417         vm_object_pip_wait(object, "objtrm");
418
419         if (object->ref_count != 0)
420                 panic("vm_object_terminate: object with references, ref_count=%d", object->ref_count);
421
422         /*
423          * Now free any remaining pages. For internal objects, this also
424          * removes them from paging queues. Don't free wired pages, just
425          * remove them from the object. 
426          */
427         crit_enter();
428         vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
429                                 vm_object_terminate_callback, NULL);
430         crit_exit();
431
432         /*
433          * Let the pager know object is dead.
434          */
435         vm_pager_deallocate(object);
436
437         /*
438          * Remove the object from the global object list.
439          */
440         crit_enter();
441         TAILQ_REMOVE(&vm_object_list, object, object_list);
442         vm_object_count--;
443         crit_exit();
444
445         vm_object_dead_wakeup(object);
446         if (object->ref_count != 0)
447                 panic("vm_object_terminate2: object with references, ref_count=%d", object->ref_count);
448
449         /*
450          * Free the space for the object.
451          */
452         zfree(obj_zone, object);
453 }
454
455 static int
456 vm_object_terminate_callback(vm_page_t p, void *data __unused)
457 {
458         if (p->busy || (p->flags & PG_BUSY))
459                 panic("vm_object_terminate: freeing busy page %p", p);
460         if (p->wire_count == 0) {
461                 vm_page_busy(p);
462                 vm_page_free(p);
463                 mycpu->gd_cnt.v_pfree++;
464         } else {
465                 if (p->queue != PQ_NONE)
466                         kprintf("vm_object_terminate: Warning: Encountered wired page %p on queue %d\n", p, p->queue);
467                 vm_page_busy(p);
468                 vm_page_remove(p);
469                 vm_page_wakeup(p);
470         }
471         return(0);
472 }
473
474 /*
475  * The object is dead but still has an object<->pager association.  Sleep
476  * and return.  The caller typically retests the association in a loop.
477  */
478 void
479 vm_object_dead_sleep(vm_object_t object, const char *wmesg)
480 {
481         crit_enter();
482         if (object->handle) {
483                 vm_object_set_flag(object, OBJ_DEADWNT);
484                 tsleep(object, 0, wmesg, 0);
485         }
486         crit_exit();
487 }
488
489 /*
490  * Wakeup anyone waiting for the object<->pager disassociation on
491  * a dead object.
492  */
493 void
494 vm_object_dead_wakeup(vm_object_t object)
495 {
496         if (object->flags & OBJ_DEADWNT) {
497                 vm_object_clear_flag(object, OBJ_DEADWNT);
498                 wakeup(object);
499         }
500 }
501
502 /*
503  *      vm_object_page_clean
504  *
505  *      Clean all dirty pages in the specified range of object.  Leaves page 
506  *      on whatever queue it is currently on.   If NOSYNC is set then do not
507  *      write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
508  *      leaving the object dirty.
509  *
510  *      When stuffing pages asynchronously, allow clustering.  XXX we need a
511  *      synchronous clustering mode implementation.
512  *
513  *      Odd semantics: if start == end, we clean everything.
514  */
515 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
516 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
517
518 void
519 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
520                      int flags)
521 {
522         struct rb_vm_page_scan_info info;
523         struct vnode *vp;
524         int wholescan;
525         int pagerflags;
526         int curgeneration;
527
528         if (object->type != OBJT_VNODE ||
529                 (object->flags & OBJ_MIGHTBEDIRTY) == 0)
530                 return;
531
532         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? 
533                         VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
534         pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
535
536         vp = object->handle;
537
538         /*
539          * Interlock other major object operations.  This allows us to 
540          * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
541          */
542         crit_enter();
543         vm_object_set_flag(object, OBJ_CLEANING);
544
545         /*
546          * Handle 'entire object' case
547          */
548         info.start_pindex = start;
549         if (end == 0) {
550                 info.end_pindex = object->size - 1;
551         } else {
552                 info.end_pindex = end - 1;
553         }
554         wholescan = (start == 0 && info.end_pindex == object->size - 1);
555         info.limit = flags;
556         info.pagerflags = pagerflags;
557         info.object = object;
558
559         /*
560          * If cleaning the entire object do a pass to mark the pages read-only.
561          * If everything worked out ok, clear OBJ_WRITEABLE and
562          * OBJ_MIGHTBEDIRTY.
563          */
564         if (wholescan) {
565                 info.error = 0;
566                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
567                                         vm_object_page_clean_pass1, &info);
568                 if (info.error == 0) {
569                         vm_object_clear_flag(object,
570                                              OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
571                         if (object->type == OBJT_VNODE &&
572                             (vp = (struct vnode *)object->handle) != NULL) {
573                                 if (vp->v_flag & VOBJDIRTY) 
574                                         vclrflags(vp, VOBJDIRTY);
575                         }
576                 }
577         }
578
579         /*
580          * Do a pass to clean all the dirty pages we find.
581          */
582         do {
583                 info.error = 0;
584                 curgeneration = object->generation;
585                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
586                                         vm_object_page_clean_pass2, &info);
587         } while (info.error || curgeneration != object->generation);
588
589         vm_object_clear_flag(object, OBJ_CLEANING);
590         crit_exit();
591 }
592
593 static 
594 int
595 vm_object_page_clean_pass1(struct vm_page *p, void *data)
596 {
597         struct rb_vm_page_scan_info *info = data;
598
599         vm_page_flag_set(p, PG_CLEANCHK);
600         if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
601                 info->error = 1;
602         else
603                 vm_page_protect(p, VM_PROT_READ);       /* must not block */
604         return(0);
605 }
606
607 static 
608 int
609 vm_object_page_clean_pass2(struct vm_page *p, void *data)
610 {
611         struct rb_vm_page_scan_info *info = data;
612         int n;
613
614         /*
615          * Do not mess with pages that were inserted after we started
616          * the cleaning pass.
617          */
618         if ((p->flags & PG_CLEANCHK) == 0)
619                 return(0);
620
621         /*
622          * Before wasting time traversing the pmaps, check for trivial
623          * cases where the page cannot be dirty.
624          */
625         if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
626                 KKASSERT((p->dirty & p->valid) == 0);
627                 return(0);
628         }
629
630         /*
631          * Check whether the page is dirty or not.  The page has been set
632          * to be read-only so the check will not race a user dirtying the
633          * page.
634          */
635         vm_page_test_dirty(p);
636         if ((p->dirty & p->valid) == 0) {
637                 vm_page_flag_clear(p, PG_CLEANCHK);
638                 return(0);
639         }
640
641         /*
642          * If we have been asked to skip nosync pages and this is a
643          * nosync page, skip it.  Note that the object flags were
644          * not cleared in this case (because pass1 will have returned an
645          * error), so we do not have to set them.
646          */
647         if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
648                 vm_page_flag_clear(p, PG_CLEANCHK);
649                 return(0);
650         }
651
652         /*
653          * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
654          * the pages that get successfully flushed.  Set info->error if
655          * we raced an object modification.
656          */
657         n = vm_object_page_collect_flush(info->object, p, info->pagerflags);
658         if (n == 0)
659                 info->error = 1;
660         return(0);
661 }
662
663 /*
664  * This routine must be called within a critical section to properly avoid
665  * an interrupt unbusy/free race that can occur prior to the busy check.
666  *
667  * Using the object generation number here to detect page ripout is not
668  * the best idea in the world. XXX
669  *
670  * NOTE: we operate under the assumption that a page found to not be busy
671  * will not be ripped out from under us by an interrupt.  XXX we should
672  * recode this to explicitly busy the pages.
673  */
674 static int
675 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
676 {
677         int runlen;
678         int maxf;
679         int chkb;
680         int maxb;
681         int i;
682         int curgeneration;
683         vm_pindex_t pi;
684         vm_page_t maf[vm_pageout_page_count];
685         vm_page_t mab[vm_pageout_page_count];
686         vm_page_t ma[vm_pageout_page_count];
687
688         curgeneration = object->generation;
689
690         pi = p->pindex;
691         while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
692                 if (object->generation != curgeneration) {
693                         return(0);
694                 }
695         }
696         KKASSERT(p->object == object && p->pindex == pi);
697
698         maxf = 0;
699         for(i = 1; i < vm_pageout_page_count; i++) {
700                 vm_page_t tp;
701
702                 if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
703                         if ((tp->flags & PG_BUSY) ||
704                                 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 
705                                  (tp->flags & PG_CLEANCHK) == 0) ||
706                                 (tp->busy != 0))
707                                 break;
708                         if((tp->queue - tp->pc) == PQ_CACHE) {
709                                 vm_page_flag_clear(tp, PG_CLEANCHK);
710                                 break;
711                         }
712                         vm_page_test_dirty(tp);
713                         if ((tp->dirty & tp->valid) == 0) {
714                                 vm_page_flag_clear(tp, PG_CLEANCHK);
715                                 break;
716                         }
717                         maf[ i - 1 ] = tp;
718                         maxf++;
719                         continue;
720                 }
721                 break;
722         }
723
724         maxb = 0;
725         chkb = vm_pageout_page_count -  maxf;
726         if (chkb) {
727                 for(i = 1; i < chkb;i++) {
728                         vm_page_t tp;
729
730                         if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
731                                 if ((tp->flags & PG_BUSY) ||
732                                         ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 && 
733                                          (tp->flags & PG_CLEANCHK) == 0) ||
734                                         (tp->busy != 0))
735                                         break;
736                                 if((tp->queue - tp->pc) == PQ_CACHE) {
737                                         vm_page_flag_clear(tp, PG_CLEANCHK);
738                                         break;
739                                 }
740                                 vm_page_test_dirty(tp);
741                                 if ((tp->dirty & tp->valid) == 0) {
742                                         vm_page_flag_clear(tp, PG_CLEANCHK);
743                                         break;
744                                 }
745                                 mab[ i - 1 ] = tp;
746                                 maxb++;
747                                 continue;
748                         }
749                         break;
750                 }
751         }
752
753         for(i = 0; i < maxb; i++) {
754                 int index = (maxb - i) - 1;
755                 ma[index] = mab[i];
756                 vm_page_flag_clear(ma[index], PG_CLEANCHK);
757         }
758         vm_page_flag_clear(p, PG_CLEANCHK);
759         ma[maxb] = p;
760         for(i = 0; i < maxf; i++) {
761                 int index = (maxb + i) + 1;
762                 ma[index] = maf[i];
763                 vm_page_flag_clear(ma[index], PG_CLEANCHK);
764         }
765         runlen = maxb + maxf + 1;
766
767         vm_pageout_flush(ma, runlen, pagerflags);
768         for (i = 0; i < runlen; i++) {
769                 if (ma[i]->valid & ma[i]->dirty) {
770                         vm_page_protect(ma[i], VM_PROT_READ);
771                         vm_page_flag_set(ma[i], PG_CLEANCHK);
772
773                         /*
774                          * maxf will end up being the actual number of pages
775                          * we wrote out contiguously, non-inclusive of the
776                          * first page.  We do not count look-behind pages.
777                          */
778                         if (i >= maxb + 1 && (maxf > i - maxb - 1))
779                                 maxf = i - maxb - 1;
780                 }
781         }
782         return(maxf + 1);
783 }
784
785 #ifdef not_used
786 /* XXX I cannot tell if this should be an exported symbol */
787 /*
788  *      vm_object_deactivate_pages
789  *
790  *      Deactivate all pages in the specified object.  (Keep its pages
791  *      in memory even though it is no longer referenced.)
792  *
793  *      The object must be locked.
794  */
795 static int vm_object_deactivate_pages_callback(vm_page_t p, void *data);
796
797 static void
798 vm_object_deactivate_pages(vm_object_t object)
799 {
800         crit_enter();
801         vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
802                                 vm_object_deactivate_pages_callback, NULL);
803         crit_exit();
804 }
805
806 static int
807 vm_object_deactivate_pages_callback(vm_page_t p, void *data __unused)
808 {
809         vm_page_deactivate(p);
810         return(0);
811 }
812
813 #endif
814
815 /*
816  * Same as vm_object_pmap_copy, except range checking really
817  * works, and is meant for small sections of an object.
818  *
819  * This code protects resident pages by making them read-only
820  * and is typically called on a fork or split when a page
821  * is converted to copy-on-write.  
822  *
823  * NOTE: If the page is already at VM_PROT_NONE, calling
824  * vm_page_protect will have no effect.
825  */
826 void
827 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
828 {
829         vm_pindex_t idx;
830         vm_page_t p;
831
832         if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
833                 return;
834
835         /*
836          * spl protection needed to prevent races between the lookup,
837          * an interrupt unbusy/free, and our protect call.
838          */
839         crit_enter();
840         for (idx = start; idx < end; idx++) {
841                 p = vm_page_lookup(object, idx);
842                 if (p == NULL)
843                         continue;
844                 vm_page_protect(p, VM_PROT_READ);
845         }
846         crit_exit();
847 }
848
849 /*
850  *      vm_object_pmap_remove:
851  *
852  *      Removes all physical pages in the specified
853  *      object range from all physical maps.
854  *
855  *      The object must *not* be locked.
856  */
857
858 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
859
860 void
861 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
862 {
863         struct rb_vm_page_scan_info info;
864
865         if (object == NULL)
866                 return;
867         info.start_pindex = start;
868         info.end_pindex = end - 1;
869         crit_enter();
870         vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
871                                 vm_object_pmap_remove_callback, &info);
872         if (start == 0 && end == object->size)
873                 vm_object_clear_flag(object, OBJ_WRITEABLE);
874         crit_exit();
875 }
876
877 static int
878 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
879 {
880         vm_page_protect(p, VM_PROT_NONE);
881         return(0);
882 }
883
884 /*
885  *      vm_object_madvise:
886  *
887  *      Implements the madvise function at the object/page level.
888  *
889  *      MADV_WILLNEED   (any object)
890  *
891  *          Activate the specified pages if they are resident.
892  *
893  *      MADV_DONTNEED   (any object)
894  *
895  *          Deactivate the specified pages if they are resident.
896  *
897  *      MADV_FREE       (OBJT_DEFAULT/OBJT_SWAP objects,
898  *                       OBJ_ONEMAPPING only)
899  *
900  *          Deactivate and clean the specified pages if they are
901  *          resident.  This permits the process to reuse the pages
902  *          without faulting or the kernel to reclaim the pages
903  *          without I/O.
904  */
905 void
906 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
907 {
908         vm_pindex_t end, tpindex;
909         vm_object_t tobject;
910         vm_page_t m;
911
912         if (object == NULL)
913                 return;
914
915         end = pindex + count;
916
917         /*
918          * Locate and adjust resident pages
919          */
920
921         for (; pindex < end; pindex += 1) {
922 relookup:
923                 tobject = object;
924                 tpindex = pindex;
925 shadowlookup:
926                 /*
927                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
928                  * and those pages must be OBJ_ONEMAPPING.
929                  */
930                 if (advise == MADV_FREE) {
931                         if ((tobject->type != OBJT_DEFAULT &&
932                              tobject->type != OBJT_SWAP) ||
933                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
934                                 continue;
935                         }
936                 }
937
938                 /*
939                  * spl protection is required to avoid a race between the
940                  * lookup, an interrupt unbusy/free, and our busy check.
941                  */
942
943                 crit_enter();
944                 m = vm_page_lookup(tobject, tpindex);
945
946                 if (m == NULL) {
947                         /*
948                          * There may be swap even if there is no backing page
949                          */
950                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
951                                 swap_pager_freespace(tobject, tpindex, 1);
952
953                         /*
954                          * next object
955                          */
956                         crit_exit();
957                         if (tobject->backing_object == NULL)
958                                 continue;
959                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
960                         tobject = tobject->backing_object;
961                         goto shadowlookup;
962                 }
963
964                 /*
965                  * If the page is busy or not in a normal active state,
966                  * we skip it.  If the page is not managed there are no
967                  * page queues to mess with.  Things can break if we mess
968                  * with pages in any of the below states.
969                  */
970                 if (
971                     m->hold_count ||
972                     m->wire_count ||
973                     (m->flags & PG_UNMANAGED) ||
974                     m->valid != VM_PAGE_BITS_ALL
975                 ) {
976                         crit_exit();
977                         continue;
978                 }
979
980                 if (vm_page_sleep_busy(m, TRUE, "madvpo")) {
981                         crit_exit();
982                         goto relookup;
983                 }
984                 crit_exit();
985
986                 /*
987                  * Theoretically once a page is known not to be busy, an
988                  * interrupt cannot come along and rip it out from under us.
989                  */
990
991                 if (advise == MADV_WILLNEED) {
992                         vm_page_activate(m);
993                 } else if (advise == MADV_DONTNEED) {
994                         vm_page_dontneed(m);
995                 } else if (advise == MADV_FREE) {
996                         /*
997                          * Mark the page clean.  This will allow the page
998                          * to be freed up by the system.  However, such pages
999                          * are often reused quickly by malloc()/free()
1000                          * so we do not do anything that would cause
1001                          * a page fault if we can help it.
1002                          *
1003                          * Specifically, we do not try to actually free
1004                          * the page now nor do we try to put it in the
1005                          * cache (which would cause a page fault on reuse).
1006                          *
1007                          * But we do make the page is freeable as we
1008                          * can without actually taking the step of unmapping
1009                          * it.
1010                          */
1011                         pmap_clear_modify(m);
1012                         m->dirty = 0;
1013                         m->act_count = 0;
1014                         vm_page_dontneed(m);
1015                         if (tobject->type == OBJT_SWAP)
1016                                 swap_pager_freespace(tobject, tpindex, 1);
1017                 }
1018         }       
1019 }
1020
1021 /*
1022  *      vm_object_shadow:
1023  *
1024  *      Create a new object which is backed by the
1025  *      specified existing object range.  The source
1026  *      object reference is deallocated.
1027  *
1028  *      The new object and offset into that object
1029  *      are returned in the source parameters.
1030  */
1031
1032 void
1033 vm_object_shadow(vm_object_t *object,   /* IN/OUT */
1034                  vm_ooffset_t *offset,  /* IN/OUT */
1035                  vm_size_t length)
1036 {
1037         vm_object_t source;
1038         vm_object_t result;
1039
1040         source = *object;
1041
1042         /*
1043          * Don't create the new object if the old object isn't shared.
1044          */
1045
1046         if (source != NULL &&
1047             source->ref_count == 1 &&
1048             source->handle == NULL &&
1049             (source->type == OBJT_DEFAULT ||
1050              source->type == OBJT_SWAP))
1051                 return;
1052
1053         /*
1054          * Allocate a new object with the given length
1055          */
1056
1057         if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1058                 panic("vm_object_shadow: no object for shadowing");
1059
1060         /*
1061          * The new object shadows the source object, adding a reference to it.
1062          * Our caller changes his reference to point to the new object,
1063          * removing a reference to the source object.  Net result: no change
1064          * of reference count.
1065          *
1066          * Try to optimize the result object's page color when shadowing
1067          * in order to maintain page coloring consistency in the combined 
1068          * shadowed object.
1069          */
1070         result->backing_object = source;
1071         if (source) {
1072                 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1073                 source->shadow_count++;
1074                 source->generation++;
1075                 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK;
1076         }
1077
1078         /*
1079          * Store the offset into the source object, and fix up the offset into
1080          * the new object.
1081          */
1082
1083         result->backing_object_offset = *offset;
1084
1085         /*
1086          * Return the new things
1087          */
1088
1089         *offset = 0;
1090         *object = result;
1091 }
1092
1093 #define OBSC_TEST_ALL_SHADOWED  0x0001
1094 #define OBSC_COLLAPSE_NOWAIT    0x0002
1095 #define OBSC_COLLAPSE_WAIT      0x0004
1096
1097 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1098
1099 static __inline int
1100 vm_object_backing_scan(vm_object_t object, int op)
1101 {
1102         struct rb_vm_page_scan_info info;
1103         vm_object_t backing_object;
1104
1105         /*
1106          * spl protection is required to avoid races between the memq/lookup,
1107          * an interrupt doing an unbusy/free, and our busy check.  Amoung
1108          * other things.
1109          */
1110         crit_enter();
1111
1112         backing_object = object->backing_object;
1113         info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1114
1115         /*
1116          * Initial conditions
1117          */
1118
1119         if (op & OBSC_TEST_ALL_SHADOWED) {
1120                 /*
1121                  * We do not want to have to test for the existence of
1122                  * swap pages in the backing object.  XXX but with the
1123                  * new swapper this would be pretty easy to do.
1124                  *
1125                  * XXX what about anonymous MAP_SHARED memory that hasn't
1126                  * been ZFOD faulted yet?  If we do not test for this, the
1127                  * shadow test may succeed! XXX
1128                  */
1129                 if (backing_object->type != OBJT_DEFAULT) {
1130                         crit_exit();
1131                         return(0);
1132                 }
1133         }
1134         if (op & OBSC_COLLAPSE_WAIT) {
1135                 KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1136                 vm_object_set_flag(backing_object, OBJ_DEAD);
1137         }
1138
1139         /*
1140          * Our scan.   We have to retry if a negative error code is returned,
1141          * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
1142          * the scan had to be stopped because the parent does not completely
1143          * shadow the child.
1144          */
1145         info.object = object;
1146         info.backing_object = backing_object;
1147         info.limit = op;
1148         do {
1149                 info.error = 1;
1150                 vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1151                                         vm_object_backing_scan_callback,
1152                                         &info);
1153         } while (info.error < 0);
1154         crit_exit();
1155         return(info.error);
1156 }
1157
1158 static int
1159 vm_object_backing_scan_callback(vm_page_t p, void *data)
1160 {
1161         struct rb_vm_page_scan_info *info = data;
1162         vm_object_t backing_object;
1163         vm_object_t object;
1164         vm_pindex_t new_pindex;
1165         vm_pindex_t backing_offset_index;
1166         int op;
1167
1168         new_pindex = p->pindex - info->backing_offset_index;
1169         op = info->limit;
1170         object = info->object;
1171         backing_object = info->backing_object;
1172         backing_offset_index = info->backing_offset_index;
1173
1174         if (op & OBSC_TEST_ALL_SHADOWED) {
1175                 vm_page_t pp;
1176
1177                 /*
1178                  * Ignore pages outside the parent object's range
1179                  * and outside the parent object's mapping of the 
1180                  * backing object.
1181                  *
1182                  * note that we do not busy the backing object's
1183                  * page.
1184                  */
1185                 if (
1186                     p->pindex < backing_offset_index ||
1187                     new_pindex >= object->size
1188                 ) {
1189                         return(0);
1190                 }
1191
1192                 /*
1193                  * See if the parent has the page or if the parent's
1194                  * object pager has the page.  If the parent has the
1195                  * page but the page is not valid, the parent's
1196                  * object pager must have the page.
1197                  *
1198                  * If this fails, the parent does not completely shadow
1199                  * the object and we might as well give up now.
1200                  */
1201
1202                 pp = vm_page_lookup(object, new_pindex);
1203                 if ((pp == NULL || pp->valid == 0) &&
1204                     !vm_pager_has_page(object, new_pindex)
1205                 ) {
1206                         info->error = 0;        /* problemo */
1207                         return(-1);             /* stop the scan */
1208                 }
1209         }
1210
1211         /*
1212          * Check for busy page
1213          */
1214
1215         if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1216                 vm_page_t pp;
1217
1218                 if (op & OBSC_COLLAPSE_NOWAIT) {
1219                         if (
1220                             (p->flags & PG_BUSY) ||
1221                             !p->valid || 
1222                             p->hold_count || 
1223                             p->wire_count ||
1224                             p->busy
1225                         ) {
1226                                 return(0);
1227                         }
1228                 } else if (op & OBSC_COLLAPSE_WAIT) {
1229                         if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1230                                 /*
1231                                  * If we slept, anything could have
1232                                  * happened.   Ask that the scan be restarted.
1233                                  *
1234                                  * Since the object is marked dead, the
1235                                  * backing offset should not have changed.  
1236                                  */
1237                                 info->error = -1;
1238                                 return(-1);
1239                         }
1240                 }
1241
1242                 /* 
1243                  * Busy the page
1244                  */
1245                 vm_page_busy(p);
1246
1247                 KASSERT(
1248                     p->object == backing_object,
1249                     ("vm_object_qcollapse(): object mismatch")
1250                 );
1251
1252                 /*
1253                  * Destroy any associated swap
1254                  */
1255                 if (backing_object->type == OBJT_SWAP) {
1256                         swap_pager_freespace(
1257                             backing_object, 
1258                             p->pindex,
1259                             1
1260                         );
1261                 }
1262
1263                 if (
1264                     p->pindex < backing_offset_index ||
1265                     new_pindex >= object->size
1266                 ) {
1267                         /*
1268                          * Page is out of the parent object's range, we 
1269                          * can simply destroy it. 
1270                          */
1271                         vm_page_protect(p, VM_PROT_NONE);
1272                         vm_page_free(p);
1273                         return(0);
1274                 }
1275
1276                 pp = vm_page_lookup(object, new_pindex);
1277                 if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
1278                         /*
1279                          * page already exists in parent OR swap exists
1280                          * for this location in the parent.  Destroy 
1281                          * the original page from the backing object.
1282                          *
1283                          * Leave the parent's page alone
1284                          */
1285                         vm_page_protect(p, VM_PROT_NONE);
1286                         vm_page_free(p);
1287                         return(0);
1288                 }
1289
1290                 /*
1291                  * Page does not exist in parent, rename the
1292                  * page from the backing object to the main object. 
1293                  *
1294                  * If the page was mapped to a process, it can remain 
1295                  * mapped through the rename.
1296                  */
1297                 if ((p->queue - p->pc) == PQ_CACHE)
1298                         vm_page_deactivate(p);
1299
1300                 vm_page_rename(p, object, new_pindex);
1301                 /* page automatically made dirty by rename */
1302         }
1303         return(0);
1304 }
1305
1306 /*
1307  * this version of collapse allows the operation to occur earlier and
1308  * when paging_in_progress is true for an object...  This is not a complete
1309  * operation, but should plug 99.9% of the rest of the leaks.
1310  */
1311 static void
1312 vm_object_qcollapse(vm_object_t object)
1313 {
1314         vm_object_t backing_object = object->backing_object;
1315
1316         if (backing_object->ref_count != 1)
1317                 return;
1318
1319         backing_object->ref_count += 2;
1320
1321         vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1322
1323         backing_object->ref_count -= 2;
1324 }
1325
1326 /*
1327  *      vm_object_collapse:
1328  *
1329  *      Collapse an object with the object backing it.
1330  *      Pages in the backing object are moved into the
1331  *      parent, and the backing object is deallocated.
1332  */
1333 void
1334 vm_object_collapse(vm_object_t object)
1335 {
1336         while (TRUE) {
1337                 vm_object_t backing_object;
1338
1339                 /*
1340                  * Verify that the conditions are right for collapse:
1341                  *
1342                  * The object exists and the backing object exists.
1343                  */
1344                 if (object == NULL)
1345                         break;
1346
1347                 if ((backing_object = object->backing_object) == NULL)
1348                         break;
1349
1350                 /*
1351                  * we check the backing object first, because it is most likely
1352                  * not collapsable.
1353                  */
1354                 if (backing_object->handle != NULL ||
1355                     (backing_object->type != OBJT_DEFAULT &&
1356                      backing_object->type != OBJT_SWAP) ||
1357                     (backing_object->flags & OBJ_DEAD) ||
1358                     object->handle != NULL ||
1359                     (object->type != OBJT_DEFAULT &&
1360                      object->type != OBJT_SWAP) ||
1361                     (object->flags & OBJ_DEAD)) {
1362                         break;
1363                 }
1364
1365                 if (
1366                     object->paging_in_progress != 0 ||
1367                     backing_object->paging_in_progress != 0
1368                 ) {
1369                         vm_object_qcollapse(object);
1370                         break;
1371                 }
1372
1373                 /*
1374                  * We know that we can either collapse the backing object (if
1375                  * the parent is the only reference to it) or (perhaps) have
1376                  * the parent bypass the object if the parent happens to shadow
1377                  * all the resident pages in the entire backing object.
1378                  *
1379                  * This is ignoring pager-backed pages such as swap pages.
1380                  * vm_object_backing_scan fails the shadowing test in this
1381                  * case.
1382                  */
1383
1384                 if (backing_object->ref_count == 1) {
1385                         /*
1386                          * If there is exactly one reference to the backing
1387                          * object, we can collapse it into the parent.  
1388                          */
1389                         vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1390
1391                         /*
1392                          * Move the pager from backing_object to object.
1393                          */
1394
1395                         if (backing_object->type == OBJT_SWAP) {
1396                                 vm_object_pip_add(backing_object, 1);
1397
1398                                 /*
1399                                  * scrap the paging_offset junk and do a 
1400                                  * discrete copy.  This also removes major 
1401                                  * assumptions about how the swap-pager 
1402                                  * works from where it doesn't belong.  The
1403                                  * new swapper is able to optimize the
1404                                  * destroy-source case.
1405                                  */
1406
1407                                 vm_object_pip_add(object, 1);
1408                                 swap_pager_copy(
1409                                     backing_object,
1410                                     object,
1411                                     OFF_TO_IDX(object->backing_object_offset), TRUE);
1412                                 vm_object_pip_wakeup(object);
1413
1414                                 vm_object_pip_wakeup(backing_object);
1415                         }
1416                         /*
1417                          * Object now shadows whatever backing_object did.
1418                          * Note that the reference to 
1419                          * backing_object->backing_object moves from within 
1420                          * backing_object to within object.
1421                          */
1422
1423                         LIST_REMOVE(object, shadow_list);
1424                         object->backing_object->shadow_count--;
1425                         object->backing_object->generation++;
1426                         if (backing_object->backing_object) {
1427                                 LIST_REMOVE(backing_object, shadow_list);
1428                                 backing_object->backing_object->shadow_count--;
1429                                 backing_object->backing_object->generation++;
1430                         }
1431                         object->backing_object = backing_object->backing_object;
1432                         if (object->backing_object) {
1433                                 LIST_INSERT_HEAD(
1434                                     &object->backing_object->shadow_head,
1435                                     object, 
1436                                     shadow_list
1437                                 );
1438                                 object->backing_object->shadow_count++;
1439                                 object->backing_object->generation++;
1440                         }
1441
1442                         object->backing_object_offset +=
1443                             backing_object->backing_object_offset;
1444
1445                         /*
1446                          * Discard backing_object.
1447                          *
1448                          * Since the backing object has no pages, no pager left,
1449                          * and no object references within it, all that is
1450                          * necessary is to dispose of it.
1451                          */
1452
1453                         KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1454                         KASSERT(RB_EMPTY(&backing_object->rb_memq), ("backing_object %p somehow has left over pages during collapse!", backing_object));
1455                         crit_enter();
1456                         TAILQ_REMOVE(
1457                             &vm_object_list, 
1458                             backing_object,
1459                             object_list
1460                         );
1461                         vm_object_count--;
1462                         crit_exit();
1463
1464                         zfree(obj_zone, backing_object);
1465
1466                         object_collapses++;
1467                 } else {
1468                         vm_object_t new_backing_object;
1469
1470                         /*
1471                          * If we do not entirely shadow the backing object,
1472                          * there is nothing we can do so we give up.
1473                          */
1474
1475                         if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1476                                 break;
1477                         }
1478
1479                         /*
1480                          * Make the parent shadow the next object in the
1481                          * chain.  Deallocating backing_object will not remove
1482                          * it, since its reference count is at least 2.
1483                          */
1484
1485                         LIST_REMOVE(object, shadow_list);
1486                         backing_object->shadow_count--;
1487                         backing_object->generation++;
1488
1489                         new_backing_object = backing_object->backing_object;
1490                         if ((object->backing_object = new_backing_object) != NULL) {
1491                                 vm_object_reference(new_backing_object);
1492                                 LIST_INSERT_HEAD(
1493                                     &new_backing_object->shadow_head,
1494                                     object,
1495                                     shadow_list
1496                                 );
1497                                 new_backing_object->shadow_count++;
1498                                 new_backing_object->generation++;
1499                                 object->backing_object_offset +=
1500                                         backing_object->backing_object_offset;
1501                         }
1502
1503                         /*
1504                          * Drop the reference count on backing_object. Since
1505                          * its ref_count was at least 2, it will not vanish;
1506                          * so we don't need to call vm_object_deallocate, but
1507                          * we do anyway.
1508                          */
1509                         vm_object_deallocate(backing_object);
1510                         object_bypasses++;
1511                 }
1512
1513                 /*
1514                  * Try again with this object's new backing object.
1515                  */
1516         }
1517 }
1518
1519 /*
1520  *      vm_object_page_remove: [internal]
1521  *
1522  *      Removes all physical pages in the specified
1523  *      object range from the object's list of pages.
1524  */
1525 static int vm_object_page_remove_callback(vm_page_t p, void *data);
1526
1527 void
1528 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1529                       boolean_t clean_only)
1530 {
1531         struct rb_vm_page_scan_info info;
1532         int all;
1533
1534         /*
1535          * Degenerate cases and assertions
1536          */
1537         if (object == NULL || object->resident_page_count == 0)
1538                 return;
1539         KASSERT(object->type != OBJT_PHYS, 
1540                 ("attempt to remove pages from a physical object"));
1541
1542         /*
1543          * Indicate that paging is occuring on the object
1544          */
1545         crit_enter();
1546         vm_object_pip_add(object, 1);
1547
1548         /*
1549          * Figure out the actual removal range and whether we are removing
1550          * the entire contents of the object or not.  If removing the entire
1551          * contents, be sure to get all pages, even those that might be 
1552          * beyond the end of the object.
1553          */
1554         info.start_pindex = start;
1555         if (end == 0)
1556                 info.end_pindex = (vm_pindex_t)-1;
1557         else
1558                 info.end_pindex = end - 1;
1559         info.limit = clean_only;
1560         all = (start == 0 && info.end_pindex >= object->size - 1);
1561
1562         /*
1563          * Loop until we are sure we have gotten them all.
1564          */
1565         do {
1566                 info.error = 0;
1567                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1568                                         vm_object_page_remove_callback, &info);
1569         } while (info.error);
1570
1571         /*
1572          * Cleanup
1573          */
1574         vm_object_pip_wakeup(object);
1575         crit_exit();
1576 }
1577
1578 static int
1579 vm_object_page_remove_callback(vm_page_t p, void *data)
1580 {
1581         struct rb_vm_page_scan_info *info = data;
1582
1583         /*
1584          * Wired pages cannot be destroyed, but they can be invalidated
1585          * and we do so if clean_only (limit) is not set.
1586          *
1587          * WARNING!  The page may be wired due to being part of a buffer
1588          *           cache buffer, and the buffer might be marked B_CACHE.
1589          *           This is fine as part of a truncation but VFSs must be
1590          *           sure to fix the buffer up when re-extending the file.
1591          */
1592         if (p->wire_count != 0) {
1593                 vm_page_protect(p, VM_PROT_NONE);
1594                 if (info->limit == 0)
1595                         p->valid = 0;
1596                 return(0);
1597         }
1598
1599         /*
1600          * The busy flags are only cleared at
1601          * interrupt -- minimize the spl transitions
1602          */
1603
1604         if (vm_page_sleep_busy(p, TRUE, "vmopar")) {
1605                 info->error = 1;
1606                 return(0);
1607         }
1608
1609         /*
1610          * limit is our clean_only flag.  If set and the page is dirty, do
1611          * not free it.  If set and the page is being held by someone, do
1612          * not free it.
1613          */
1614         if (info->limit && p->valid) {
1615                 vm_page_test_dirty(p);
1616                 if (p->valid & p->dirty)
1617                         return(0);
1618                 if (p->hold_count)
1619                         return(0);
1620         }
1621
1622         /*
1623          * Destroy the page
1624          */
1625         vm_page_busy(p);
1626         vm_page_protect(p, VM_PROT_NONE);
1627         vm_page_free(p);
1628         return(0);
1629 }
1630
1631 /*
1632  *      Routine:        vm_object_coalesce
1633  *      Function:       Coalesces two objects backing up adjoining
1634  *                      regions of memory into a single object.
1635  *
1636  *      returns TRUE if objects were combined.
1637  *
1638  *      NOTE:   Only works at the moment if the second object is NULL -
1639  *              if it's not, which object do we lock first?
1640  *
1641  *      Parameters:
1642  *              prev_object     First object to coalesce
1643  *              prev_offset     Offset into prev_object
1644  *              next_object     Second object into coalesce
1645  *              next_offset     Offset into next_object
1646  *
1647  *              prev_size       Size of reference to prev_object
1648  *              next_size       Size of reference to next_object
1649  *
1650  *      Conditions:
1651  *      The object must *not* be locked.
1652  */
1653 boolean_t
1654 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1655     vm_size_t prev_size, vm_size_t next_size)
1656 {
1657         vm_pindex_t next_pindex;
1658
1659         if (prev_object == NULL) {
1660                 return (TRUE);
1661         }
1662
1663         if (prev_object->type != OBJT_DEFAULT &&
1664             prev_object->type != OBJT_SWAP) {
1665                 return (FALSE);
1666         }
1667
1668         /*
1669          * Try to collapse the object first
1670          */
1671         vm_object_collapse(prev_object);
1672
1673         /*
1674          * Can't coalesce if: . more than one reference . paged out . shadows
1675          * another object . has a copy elsewhere (any of which mean that the
1676          * pages not mapped to prev_entry may be in use anyway)
1677          */
1678
1679         if (prev_object->backing_object != NULL) {
1680                 return (FALSE);
1681         }
1682
1683         prev_size >>= PAGE_SHIFT;
1684         next_size >>= PAGE_SHIFT;
1685         next_pindex = prev_pindex + prev_size;
1686
1687         if ((prev_object->ref_count > 1) &&
1688             (prev_object->size != next_pindex)) {
1689                 return (FALSE);
1690         }
1691
1692         /*
1693          * Remove any pages that may still be in the object from a previous
1694          * deallocation.
1695          */
1696         if (next_pindex < prev_object->size) {
1697                 vm_object_page_remove(prev_object,
1698                                       next_pindex,
1699                                       next_pindex + next_size, FALSE);
1700                 if (prev_object->type == OBJT_SWAP)
1701                         swap_pager_freespace(prev_object,
1702                                              next_pindex, next_size);
1703         }
1704
1705         /*
1706          * Extend the object if necessary.
1707          */
1708         if (next_pindex + next_size > prev_object->size)
1709                 prev_object->size = next_pindex + next_size;
1710
1711         return (TRUE);
1712 }
1713
1714 void
1715 vm_object_set_writeable_dirty(vm_object_t object)
1716 {
1717         struct vnode *vp;
1718
1719         vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1720         if (object->type == OBJT_VNODE &&
1721             (vp = (struct vnode *)object->handle) != NULL) {
1722                 if ((vp->v_flag & VOBJDIRTY) == 0) {
1723                         vsetflags(vp, VOBJDIRTY);
1724                 }
1725         }
1726 }
1727
1728
1729
1730 #include "opt_ddb.h"
1731 #ifdef DDB
1732 #include <sys/kernel.h>
1733
1734 #include <sys/cons.h>
1735
1736 #include <ddb/ddb.h>
1737
1738 static int      _vm_object_in_map (vm_map_t map, vm_object_t object,
1739                                        vm_map_entry_t entry);
1740 static int      vm_object_in_map (vm_object_t object);
1741
1742 static int
1743 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1744 {
1745         vm_map_t tmpm;
1746         vm_map_entry_t tmpe;
1747         vm_object_t obj;
1748         int entcount;
1749
1750         if (map == 0)
1751                 return 0;
1752         if (entry == 0) {
1753                 tmpe = map->header.next;
1754                 entcount = map->nentries;
1755                 while (entcount-- && (tmpe != &map->header)) {
1756                         if( _vm_object_in_map(map, object, tmpe)) {
1757                                 return 1;
1758                         }
1759                         tmpe = tmpe->next;
1760                 }
1761                 return (0);
1762         }
1763         switch(entry->maptype) {
1764         case VM_MAPTYPE_SUBMAP:
1765                 tmpm = entry->object.sub_map;
1766                 tmpe = tmpm->header.next;
1767                 entcount = tmpm->nentries;
1768                 while (entcount-- && tmpe != &tmpm->header) {
1769                         if( _vm_object_in_map(tmpm, object, tmpe)) {
1770                                 return 1;
1771                         }
1772                         tmpe = tmpe->next;
1773                 }
1774                 break;
1775         case VM_MAPTYPE_NORMAL:
1776         case VM_MAPTYPE_VPAGETABLE:
1777                 obj = entry->object.vm_object;
1778                 while (obj) {
1779                         if (obj == object)
1780                                 return 1;
1781                         obj = obj->backing_object;
1782                 }
1783                 break;
1784         default:
1785                 break;
1786         }
1787         return 0;
1788 }
1789
1790 static int vm_object_in_map_callback(struct proc *p, void *data);
1791
1792 struct vm_object_in_map_info {
1793         vm_object_t object;
1794         int rv;
1795 };
1796
1797 static int
1798 vm_object_in_map(vm_object_t object)
1799 {
1800         struct vm_object_in_map_info info;
1801
1802         info.rv = 0;
1803         info.object = object;
1804
1805         allproc_scan(vm_object_in_map_callback, &info);
1806         if (info.rv)
1807                 return 1;
1808         if( _vm_object_in_map(&kernel_map, object, 0))
1809                 return 1;
1810         if( _vm_object_in_map(&pager_map, object, 0))
1811                 return 1;
1812         if( _vm_object_in_map(&buffer_map, object, 0))
1813                 return 1;
1814         return 0;
1815 }
1816
1817 static int
1818 vm_object_in_map_callback(struct proc *p, void *data)
1819 {
1820         struct vm_object_in_map_info *info = data;
1821
1822         if (p->p_vmspace) {
1823                 if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
1824                         info->rv = 1;
1825                         return -1;
1826                 }
1827         }
1828         return (0);
1829 }
1830
1831 DB_SHOW_COMMAND(vmochk, vm_object_check)
1832 {
1833         vm_object_t object;
1834
1835         /*
1836          * make sure that internal objs are in a map somewhere
1837          * and none have zero ref counts.
1838          */
1839         for (object = TAILQ_FIRST(&vm_object_list);
1840                         object != NULL;
1841                         object = TAILQ_NEXT(object, object_list)) {
1842                 if (object->handle == NULL &&
1843                     (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1844                         if (object->ref_count == 0) {
1845                                 db_printf("vmochk: internal obj has zero ref count: %ld\n",
1846                                         (long)object->size);
1847                         }
1848                         if (!vm_object_in_map(object)) {
1849                                 db_printf(
1850                         "vmochk: internal obj is not in a map: "
1851                         "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1852                                     object->ref_count, (u_long)object->size, 
1853                                     (u_long)object->size,
1854                                     (void *)object->backing_object);
1855                         }
1856                 }
1857         }
1858 }
1859
1860 /*
1861  *      vm_object_print:        [ debug ]
1862  */
1863 DB_SHOW_COMMAND(object, vm_object_print_static)
1864 {
1865         /* XXX convert args. */
1866         vm_object_t object = (vm_object_t)addr;
1867         boolean_t full = have_addr;
1868
1869         vm_page_t p;
1870
1871         /* XXX count is an (unused) arg.  Avoid shadowing it. */
1872 #define count   was_count
1873
1874         int count;
1875
1876         if (object == NULL)
1877                 return;
1878
1879         db_iprintf(
1880             "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
1881             object, (int)object->type, (u_long)object->size,
1882             object->resident_page_count, object->ref_count, object->flags);
1883         /*
1884          * XXX no %qd in kernel.  Truncate object->backing_object_offset.
1885          */
1886         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
1887             object->shadow_count, 
1888             object->backing_object ? object->backing_object->ref_count : 0,
1889             object->backing_object, (long)object->backing_object_offset);
1890
1891         if (!full)
1892                 return;
1893
1894         db_indent += 2;
1895         count = 0;
1896         RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
1897                 if (count == 0)
1898                         db_iprintf("memory:=");
1899                 else if (count == 6) {
1900                         db_printf("\n");
1901                         db_iprintf(" ...");
1902                         count = 0;
1903                 } else
1904                         db_printf(",");
1905                 count++;
1906
1907                 db_printf("(off=0x%lx,page=0x%lx)",
1908                     (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
1909         }
1910         if (count != 0)
1911                 db_printf("\n");
1912         db_indent -= 2;
1913 }
1914
1915 /* XXX. */
1916 #undef count
1917
1918 /* XXX need this non-static entry for calling from vm_map_print. */
1919 void
1920 vm_object_print(/* db_expr_t */ long addr,
1921                 boolean_t have_addr,
1922                 /* db_expr_t */ long count,
1923                 char *modif)
1924 {
1925         vm_object_print_static(addr, have_addr, count, modif);
1926 }
1927
1928 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
1929 {
1930         vm_object_t object;
1931         int nl = 0;
1932         int c;
1933         for (object = TAILQ_FIRST(&vm_object_list);
1934                         object != NULL;
1935                         object = TAILQ_NEXT(object, object_list)) {
1936                 vm_pindex_t idx, fidx;
1937                 vm_pindex_t osize;
1938                 vm_paddr_t pa = -1, padiff;
1939                 int rcount;
1940                 vm_page_t m;
1941
1942                 db_printf("new object: %p\n", (void *)object);
1943                 if ( nl > 18) {
1944                         c = cngetc();
1945                         if (c != ' ')
1946                                 return;
1947                         nl = 0;
1948                 }
1949                 nl++;
1950                 rcount = 0;
1951                 fidx = 0;
1952                 osize = object->size;
1953                 if (osize > 128)
1954                         osize = 128;
1955                 for (idx = 0; idx < osize; idx++) {
1956                         m = vm_page_lookup(object, idx);
1957                         if (m == NULL) {
1958                                 if (rcount) {
1959                                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1960                                                 (long)fidx, rcount, (long)pa);
1961                                         if ( nl > 18) {
1962                                                 c = cngetc();
1963                                                 if (c != ' ')
1964                                                         return;
1965                                                 nl = 0;
1966                                         }
1967                                         nl++;
1968                                         rcount = 0;
1969                                 }
1970                                 continue;
1971                         }
1972
1973                                 
1974                         if (rcount &&
1975                                 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
1976                                 ++rcount;
1977                                 continue;
1978                         }
1979                         if (rcount) {
1980                                 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
1981                                 padiff >>= PAGE_SHIFT;
1982                                 padiff &= PQ_L2_MASK;
1983                                 if (padiff == 0) {
1984                                         pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
1985                                         ++rcount;
1986                                         continue;
1987                                 }
1988                                 db_printf(" index(%ld)run(%d)pa(0x%lx)",
1989                                         (long)fidx, rcount, (long)pa);
1990                                 db_printf("pd(%ld)\n", (long)padiff);
1991                                 if ( nl > 18) {
1992                                         c = cngetc();
1993                                         if (c != ' ')
1994                                                 return;
1995                                         nl = 0;
1996                                 }
1997                                 nl++;
1998                         }
1999                         fidx = idx;
2000                         pa = VM_PAGE_TO_PHYS(m);
2001                         rcount = 1;
2002                 }
2003                 if (rcount) {
2004                         db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
2005                                 (long)fidx, rcount, (long)pa);
2006                         if ( nl > 18) {
2007                                 c = cngetc();
2008                                 if (c != ' ')
2009                                         return;
2010                                 nl = 0;
2011                         }
2012                         nl++;
2013                 }
2014         }
2015 }
2016 #endif /* DDB */