Initial import from FreeBSD RELENG_4:
[dragonfly.git] / lib / msun / src / e_jnf.c
1 /* e_jnf.c -- float version of e_jn.c.
2  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3  */
4
5 /*
6  * ====================================================
7  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8  *
9  * Developed at SunPro, a Sun Microsystems, Inc. business.
10  * Permission to use, copy, modify, and distribute this
11  * software is freely granted, provided that this notice
12  * is preserved.
13  * ====================================================
14  */
15
16 #ifndef lint
17 static char rcsid[] = "$FreeBSD: src/lib/msun/src/e_jnf.c,v 1.6 1999/08/28 00:06:34 peter Exp $";
18 #endif
19
20 #include "math.h"
21 #include "math_private.h"
22
23 #ifdef __STDC__
24 static const float
25 #else
26 static float
27 #endif
28 invsqrtpi=  5.6418961287e-01, /* 0x3f106ebb */
29 two   =  2.0000000000e+00, /* 0x40000000 */
30 one   =  1.0000000000e+00; /* 0x3F800000 */
31
32 #ifdef __STDC__
33 static const float zero  =  0.0000000000e+00;
34 #else
35 static float zero  =  0.0000000000e+00;
36 #endif
37
38 #ifdef __STDC__
39         float __ieee754_jnf(int n, float x)
40 #else
41         float __ieee754_jnf(n,x)
42         int n; float x;
43 #endif
44 {
45         int32_t i,hx,ix, sgn;
46         float a, b, temp, di;
47         float z, w;
48
49     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
50      * Thus, J(-n,x) = J(n,-x)
51      */
52         GET_FLOAT_WORD(hx,x);
53         ix = 0x7fffffff&hx;
54     /* if J(n,NaN) is NaN */
55         if(ix>0x7f800000) return x+x;
56         if(n<0){
57                 n = -n;
58                 x = -x;
59                 hx ^= 0x80000000;
60         }
61         if(n==0) return(__ieee754_j0f(x));
62         if(n==1) return(__ieee754_j1f(x));
63         sgn = (n&1)&(hx>>31);   /* even n -- 0, odd n -- sign(x) */
64         x = fabsf(x);
65         if(ix==0||ix>=0x7f800000)       /* if x is 0 or inf */
66             b = zero;
67         else if((float)n<=x) {
68                 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
69             a = __ieee754_j0f(x);
70             b = __ieee754_j1f(x);
71             for(i=1;i<n;i++){
72                 temp = b;
73                 b = b*((float)(i+i)/x) - a; /* avoid underflow */
74                 a = temp;
75             }
76         } else {
77             if(ix<0x30800000) { /* x < 2**-29 */
78     /* x is tiny, return the first Taylor expansion of J(n,x)
79      * J(n,x) = 1/n!*(x/2)^n  - ...
80      */
81                 if(n>33)        /* underflow */
82                     b = zero;
83                 else {
84                     temp = x*(float)0.5; b = temp;
85                     for (a=one,i=2;i<=n;i++) {
86                         a *= (float)i;          /* a = n! */
87                         b *= temp;              /* b = (x/2)^n */
88                     }
89                     b = b/a;
90                 }
91             } else {
92                 /* use backward recurrence */
93                 /*                      x      x^2      x^2
94                  *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
95                  *                      2n  - 2(n+1) - 2(n+2)
96                  *
97                  *                      1      1        1
98                  *  (for large x)   =  ----  ------   ------   .....
99                  *                      2n   2(n+1)   2(n+2)
100                  *                      -- - ------ - ------ -
101                  *                       x     x         x
102                  *
103                  * Let w = 2n/x and h=2/x, then the above quotient
104                  * is equal to the continued fraction:
105                  *                  1
106                  *      = -----------------------
107                  *                     1
108                  *         w - -----------------
109                  *                        1
110                  *              w+h - ---------
111                  *                     w+2h - ...
112                  *
113                  * To determine how many terms needed, let
114                  * Q(0) = w, Q(1) = w(w+h) - 1,
115                  * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
116                  * When Q(k) > 1e4      good for single
117                  * When Q(k) > 1e9      good for double
118                  * When Q(k) > 1e17     good for quadruple
119                  */
120             /* determine k */
121                 float t,v;
122                 float q0,q1,h,tmp; int32_t k,m;
123                 w  = (n+n)/(float)x; h = (float)2.0/(float)x;
124                 q0 = w;  z = w+h; q1 = w*z - (float)1.0; k=1;
125                 while(q1<(float)1.0e9) {
126                         k += 1; z += h;
127                         tmp = z*q1 - q0;
128                         q0 = q1;
129                         q1 = tmp;
130                 }
131                 m = n+n;
132                 for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
133                 a = t;
134                 b = one;
135                 /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
136                  *  Hence, if n*(log(2n/x)) > ...
137                  *  single 8.8722839355e+01
138                  *  double 7.09782712893383973096e+02
139                  *  long double 1.1356523406294143949491931077970765006170e+04
140                  *  then recurrent value may overflow and the result is
141                  *  likely underflow to zero
142                  */
143                 tmp = n;
144                 v = two/x;
145                 tmp = tmp*__ieee754_logf(fabsf(v*tmp));
146                 if(tmp<(float)8.8721679688e+01) {
147                     for(i=n-1,di=(float)(i+i);i>0;i--){
148                         temp = b;
149                         b *= di;
150                         b  = b/x - a;
151                         a = temp;
152                         di -= two;
153                     }
154                 } else {
155                     for(i=n-1,di=(float)(i+i);i>0;i--){
156                         temp = b;
157                         b *= di;
158                         b  = b/x - a;
159                         a = temp;
160                         di -= two;
161                     /* scale b to avoid spurious overflow */
162                         if(b>(float)1e10) {
163                             a /= b;
164                             t /= b;
165                             b  = one;
166                         }
167                     }
168                 }
169                 b = (t*__ieee754_j0f(x)/b);
170             }
171         }
172         if(sgn==1) return -b; else return b;
173 }
174
175 #ifdef __STDC__
176         float __ieee754_ynf(int n, float x)
177 #else
178         float __ieee754_ynf(n,x)
179         int n; float x;
180 #endif
181 {
182         int32_t i,hx,ix,ib;
183         int32_t sign;
184         float a, b, temp;
185
186         GET_FLOAT_WORD(hx,x);
187         ix = 0x7fffffff&hx;
188     /* if Y(n,NaN) is NaN */
189         if(ix>0x7f800000) return x+x;
190         if(ix==0) return -one/zero;
191         if(hx<0) return zero/zero;
192         sign = 1;
193         if(n<0){
194                 n = -n;
195                 sign = 1 - ((n&1)<<1);
196         }
197         if(n==0) return(__ieee754_y0f(x));
198         if(n==1) return(sign*__ieee754_y1f(x));
199         if(ix==0x7f800000) return zero;
200
201         a = __ieee754_y0f(x);
202         b = __ieee754_y1f(x);
203         /* quit if b is -inf */
204         GET_FLOAT_WORD(ib,b);
205         for(i=1;i<n&&ib!=0xff800000;i++){
206             temp = b;
207             b = ((float)(i+i)/x)*b - a;
208             GET_FLOAT_WORD(ib,b);
209             a = temp;
210         }
211         if(sign>0) return b; else return -b;
212 }