Initial import from FreeBSD RELENG_4:
[dragonfly.git] / lib / msun / src / s_erf.c
1 /* @(#)s_erf.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12
13 #ifndef lint
14 static char rcsid[] = "$FreeBSD: src/lib/msun/src/s_erf.c,v 1.5 1999/08/28 00:06:46 peter Exp $";
15 #endif
16
17 /* double erf(double x)
18  * double erfc(double x)
19  *                           x
20  *                    2      |\
21  *     erf(x)  =  ---------  | exp(-t*t)dt
22  *                 sqrt(pi) \|
23  *                           0
24  *
25  *     erfc(x) =  1-erf(x)
26  *  Note that
27  *              erf(-x) = -erf(x)
28  *              erfc(-x) = 2 - erfc(x)
29  *
30  * Method:
31  *      1. For |x| in [0, 0.84375]
32  *          erf(x)  = x + x*R(x^2)
33  *          erfc(x) = 1 - erf(x)           if x in [-.84375,0.25]
34  *                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375]
35  *         where R = P/Q where P is an odd poly of degree 8 and
36  *         Q is an odd poly of degree 10.
37  *                                               -57.90
38  *                      | R - (erf(x)-x)/x | <= 2
39  *
40  *
41  *         Remark. The formula is derived by noting
42  *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
43  *         and that
44  *          2/sqrt(pi) = 1.128379167095512573896158903121545171688
45  *         is close to one. The interval is chosen because the fix
46  *         point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
47  *         near 0.6174), and by some experiment, 0.84375 is chosen to
48  *         guarantee the error is less than one ulp for erf.
49  *
50  *      2. For |x| in [0.84375,1.25], let s = |x| - 1, and
51  *         c = 0.84506291151 rounded to single (24 bits)
52  *              erf(x)  = sign(x) * (c  + P1(s)/Q1(s))
53  *              erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0
54  *                        1+(c+P1(s)/Q1(s))    if x < 0
55  *              |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
56  *         Remark: here we use the taylor series expansion at x=1.
57  *              erf(1+s) = erf(1) + s*Poly(s)
58  *                       = 0.845.. + P1(s)/Q1(s)
59  *         That is, we use rational approximation to approximate
60  *                      erf(1+s) - (c = (single)0.84506291151)
61  *         Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
62  *         where
63  *              P1(s) = degree 6 poly in s
64  *              Q1(s) = degree 6 poly in s
65  *
66  *      3. For x in [1.25,1/0.35(~2.857143)],
67  *              erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
68  *              erf(x)  = 1 - erfc(x)
69  *         where
70  *              R1(z) = degree 7 poly in z, (z=1/x^2)
71  *              S1(z) = degree 8 poly in z
72  *
73  *      4. For x in [1/0.35,28]
74  *              erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
75  *                      = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
76  *                      = 2.0 - tiny            (if x <= -6)
77  *              erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6, else
78  *              erf(x)  = sign(x)*(1.0 - tiny)
79  *         where
80  *              R2(z) = degree 6 poly in z, (z=1/x^2)
81  *              S2(z) = degree 7 poly in z
82  *
83  *      Note1:
84  *         To compute exp(-x*x-0.5625+R/S), let s be a single
85  *         precision number and s := x; then
86  *              -x*x = -s*s + (s-x)*(s+x)
87  *              exp(-x*x-0.5626+R/S) =
88  *                      exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
89  *      Note2:
90  *         Here 4 and 5 make use of the asymptotic series
91  *                        exp(-x*x)
92  *              erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
93  *                        x*sqrt(pi)
94  *         We use rational approximation to approximate
95  *              g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
96  *         Here is the error bound for R1/S1 and R2/S2
97  *              |R1/S1 - f(x)|  < 2**(-62.57)
98  *              |R2/S2 - f(x)|  < 2**(-61.52)
99  *
100  *      5. For inf > x >= 28
101  *              erf(x)  = sign(x) *(1 - tiny)  (raise inexact)
102  *              erfc(x) = tiny*tiny (raise underflow) if x > 0
103  *                      = 2 - tiny if x<0
104  *
105  *      7. Special case:
106  *              erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
107  *              erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
108  *              erfc/erf(NaN) is NaN
109  */
110
111
112 #include "math.h"
113 #include "math_private.h"
114
115 #ifdef __STDC__
116 static const double
117 #else
118 static double
119 #endif
120 tiny        = 1e-300,
121 half=  5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
122 one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
123 two =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
124         /* c = (float)0.84506291151 */
125 erx =  8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
126 /*
127  * Coefficients for approximation to  erf on [0,0.84375]
128  */
129 efx =  1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */
130 efx8=  1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
131 pp0  =  1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
132 pp1  = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
133 pp2  = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
134 pp3  = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
135 pp4  = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
136 qq1  =  3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
137 qq2  =  6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
138 qq3  =  5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
139 qq4  =  1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
140 qq5  = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
141 /*
142  * Coefficients for approximation to  erf  in [0.84375,1.25]
143  */
144 pa0  = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
145 pa1  =  4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
146 pa2  = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
147 pa3  =  3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
148 pa4  = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
149 pa5  =  3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
150 pa6  = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
151 qa1  =  1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
152 qa2  =  5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
153 qa3  =  7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
154 qa4  =  1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
155 qa5  =  1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
156 qa6  =  1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
157 /*
158  * Coefficients for approximation to  erfc in [1.25,1/0.35]
159  */
160 ra0  = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
161 ra1  = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
162 ra2  = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
163 ra3  = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
164 ra4  = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
165 ra5  = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
166 ra6  = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
167 ra7  = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
168 sa1  =  1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
169 sa2  =  1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
170 sa3  =  4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
171 sa4  =  6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
172 sa5  =  4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
173 sa6  =  1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
174 sa7  =  6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
175 sa8  = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
176 /*
177  * Coefficients for approximation to  erfc in [1/.35,28]
178  */
179 rb0  = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
180 rb1  = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
181 rb2  = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
182 rb3  = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
183 rb4  = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
184 rb5  = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
185 rb6  = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
186 sb1  =  3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
187 sb2  =  3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
188 sb3  =  1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
189 sb4  =  3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
190 sb5  =  2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
191 sb6  =  4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
192 sb7  = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
193
194 #ifdef __STDC__
195         double erf(double x)
196 #else
197         double erf(x)
198         double x;
199 #endif
200 {
201         int32_t hx,ix,i;
202         double R,S,P,Q,s,y,z,r;
203         GET_HIGH_WORD(hx,x);
204         ix = hx&0x7fffffff;
205         if(ix>=0x7ff00000) {            /* erf(nan)=nan */
206             i = ((u_int32_t)hx>>31)<<1;
207             return (double)(1-i)+one/x; /* erf(+-inf)=+-1 */
208         }
209
210         if(ix < 0x3feb0000) {           /* |x|<0.84375 */
211             if(ix < 0x3e300000) {       /* |x|<2**-28 */
212                 if (ix < 0x00800000)
213                     return 0.125*(8.0*x+efx8*x);  /*avoid underflow */
214                 return x + efx*x;
215             }
216             z = x*x;
217             r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
218             s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
219             y = r/s;
220             return x + x*y;
221         }
222         if(ix < 0x3ff40000) {           /* 0.84375 <= |x| < 1.25 */
223             s = fabs(x)-one;
224             P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
225             Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
226             if(hx>=0) return erx + P/Q; else return -erx - P/Q;
227         }
228         if (ix >= 0x40180000) {         /* inf>|x|>=6 */
229             if(hx>=0) return one-tiny; else return tiny-one;
230         }
231         x = fabs(x);
232         s = one/(x*x);
233         if(ix< 0x4006DB6E) {    /* |x| < 1/0.35 */
234             R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
235                                 ra5+s*(ra6+s*ra7))))));
236             S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
237                                 sa5+s*(sa6+s*(sa7+s*sa8)))))));
238         } else {        /* |x| >= 1/0.35 */
239             R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
240                                 rb5+s*rb6)))));
241             S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
242                                 sb5+s*(sb6+s*sb7))))));
243         }
244         z  = x;
245         SET_LOW_WORD(z,0);
246         r  =  __ieee754_exp(-z*z-0.5625)*__ieee754_exp((z-x)*(z+x)+R/S);
247         if(hx>=0) return one-r/x; else return  r/x-one;
248 }
249
250 #ifdef __STDC__
251         double erfc(double x)
252 #else
253         double erfc(x)
254         double x;
255 #endif
256 {
257         int32_t hx,ix;
258         double R,S,P,Q,s,y,z,r;
259         GET_HIGH_WORD(hx,x);
260         ix = hx&0x7fffffff;
261         if(ix>=0x7ff00000) {                    /* erfc(nan)=nan */
262                                                 /* erfc(+-inf)=0,2 */
263             return (double)(((u_int32_t)hx>>31)<<1)+one/x;
264         }
265
266         if(ix < 0x3feb0000) {           /* |x|<0.84375 */
267             if(ix < 0x3c700000)         /* |x|<2**-56 */
268                 return one-x;
269             z = x*x;
270             r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
271             s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
272             y = r/s;
273             if(hx < 0x3fd00000) {       /* x<1/4 */
274                 return one-(x+x*y);
275             } else {
276                 r = x*y;
277                 r += (x-half);
278                 return half - r ;
279             }
280         }
281         if(ix < 0x3ff40000) {           /* 0.84375 <= |x| < 1.25 */
282             s = fabs(x)-one;
283             P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
284             Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
285             if(hx>=0) {
286                 z  = one-erx; return z - P/Q;
287             } else {
288                 z = erx+P/Q; return one+z;
289             }
290         }
291         if (ix < 0x403c0000) {          /* |x|<28 */
292             x = fabs(x);
293             s = one/(x*x);
294             if(ix< 0x4006DB6D) {        /* |x| < 1/.35 ~ 2.857143*/
295                 R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
296                                 ra5+s*(ra6+s*ra7))))));
297                 S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
298                                 sa5+s*(sa6+s*(sa7+s*sa8)))))));
299             } else {                    /* |x| >= 1/.35 ~ 2.857143 */
300                 if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */
301                 R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
302                                 rb5+s*rb6)))));
303                 S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
304                                 sb5+s*(sb6+s*sb7))))));
305             }
306             z  = x;
307             SET_LOW_WORD(z,0);
308             r  =  __ieee754_exp(-z*z-0.5625)*
309                         __ieee754_exp((z-x)*(z+x)+R/S);
310             if(hx>0) return r/x; else return two-r/x;
311         } else {
312             if(hx>0) return tiny*tiny; else return two-tiny;
313         }
314 }