bridge(4): document net.link.bridge.pfil_onlyip
[dragonfly.git] / sys / bus / u4b / wlan / if_rum.c
1 /*      $FreeBSD: head/sys/dev/usb/wlan/if_rum.c 298895 2016-05-01 18:53:12Z avos $     */
2
3 /*-
4  * Copyright (c) 2005-2007 Damien Bergamini <damien.bergamini@free.fr>
5  * Copyright (c) 2006 Niall O'Higgins <niallo@openbsd.org>
6  * Copyright (c) 2007-2008 Hans Petter Selasky <hselasky@FreeBSD.org>
7  * Copyright (c) 2015 Andriy Voskoboinyk <avos@FreeBSD.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21
22 /*-
23  * Ralink Technology RT2501USB/RT2601USB chipset driver
24  * http://www.ralinktech.com.tw/
25  */
26
27 #include <sys/param.h>
28 #include <sys/sockio.h>
29 #include <sys/sysctl.h>
30 #include <sys/lock.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/module.h>
37 #include <sys/bus.h>
38 #include <sys/endian.h>
39
40 #include <sys/rman.h>
41
42 #include <net/bpf.h>
43 #include <net/if.h>
44 #include <net/if_var.h>
45 #include <net/if_arp.h>
46 #include <net/ethernet.h>
47 #include <net/if_dl.h>
48 #include <net/if_media.h>
49 #include <net/if_types.h>
50
51 #include <netproto/802_11/ieee80211_var.h>
52 #include <netproto/802_11/ieee80211_regdomain.h>
53 #include <netproto/802_11/ieee80211_radiotap.h>
54 #include <netproto/802_11/ieee80211_ratectl.h>
55
56 #include <bus/u4b/usb.h>
57 #include <bus/u4b/usbdi.h>
58 #include "usbdevs.h"
59
60 #define USB_DEBUG_VAR rum_debug
61 #include <bus/u4b/usb_debug.h>
62
63 #include <bus/u4b/wlan/if_rumreg.h>
64 #include <bus/u4b/wlan/if_rumvar.h>
65 #include <bus/u4b/wlan/if_rumfw.h>
66
67 #ifdef USB_DEBUG
68 static int rum_debug = 0;
69
70 static SYSCTL_NODE(_hw_usb, OID_AUTO, rum, CTLFLAG_RW, 0, "USB rum");
71 SYSCTL_INT(_hw_usb_rum, OID_AUTO, debug, CTLFLAG_RW, &rum_debug, 0,
72     "Debug level");
73 #endif
74
75 static const STRUCT_USB_HOST_ID rum_devs[] = {
76 #define RUM_DEV(v,p)  { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) }
77     RUM_DEV(ABOCOM, HWU54DM),
78     RUM_DEV(ABOCOM, RT2573_2),
79     RUM_DEV(ABOCOM, RT2573_3),
80     RUM_DEV(ABOCOM, RT2573_4),
81     RUM_DEV(ABOCOM, WUG2700),
82     RUM_DEV(AMIT, CGWLUSB2GO),
83     RUM_DEV(ASUS, RT2573_1),
84     RUM_DEV(ASUS, RT2573_2),
85     RUM_DEV(BELKIN, F5D7050A),
86     RUM_DEV(BELKIN, F5D9050V3),
87     RUM_DEV(CISCOLINKSYS, WUSB54GC),
88     RUM_DEV(CISCOLINKSYS, WUSB54GR),
89     RUM_DEV(CONCEPTRONIC2, C54RU2),
90     RUM_DEV(COREGA, CGWLUSB2GL),
91     RUM_DEV(COREGA, CGWLUSB2GPX),
92     RUM_DEV(DICKSMITH, CWD854F),
93     RUM_DEV(DICKSMITH, RT2573),
94     RUM_DEV(EDIMAX, EW7318USG),
95     RUM_DEV(DLINK2, DWLG122C1),
96     RUM_DEV(DLINK2, WUA1340),
97     RUM_DEV(DLINK2, DWA111),
98     RUM_DEV(DLINK2, DWA110),
99     RUM_DEV(GIGABYTE, GNWB01GS),
100     RUM_DEV(GIGABYTE, GNWI05GS),
101     RUM_DEV(GIGASET, RT2573),
102     RUM_DEV(GOODWAY, RT2573),
103     RUM_DEV(GUILLEMOT, HWGUSB254LB),
104     RUM_DEV(GUILLEMOT, HWGUSB254V2AP),
105     RUM_DEV(HUAWEI3COM, WUB320G),
106     RUM_DEV(MELCO, G54HP),
107     RUM_DEV(MELCO, SG54HP),
108     RUM_DEV(MELCO, SG54HG),
109     RUM_DEV(MELCO, WLIUCG),
110     RUM_DEV(MELCO, WLRUCG),
111     RUM_DEV(MELCO, WLRUCGAOSS),
112     RUM_DEV(MSI, RT2573_1),
113     RUM_DEV(MSI, RT2573_2),
114     RUM_DEV(MSI, RT2573_3),
115     RUM_DEV(MSI, RT2573_4),
116     RUM_DEV(NOVATECH, RT2573),
117     RUM_DEV(PLANEX2, GWUS54HP),
118     RUM_DEV(PLANEX2, GWUS54MINI2),
119     RUM_DEV(PLANEX2, GWUSMM),
120     RUM_DEV(QCOM, RT2573),
121     RUM_DEV(QCOM, RT2573_2),
122     RUM_DEV(QCOM, RT2573_3),
123     RUM_DEV(RALINK, RT2573),
124     RUM_DEV(RALINK, RT2573_2),
125     RUM_DEV(RALINK, RT2671),
126     RUM_DEV(SITECOMEU, WL113R2),
127     RUM_DEV(SITECOMEU, WL172),
128     RUM_DEV(SPARKLAN, RT2573),
129     RUM_DEV(SURECOM, RT2573),
130 #undef RUM_DEV
131 };
132
133 static device_probe_t rum_match;
134 static device_attach_t rum_attach;
135 static device_detach_t rum_detach;
136
137 static usb_callback_t rum_bulk_read_callback;
138 static usb_callback_t rum_bulk_write_callback;
139
140 static usb_error_t      rum_do_request(struct rum_softc *sc,
141                             struct usb_device_request *req, void *data);
142 static usb_error_t      rum_do_mcu_request(struct rum_softc *sc, int);
143 static struct ieee80211vap *rum_vap_create(struct ieee80211com *,
144                             const char [IFNAMSIZ], int, enum ieee80211_opmode,
145                             int, const uint8_t [IEEE80211_ADDR_LEN],
146                             const uint8_t [IEEE80211_ADDR_LEN]);
147 static void             rum_vap_delete(struct ieee80211vap *);
148 static void             rum_cmdq_cb(void *, int);
149 static int              rum_cmd_sleepable(struct rum_softc *, const void *,
150                             size_t, uint8_t, CMD_FUNC_PROTO);
151 static void             rum_tx_free(struct rum_tx_data *, int);
152 static void             rum_setup_tx_list(struct rum_softc *);
153 static void             rum_unsetup_tx_list(struct rum_softc *);
154 static void             rum_beacon_miss(struct ieee80211vap *);
155 static void             rum_sta_recv_mgmt(struct ieee80211_node *,
156                             struct mbuf *, int,
157                             const struct ieee80211_rx_stats *, int, int);
158 static int              rum_set_power_state(struct rum_softc *, int);
159 static int              rum_newstate(struct ieee80211vap *,
160                             enum ieee80211_state, int);
161 static uint8_t          rum_crypto_mode(struct rum_softc *, u_int, int);
162 static void             rum_setup_tx_desc(struct rum_softc *,
163                             struct rum_tx_desc *, struct ieee80211_key *,
164                             uint32_t, uint8_t, uint8_t, int, int, int);
165 static uint32_t         rum_tx_crypto_flags(struct rum_softc *,
166                             struct ieee80211_node *,
167                             const struct ieee80211_key *);
168 static int              rum_tx_mgt(struct rum_softc *, struct mbuf *,
169                             struct ieee80211_node *);
170 static int              rum_tx_raw(struct rum_softc *, struct mbuf *,
171                             struct ieee80211_node *, 
172                             const struct ieee80211_bpf_params *);
173 static int              rum_tx_data(struct rum_softc *, struct mbuf *,
174                             struct ieee80211_node *);
175 static int              rum_transmit(struct ieee80211com *, struct mbuf *);
176 static void             rum_start(struct rum_softc *);
177 static void             rum_parent(struct ieee80211com *);
178 static void             rum_eeprom_read(struct rum_softc *, uint16_t, void *,
179                             int);
180 static uint32_t         rum_read(struct rum_softc *, uint16_t);
181 static void             rum_read_multi(struct rum_softc *, uint16_t, void *,
182                             int);
183 static usb_error_t      rum_write(struct rum_softc *, uint16_t, uint32_t);
184 static usb_error_t      rum_write_multi(struct rum_softc *, uint16_t, void *,
185                             size_t);
186 static usb_error_t      rum_setbits(struct rum_softc *, uint16_t, uint32_t);
187 static usb_error_t      rum_clrbits(struct rum_softc *, uint16_t, uint32_t);
188 static usb_error_t      rum_modbits(struct rum_softc *, uint16_t, uint32_t,
189                             uint32_t);
190 static int              rum_bbp_busy(struct rum_softc *);
191 static void             rum_bbp_write(struct rum_softc *, uint8_t, uint8_t);
192 static uint8_t          rum_bbp_read(struct rum_softc *, uint8_t);
193 static void             rum_rf_write(struct rum_softc *, uint8_t, uint32_t);
194 static void             rum_select_antenna(struct rum_softc *);
195 static void             rum_enable_mrr(struct rum_softc *);
196 static void             rum_set_txpreamble(struct rum_softc *);
197 static void             rum_set_basicrates(struct rum_softc *);
198 static void             rum_select_band(struct rum_softc *,
199                             struct ieee80211_channel *);
200 static void             rum_set_chan(struct rum_softc *,
201                             struct ieee80211_channel *);
202 static void             rum_set_maxretry(struct rum_softc *,
203                             struct ieee80211vap *);
204 static int              rum_enable_tsf_sync(struct rum_softc *);
205 static void             rum_enable_tsf(struct rum_softc *);
206 static void             rum_abort_tsf_sync(struct rum_softc *);
207 static void             rum_get_tsf(struct rum_softc *, uint64_t *);
208 static void             rum_update_slot_cb(struct rum_softc *,
209                             union sec_param *, uint8_t);
210 static void             rum_update_slot(struct ieee80211com *);
211 static int              rum_wme_update(struct ieee80211com *);
212 static void             rum_set_bssid(struct rum_softc *, const uint8_t *);
213 static void             rum_set_macaddr(struct rum_softc *, const uint8_t *);
214 static void             rum_update_mcast(struct ieee80211com *);
215 static void             rum_update_promisc(struct ieee80211com *);
216 static void             rum_setpromisc(struct rum_softc *);
217 static const char       *rum_get_rf(int);
218 static void             rum_read_eeprom(struct rum_softc *);
219 static int              rum_bbp_wakeup(struct rum_softc *);
220 static int              rum_bbp_init(struct rum_softc *);
221 static void             rum_clr_shkey_regs(struct rum_softc *);
222 static int              rum_init(struct rum_softc *);
223 static void             rum_stop(struct rum_softc *);
224 static void             rum_load_microcode(struct rum_softc *, const uint8_t *,
225                             size_t);
226 static int              rum_set_sleep_time(struct rum_softc *, uint16_t);
227 static int              rum_reset(struct ieee80211vap *, u_long);
228 static int              rum_set_beacon(struct rum_softc *,
229                             struct ieee80211vap *);
230 static int              rum_alloc_beacon(struct rum_softc *,
231                             struct ieee80211vap *);
232 static void             rum_update_beacon_cb(struct rum_softc *,
233                             union sec_param *, uint8_t);
234 static void             rum_update_beacon(struct ieee80211vap *, int);
235 static int              rum_common_key_set(struct rum_softc *,
236                             struct ieee80211_key *, uint16_t);
237 static void             rum_group_key_set_cb(struct rum_softc *,
238                             union sec_param *, uint8_t);
239 static void             rum_group_key_del_cb(struct rum_softc *,
240                             union sec_param *, uint8_t);
241 static void             rum_pair_key_set_cb(struct rum_softc *,
242                             union sec_param *, uint8_t);
243 static void             rum_pair_key_del_cb(struct rum_softc *,
244                             union sec_param *, uint8_t);
245 static int              rum_key_alloc(struct ieee80211vap *,
246                             struct ieee80211_key *, ieee80211_keyix *,
247                             ieee80211_keyix *);
248 static int              rum_key_set(struct ieee80211vap *,
249                             const struct ieee80211_key *);
250 static int              rum_key_delete(struct ieee80211vap *,
251                             const struct ieee80211_key *);
252 static int              rum_raw_xmit(struct ieee80211_node *, struct mbuf *,
253                             const struct ieee80211_bpf_params *);
254 static void             rum_scan_start(struct ieee80211com *);
255 static void             rum_scan_end(struct ieee80211com *);
256 static void             rum_set_channel(struct ieee80211com *);
257 static void             rum_getradiocaps(struct ieee80211com *, int, int *,
258                             struct ieee80211_channel[]);
259 static int              rum_get_rssi(struct rum_softc *, uint8_t);
260 static void             rum_ratectl_start(struct rum_softc *,
261                             struct ieee80211_node *);
262 static void             rum_ratectl_timeout(void *);
263 static void             rum_ratectl_task(void *, int);
264 static int              rum_pause(struct rum_softc *, int);
265
266 static const struct {
267         uint32_t        reg;
268         uint32_t        val;
269 } rum_def_mac[] = {
270         { RT2573_TXRX_CSR0,  0x025fb032 },
271         { RT2573_TXRX_CSR1,  0x9eaa9eaf },
272         { RT2573_TXRX_CSR2,  0x8a8b8c8d }, 
273         { RT2573_TXRX_CSR3,  0x00858687 },
274         { RT2573_TXRX_CSR7,  0x2e31353b },
275         { RT2573_TXRX_CSR8,  0x2a2a2a2c },
276         { RT2573_TXRX_CSR15, 0x0000000f },
277         { RT2573_MAC_CSR6,   0x00000fff },
278         { RT2573_MAC_CSR8,   0x016c030a },
279         { RT2573_MAC_CSR10,  0x00000718 },
280         { RT2573_MAC_CSR12,  0x00000004 },
281         { RT2573_MAC_CSR13,  0x00007f00 },
282         { RT2573_SEC_CSR2,   0x00000000 },
283         { RT2573_SEC_CSR3,   0x00000000 },
284         { RT2573_SEC_CSR4,   0x00000000 },
285         { RT2573_PHY_CSR1,   0x000023b0 },
286         { RT2573_PHY_CSR5,   0x00040a06 },
287         { RT2573_PHY_CSR6,   0x00080606 },
288         { RT2573_PHY_CSR7,   0x00000408 },
289         { RT2573_AIFSN_CSR,  0x00002273 },
290         { RT2573_CWMIN_CSR,  0x00002344 },
291         { RT2573_CWMAX_CSR,  0x000034aa }
292 };
293
294 static const struct {
295         uint8_t reg;
296         uint8_t val;
297 } rum_def_bbp[] = {
298         {   3, 0x80 },
299         {  15, 0x30 },
300         {  17, 0x20 },
301         {  21, 0xc8 },
302         {  22, 0x38 },
303         {  23, 0x06 },
304         {  24, 0xfe },
305         {  25, 0x0a },
306         {  26, 0x0d },
307         {  32, 0x0b },
308         {  34, 0x12 },
309         {  37, 0x07 },
310         {  39, 0xf8 },
311         {  41, 0x60 },
312         {  53, 0x10 },
313         {  54, 0x18 },
314         {  60, 0x10 },
315         {  61, 0x04 },
316         {  62, 0x04 },
317         {  75, 0xfe },
318         {  86, 0xfe },
319         {  88, 0xfe },
320         {  90, 0x0f },
321         {  99, 0x00 },
322         { 102, 0x16 },
323         { 107, 0x04 }
324 };
325
326 static const uint8_t rum_chan_2ghz[] =
327         { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 };
328
329 static const uint8_t rum_chan_5ghz[] =
330         { 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64,
331           100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140,
332           149, 153, 157, 161, 165 };
333
334 static const struct rfprog {
335         uint8_t         chan;
336         uint32_t        r1, r2, r3, r4;
337 }  rum_rf5226[] = {
338         {   1, 0x00b03, 0x001e1, 0x1a014, 0x30282 },
339         {   2, 0x00b03, 0x001e1, 0x1a014, 0x30287 },
340         {   3, 0x00b03, 0x001e2, 0x1a014, 0x30282 },
341         {   4, 0x00b03, 0x001e2, 0x1a014, 0x30287 },
342         {   5, 0x00b03, 0x001e3, 0x1a014, 0x30282 },
343         {   6, 0x00b03, 0x001e3, 0x1a014, 0x30287 },
344         {   7, 0x00b03, 0x001e4, 0x1a014, 0x30282 },
345         {   8, 0x00b03, 0x001e4, 0x1a014, 0x30287 },
346         {   9, 0x00b03, 0x001e5, 0x1a014, 0x30282 },
347         {  10, 0x00b03, 0x001e5, 0x1a014, 0x30287 },
348         {  11, 0x00b03, 0x001e6, 0x1a014, 0x30282 },
349         {  12, 0x00b03, 0x001e6, 0x1a014, 0x30287 },
350         {  13, 0x00b03, 0x001e7, 0x1a014, 0x30282 },
351         {  14, 0x00b03, 0x001e8, 0x1a014, 0x30284 },
352
353         {  34, 0x00b03, 0x20266, 0x36014, 0x30282 },
354         {  38, 0x00b03, 0x20267, 0x36014, 0x30284 },
355         {  42, 0x00b03, 0x20268, 0x36014, 0x30286 },
356         {  46, 0x00b03, 0x20269, 0x36014, 0x30288 },
357
358         {  36, 0x00b03, 0x00266, 0x26014, 0x30288 },
359         {  40, 0x00b03, 0x00268, 0x26014, 0x30280 },
360         {  44, 0x00b03, 0x00269, 0x26014, 0x30282 },
361         {  48, 0x00b03, 0x0026a, 0x26014, 0x30284 },
362         {  52, 0x00b03, 0x0026b, 0x26014, 0x30286 },
363         {  56, 0x00b03, 0x0026c, 0x26014, 0x30288 },
364         {  60, 0x00b03, 0x0026e, 0x26014, 0x30280 },
365         {  64, 0x00b03, 0x0026f, 0x26014, 0x30282 },
366
367         { 100, 0x00b03, 0x0028a, 0x2e014, 0x30280 },
368         { 104, 0x00b03, 0x0028b, 0x2e014, 0x30282 },
369         { 108, 0x00b03, 0x0028c, 0x2e014, 0x30284 },
370         { 112, 0x00b03, 0x0028d, 0x2e014, 0x30286 },
371         { 116, 0x00b03, 0x0028e, 0x2e014, 0x30288 },
372         { 120, 0x00b03, 0x002a0, 0x2e014, 0x30280 },
373         { 124, 0x00b03, 0x002a1, 0x2e014, 0x30282 },
374         { 128, 0x00b03, 0x002a2, 0x2e014, 0x30284 },
375         { 132, 0x00b03, 0x002a3, 0x2e014, 0x30286 },
376         { 136, 0x00b03, 0x002a4, 0x2e014, 0x30288 },
377         { 140, 0x00b03, 0x002a6, 0x2e014, 0x30280 },
378
379         { 149, 0x00b03, 0x002a8, 0x2e014, 0x30287 },
380         { 153, 0x00b03, 0x002a9, 0x2e014, 0x30289 },
381         { 157, 0x00b03, 0x002ab, 0x2e014, 0x30281 },
382         { 161, 0x00b03, 0x002ac, 0x2e014, 0x30283 },
383         { 165, 0x00b03, 0x002ad, 0x2e014, 0x30285 }
384 }, rum_rf5225[] = {
385         {   1, 0x00b33, 0x011e1, 0x1a014, 0x30282 },
386         {   2, 0x00b33, 0x011e1, 0x1a014, 0x30287 },
387         {   3, 0x00b33, 0x011e2, 0x1a014, 0x30282 },
388         {   4, 0x00b33, 0x011e2, 0x1a014, 0x30287 },
389         {   5, 0x00b33, 0x011e3, 0x1a014, 0x30282 },
390         {   6, 0x00b33, 0x011e3, 0x1a014, 0x30287 },
391         {   7, 0x00b33, 0x011e4, 0x1a014, 0x30282 },
392         {   8, 0x00b33, 0x011e4, 0x1a014, 0x30287 },
393         {   9, 0x00b33, 0x011e5, 0x1a014, 0x30282 },
394         {  10, 0x00b33, 0x011e5, 0x1a014, 0x30287 },
395         {  11, 0x00b33, 0x011e6, 0x1a014, 0x30282 },
396         {  12, 0x00b33, 0x011e6, 0x1a014, 0x30287 },
397         {  13, 0x00b33, 0x011e7, 0x1a014, 0x30282 },
398         {  14, 0x00b33, 0x011e8, 0x1a014, 0x30284 },
399
400         {  34, 0x00b33, 0x01266, 0x26014, 0x30282 },
401         {  38, 0x00b33, 0x01267, 0x26014, 0x30284 },
402         {  42, 0x00b33, 0x01268, 0x26014, 0x30286 },
403         {  46, 0x00b33, 0x01269, 0x26014, 0x30288 },
404
405         {  36, 0x00b33, 0x01266, 0x26014, 0x30288 },
406         {  40, 0x00b33, 0x01268, 0x26014, 0x30280 },
407         {  44, 0x00b33, 0x01269, 0x26014, 0x30282 },
408         {  48, 0x00b33, 0x0126a, 0x26014, 0x30284 },
409         {  52, 0x00b33, 0x0126b, 0x26014, 0x30286 },
410         {  56, 0x00b33, 0x0126c, 0x26014, 0x30288 },
411         {  60, 0x00b33, 0x0126e, 0x26014, 0x30280 },
412         {  64, 0x00b33, 0x0126f, 0x26014, 0x30282 },
413
414         { 100, 0x00b33, 0x0128a, 0x2e014, 0x30280 },
415         { 104, 0x00b33, 0x0128b, 0x2e014, 0x30282 },
416         { 108, 0x00b33, 0x0128c, 0x2e014, 0x30284 },
417         { 112, 0x00b33, 0x0128d, 0x2e014, 0x30286 },
418         { 116, 0x00b33, 0x0128e, 0x2e014, 0x30288 },
419         { 120, 0x00b33, 0x012a0, 0x2e014, 0x30280 },
420         { 124, 0x00b33, 0x012a1, 0x2e014, 0x30282 },
421         { 128, 0x00b33, 0x012a2, 0x2e014, 0x30284 },
422         { 132, 0x00b33, 0x012a3, 0x2e014, 0x30286 },
423         { 136, 0x00b33, 0x012a4, 0x2e014, 0x30288 },
424         { 140, 0x00b33, 0x012a6, 0x2e014, 0x30280 },
425
426         { 149, 0x00b33, 0x012a8, 0x2e014, 0x30287 },
427         { 153, 0x00b33, 0x012a9, 0x2e014, 0x30289 },
428         { 157, 0x00b33, 0x012ab, 0x2e014, 0x30281 },
429         { 161, 0x00b33, 0x012ac, 0x2e014, 0x30283 },
430         { 165, 0x00b33, 0x012ad, 0x2e014, 0x30285 }
431 };
432
433 static const struct usb_config rum_config[RUM_N_TRANSFER] = {
434         [RUM_BULK_WR] = {
435                 .type = UE_BULK,
436                 .endpoint = UE_ADDR_ANY,
437                 .direction = UE_DIR_OUT,
438                 .bufsize = (MCLBYTES + RT2573_TX_DESC_SIZE + 8),
439                 .flags = {.pipe_bof = 1,.force_short_xfer = 1,},
440                 .callback = rum_bulk_write_callback,
441                 .timeout = 5000,        /* ms */
442         },
443         [RUM_BULK_RD] = {
444                 .type = UE_BULK,
445                 .endpoint = UE_ADDR_ANY,
446                 .direction = UE_DIR_IN,
447                 .bufsize = (MCLBYTES + RT2573_RX_DESC_SIZE),
448                 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
449                 .callback = rum_bulk_read_callback,
450         },
451 };
452
453 static int
454 rum_match(device_t self)
455 {
456         struct usb_attach_arg *uaa = device_get_ivars(self);
457
458         if (uaa->usb_mode != USB_MODE_HOST)
459                 return (ENXIO);
460         if (uaa->info.bConfigIndex != 0)
461                 return (ENXIO);
462         if (uaa->info.bIfaceIndex != RT2573_IFACE_INDEX)
463                 return (ENXIO);
464
465         return (usbd_lookup_id_by_uaa(rum_devs, sizeof(rum_devs), uaa));
466 }
467
468 static int
469 rum_attach(device_t self)
470 {
471         struct usb_attach_arg *uaa = device_get_ivars(self);
472         struct rum_softc *sc = device_get_softc(self);
473         struct ieee80211com *ic = &sc->sc_ic;
474         uint32_t tmp;
475         uint8_t iface_index;
476         int error, ntries;
477
478         wlan_serialize_enter();
479         device_set_usb_desc(self);
480         sc->sc_udev = uaa->device;
481         sc->sc_dev = self;
482
483         RUM_LOCK_INIT(sc);
484         RUM_CMDQ_LOCK_INIT(sc);
485         mbufq_init(&sc->sc_snd, ifqmaxlen);
486
487         iface_index = RT2573_IFACE_INDEX;
488         error = usbd_transfer_setup(uaa->device, &iface_index,
489             sc->sc_xfer, rum_config, RUM_N_TRANSFER, sc, &sc->sc_lock);
490         if (error) {
491                 device_printf(self, "could not allocate USB transfers, "
492                     "err=%s\n", usbd_errstr(error));
493                 goto detach;
494         }
495
496         RUM_LOCK(sc);
497         /* retrieve RT2573 rev. no */
498         for (ntries = 0; ntries < 100; ntries++) {
499                 if ((tmp = rum_read(sc, RT2573_MAC_CSR0)) != 0)
500                         break;
501                 if (rum_pause(sc, hz / 100))
502                         break;
503         }
504         if (ntries == 100) {
505                 device_printf(sc->sc_dev, "timeout waiting for chip to settle\n");
506                 RUM_UNLOCK(sc);
507                 goto detach;
508         }
509
510         /* retrieve MAC address and various other things from EEPROM */
511         rum_read_eeprom(sc);
512
513         device_printf(sc->sc_dev, "MAC/BBP RT2573 (rev 0x%05x), RF %s\n",
514             tmp, rum_get_rf(sc->rf_rev));
515
516         rum_load_microcode(sc, rt2573_ucode, sizeof(rt2573_ucode));
517         RUM_UNLOCK(sc);
518
519         ic->ic_softc = sc;
520         ic->ic_name = device_get_nameunit(self);
521         ic->ic_phytype = IEEE80211_T_OFDM;      /* not only, but not used */
522
523         /* set device capabilities */
524         ic->ic_caps =
525               IEEE80211_C_STA           /* station mode supported */
526             | IEEE80211_C_IBSS          /* IBSS mode supported */
527             | IEEE80211_C_MONITOR       /* monitor mode supported */
528             | IEEE80211_C_HOSTAP        /* HostAp mode supported */
529             | IEEE80211_C_AHDEMO        /* adhoc demo mode */
530             | IEEE80211_C_TXPMGT        /* tx power management */
531             | IEEE80211_C_SHPREAMBLE    /* short preamble supported */
532             | IEEE80211_C_SHSLOT        /* short slot time supported */
533             | IEEE80211_C_BGSCAN        /* bg scanning supported */
534             | IEEE80211_C_WPA           /* 802.11i */
535             | IEEE80211_C_WME           /* 802.11e */
536             | IEEE80211_C_PMGT          /* Station-side power mgmt */
537             | IEEE80211_C_SWSLEEP       /* net80211 managed power mgmt */
538             ;
539
540         ic->ic_cryptocaps =
541             IEEE80211_CRYPTO_WEP |
542             IEEE80211_CRYPTO_AES_CCM |
543             IEEE80211_CRYPTO_TKIPMIC |
544             IEEE80211_CRYPTO_TKIP;
545
546         rum_getradiocaps(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
547             ic->ic_channels);
548
549         ieee80211_ifattach(ic);
550         ic->ic_update_promisc = rum_update_promisc;
551         ic->ic_raw_xmit = rum_raw_xmit;
552         ic->ic_scan_start = rum_scan_start;
553         ic->ic_scan_end = rum_scan_end;
554         ic->ic_set_channel = rum_set_channel;
555         ic->ic_getradiocaps = rum_getradiocaps;
556         ic->ic_transmit = rum_transmit;
557         ic->ic_parent = rum_parent;
558         ic->ic_vap_create = rum_vap_create;
559         ic->ic_vap_delete = rum_vap_delete;
560         ic->ic_updateslot = rum_update_slot;
561         ic->ic_wme.wme_update = rum_wme_update;
562         ic->ic_update_mcast = rum_update_mcast;
563
564         ieee80211_radiotap_attach(ic,
565             &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
566                 RT2573_TX_RADIOTAP_PRESENT,
567             &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
568                 RT2573_RX_RADIOTAP_PRESENT);
569
570         TASK_INIT(&sc->cmdq_task, 0, rum_cmdq_cb, sc);
571
572         if (bootverbose)
573                 ieee80211_announce(ic);
574
575         wlan_serialize_exit();
576         return (0);
577
578 detach:
579         wlan_serialize_exit();
580         rum_detach(self);
581         return (ENXIO);                 /* failure */
582 }
583
584 static int
585 rum_detach(device_t self)
586 {
587         struct rum_softc *sc = device_get_softc(self);
588         struct ieee80211com *ic = &sc->sc_ic;
589
590         /* Prevent further ioctls */
591         RUM_LOCK(sc);
592         sc->sc_detached = 1;
593         RUM_UNLOCK(sc);
594
595         /* stop all USB transfers */
596         usbd_transfer_unsetup(sc->sc_xfer, RUM_N_TRANSFER);
597
598         /* free TX list, if any */
599         RUM_LOCK(sc);
600         rum_unsetup_tx_list(sc);
601         RUM_UNLOCK(sc);
602
603         if (ic->ic_softc == sc) {
604                 ieee80211_draintask(ic, &sc->cmdq_task);
605                 ieee80211_ifdetach(ic);
606         }
607
608         mbufq_drain(&sc->sc_snd);
609         RUM_CMDQ_LOCK_DESTROY(sc);
610         RUM_LOCK_DESTROY(sc);
611
612         return (0);
613 }
614
615 static usb_error_t
616 rum_do_request(struct rum_softc *sc,
617     struct usb_device_request *req, void *data)
618 {
619         usb_error_t err;
620         int ntries = 10;
621
622         while (ntries--) {
623                 err = usbd_do_request_flags(sc->sc_udev, &sc->sc_lock,
624                     req, data, 0, NULL, 250 /* ms */);
625                 if (err == 0)
626                         break;
627
628                 DPRINTFN(1, "Control request failed, %s (retrying)\n",
629                     usbd_errstr(err));
630                 if (rum_pause(sc, hz / 100))
631                         break;
632         }
633         return (err);
634 }
635
636 static usb_error_t
637 rum_do_mcu_request(struct rum_softc *sc, int request)
638 {
639         struct usb_device_request req;
640
641         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
642         req.bRequest = RT2573_MCU_CNTL;
643         USETW(req.wValue, request);
644         USETW(req.wIndex, 0);
645         USETW(req.wLength, 0);
646
647         return (rum_do_request(sc, &req, NULL));
648 }
649
650 static struct ieee80211vap *
651 rum_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
652     enum ieee80211_opmode opmode, int flags,
653     const uint8_t bssid[IEEE80211_ADDR_LEN],
654     const uint8_t mac[IEEE80211_ADDR_LEN])
655 {
656         struct rum_softc *sc = ic->ic_softc;
657         struct rum_vap *rvp;
658         struct ieee80211vap *vap;
659
660         if (!TAILQ_EMPTY(&ic->ic_vaps))         /* only one at a time */
661                 return NULL;
662         rvp = kmalloc(sizeof(struct rum_vap), M_80211_VAP, M_WAITOK | M_ZERO);
663         vap = &rvp->vap;
664         /* enable s/w bmiss handling for sta mode */
665
666         if (ieee80211_vap_setup(ic, vap, name, unit, opmode,
667             flags | IEEE80211_CLONE_NOBEACONS, bssid) != 0) {
668                 /* out of memory */
669                 kfree(rvp, M_80211_VAP);
670                 return (NULL);
671         }
672
673         /* override state transition machine */
674         rvp->newstate = vap->iv_newstate;
675         vap->iv_newstate = rum_newstate;
676         vap->iv_key_alloc = rum_key_alloc;
677         vap->iv_key_set = rum_key_set;
678         vap->iv_key_delete = rum_key_delete;
679         vap->iv_update_beacon = rum_update_beacon;
680         vap->iv_reset = rum_reset;
681         vap->iv_max_aid = RT2573_ADDR_MAX;
682
683         if (opmode == IEEE80211_M_STA) {
684                 /*
685                  * Move device to the sleep state when
686                  * beacon is received and there is no data for us.
687                  *
688                  * Used only for IEEE80211_S_SLEEP state.
689                  */
690                 rvp->recv_mgmt = vap->iv_recv_mgmt;
691                 vap->iv_recv_mgmt = rum_sta_recv_mgmt;
692
693                 /* Ignored while sleeping. */
694                 rvp->bmiss = vap->iv_bmiss;
695                 vap->iv_bmiss = rum_beacon_miss;
696         }
697
698         usb_callout_init_mtx(&rvp->ratectl_ch, &sc->sc_lock, 0);
699         TASK_INIT(&rvp->ratectl_task, 0, rum_ratectl_task, rvp);
700         ieee80211_ratectl_init(vap);
701         ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */);
702         /* complete setup */
703         ieee80211_vap_attach(vap, ieee80211_media_change,
704             ieee80211_media_status, mac);
705         ic->ic_opmode = opmode;
706         return vap;
707 }
708
709 static void
710 rum_vap_delete(struct ieee80211vap *vap)
711 {
712         struct rum_vap *rvp = RUM_VAP(vap);
713         struct ieee80211com *ic = vap->iv_ic;
714
715         m_freem(rvp->bcn_mbuf);
716         usb_callout_drain(&rvp->ratectl_ch);
717         ieee80211_draintask(ic, &rvp->ratectl_task);
718         ieee80211_ratectl_deinit(vap);
719         ieee80211_vap_detach(vap);
720         kfree(rvp, M_80211_VAP);
721 }
722
723 static void
724 rum_cmdq_cb(void *arg, int pending)
725 {
726         struct rum_softc *sc = arg;
727         struct rum_cmdq *rc;
728
729         RUM_CMDQ_LOCK(sc);
730         while (sc->cmdq[sc->cmdq_first].func != NULL) {
731                 rc = &sc->cmdq[sc->cmdq_first];
732                 RUM_CMDQ_UNLOCK(sc);
733
734                 RUM_LOCK(sc);
735                 rc->func(sc, &rc->data, rc->rvp_id);
736                 RUM_UNLOCK(sc);
737
738                 RUM_CMDQ_LOCK(sc);
739                 memset(rc, 0, sizeof (*rc));
740                 sc->cmdq_first = (sc->cmdq_first + 1) % RUM_CMDQ_SIZE;
741         }
742         RUM_CMDQ_UNLOCK(sc);
743 }
744
745 static int
746 rum_cmd_sleepable(struct rum_softc *sc, const void *ptr, size_t len,
747     uint8_t rvp_id, CMD_FUNC_PROTO)
748 {
749         struct ieee80211com *ic = &sc->sc_ic;
750
751         KASSERT(len <= sizeof(union sec_param), ("buffer overflow"));
752
753         RUM_CMDQ_LOCK(sc);
754         if (sc->cmdq[sc->cmdq_last].func != NULL) {
755                 device_printf(sc->sc_dev, "%s: cmdq overflow\n", __func__);
756                 RUM_CMDQ_UNLOCK(sc);
757
758                 return EAGAIN;
759         }
760
761         if (ptr != NULL)
762                 memcpy(&sc->cmdq[sc->cmdq_last].data, ptr, len);
763         sc->cmdq[sc->cmdq_last].rvp_id = rvp_id;
764         sc->cmdq[sc->cmdq_last].func = func;
765         sc->cmdq_last = (sc->cmdq_last + 1) % RUM_CMDQ_SIZE;
766         RUM_CMDQ_UNLOCK(sc);
767
768         ieee80211_runtask(ic, &sc->cmdq_task);
769
770         return 0;
771 }
772
773 static void
774 rum_tx_free(struct rum_tx_data *data, int txerr)
775 {
776         struct rum_softc *sc = data->sc;
777
778         if (data->m != NULL) {
779                 ieee80211_tx_complete(data->ni, data->m, txerr);
780                 data->m = NULL;
781                 data->ni = NULL;
782         }
783         STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
784         sc->tx_nfree++;
785 }
786
787 static void
788 rum_setup_tx_list(struct rum_softc *sc)
789 {
790         struct rum_tx_data *data;
791         int i;
792
793         sc->tx_nfree = 0;
794         STAILQ_INIT(&sc->tx_q);
795         STAILQ_INIT(&sc->tx_free);
796
797         for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
798                 data = &sc->tx_data[i];
799
800                 data->sc = sc;
801                 STAILQ_INSERT_TAIL(&sc->tx_free, data, next);
802                 sc->tx_nfree++;
803         }
804 }
805
806 static void
807 rum_unsetup_tx_list(struct rum_softc *sc)
808 {
809         struct rum_tx_data *data;
810         int i;
811
812         /* make sure any subsequent use of the queues will fail */
813         sc->tx_nfree = 0;
814         STAILQ_INIT(&sc->tx_q);
815         STAILQ_INIT(&sc->tx_free);
816
817         /* free up all node references and mbufs */
818         for (i = 0; i < RUM_TX_LIST_COUNT; i++) {
819                 data = &sc->tx_data[i];
820
821                 if (data->m != NULL) {
822                         m_freem(data->m);
823                         data->m = NULL;
824                 }
825                 if (data->ni != NULL) {
826                         ieee80211_free_node(data->ni);
827                         data->ni = NULL;
828                 }
829         }
830 }
831
832 static void
833 rum_beacon_miss(struct ieee80211vap *vap)
834 {
835         struct ieee80211com *ic = vap->iv_ic;
836         struct rum_softc *sc = ic->ic_softc;
837         struct rum_vap *rvp = RUM_VAP(vap);
838         int sleep;
839
840         RUM_LOCK(sc);
841         if (sc->sc_sleeping && sc->sc_sleep_end < ticks) {
842                 DPRINTFN(12, "dropping 'sleeping' bit, "
843                     "device must be awake now\n");
844
845                 sc->sc_sleeping = 0;
846         }
847
848         sleep = sc->sc_sleeping;
849         RUM_UNLOCK(sc);
850
851         if (!sleep)
852                 rvp->bmiss(vap);
853 #ifdef USB_DEBUG
854         else
855                 DPRINTFN(13, "bmiss event is ignored whilst sleeping\n");
856 #endif
857 }
858
859 static void
860 rum_sta_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m, int subtype,
861     const struct ieee80211_rx_stats *rxs,
862     int rssi, int nf)
863 {
864         struct ieee80211vap *vap = ni->ni_vap;
865         struct rum_softc *sc = vap->iv_ic->ic_softc;
866         struct rum_vap *rvp = RUM_VAP(vap);
867
868         if (vap->iv_state == IEEE80211_S_SLEEP &&
869             subtype == IEEE80211_FC0_SUBTYPE_BEACON) {
870                 RUM_LOCK(sc);
871                 DPRINTFN(12, "beacon, mybss %d (flags %02X)\n",
872                     !!(sc->last_rx_flags & RT2573_RX_MYBSS),
873                     sc->last_rx_flags);
874
875                 if ((sc->last_rx_flags & (RT2573_RX_MYBSS | RT2573_RX_BC)) ==
876                     (RT2573_RX_MYBSS | RT2573_RX_BC)) {
877                         /*
878                          * Put it to sleep here; in case if there is a data
879                          * for us, iv_recv_mgmt() will wakeup the device via
880                          * SLEEP -> RUN state transition.
881                          */
882                         rum_set_power_state(sc, 1);
883                 }
884                 RUM_UNLOCK(sc);
885         }
886
887         rvp->recv_mgmt(ni, m, subtype, rxs, rssi, nf);
888 }
889
890 static int
891 rum_set_power_state(struct rum_softc *sc, int sleep)
892 {
893         usb_error_t uerror;
894
895         RUM_LOCK_ASSERT(sc);
896
897         DPRINTFN(12, "moving to %s state (sleep time %u)\n",
898             sleep ? "sleep" : "awake", sc->sc_sleep_time);
899
900         uerror = rum_do_mcu_request(sc,
901             sleep ? RT2573_MCU_SLEEP : RT2573_MCU_WAKEUP);
902         if (uerror != USB_ERR_NORMAL_COMPLETION) {
903                 device_printf(sc->sc_dev,
904                     "%s: could not change power state: %s\n",
905                     __func__, usbd_errstr(uerror));
906                 return (EIO);
907         }
908
909         sc->sc_sleeping = !!sleep;
910         sc->sc_sleep_end = sleep ? ticks + sc->sc_sleep_time : 0;
911
912         return (0);
913 }
914
915 static int
916 rum_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
917 {
918         struct rum_vap *rvp = RUM_VAP(vap);
919         struct ieee80211com *ic = vap->iv_ic;
920         struct rum_softc *sc = ic->ic_softc;
921         const struct ieee80211_txparam *tp;
922         enum ieee80211_state ostate;
923         struct ieee80211_node *ni;
924         usb_error_t uerror;
925         int ret = 0;
926
927         ostate = vap->iv_state;
928         DPRINTF("%s -> %s\n",
929                 ieee80211_state_name[ostate],
930                 ieee80211_state_name[nstate]);
931
932         IEEE80211_UNLOCK(ic);
933         RUM_LOCK(sc);
934         usb_callout_stop(&rvp->ratectl_ch);
935
936         if (ostate == IEEE80211_S_SLEEP && vap->iv_opmode == IEEE80211_M_STA) {
937                 rum_clrbits(sc, RT2573_TXRX_CSR4, RT2573_ACKCTS_PWRMGT);
938                 rum_clrbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP);
939
940                 /*
941                  * Ignore any errors;
942                  * any subsequent TX will wakeup it anyway
943                  */
944                 (void) rum_set_power_state(sc, 0);
945         }
946
947         switch (nstate) {
948         case IEEE80211_S_INIT:
949                 if (ostate == IEEE80211_S_RUN)
950                         rum_abort_tsf_sync(sc);
951
952                 break;
953
954         case IEEE80211_S_RUN:
955                 if (ostate == IEEE80211_S_SLEEP)
956                         break;          /* already handled */
957
958                 ni = ieee80211_ref_node(vap->iv_bss);
959
960                 if (vap->iv_opmode != IEEE80211_M_MONITOR) {
961                         if (ic->ic_bsschan == IEEE80211_CHAN_ANYC ||
962                             ni->ni_chan == IEEE80211_CHAN_ANYC) {
963                                 ret = EINVAL;
964                                 goto run_fail;
965                         }
966                         rum_update_slot_cb(sc, NULL, 0);
967                         rum_enable_mrr(sc);
968                         rum_set_txpreamble(sc);
969                         rum_set_basicrates(sc);
970                         rum_set_maxretry(sc, vap);
971                         IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid);
972                         rum_set_bssid(sc, sc->sc_bssid);
973                 }
974
975                 if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
976                     vap->iv_opmode == IEEE80211_M_IBSS) {
977                         if ((ret = rum_alloc_beacon(sc, vap)) != 0)
978                                 goto run_fail;
979                 }
980
981                 if (vap->iv_opmode != IEEE80211_M_MONITOR &&
982                     vap->iv_opmode != IEEE80211_M_AHDEMO) {
983                         if ((ret = rum_enable_tsf_sync(sc)) != 0)
984                                 goto run_fail;
985                 } else
986                         rum_enable_tsf(sc);
987
988                 /* enable automatic rate adaptation */
989                 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
990                 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE)
991                         rum_ratectl_start(sc, ni);
992 run_fail:
993                 ieee80211_free_node(ni);
994                 break;
995         case IEEE80211_S_SLEEP:
996                 /* Implemented for STA mode only. */
997                 if (vap->iv_opmode != IEEE80211_M_STA)
998                         break;
999
1000                 uerror = rum_setbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP);
1001                 if (uerror != USB_ERR_NORMAL_COMPLETION) {
1002                         ret = EIO;
1003                         break;
1004                 }
1005
1006                 uerror = rum_setbits(sc, RT2573_TXRX_CSR4, RT2573_ACKCTS_PWRMGT);
1007                 if (uerror != USB_ERR_NORMAL_COMPLETION) {
1008                         ret = EIO;
1009                         break;
1010                 }
1011
1012                 ret = rum_set_power_state(sc, 1);
1013                 if (ret != 0) {
1014                         device_printf(sc->sc_dev,
1015                             "%s: could not move to the SLEEP state: %s\n",
1016                             __func__, usbd_errstr(uerror));
1017                 }
1018                 break;
1019         default:
1020                 break;
1021         }
1022         RUM_UNLOCK(sc);
1023         IEEE80211_LOCK(ic);
1024         return (ret == 0 ? rvp->newstate(vap, nstate, arg) : ret);
1025 }
1026
1027 static void
1028 rum_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
1029 {
1030         struct rum_softc *sc = usbd_xfer_softc(xfer);
1031         struct ieee80211vap *vap;
1032         struct rum_tx_data *data;
1033         struct mbuf *m;
1034         struct usb_page_cache *pc;
1035         unsigned int len;
1036         int actlen, sumlen;
1037
1038         usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL);
1039
1040         switch (USB_GET_STATE(xfer)) {
1041         case USB_ST_TRANSFERRED:
1042                 DPRINTFN(11, "transfer complete, %d bytes\n", actlen);
1043
1044                 /* free resources */
1045                 data = usbd_xfer_get_priv(xfer);
1046                 rum_tx_free(data, 0);
1047                 usbd_xfer_set_priv(xfer, NULL);
1048
1049                 /* FALLTHROUGH */
1050         case USB_ST_SETUP:
1051 tr_setup:
1052                 data = STAILQ_FIRST(&sc->tx_q);
1053                 if (data) {
1054                         STAILQ_REMOVE_HEAD(&sc->tx_q, next);
1055                         m = data->m;
1056
1057                         if (m->m_pkthdr.len > (int)(MCLBYTES + RT2573_TX_DESC_SIZE)) {
1058                                 DPRINTFN(0, "data overflow, %u bytes\n",
1059                                     m->m_pkthdr.len);
1060                                 m->m_pkthdr.len = (MCLBYTES + RT2573_TX_DESC_SIZE);
1061                         }
1062                         pc = usbd_xfer_get_frame(xfer, 0);
1063                         usbd_copy_in(pc, 0, &data->desc, RT2573_TX_DESC_SIZE);
1064                         usbd_m_copy_in(pc, RT2573_TX_DESC_SIZE, m, 0,
1065                             m->m_pkthdr.len);
1066
1067                         vap = data->ni->ni_vap;
1068                         if (ieee80211_radiotap_active_vap(vap)) {
1069                                 struct rum_tx_radiotap_header *tap = &sc->sc_txtap;
1070
1071                                 tap->wt_flags = 0;
1072                                 tap->wt_rate = data->rate;
1073                                 rum_get_tsf(sc, &tap->wt_tsf);
1074                                 tap->wt_antenna = sc->tx_ant;
1075
1076                                 ieee80211_radiotap_tx(vap, m);
1077                         }
1078
1079                         /* align end on a 4-bytes boundary */
1080                         len = (RT2573_TX_DESC_SIZE + m->m_pkthdr.len + 3) & ~3;
1081                         if ((len % 64) == 0)
1082                                 len += 4;
1083
1084                         DPRINTFN(11, "sending frame len=%u xferlen=%u\n",
1085                             m->m_pkthdr.len, len);
1086
1087                         usbd_xfer_set_frame_len(xfer, 0, len);
1088                         usbd_xfer_set_priv(xfer, data);
1089
1090                         usbd_transfer_submit(xfer);
1091                 }
1092                 rum_start(sc);
1093                 break;
1094
1095         default:                        /* Error */
1096                 DPRINTFN(11, "transfer error, %s\n",
1097                     usbd_errstr(error));
1098
1099 #if defined(__DragonFly__)
1100                 ++sc->sc_ic.ic_oerrors;
1101 #else
1102                 counter_u64_add(sc->sc_ic.ic_oerrors, 1);
1103 #endif
1104                 data = usbd_xfer_get_priv(xfer);
1105                 if (data != NULL) {
1106                         rum_tx_free(data, error);
1107                         usbd_xfer_set_priv(xfer, NULL);
1108                 }
1109
1110                 if (error != USB_ERR_CANCELLED) {
1111                         if (error == USB_ERR_TIMEOUT)
1112                                 device_printf(sc->sc_dev, "device timeout\n");
1113
1114                         /*
1115                          * Try to clear stall first, also if other
1116                          * errors occur, hence clearing stall
1117                          * introduces a 50 ms delay:
1118                          */
1119                         usbd_xfer_set_stall(xfer);
1120                         goto tr_setup;
1121                 }
1122                 break;
1123         }
1124 }
1125
1126 static void
1127 rum_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
1128 {
1129         struct rum_softc *sc = usbd_xfer_softc(xfer);
1130         struct ieee80211com *ic = &sc->sc_ic;
1131         struct ieee80211_frame_min *wh;
1132         struct ieee80211_node *ni;
1133         struct mbuf *m = NULL;
1134         struct usb_page_cache *pc;
1135         uint32_t flags;
1136         uint8_t rssi = 0;
1137         int len;
1138
1139         usbd_xfer_status(xfer, &len, NULL, NULL, NULL);
1140
1141         switch (USB_GET_STATE(xfer)) {
1142         case USB_ST_TRANSFERRED:
1143
1144                 DPRINTFN(15, "rx done, actlen=%d\n", len);
1145
1146                 if (len < (int)(RT2573_RX_DESC_SIZE + IEEE80211_MIN_LEN)) {
1147                         DPRINTF("%s: xfer too short %d\n",
1148                             device_get_nameunit(sc->sc_dev), len);
1149 #if defined(__DragonFly__)
1150                         ++ic->ic_ierrors;
1151 #else
1152                         counter_u64_add(ic->ic_ierrors, 1);
1153 #endif
1154                         goto tr_setup;
1155                 }
1156
1157                 len -= RT2573_RX_DESC_SIZE;
1158                 pc = usbd_xfer_get_frame(xfer, 0);
1159                 usbd_copy_out(pc, 0, &sc->sc_rx_desc, RT2573_RX_DESC_SIZE);
1160
1161                 rssi = rum_get_rssi(sc, sc->sc_rx_desc.rssi);
1162                 flags = le32toh(sc->sc_rx_desc.flags);
1163                 sc->last_rx_flags = flags;
1164                 if (flags & RT2573_RX_CRC_ERROR) {
1165                         /*
1166                          * This should not happen since we did not
1167                          * request to receive those frames when we
1168                          * filled RUM_TXRX_CSR2:
1169                          */
1170                         DPRINTFN(5, "PHY or CRC error\n");
1171 #if defined(__DragonFly__)
1172                         ++ic->ic_ierrors;
1173 #else
1174                         counter_u64_add(ic->ic_ierrors, 1);
1175 #endif
1176                         goto tr_setup;
1177                 }
1178                 if ((flags & RT2573_RX_DEC_MASK) != RT2573_RX_DEC_OK) {
1179                         switch (flags & RT2573_RX_DEC_MASK) {
1180                         case RT2573_RX_IV_ERROR:
1181                                 DPRINTFN(5, "IV/EIV error\n");
1182                                 break;
1183                         case RT2573_RX_MIC_ERROR:
1184                                 DPRINTFN(5, "MIC error\n");
1185                                 break;
1186                         case RT2573_RX_KEY_ERROR:
1187                                 DPRINTFN(5, "Key error\n");
1188                                 break;
1189                         }
1190 #if defined(__DragonFly__)
1191                         ++ic->ic_ierrors;
1192 #else
1193                         counter_u64_add(ic->ic_ierrors, 1);
1194 #endif
1195                         goto tr_setup;
1196                 }
1197
1198                 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1199                 if (m == NULL) {
1200                         DPRINTF("could not allocate mbuf\n");
1201 #if defined(__DragonFly__)
1202                         ++ic->ic_ierrors;
1203 #else
1204                         counter_u64_add(ic->ic_ierrors, 1);
1205 #endif
1206                         goto tr_setup;
1207                 }
1208                 usbd_copy_out(pc, RT2573_RX_DESC_SIZE,
1209                     mtod(m, uint8_t *), len);
1210
1211                 wh = mtod(m, struct ieee80211_frame_min *);
1212
1213                 if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
1214                     (flags & RT2573_RX_CIP_MASK) !=
1215                      RT2573_RX_CIP_MODE(RT2573_MODE_NOSEC)) {
1216                         wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED;
1217                         m->m_flags |= M_WEP;
1218                 }
1219
1220                 /* finalize mbuf */
1221                 m->m_pkthdr.len = m->m_len = (flags >> 16) & 0xfff;
1222
1223                 if (ieee80211_radiotap_active(ic)) {
1224                         struct rum_rx_radiotap_header *tap = &sc->sc_rxtap;
1225
1226                         tap->wr_flags = 0;
1227                         tap->wr_rate = ieee80211_plcp2rate(sc->sc_rx_desc.rate,
1228                             (flags & RT2573_RX_OFDM) ?
1229                             IEEE80211_T_OFDM : IEEE80211_T_CCK);
1230                         rum_get_tsf(sc, &tap->wr_tsf);
1231                         tap->wr_antsignal = RT2573_NOISE_FLOOR + rssi;
1232                         tap->wr_antnoise = RT2573_NOISE_FLOOR;
1233                         tap->wr_antenna = sc->rx_ant;
1234                 }
1235                 /* FALLTHROUGH */
1236         case USB_ST_SETUP:
1237 tr_setup:
1238                 usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
1239                 usbd_transfer_submit(xfer);
1240
1241                 /*
1242                  * At the end of a USB callback it is always safe to unlock
1243                  * the private mutex of a device! That is why we do the
1244                  * "ieee80211_input" here, and not some lines up!
1245                  */
1246                 RUM_UNLOCK(sc);
1247                 if (m) {
1248                         if (m->m_len >= sizeof(struct ieee80211_frame_min))
1249                                 ni = ieee80211_find_rxnode(ic, wh);
1250                         else
1251                                 ni = NULL;
1252
1253                         if (ni != NULL) {
1254                                 (void) ieee80211_input(ni, m, rssi,
1255                                     RT2573_NOISE_FLOOR);
1256                                 ieee80211_free_node(ni);
1257                         } else
1258                                 (void) ieee80211_input_all(ic, m, rssi,
1259                                     RT2573_NOISE_FLOOR);
1260                 }
1261                 RUM_LOCK(sc);
1262                 rum_start(sc);
1263                 return;
1264
1265         default:                        /* Error */
1266                 if (error != USB_ERR_CANCELLED) {
1267                         /* try to clear stall first */
1268                         usbd_xfer_set_stall(xfer);
1269                         goto tr_setup;
1270                 }
1271                 return;
1272         }
1273 }
1274
1275 static uint8_t
1276 rum_plcp_signal(int rate)
1277 {
1278         switch (rate) {
1279         /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1280         case 12:        return 0xb;
1281         case 18:        return 0xf;
1282         case 24:        return 0xa;
1283         case 36:        return 0xe;
1284         case 48:        return 0x9;
1285         case 72:        return 0xd;
1286         case 96:        return 0x8;
1287         case 108:       return 0xc;
1288
1289         /* CCK rates (NB: not IEEE std, device-specific) */
1290         case 2:         return 0x0;
1291         case 4:         return 0x1;
1292         case 11:        return 0x2;
1293         case 22:        return 0x3;
1294         }
1295         return 0xff;            /* XXX unsupported/unknown rate */
1296 }
1297
1298 /*
1299  * Map net80211 cipher to RT2573 security mode.
1300  */
1301 static uint8_t
1302 rum_crypto_mode(struct rum_softc *sc, u_int cipher, int keylen)
1303 {
1304         switch (cipher) {
1305         case IEEE80211_CIPHER_WEP:
1306                 return (keylen < 8 ? RT2573_MODE_WEP40 : RT2573_MODE_WEP104);
1307         case IEEE80211_CIPHER_TKIP:
1308                 return RT2573_MODE_TKIP;
1309         case IEEE80211_CIPHER_AES_CCM:
1310                 return RT2573_MODE_AES_CCMP;
1311         default:
1312                 device_printf(sc->sc_dev, "unknown cipher %d\n", cipher);
1313                 return 0;
1314         }
1315 }
1316
1317 static void
1318 rum_setup_tx_desc(struct rum_softc *sc, struct rum_tx_desc *desc,
1319     struct ieee80211_key *k, uint32_t flags, uint8_t xflags, uint8_t qid,
1320     int hdrlen, int len, int rate)
1321 {
1322         struct ieee80211com *ic = &sc->sc_ic;
1323         struct wmeParams *wmep = &sc->wme_params[qid];
1324         uint16_t plcp_length;
1325         int remainder;
1326
1327         flags |= RT2573_TX_VALID;
1328         flags |= len << 16;
1329
1330         if (k != NULL && !(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
1331                 const struct ieee80211_cipher *cip = k->wk_cipher;
1332
1333                 len += cip->ic_header + cip->ic_trailer + cip->ic_miclen;
1334
1335                 desc->eiv = 0;          /* for WEP */
1336                 cip->ic_setiv(k, (uint8_t *)&desc->iv);
1337         }
1338
1339         /* setup PLCP fields */
1340         desc->plcp_signal  = rum_plcp_signal(rate);
1341         desc->plcp_service = 4;
1342
1343         len += IEEE80211_CRC_LEN;
1344         if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) {
1345                 flags |= RT2573_TX_OFDM;
1346
1347                 plcp_length = len & 0xfff;
1348                 desc->plcp_length_hi = plcp_length >> 6;
1349                 desc->plcp_length_lo = plcp_length & 0x3f;
1350         } else {
1351                 if (rate == 0)
1352                         rate = 2;       /* avoid division by zero */
1353                 plcp_length = howmany(16 * len, rate);
1354                 if (rate == 22) {
1355                         remainder = (16 * len) % 22;
1356                         if (remainder != 0 && remainder < 7)
1357                                 desc->plcp_service |= RT2573_PLCP_LENGEXT;
1358                 }
1359                 desc->plcp_length_hi = plcp_length >> 8;
1360                 desc->plcp_length_lo = plcp_length & 0xff;
1361
1362                 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1363                         desc->plcp_signal |= 0x08;
1364         }
1365
1366         desc->flags = htole32(flags);
1367         desc->hdrlen = hdrlen;
1368         desc->xflags = xflags;
1369
1370         desc->wme = htole16(RT2573_QID(qid) |
1371             RT2573_AIFSN(wmep->wmep_aifsn) |
1372             RT2573_LOGCWMIN(wmep->wmep_logcwmin) |
1373             RT2573_LOGCWMAX(wmep->wmep_logcwmax));
1374 }
1375
1376 static int
1377 rum_sendprot(struct rum_softc *sc,
1378     const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
1379 {
1380         struct ieee80211com *ic = ni->ni_ic;
1381         const struct ieee80211_frame *wh;
1382         struct rum_tx_data *data;
1383         struct mbuf *mprot;
1384         int protrate, pktlen, flags, isshort;
1385         uint16_t dur;
1386
1387         RUM_LOCK_ASSERT(sc);
1388         KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY,
1389             ("protection %d", prot));
1390
1391         wh = mtod(m, const struct ieee80211_frame *);
1392         pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
1393
1394         protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
1395
1396         isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
1397         dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
1398             + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1399         flags = 0;
1400         if (prot == IEEE80211_PROT_RTSCTS) {
1401                 /* NB: CTS is the same size as an ACK */
1402                 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1403                 flags |= RT2573_TX_NEED_ACK;
1404                 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
1405         } else {
1406                 mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
1407         }
1408         if (mprot == NULL) {
1409                 /* XXX stat + msg */
1410                 return (ENOBUFS);
1411         }
1412         data = STAILQ_FIRST(&sc->tx_free);
1413         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1414         sc->tx_nfree--;
1415
1416         data->m = mprot;
1417         data->ni = ieee80211_ref_node(ni);
1418         data->rate = protrate;
1419         rum_setup_tx_desc(sc, &data->desc, NULL, flags, 0, 0, 0,
1420             mprot->m_pkthdr.len, protrate);
1421
1422         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1423         usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1424
1425         return 0;
1426 }
1427
1428 static uint32_t
1429 rum_tx_crypto_flags(struct rum_softc *sc, struct ieee80211_node *ni,
1430     const struct ieee80211_key *k)
1431 {
1432         struct ieee80211vap *vap = ni->ni_vap;
1433         u_int cipher;
1434         uint32_t flags = 0;
1435         uint8_t mode, pos;
1436
1437         if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
1438                 cipher = k->wk_cipher->ic_cipher;
1439                 pos = k->wk_keyix;
1440                 mode = rum_crypto_mode(sc, cipher, k->wk_keylen);
1441                 if (mode == 0)
1442                         return 0;
1443
1444                 flags |= RT2573_TX_CIP_MODE(mode);
1445
1446                 /* Do not trust GROUP flag */
1447                 if (!(k >= &vap->iv_nw_keys[0] &&
1448                       k < &vap->iv_nw_keys[IEEE80211_WEP_NKID]))
1449                         flags |= RT2573_TX_KEY_PAIR;
1450                 else
1451                         pos += 0 * RT2573_SKEY_MAX;     /* vap id */
1452
1453                 flags |= RT2573_TX_KEY_ID(pos);
1454
1455                 if (cipher == IEEE80211_CIPHER_TKIP)
1456                         flags |= RT2573_TX_TKIPMIC;
1457         }
1458
1459         return flags;
1460 }
1461
1462 static int
1463 rum_tx_mgt(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1464 {
1465         struct ieee80211vap *vap = ni->ni_vap;
1466         struct ieee80211com *ic = &sc->sc_ic;
1467         struct rum_tx_data *data;
1468         struct ieee80211_frame *wh;
1469         const struct ieee80211_txparam *tp;
1470         struct ieee80211_key *k = NULL;
1471         uint32_t flags = 0;
1472         uint16_t dur;
1473         uint8_t ac, type, xflags = 0;
1474         int hdrlen;
1475
1476         RUM_LOCK_ASSERT(sc);
1477
1478         data = STAILQ_FIRST(&sc->tx_free);
1479         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1480         sc->tx_nfree--;
1481
1482         wh = mtod(m0, struct ieee80211_frame *);
1483         type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1484         hdrlen = ieee80211_anyhdrsize(wh);
1485         ac = M_WME_GETAC(m0);
1486
1487         if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1488                 k = ieee80211_crypto_get_txkey(ni, m0);
1489                 if (k == NULL)
1490                         return (ENOENT);
1491
1492                 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) &&
1493                     !k->wk_cipher->ic_encap(k, m0))
1494                         return (ENOBUFS);
1495
1496                 wh = mtod(m0, struct ieee80211_frame *);
1497         }
1498
1499         tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1500
1501         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1502                 flags |= RT2573_TX_NEED_ACK;
1503
1504                 dur = ieee80211_ack_duration(ic->ic_rt, tp->mgmtrate, 
1505                     ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1506                 USETW(wh->i_dur, dur);
1507
1508                 /* tell hardware to add timestamp for probe responses */
1509                 if (type == IEEE80211_FC0_TYPE_MGT &&
1510                     (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1511                     IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1512                         flags |= RT2573_TX_TIMESTAMP;
1513         }
1514
1515         if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh))
1516                 xflags |= RT2573_TX_HWSEQ;
1517
1518         if (k != NULL)
1519                 flags |= rum_tx_crypto_flags(sc, ni, k);
1520
1521         data->m = m0;
1522         data->ni = ni;
1523         data->rate = tp->mgmtrate;
1524
1525         rum_setup_tx_desc(sc, &data->desc, k, flags, xflags, ac, hdrlen,
1526             m0->m_pkthdr.len, tp->mgmtrate);
1527
1528         DPRINTFN(10, "sending mgt frame len=%d rate=%d\n",
1529             m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, tp->mgmtrate);
1530
1531         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1532         usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1533
1534         return (0);
1535 }
1536
1537 static int
1538 rum_tx_raw(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1539     const struct ieee80211_bpf_params *params)
1540 {
1541         struct ieee80211com *ic = ni->ni_ic;
1542         struct ieee80211_frame *wh;
1543         struct rum_tx_data *data;
1544         uint32_t flags;
1545         uint8_t ac, type, xflags = 0;
1546         int rate, error;
1547
1548         RUM_LOCK_ASSERT(sc);
1549
1550         wh = mtod(m0, struct ieee80211_frame *);
1551         type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1552
1553         ac = params->ibp_pri & 3;
1554
1555         rate = params->ibp_rate0;
1556         if (!ieee80211_isratevalid(ic->ic_rt, rate))
1557                 return (EINVAL);
1558
1559         flags = 0;
1560         if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
1561                 flags |= RT2573_TX_NEED_ACK;
1562         if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
1563                 error = rum_sendprot(sc, m0, ni,
1564                     params->ibp_flags & IEEE80211_BPF_RTS ?
1565                          IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
1566                     rate);
1567                 if (error || sc->tx_nfree == 0)
1568                         return (ENOBUFS);
1569
1570                 flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1571         }
1572
1573         if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh))
1574                 xflags |= RT2573_TX_HWSEQ;
1575
1576         data = STAILQ_FIRST(&sc->tx_free);
1577         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1578         sc->tx_nfree--;
1579
1580         data->m = m0;
1581         data->ni = ni;
1582         data->rate = rate;
1583
1584         /* XXX need to setup descriptor ourself */
1585         rum_setup_tx_desc(sc, &data->desc, NULL, flags, xflags, ac, 0,
1586             m0->m_pkthdr.len, rate);
1587
1588         DPRINTFN(10, "sending raw frame len=%u rate=%u\n",
1589             m0->m_pkthdr.len, rate);
1590
1591         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1592         usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1593
1594         return 0;
1595 }
1596
1597 static int
1598 rum_tx_data(struct rum_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
1599 {
1600         struct ieee80211vap *vap = ni->ni_vap;
1601         struct ieee80211com *ic = &sc->sc_ic;
1602         struct rum_tx_data *data;
1603         struct ieee80211_frame *wh;
1604         const struct ieee80211_txparam *tp;
1605         struct ieee80211_key *k = NULL;
1606         uint32_t flags = 0;
1607         uint16_t dur;
1608         uint8_t ac, type, qos, xflags = 0;
1609         int error, hdrlen, rate;
1610
1611         RUM_LOCK_ASSERT(sc);
1612
1613         wh = mtod(m0, struct ieee80211_frame *);
1614         type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
1615         hdrlen = ieee80211_anyhdrsize(wh);
1616
1617         if (IEEE80211_QOS_HAS_SEQ(wh))
1618                 qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
1619         else
1620                 qos = 0;
1621         ac = M_WME_GETAC(m0);
1622
1623         tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1624         if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1625                 rate = tp->mcastrate;
1626         else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
1627                 rate = tp->ucastrate;
1628         else
1629                 rate = ni->ni_txrate;
1630
1631         if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1632                 k = ieee80211_crypto_get_txkey(ni, m0);
1633                 if (k == NULL) {
1634                         m_freem(m0);
1635                         return (ENOENT);
1636                 }
1637                 if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) &&
1638                     !k->wk_cipher->ic_encap(k, m0)) {
1639                         m_freem(m0);
1640                         return (ENOBUFS);
1641                 }
1642
1643                 /* packet header may have moved, reset our local pointer */
1644                 wh = mtod(m0, struct ieee80211_frame *);
1645         }
1646
1647         if (type != IEEE80211_FC0_TYPE_CTL && !IEEE80211_QOS_HAS_SEQ(wh))
1648                 xflags |= RT2573_TX_HWSEQ;
1649
1650         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1651                 int prot = IEEE80211_PROT_NONE;
1652                 if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
1653                         prot = IEEE80211_PROT_RTSCTS;
1654                 else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1655                     ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM)
1656                         prot = ic->ic_protmode;
1657                 if (prot != IEEE80211_PROT_NONE) {
1658                         error = rum_sendprot(sc, m0, ni, prot, rate);
1659                         if (error || sc->tx_nfree == 0) {
1660                                 m_freem(m0);
1661                                 return ENOBUFS;
1662                         }
1663                         flags |= RT2573_TX_LONG_RETRY | RT2573_TX_IFS_SIFS;
1664                 }
1665         }
1666
1667         if (k != NULL)
1668                 flags |= rum_tx_crypto_flags(sc, ni, k);
1669
1670         data = STAILQ_FIRST(&sc->tx_free);
1671         STAILQ_REMOVE_HEAD(&sc->tx_free, next);
1672         sc->tx_nfree--;
1673
1674         data->m = m0;
1675         data->ni = ni;
1676         data->rate = rate;
1677
1678         if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1679                 /* Unicast frame, check if an ACK is expected. */
1680                 if (!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
1681                     IEEE80211_QOS_ACKPOLICY_NOACK)
1682                         flags |= RT2573_TX_NEED_ACK;
1683
1684                 dur = ieee80211_ack_duration(ic->ic_rt, rate,
1685                     ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1686                 USETW(wh->i_dur, dur);
1687         }
1688
1689         rum_setup_tx_desc(sc, &data->desc, k, flags, xflags, ac, hdrlen,
1690             m0->m_pkthdr.len, rate);
1691
1692         DPRINTFN(10, "sending frame len=%d rate=%d\n",
1693             m0->m_pkthdr.len + (int)RT2573_TX_DESC_SIZE, rate);
1694
1695         STAILQ_INSERT_TAIL(&sc->tx_q, data, next);
1696         usbd_transfer_start(sc->sc_xfer[RUM_BULK_WR]);
1697
1698         return 0;
1699 }
1700
1701 static int
1702 rum_transmit(struct ieee80211com *ic, struct mbuf *m)
1703 {
1704         struct rum_softc *sc = ic->ic_softc;
1705         int error;
1706
1707         RUM_LOCK(sc);
1708         if (!sc->sc_running) {
1709                 RUM_UNLOCK(sc);
1710                 return (ENXIO);
1711         }
1712         error = mbufq_enqueue(&sc->sc_snd, m);
1713         if (error) {
1714                 RUM_UNLOCK(sc);
1715                 return (error);
1716         }
1717         rum_start(sc);
1718         RUM_UNLOCK(sc);
1719
1720         return (0);
1721 }
1722
1723 static void
1724 rum_start(struct rum_softc *sc)
1725 {
1726         struct ieee80211_node *ni;
1727         struct mbuf *m;
1728
1729         RUM_LOCK_ASSERT(sc);
1730
1731         if (!sc->sc_running)
1732                 return;
1733
1734         while (sc->tx_nfree >= RUM_TX_MINFREE &&
1735             (m = mbufq_dequeue(&sc->sc_snd)) != NULL) {
1736                 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1737                 if (rum_tx_data(sc, m, ni) != 0) {
1738                         if_inc_counter(ni->ni_vap->iv_ifp,
1739                             IFCOUNTER_OERRORS, 1);
1740                         ieee80211_free_node(ni);
1741                         break;
1742                 }
1743         }
1744 }
1745
1746 static void
1747 rum_parent(struct ieee80211com *ic)
1748 {
1749         struct rum_softc *sc = ic->ic_softc;
1750         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1751
1752         RUM_LOCK(sc);
1753         if (sc->sc_detached) {
1754                 RUM_UNLOCK(sc);
1755                 return;
1756         }
1757         RUM_UNLOCK(sc);
1758
1759         if (ic->ic_nrunning > 0) {
1760                 if (rum_init(sc) == 0)
1761                         ieee80211_start_all(ic);
1762                 else
1763                         ieee80211_stop(vap);
1764         } else
1765                 rum_stop(sc);
1766 }
1767
1768 static void
1769 rum_eeprom_read(struct rum_softc *sc, uint16_t addr, void *buf, int len)
1770 {
1771         struct usb_device_request req;
1772         usb_error_t error;
1773
1774         req.bmRequestType = UT_READ_VENDOR_DEVICE;
1775         req.bRequest = RT2573_READ_EEPROM;
1776         USETW(req.wValue, 0);
1777         USETW(req.wIndex, addr);
1778         USETW(req.wLength, len);
1779
1780         error = rum_do_request(sc, &req, buf);
1781         if (error != 0) {
1782                 device_printf(sc->sc_dev, "could not read EEPROM: %s\n",
1783                     usbd_errstr(error));
1784         }
1785 }
1786
1787 static uint32_t
1788 rum_read(struct rum_softc *sc, uint16_t reg)
1789 {
1790         uint32_t val;
1791
1792         rum_read_multi(sc, reg, &val, sizeof val);
1793
1794         return le32toh(val);
1795 }
1796
1797 static void
1798 rum_read_multi(struct rum_softc *sc, uint16_t reg, void *buf, int len)
1799 {
1800         struct usb_device_request req;
1801         usb_error_t error;
1802
1803         req.bmRequestType = UT_READ_VENDOR_DEVICE;
1804         req.bRequest = RT2573_READ_MULTI_MAC;
1805         USETW(req.wValue, 0);
1806         USETW(req.wIndex, reg);
1807         USETW(req.wLength, len);
1808
1809         error = rum_do_request(sc, &req, buf);
1810         if (error != 0) {
1811                 device_printf(sc->sc_dev,
1812                     "could not multi read MAC register: %s\n",
1813                     usbd_errstr(error));
1814         }
1815 }
1816
1817 static usb_error_t
1818 rum_write(struct rum_softc *sc, uint16_t reg, uint32_t val)
1819 {
1820         uint32_t tmp = htole32(val);
1821
1822         return (rum_write_multi(sc, reg, &tmp, sizeof tmp));
1823 }
1824
1825 static usb_error_t
1826 rum_write_multi(struct rum_softc *sc, uint16_t reg, void *buf, size_t len)
1827 {
1828         struct usb_device_request req;
1829         usb_error_t error;
1830         size_t offset;
1831
1832         req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
1833         req.bRequest = RT2573_WRITE_MULTI_MAC;
1834         USETW(req.wValue, 0);
1835
1836         /* write at most 64 bytes at a time */
1837         for (offset = 0; offset < len; offset += 64) {
1838                 USETW(req.wIndex, reg + offset);
1839                 USETW(req.wLength, MIN(len - offset, 64));
1840
1841                 error = rum_do_request(sc, &req, (char *)buf + offset);
1842                 if (error != 0) {
1843                         device_printf(sc->sc_dev,
1844                             "could not multi write MAC register: %s\n",
1845                             usbd_errstr(error));
1846                         return (error);
1847                 }
1848         }
1849
1850         return (USB_ERR_NORMAL_COMPLETION);
1851 }
1852
1853 static usb_error_t
1854 rum_setbits(struct rum_softc *sc, uint16_t reg, uint32_t mask)
1855 {
1856         return (rum_write(sc, reg, rum_read(sc, reg) | mask));
1857 }
1858
1859 static usb_error_t
1860 rum_clrbits(struct rum_softc *sc, uint16_t reg, uint32_t mask)
1861 {
1862         return (rum_write(sc, reg, rum_read(sc, reg) & ~mask));
1863 }
1864
1865 static usb_error_t
1866 rum_modbits(struct rum_softc *sc, uint16_t reg, uint32_t set, uint32_t unset)
1867 {
1868         return (rum_write(sc, reg, (rum_read(sc, reg) & ~unset) | set));
1869 }
1870
1871 static int
1872 rum_bbp_busy(struct rum_softc *sc)
1873 {
1874         int ntries;
1875
1876         for (ntries = 0; ntries < 100; ntries++) {
1877                 if (!(rum_read(sc, RT2573_PHY_CSR3) & RT2573_BBP_BUSY))
1878                         break;
1879                 if (rum_pause(sc, hz / 100))
1880                         break;
1881         }
1882         if (ntries == 100)
1883                 return (ETIMEDOUT);
1884
1885         return (0);
1886 }
1887
1888 static void
1889 rum_bbp_write(struct rum_softc *sc, uint8_t reg, uint8_t val)
1890 {
1891         uint32_t tmp;
1892
1893         DPRINTFN(2, "reg=0x%08x\n", reg);
1894
1895         if (rum_bbp_busy(sc) != 0) {
1896                 device_printf(sc->sc_dev, "could not write to BBP\n");
1897                 return;
1898         }
1899
1900         tmp = RT2573_BBP_BUSY | (reg & 0x7f) << 8 | val;
1901         rum_write(sc, RT2573_PHY_CSR3, tmp);
1902 }
1903
1904 static uint8_t
1905 rum_bbp_read(struct rum_softc *sc, uint8_t reg)
1906 {
1907         uint32_t val;
1908         int ntries;
1909
1910         DPRINTFN(2, "reg=0x%08x\n", reg);
1911
1912         if (rum_bbp_busy(sc) != 0) {
1913                 device_printf(sc->sc_dev, "could not read BBP\n");
1914                 return 0;
1915         }
1916
1917         val = RT2573_BBP_BUSY | RT2573_BBP_READ | reg << 8;
1918         rum_write(sc, RT2573_PHY_CSR3, val);
1919
1920         for (ntries = 0; ntries < 100; ntries++) {
1921                 val = rum_read(sc, RT2573_PHY_CSR3);
1922                 if (!(val & RT2573_BBP_BUSY))
1923                         return val & 0xff;
1924                 if (rum_pause(sc, hz / 100))
1925                         break;
1926         }
1927
1928         device_printf(sc->sc_dev, "could not read BBP\n");
1929         return 0;
1930 }
1931
1932 static void
1933 rum_rf_write(struct rum_softc *sc, uint8_t reg, uint32_t val)
1934 {
1935         uint32_t tmp;
1936         int ntries;
1937
1938         for (ntries = 0; ntries < 100; ntries++) {
1939                 if (!(rum_read(sc, RT2573_PHY_CSR4) & RT2573_RF_BUSY))
1940                         break;
1941                 if (rum_pause(sc, hz / 100))
1942                         break;
1943         }
1944         if (ntries == 100) {
1945                 device_printf(sc->sc_dev, "could not write to RF\n");
1946                 return;
1947         }
1948
1949         tmp = RT2573_RF_BUSY | RT2573_RF_20BIT | (val & 0xfffff) << 2 |
1950             (reg & 3);
1951         rum_write(sc, RT2573_PHY_CSR4, tmp);
1952
1953         /* remember last written value in sc */
1954         sc->rf_regs[reg] = val;
1955
1956         DPRINTFN(15, "RF R[%u] <- 0x%05x\n", reg & 3, val & 0xfffff);
1957 }
1958
1959 static void
1960 rum_select_antenna(struct rum_softc *sc)
1961 {
1962         uint8_t bbp4, bbp77;
1963         uint32_t tmp;
1964
1965         bbp4  = rum_bbp_read(sc, 4);
1966         bbp77 = rum_bbp_read(sc, 77);
1967
1968         /* TBD */
1969
1970         /* make sure Rx is disabled before switching antenna */
1971         tmp = rum_read(sc, RT2573_TXRX_CSR0);
1972         rum_write(sc, RT2573_TXRX_CSR0, tmp | RT2573_DISABLE_RX);
1973
1974         rum_bbp_write(sc,  4, bbp4);
1975         rum_bbp_write(sc, 77, bbp77);
1976
1977         rum_write(sc, RT2573_TXRX_CSR0, tmp);
1978 }
1979
1980 /*
1981  * Enable multi-rate retries for frames sent at OFDM rates.
1982  * In 802.11b/g mode, allow fallback to CCK rates.
1983  */
1984 static void
1985 rum_enable_mrr(struct rum_softc *sc)
1986 {
1987         struct ieee80211com *ic = &sc->sc_ic;
1988
1989         if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) {
1990                 rum_setbits(sc, RT2573_TXRX_CSR4,
1991                     RT2573_MRR_ENABLED | RT2573_MRR_CCK_FALLBACK);
1992         } else {
1993                 rum_modbits(sc, RT2573_TXRX_CSR4,
1994                     RT2573_MRR_ENABLED, RT2573_MRR_CCK_FALLBACK);
1995         }
1996 }
1997
1998 static void
1999 rum_set_txpreamble(struct rum_softc *sc)
2000 {
2001         struct ieee80211com *ic = &sc->sc_ic;
2002
2003         if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2004                 rum_setbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_PREAMBLE);
2005         else
2006                 rum_clrbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_PREAMBLE);
2007 }
2008
2009 static void
2010 rum_set_basicrates(struct rum_softc *sc)
2011 {
2012         struct ieee80211com *ic = &sc->sc_ic;
2013
2014         /* update basic rate set */
2015         if (ic->ic_curmode == IEEE80211_MODE_11B) {
2016                 /* 11b basic rates: 1, 2Mbps */
2017                 rum_write(sc, RT2573_TXRX_CSR5, 0x3);
2018         } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan)) {
2019                 /* 11a basic rates: 6, 12, 24Mbps */
2020                 rum_write(sc, RT2573_TXRX_CSR5, 0x150);
2021         } else {
2022                 /* 11b/g basic rates: 1, 2, 5.5, 11Mbps */
2023                 rum_write(sc, RT2573_TXRX_CSR5, 0xf);
2024         }
2025 }
2026
2027 /*
2028  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
2029  * driver.
2030  */
2031 static void
2032 rum_select_band(struct rum_softc *sc, struct ieee80211_channel *c)
2033 {
2034         uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
2035
2036         /* update all BBP registers that depend on the band */
2037         bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
2038         bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
2039         if (IEEE80211_IS_CHAN_5GHZ(c)) {
2040                 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
2041                 bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
2042         }
2043         if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2044             (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2045                 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
2046         }
2047
2048         sc->bbp17 = bbp17;
2049         rum_bbp_write(sc,  17, bbp17);
2050         rum_bbp_write(sc,  96, bbp96);
2051         rum_bbp_write(sc, 104, bbp104);
2052
2053         if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2054             (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2055                 rum_bbp_write(sc, 75, 0x80);
2056                 rum_bbp_write(sc, 86, 0x80);
2057                 rum_bbp_write(sc, 88, 0x80);
2058         }
2059
2060         rum_bbp_write(sc, 35, bbp35);
2061         rum_bbp_write(sc, 97, bbp97);
2062         rum_bbp_write(sc, 98, bbp98);
2063
2064         if (IEEE80211_IS_CHAN_2GHZ(c)) {
2065                 rum_modbits(sc, RT2573_PHY_CSR0, RT2573_PA_PE_2GHZ,
2066                     RT2573_PA_PE_5GHZ);
2067         } else {
2068                 rum_modbits(sc, RT2573_PHY_CSR0, RT2573_PA_PE_5GHZ,
2069                     RT2573_PA_PE_2GHZ);
2070         }
2071 }
2072
2073 static void
2074 rum_set_chan(struct rum_softc *sc, struct ieee80211_channel *c)
2075 {
2076         struct ieee80211com *ic = &sc->sc_ic;
2077         const struct rfprog *rfprog;
2078         uint8_t bbp3, bbp94 = RT2573_BBPR94_DEFAULT;
2079         int8_t power;
2080         int i, chan;
2081
2082         chan = ieee80211_chan2ieee(ic, c);
2083         if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2084                 return;
2085
2086         /* select the appropriate RF settings based on what EEPROM says */
2087         rfprog = (sc->rf_rev == RT2573_RF_5225 ||
2088                   sc->rf_rev == RT2573_RF_2527) ? rum_rf5225 : rum_rf5226;
2089
2090         /* find the settings for this channel (we know it exists) */
2091         for (i = 0; rfprog[i].chan != chan; i++);
2092
2093         power = sc->txpow[i];
2094         if (power < 0) {
2095                 bbp94 += power;
2096                 power = 0;
2097         } else if (power > 31) {
2098                 bbp94 += power - 31;
2099                 power = 31;
2100         }
2101
2102         /*
2103          * If we are switching from the 2GHz band to the 5GHz band or
2104          * vice-versa, BBP registers need to be reprogrammed.
2105          */
2106         if (c->ic_flags != ic->ic_curchan->ic_flags) {
2107                 rum_select_band(sc, c);
2108                 rum_select_antenna(sc);
2109         }
2110         ic->ic_curchan = c;
2111
2112         rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
2113         rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
2114         rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
2115         rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
2116
2117         rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
2118         rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
2119         rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7 | 1);
2120         rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
2121
2122         rum_rf_write(sc, RT2573_RF1, rfprog[i].r1);
2123         rum_rf_write(sc, RT2573_RF2, rfprog[i].r2);
2124         rum_rf_write(sc, RT2573_RF3, rfprog[i].r3 | power << 7);
2125         rum_rf_write(sc, RT2573_RF4, rfprog[i].r4 | sc->rffreq << 10);
2126
2127         rum_pause(sc, hz / 100);
2128
2129         /* enable smart mode for MIMO-capable RFs */
2130         bbp3 = rum_bbp_read(sc, 3);
2131
2132         bbp3 &= ~RT2573_SMART_MODE;
2133         if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_2527)
2134                 bbp3 |= RT2573_SMART_MODE;
2135
2136         rum_bbp_write(sc, 3, bbp3);
2137
2138         if (bbp94 != RT2573_BBPR94_DEFAULT)
2139                 rum_bbp_write(sc, 94, bbp94);
2140
2141         /* give the chip some extra time to do the switchover */
2142         rum_pause(sc, hz / 100);
2143 }
2144
2145 static void
2146 rum_set_maxretry(struct rum_softc *sc, struct ieee80211vap *vap)
2147 {
2148         const struct ieee80211_txparam *tp;
2149         struct ieee80211_node *ni = vap->iv_bss;
2150         struct rum_vap *rvp = RUM_VAP(vap);
2151
2152         tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
2153         rvp->maxretry = tp->maxretry < 0xf ? tp->maxretry : 0xf;
2154
2155         rum_modbits(sc, RT2573_TXRX_CSR4, RT2573_SHORT_RETRY(rvp->maxretry) |
2156             RT2573_LONG_RETRY(rvp->maxretry),
2157             RT2573_SHORT_RETRY_MASK | RT2573_LONG_RETRY_MASK);
2158 }
2159
2160 /*
2161  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
2162  * and HostAP operating modes.
2163  */
2164 static int
2165 rum_enable_tsf_sync(struct rum_softc *sc)
2166 {
2167         struct ieee80211com *ic = &sc->sc_ic;
2168         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2169         uint32_t tmp;
2170         uint16_t bintval;
2171
2172         if (vap->iv_opmode != IEEE80211_M_STA) {
2173                 /*
2174                  * Change default 16ms TBTT adjustment to 8ms.
2175                  * Must be done before enabling beacon generation.
2176                  */
2177                 if (rum_write(sc, RT2573_TXRX_CSR10, 1 << 12 | 8) != 0)
2178                         return EIO;
2179         }
2180
2181         tmp = rum_read(sc, RT2573_TXRX_CSR9) & 0xff000000;
2182
2183         /* set beacon interval (in 1/16ms unit) */
2184         bintval = vap->iv_bss->ni_intval;
2185         tmp |= bintval * 16;
2186         tmp |= RT2573_TSF_TIMER_EN | RT2573_TBTT_TIMER_EN;
2187
2188         switch (vap->iv_opmode) {
2189         case IEEE80211_M_STA:
2190                 /*
2191                  * Local TSF is always updated with remote TSF on beacon
2192                  * reception.
2193                  */
2194                 tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_STA);
2195                 break;
2196         case IEEE80211_M_IBSS:
2197                 /*
2198                  * Local TSF is updated with remote TSF on beacon reception
2199                  * only if the remote TSF is greater than local TSF.
2200                  */
2201                 tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_IBSS);
2202                 tmp |= RT2573_BCN_TX_EN;
2203                 break;
2204         case IEEE80211_M_HOSTAP:
2205                 /* SYNC with nobody */
2206                 tmp |= RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_HOSTAP);
2207                 tmp |= RT2573_BCN_TX_EN;
2208                 break;
2209         default:
2210                 device_printf(sc->sc_dev,
2211                     "Enabling TSF failed. undefined opmode %d\n",
2212                     vap->iv_opmode);
2213                 return EINVAL;
2214         }
2215
2216         if (rum_write(sc, RT2573_TXRX_CSR9, tmp) != 0)
2217                 return EIO;
2218
2219         /* refresh current sleep time */
2220         return (rum_set_sleep_time(sc, bintval));
2221 }
2222
2223 static void
2224 rum_enable_tsf(struct rum_softc *sc)
2225 {
2226         rum_modbits(sc, RT2573_TXRX_CSR9, RT2573_TSF_TIMER_EN |
2227             RT2573_TSF_SYNC_MODE(RT2573_TSF_SYNC_MODE_DIS), 0x00ffffff);
2228 }
2229
2230 static void
2231 rum_abort_tsf_sync(struct rum_softc *sc)
2232 {
2233         rum_clrbits(sc, RT2573_TXRX_CSR9, 0x00ffffff);
2234 }
2235
2236 static void
2237 rum_get_tsf(struct rum_softc *sc, uint64_t *buf)
2238 {
2239         rum_read_multi(sc, RT2573_TXRX_CSR12, buf, sizeof (*buf));
2240 }
2241
2242 static void
2243 rum_update_slot_cb(struct rum_softc *sc, union sec_param *data, uint8_t rvp_id)
2244 {
2245         struct ieee80211com *ic = &sc->sc_ic;
2246         uint8_t slottime;
2247
2248         slottime = IEEE80211_GET_SLOTTIME(ic);
2249
2250         rum_modbits(sc, RT2573_MAC_CSR9, slottime, 0xff);
2251
2252         DPRINTF("setting slot time to %uus\n", slottime);
2253 }
2254
2255 static void
2256 rum_update_slot(struct ieee80211com *ic)
2257 {
2258         rum_cmd_sleepable(ic->ic_softc, NULL, 0, 0, rum_update_slot_cb);
2259 }
2260
2261 static int
2262 rum_wme_update(struct ieee80211com *ic)
2263 {
2264         const struct wmeParams *chanp =
2265             ic->ic_wme.wme_chanParams.cap_wmeParams;
2266         struct rum_softc *sc = ic->ic_softc;
2267         int error = 0;
2268
2269         RUM_LOCK(sc);
2270         error = rum_write(sc, RT2573_AIFSN_CSR,
2271             chanp[WME_AC_VO].wmep_aifsn  << 12 |
2272             chanp[WME_AC_VI].wmep_aifsn  <<  8 |
2273             chanp[WME_AC_BK].wmep_aifsn  <<  4 |
2274             chanp[WME_AC_BE].wmep_aifsn);
2275         if (error)
2276                 goto print_err;
2277         error = rum_write(sc, RT2573_CWMIN_CSR,
2278             chanp[WME_AC_VO].wmep_logcwmin << 12 |
2279             chanp[WME_AC_VI].wmep_logcwmin <<  8 |
2280             chanp[WME_AC_BK].wmep_logcwmin <<  4 |
2281             chanp[WME_AC_BE].wmep_logcwmin);
2282         if (error)
2283                 goto print_err;
2284         error = rum_write(sc, RT2573_CWMAX_CSR,
2285             chanp[WME_AC_VO].wmep_logcwmax << 12 |
2286             chanp[WME_AC_VI].wmep_logcwmax <<  8 |
2287             chanp[WME_AC_BK].wmep_logcwmax <<  4 |
2288             chanp[WME_AC_BE].wmep_logcwmax);
2289         if (error)
2290                 goto print_err;
2291         error = rum_write(sc, RT2573_TXOP01_CSR,
2292             chanp[WME_AC_BK].wmep_txopLimit << 16 |
2293             chanp[WME_AC_BE].wmep_txopLimit);
2294         if (error)
2295                 goto print_err;
2296         error = rum_write(sc, RT2573_TXOP23_CSR,
2297             chanp[WME_AC_VO].wmep_txopLimit << 16 |
2298             chanp[WME_AC_VI].wmep_txopLimit);
2299         if (error)
2300                 goto print_err;
2301
2302         memcpy(sc->wme_params, chanp, sizeof(*chanp) * WME_NUM_AC);
2303
2304 print_err:
2305         RUM_UNLOCK(sc);
2306         if (error != 0) {
2307                 device_printf(sc->sc_dev, "%s: WME update failed, error %d\n",
2308                     __func__, error);
2309         }
2310
2311         return (error);
2312 }
2313
2314 static void
2315 rum_set_bssid(struct rum_softc *sc, const uint8_t *bssid)
2316 {
2317
2318         rum_write(sc, RT2573_MAC_CSR4,
2319             bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24);
2320         rum_write(sc, RT2573_MAC_CSR5,
2321             bssid[4] | bssid[5] << 8 | RT2573_NUM_BSSID_MSK(1));
2322 }
2323
2324 static void
2325 rum_set_macaddr(struct rum_softc *sc, const uint8_t *addr)
2326 {
2327
2328         rum_write(sc, RT2573_MAC_CSR2,
2329             addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
2330         rum_write(sc, RT2573_MAC_CSR3,
2331             addr[4] | addr[5] << 8 | 0xff << 16);
2332 }
2333
2334 static void
2335 rum_setpromisc(struct rum_softc *sc)
2336 {
2337         struct ieee80211com *ic = &sc->sc_ic;
2338
2339         if (ic->ic_promisc == 0)
2340                 rum_setbits(sc, RT2573_TXRX_CSR0, RT2573_DROP_NOT_TO_ME);
2341         else
2342                 rum_clrbits(sc, RT2573_TXRX_CSR0, RT2573_DROP_NOT_TO_ME);
2343
2344         DPRINTF("%s promiscuous mode\n", ic->ic_promisc > 0 ?
2345             "entering" : "leaving");
2346 }
2347
2348 static void
2349 rum_update_promisc(struct ieee80211com *ic)
2350 {
2351         struct rum_softc *sc = ic->ic_softc;
2352
2353         RUM_LOCK(sc);
2354         if (sc->sc_running)
2355                 rum_setpromisc(sc);
2356         RUM_UNLOCK(sc);
2357 }
2358
2359 static void
2360 rum_update_mcast(struct ieee80211com *ic)
2361 {
2362         /* Ignore. */
2363 }
2364
2365 static const char *
2366 rum_get_rf(int rev)
2367 {
2368         switch (rev) {
2369         case RT2573_RF_2527:    return "RT2527 (MIMO XR)";
2370         case RT2573_RF_2528:    return "RT2528";
2371         case RT2573_RF_5225:    return "RT5225 (MIMO XR)";
2372         case RT2573_RF_5226:    return "RT5226";
2373         default:                return "unknown";
2374         }
2375 }
2376
2377 static void
2378 rum_read_eeprom(struct rum_softc *sc)
2379 {
2380         uint16_t val;
2381 #ifdef RUM_DEBUG
2382         int i;
2383 #endif
2384
2385         /* read MAC address */
2386         rum_eeprom_read(sc, RT2573_EEPROM_ADDRESS, sc->sc_ic.ic_macaddr, 6);
2387
2388         rum_eeprom_read(sc, RT2573_EEPROM_ANTENNA, &val, 2);
2389         val = le16toh(val);
2390         sc->rf_rev =   (val >> 11) & 0x1f;
2391         sc->hw_radio = (val >> 10) & 0x1;
2392         sc->rx_ant =   (val >> 4)  & 0x3;
2393         sc->tx_ant =   (val >> 2)  & 0x3;
2394         sc->nb_ant =   val & 0x3;
2395
2396         DPRINTF("RF revision=%d\n", sc->rf_rev);
2397
2398         rum_eeprom_read(sc, RT2573_EEPROM_CONFIG2, &val, 2);
2399         val = le16toh(val);
2400         sc->ext_5ghz_lna = (val >> 6) & 0x1;
2401         sc->ext_2ghz_lna = (val >> 4) & 0x1;
2402
2403         DPRINTF("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
2404             sc->ext_2ghz_lna, sc->ext_5ghz_lna);
2405
2406         rum_eeprom_read(sc, RT2573_EEPROM_RSSI_2GHZ_OFFSET, &val, 2);
2407         val = le16toh(val);
2408         if ((val & 0xff) != 0xff)
2409                 sc->rssi_2ghz_corr = (int8_t)(val & 0xff);      /* signed */
2410
2411         /* Only [-10, 10] is valid */
2412         if (sc->rssi_2ghz_corr < -10 || sc->rssi_2ghz_corr > 10)
2413                 sc->rssi_2ghz_corr = 0;
2414
2415         rum_eeprom_read(sc, RT2573_EEPROM_RSSI_5GHZ_OFFSET, &val, 2);
2416         val = le16toh(val);
2417         if ((val & 0xff) != 0xff)
2418                 sc->rssi_5ghz_corr = (int8_t)(val & 0xff);      /* signed */
2419
2420         /* Only [-10, 10] is valid */
2421         if (sc->rssi_5ghz_corr < -10 || sc->rssi_5ghz_corr > 10)
2422                 sc->rssi_5ghz_corr = 0;
2423
2424         if (sc->ext_2ghz_lna)
2425                 sc->rssi_2ghz_corr -= 14;
2426         if (sc->ext_5ghz_lna)
2427                 sc->rssi_5ghz_corr -= 14;
2428
2429         DPRINTF("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
2430             sc->rssi_2ghz_corr, sc->rssi_5ghz_corr);
2431
2432         rum_eeprom_read(sc, RT2573_EEPROM_FREQ_OFFSET, &val, 2);
2433         val = le16toh(val);
2434         if ((val & 0xff) != 0xff)
2435                 sc->rffreq = val & 0xff;
2436
2437         DPRINTF("RF freq=%d\n", sc->rffreq);
2438
2439         /* read Tx power for all a/b/g channels */
2440         rum_eeprom_read(sc, RT2573_EEPROM_TXPOWER, sc->txpow, 14);
2441         /* XXX default Tx power for 802.11a channels */
2442         memset(sc->txpow + 14, 24, sizeof (sc->txpow) - 14);
2443 #ifdef RUM_DEBUG
2444         for (i = 0; i < 14; i++)
2445                 DPRINTF("Channel=%d Tx power=%d\n", i + 1,  sc->txpow[i]);
2446 #endif
2447
2448         /* read default values for BBP registers */
2449         rum_eeprom_read(sc, RT2573_EEPROM_BBP_BASE, sc->bbp_prom, 2 * 16);
2450 #ifdef RUM_DEBUG
2451         for (i = 0; i < 14; i++) {
2452                 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
2453                         continue;
2454                 DPRINTF("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
2455                     sc->bbp_prom[i].val);
2456         }
2457 #endif
2458 }
2459
2460 static int
2461 rum_bbp_wakeup(struct rum_softc *sc)
2462 {
2463         unsigned int ntries;
2464
2465         for (ntries = 0; ntries < 100; ntries++) {
2466                 if (rum_read(sc, RT2573_MAC_CSR12) & 8)
2467                         break;
2468                 rum_write(sc, RT2573_MAC_CSR12, 4);     /* force wakeup */
2469                 if (rum_pause(sc, hz / 100))
2470                         break;
2471         }
2472         if (ntries == 100) {
2473                 device_printf(sc->sc_dev,
2474                     "timeout waiting for BBP/RF to wakeup\n");
2475                 return (ETIMEDOUT);
2476         }
2477
2478         return (0);
2479 }
2480
2481 static int
2482 rum_bbp_init(struct rum_softc *sc)
2483 {
2484         int i, ntries;
2485
2486         /* wait for BBP to be ready */
2487         for (ntries = 0; ntries < 100; ntries++) {
2488                 const uint8_t val = rum_bbp_read(sc, 0);
2489                 if (val != 0 && val != 0xff)
2490                         break;
2491                 if (rum_pause(sc, hz / 100))
2492                         break;
2493         }
2494         if (ntries == 100) {
2495                 device_printf(sc->sc_dev, "timeout waiting for BBP\n");
2496                 return EIO;
2497         }
2498
2499         /* initialize BBP registers to default values */
2500         for (i = 0; i < nitems(rum_def_bbp); i++)
2501                 rum_bbp_write(sc, rum_def_bbp[i].reg, rum_def_bbp[i].val);
2502
2503         /* write vendor-specific BBP values (from EEPROM) */
2504         for (i = 0; i < 16; i++) {
2505                 if (sc->bbp_prom[i].reg == 0 || sc->bbp_prom[i].reg == 0xff)
2506                         continue;
2507                 rum_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2508         }
2509
2510         return 0;
2511 }
2512
2513 static void
2514 rum_clr_shkey_regs(struct rum_softc *sc)
2515 {
2516         rum_write(sc, RT2573_SEC_CSR0, 0);
2517         rum_write(sc, RT2573_SEC_CSR1, 0);
2518         rum_write(sc, RT2573_SEC_CSR5, 0);
2519 }
2520
2521 static int
2522 rum_init(struct rum_softc *sc)
2523 {
2524         struct ieee80211com *ic = &sc->sc_ic;
2525         struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2526         uint32_t tmp;
2527         int i, ret;
2528
2529         RUM_LOCK(sc);
2530         if (sc->sc_running) {
2531                 ret = 0;
2532                 goto end;
2533         }
2534
2535         /* initialize MAC registers to default values */
2536         for (i = 0; i < nitems(rum_def_mac); i++)
2537                 rum_write(sc, rum_def_mac[i].reg, rum_def_mac[i].val);
2538
2539         /* reset some WME parameters to default values */
2540         sc->wme_params[0].wmep_aifsn = 2;
2541         sc->wme_params[0].wmep_logcwmin = 4;
2542         sc->wme_params[0].wmep_logcwmax = 10;
2543
2544         /* set host ready */
2545         rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP);
2546         rum_write(sc, RT2573_MAC_CSR1, 0);
2547
2548         /* wait for BBP/RF to wakeup */
2549         if ((ret = rum_bbp_wakeup(sc)) != 0)
2550                 goto end;
2551
2552         if ((ret = rum_bbp_init(sc)) != 0)
2553                 goto end;
2554
2555         /* select default channel */
2556         rum_select_band(sc, ic->ic_curchan);
2557         rum_select_antenna(sc);
2558         rum_set_chan(sc, ic->ic_curchan);
2559
2560         /* clear STA registers */
2561         rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
2562
2563         /* clear security registers (if required) */
2564         if (sc->sc_clr_shkeys == 0) {
2565                 rum_clr_shkey_regs(sc);
2566                 sc->sc_clr_shkeys = 1;
2567         }
2568
2569         rum_set_macaddr(sc, vap ? vap->iv_myaddr : ic->ic_macaddr);
2570
2571         /* initialize ASIC */
2572         rum_write(sc, RT2573_MAC_CSR1, RT2573_HOST_READY);
2573
2574         /*
2575          * Allocate Tx and Rx xfer queues.
2576          */
2577         rum_setup_tx_list(sc);
2578
2579         /* update Rx filter */
2580         tmp = rum_read(sc, RT2573_TXRX_CSR0) & 0xffff;
2581
2582         tmp |= RT2573_DROP_PHY_ERROR | RT2573_DROP_CRC_ERROR;
2583         if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2584                 tmp |= RT2573_DROP_CTL | RT2573_DROP_VER_ERROR |
2585                        RT2573_DROP_ACKCTS;
2586                 if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2587                         tmp |= RT2573_DROP_TODS;
2588                 if (ic->ic_promisc == 0)
2589                         tmp |= RT2573_DROP_NOT_TO_ME;
2590         }
2591         rum_write(sc, RT2573_TXRX_CSR0, tmp);
2592
2593         sc->sc_running = 1;
2594         usbd_xfer_set_stall(sc->sc_xfer[RUM_BULK_WR]);
2595         usbd_transfer_start(sc->sc_xfer[RUM_BULK_RD]);
2596
2597 end:    RUM_UNLOCK(sc);
2598
2599         if (ret != 0)
2600                 rum_stop(sc);
2601
2602         return ret;
2603 }
2604
2605 static void
2606 rum_stop(struct rum_softc *sc)
2607 {
2608
2609         RUM_LOCK(sc);
2610         if (!sc->sc_running) {
2611                 RUM_UNLOCK(sc);
2612                 return;
2613         }
2614         sc->sc_running = 0;
2615         RUM_UNLOCK(sc);
2616
2617         /*
2618          * Drain the USB transfers, if not already drained:
2619          */
2620         usbd_transfer_drain(sc->sc_xfer[RUM_BULK_WR]);
2621         usbd_transfer_drain(sc->sc_xfer[RUM_BULK_RD]);
2622
2623         RUM_LOCK(sc);
2624         rum_unsetup_tx_list(sc);
2625
2626         /* disable Rx */
2627         rum_setbits(sc, RT2573_TXRX_CSR0, RT2573_DISABLE_RX);
2628
2629         /* reset ASIC */
2630         rum_write(sc, RT2573_MAC_CSR1, RT2573_RESET_ASIC | RT2573_RESET_BBP);
2631         rum_write(sc, RT2573_MAC_CSR1, 0);
2632         RUM_UNLOCK(sc);
2633 }
2634
2635 static void
2636 rum_load_microcode(struct rum_softc *sc, const uint8_t *ucode, size_t size)
2637 {
2638         uint16_t reg = RT2573_MCU_CODE_BASE;
2639         usb_error_t err;
2640
2641         /* copy firmware image into NIC */
2642         for (; size >= 4; reg += 4, ucode += 4, size -= 4) {
2643                 err = rum_write(sc, reg, UGETDW(ucode));
2644                 if (err) {
2645                         /* firmware already loaded ? */
2646                         device_printf(sc->sc_dev, "Firmware load "
2647                             "failure! (ignored)\n");
2648                         break;
2649                 }
2650         }
2651
2652         err = rum_do_mcu_request(sc, RT2573_MCU_RUN);
2653         if (err != USB_ERR_NORMAL_COMPLETION) {
2654                 device_printf(sc->sc_dev, "could not run firmware: %s\n",
2655                     usbd_errstr(err));
2656         }
2657
2658         /* give the chip some time to boot */
2659         rum_pause(sc, hz / 8);
2660 }
2661
2662 static int
2663 rum_set_sleep_time(struct rum_softc *sc, uint16_t bintval)
2664 {
2665         struct ieee80211com *ic = &sc->sc_ic;
2666         usb_error_t uerror;
2667         int exp, delay;
2668
2669         RUM_LOCK_ASSERT(sc);
2670
2671         exp = ic->ic_lintval / bintval;
2672         delay = ic->ic_lintval % bintval;
2673
2674         if (exp > RT2573_TBCN_EXP_MAX)
2675                 exp = RT2573_TBCN_EXP_MAX;
2676         if (delay > RT2573_TBCN_DELAY_MAX)
2677                 delay = RT2573_TBCN_DELAY_MAX;
2678
2679         uerror = rum_modbits(sc, RT2573_MAC_CSR11,
2680             RT2573_TBCN_EXP(exp) |
2681             RT2573_TBCN_DELAY(delay),
2682             RT2573_TBCN_EXP(RT2573_TBCN_EXP_MAX) |
2683             RT2573_TBCN_DELAY(RT2573_TBCN_DELAY_MAX));
2684
2685         if (uerror != USB_ERR_NORMAL_COMPLETION)
2686                 return (EIO);
2687
2688         sc->sc_sleep_time = IEEE80211_TU_TO_TICKS(exp * bintval + delay);
2689
2690         return (0);
2691 }
2692
2693 static int
2694 rum_reset(struct ieee80211vap *vap, u_long cmd)
2695 {
2696         struct ieee80211com *ic = vap->iv_ic;
2697         struct ieee80211_node *ni;
2698         struct rum_softc *sc = ic->ic_softc;
2699         int error;
2700
2701         switch (cmd) {
2702         case IEEE80211_IOC_POWERSAVE:
2703                 error = 0;
2704                 break;
2705         case IEEE80211_IOC_POWERSAVESLEEP:
2706                 ni = ieee80211_ref_node(vap->iv_bss);
2707
2708                 RUM_LOCK(sc);
2709                 error = rum_set_sleep_time(sc, ni->ni_intval);
2710                 if (vap->iv_state == IEEE80211_S_SLEEP) {
2711                         /* Use new values for wakeup timer. */
2712                         rum_clrbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP);
2713                         rum_setbits(sc, RT2573_MAC_CSR11, RT2573_AUTO_WAKEUP);
2714                 }
2715                 /* XXX send reassoc */
2716                 RUM_UNLOCK(sc);
2717
2718                 ieee80211_free_node(ni);
2719                 break;
2720         default:
2721                 error = ENETRESET;
2722                 break;
2723         }
2724
2725         return (error);
2726 }
2727
2728 static int
2729 rum_set_beacon(struct rum_softc *sc, struct ieee80211vap *vap)
2730 {
2731         struct ieee80211com *ic = vap->iv_ic;
2732         struct rum_vap *rvp = RUM_VAP(vap);
2733         struct mbuf *m = rvp->bcn_mbuf;
2734         const struct ieee80211_txparam *tp;
2735         struct rum_tx_desc desc;
2736
2737         RUM_LOCK_ASSERT(sc);
2738
2739         if (m == NULL)
2740                 return EINVAL;
2741         if (ic->ic_bsschan == IEEE80211_CHAN_ANYC)
2742                 return EINVAL;
2743
2744         tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_bsschan)];
2745         rum_setup_tx_desc(sc, &desc, NULL, RT2573_TX_TIMESTAMP,
2746             RT2573_TX_HWSEQ, 0, 0, m->m_pkthdr.len, tp->mgmtrate);
2747
2748         /* copy the Tx descriptor into NIC memory */
2749         if (rum_write_multi(sc, RT2573_HW_BCN_BASE(0), (uint8_t *)&desc,
2750             RT2573_TX_DESC_SIZE) != 0)
2751                 return EIO;
2752
2753         /* copy beacon header and payload into NIC memory */
2754         if (rum_write_multi(sc, RT2573_HW_BCN_BASE(0) + RT2573_TX_DESC_SIZE,
2755             mtod(m, uint8_t *), m->m_pkthdr.len) != 0)
2756                 return EIO;
2757
2758         return 0;
2759 }
2760
2761 static int
2762 rum_alloc_beacon(struct rum_softc *sc, struct ieee80211vap *vap)
2763 {
2764         struct rum_vap *rvp = RUM_VAP(vap);
2765         struct ieee80211_node *ni = vap->iv_bss;
2766         struct mbuf *m;
2767
2768         if (ni->ni_chan == IEEE80211_CHAN_ANYC)
2769                 return EINVAL;
2770
2771         m = ieee80211_beacon_alloc(ni);
2772         if (m == NULL)
2773                 return ENOMEM;
2774
2775         if (rvp->bcn_mbuf != NULL)
2776                 m_freem(rvp->bcn_mbuf);
2777
2778         rvp->bcn_mbuf = m;
2779
2780         return (rum_set_beacon(sc, vap));
2781 }
2782
2783 static void
2784 rum_update_beacon_cb(struct rum_softc *sc, union sec_param *data,
2785     uint8_t rvp_id)
2786 {
2787         struct ieee80211vap *vap = data->vap;
2788
2789         rum_set_beacon(sc, vap);
2790 }
2791
2792 static void
2793 rum_update_beacon(struct ieee80211vap *vap, int item)
2794 {
2795         struct ieee80211com *ic = vap->iv_ic;
2796         struct rum_softc *sc = ic->ic_softc;
2797         struct rum_vap *rvp = RUM_VAP(vap);
2798         struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
2799         struct ieee80211_node *ni = vap->iv_bss;
2800         struct mbuf *m = rvp->bcn_mbuf;
2801         int mcast = 0;
2802
2803         RUM_LOCK(sc);
2804         if (m == NULL) {
2805                 m = ieee80211_beacon_alloc(ni);
2806                 if (m == NULL) {
2807                         device_printf(sc->sc_dev,
2808                             "%s: could not allocate beacon frame\n", __func__);
2809                         RUM_UNLOCK(sc);
2810                         return;
2811                 }
2812                 rvp->bcn_mbuf = m;
2813         }
2814
2815         switch (item) {
2816         case IEEE80211_BEACON_ERP:
2817                 rum_update_slot(ic);
2818                 break;
2819         case IEEE80211_BEACON_TIM:
2820                 mcast = 1;      /*TODO*/
2821                 break;
2822         default:
2823                 break;
2824         }
2825         RUM_UNLOCK(sc);
2826
2827         setbit(bo->bo_flags, item);
2828         ieee80211_beacon_update(ni, m, mcast);
2829
2830         rum_cmd_sleepable(sc, &vap, sizeof(vap), 0, rum_update_beacon_cb);
2831 }
2832
2833 static int
2834 rum_common_key_set(struct rum_softc *sc, struct ieee80211_key *k,
2835     uint16_t base)
2836 {
2837
2838         if (rum_write_multi(sc, base, k->wk_key, k->wk_keylen))
2839                 return EIO;
2840
2841         if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) {
2842                 if (rum_write_multi(sc, base + IEEE80211_KEYBUF_SIZE,
2843                     k->wk_txmic, 8))
2844                         return EIO;
2845                 if (rum_write_multi(sc, base + IEEE80211_KEYBUF_SIZE + 8,
2846                     k->wk_rxmic, 8))
2847                         return EIO;
2848         }
2849
2850         return 0;
2851 }
2852
2853 static void
2854 rum_group_key_set_cb(struct rum_softc *sc, union sec_param *data,
2855     uint8_t rvp_id)
2856 {
2857         struct ieee80211_key *k = &data->key;
2858         uint8_t mode;
2859
2860         if (sc->sc_clr_shkeys == 0) {
2861                 rum_clr_shkey_regs(sc);
2862                 sc->sc_clr_shkeys = 1;
2863         }
2864
2865         mode = rum_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen);
2866         if (mode == 0)
2867                 goto print_err;
2868
2869         DPRINTFN(1, "setting group key %d for vap %d, mode %d "
2870             "(tx %s, rx %s)\n", k->wk_keyix, rvp_id, mode,
2871             (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off",
2872             (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off");
2873
2874         /* Install the key. */
2875         if (rum_common_key_set(sc, k, RT2573_SKEY(rvp_id, k->wk_keyix)) != 0)
2876                 goto print_err;
2877
2878         /* Set cipher mode. */
2879         if (rum_modbits(sc, rvp_id < 2 ? RT2573_SEC_CSR1 : RT2573_SEC_CSR5,
2880               mode << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX,
2881               RT2573_MODE_MASK << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX)
2882             != 0)
2883                 goto print_err;
2884
2885         /* Mark this key as valid. */
2886         if (rum_setbits(sc, RT2573_SEC_CSR0,
2887               1 << (rvp_id * RT2573_SKEY_MAX + k->wk_keyix)) != 0)
2888                 goto print_err;
2889
2890         return;
2891
2892 print_err:
2893         device_printf(sc->sc_dev, "%s: cannot set group key %d for vap %d\n",
2894             __func__, k->wk_keyix, rvp_id);
2895 }
2896
2897 static void
2898 rum_group_key_del_cb(struct rum_softc *sc, union sec_param *data,
2899     uint8_t rvp_id)
2900 {
2901         struct ieee80211_key *k = &data->key;
2902
2903         DPRINTF("%s: removing group key %d for vap %d\n", __func__,
2904             k->wk_keyix, rvp_id);
2905         rum_clrbits(sc,
2906             rvp_id < 2 ? RT2573_SEC_CSR1 : RT2573_SEC_CSR5,
2907             RT2573_MODE_MASK << (rvp_id % 2 + k->wk_keyix) * RT2573_SKEY_MAX);
2908         rum_clrbits(sc, RT2573_SEC_CSR0,
2909             rvp_id * RT2573_SKEY_MAX + k->wk_keyix);
2910 }
2911
2912 static void
2913 rum_pair_key_set_cb(struct rum_softc *sc, union sec_param *data,
2914     uint8_t rvp_id)
2915 {
2916         struct ieee80211_key *k = &data->key;
2917         uint8_t buf[IEEE80211_ADDR_LEN + 1];
2918         uint8_t mode;
2919
2920         mode = rum_crypto_mode(sc, k->wk_cipher->ic_cipher, k->wk_keylen);
2921         if (mode == 0)
2922                 goto print_err;
2923
2924         DPRINTFN(1, "setting pairwise key %d for vap %d, mode %d "
2925             "(tx %s, rx %s)\n", k->wk_keyix, rvp_id, mode,
2926             (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off",
2927             (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off");
2928
2929         /* Install the key. */
2930         if (rum_common_key_set(sc, k, RT2573_PKEY(k->wk_keyix)) != 0)
2931                 goto print_err;
2932
2933         IEEE80211_ADDR_COPY(buf, k->wk_macaddr);
2934         buf[IEEE80211_ADDR_LEN] = mode;
2935
2936         /* Set transmitter address and cipher mode. */
2937         if (rum_write_multi(sc, RT2573_ADDR_ENTRY(k->wk_keyix),
2938               buf, sizeof buf) != 0)
2939                 goto print_err;
2940
2941         /* Enable key table lookup for this vap. */
2942         if (sc->vap_key_count[rvp_id]++ == 0)
2943                 if (rum_setbits(sc, RT2573_SEC_CSR4, 1 << rvp_id) != 0)
2944                         goto print_err;
2945
2946         /* Mark this key as valid. */
2947         if (rum_setbits(sc,
2948               k->wk_keyix < 32 ? RT2573_SEC_CSR2 : RT2573_SEC_CSR3,
2949               1 << (k->wk_keyix % 32)) != 0)
2950                 goto print_err;
2951
2952         return;
2953
2954 print_err:
2955         device_printf(sc->sc_dev,
2956             "%s: cannot set pairwise key %d, vap %d\n", __func__, k->wk_keyix,
2957             rvp_id);
2958 }
2959
2960 static void
2961 rum_pair_key_del_cb(struct rum_softc *sc, union sec_param *data,
2962     uint8_t rvp_id)
2963 {
2964         struct ieee80211_key *k = &data->key;
2965
2966         DPRINTF("%s: removing key %d\n", __func__, k->wk_keyix);
2967         rum_clrbits(sc, (k->wk_keyix < 32) ? RT2573_SEC_CSR2 : RT2573_SEC_CSR3,
2968             1 << (k->wk_keyix % 32));
2969         sc->keys_bmap &= ~(1ULL << k->wk_keyix);
2970         if (--sc->vap_key_count[rvp_id] == 0)
2971                 rum_clrbits(sc, RT2573_SEC_CSR4, 1 << rvp_id);
2972 }
2973
2974 static int
2975 rum_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
2976     ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
2977 {
2978         struct rum_softc *sc = vap->iv_ic->ic_softc;
2979         uint8_t i;
2980
2981         if (!(&vap->iv_nw_keys[0] <= k &&
2982              k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
2983                 if (!(k->wk_flags & IEEE80211_KEY_SWCRYPT)) {
2984                         RUM_LOCK(sc);
2985                         for (i = 0; i < RT2573_ADDR_MAX; i++) {
2986                                 if ((sc->keys_bmap & (1ULL << i)) == 0) {
2987                                         sc->keys_bmap |= (1ULL << i);
2988                                         *keyix = i;
2989                                         break;
2990                                 }
2991                         }
2992                         RUM_UNLOCK(sc);
2993                         if (i == RT2573_ADDR_MAX) {
2994                                 device_printf(sc->sc_dev,
2995                                     "%s: no free space in the key table\n",
2996                                     __func__);
2997                                 return 0;
2998                         }
2999                 } else
3000                         *keyix = 0;
3001         } else {
3002                 *keyix = k - vap->iv_nw_keys;
3003         }
3004         *rxkeyix = *keyix;
3005         return 1;
3006 }
3007
3008 static int
3009 rum_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k)
3010 {
3011         struct rum_softc *sc = vap->iv_ic->ic_softc;
3012         int group;
3013
3014         if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
3015                 /* Not for us. */
3016                 return 1;
3017         }
3018
3019         group = k >= &vap->iv_nw_keys[0] && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID];
3020
3021         return !rum_cmd_sleepable(sc, k, sizeof(*k), 0,
3022                    group ? rum_group_key_set_cb : rum_pair_key_set_cb);
3023 }
3024
3025 static int
3026 rum_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
3027 {
3028         struct rum_softc *sc = vap->iv_ic->ic_softc;
3029         int group;
3030
3031         if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
3032                 /* Not for us. */
3033                 return 1;
3034         }
3035
3036         group = k >= &vap->iv_nw_keys[0] && k < &vap->iv_nw_keys[IEEE80211_WEP_NKID];
3037
3038         return !rum_cmd_sleepable(sc, k, sizeof(*k), 0,
3039                    group ? rum_group_key_del_cb : rum_pair_key_del_cb);
3040 }
3041
3042 static int
3043 rum_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
3044     const struct ieee80211_bpf_params *params)
3045 {
3046         struct rum_softc *sc = ni->ni_ic->ic_softc;
3047         int ret;
3048
3049         RUM_LOCK(sc);
3050         /* prevent management frames from being sent if we're not ready */
3051         if (!sc->sc_running) {
3052                 ret = ENETDOWN;
3053                 goto bad;
3054         }
3055         if (sc->tx_nfree < RUM_TX_MINFREE) {
3056                 ret = EIO;
3057                 goto bad;
3058         }
3059
3060         if (params == NULL) {
3061                 /*
3062                  * Legacy path; interpret frame contents to decide
3063                  * precisely how to send the frame.
3064                  */
3065                 if ((ret = rum_tx_mgt(sc, m, ni)) != 0)
3066                         goto bad;
3067         } else {
3068                 /*
3069                  * Caller supplied explicit parameters to use in
3070                  * sending the frame.
3071                  */
3072                 if ((ret = rum_tx_raw(sc, m, ni, params)) != 0)
3073                         goto bad;
3074         }
3075         RUM_UNLOCK(sc);
3076
3077         return 0;
3078 bad:
3079         RUM_UNLOCK(sc);
3080         m_freem(m);
3081         return ret;
3082 }
3083
3084 static void
3085 rum_ratectl_start(struct rum_softc *sc, struct ieee80211_node *ni)
3086 {
3087         struct ieee80211vap *vap = ni->ni_vap;
3088         struct rum_vap *rvp = RUM_VAP(vap);
3089
3090         /* clear statistic registers (STA_CSR0 to STA_CSR5) */
3091         rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof sc->sta);
3092
3093         usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp);
3094 }
3095
3096 static void
3097 rum_ratectl_timeout(void *arg)
3098 {
3099         struct rum_vap *rvp = arg;
3100         struct ieee80211vap *vap = &rvp->vap;
3101         struct ieee80211com *ic = vap->iv_ic;
3102
3103         ieee80211_runtask(ic, &rvp->ratectl_task);
3104 }
3105
3106 static void
3107 rum_ratectl_task(void *arg, int pending)
3108 {
3109         struct rum_vap *rvp = arg;
3110         struct ieee80211vap *vap = &rvp->vap;
3111         struct rum_softc *sc = vap->iv_ic->ic_softc;
3112         struct ieee80211_node *ni;
3113         int ok[3], fail;
3114         int sum, success, retrycnt;
3115
3116         RUM_LOCK(sc);
3117         /* read and clear statistic registers (STA_CSR0 to STA_CSR5) */
3118         rum_read_multi(sc, RT2573_STA_CSR0, sc->sta, sizeof(sc->sta));
3119
3120         ok[0] = (le32toh(sc->sta[4]) & 0xffff); /* TX ok w/o retry */
3121         ok[1] = (le32toh(sc->sta[4]) >> 16);    /* TX ok w/ one retry */
3122         ok[2] = (le32toh(sc->sta[5]) & 0xffff); /* TX ok w/ multiple retries */
3123         fail =  (le32toh(sc->sta[5]) >> 16);    /* TX retry-fail count */
3124
3125         success = ok[0] + ok[1] + ok[2];
3126         sum = success + fail;
3127         /* XXX at least */
3128         retrycnt = ok[1] + ok[2] * 2 + fail * (rvp->maxretry + 1);
3129
3130         if (sum != 0) {
3131                 ni = ieee80211_ref_node(vap->iv_bss);
3132                 ieee80211_ratectl_tx_update(vap, ni, &sum, &ok, &retrycnt);
3133                 (void) ieee80211_ratectl_rate(ni, NULL, 0);
3134                 ieee80211_free_node(ni);
3135         }
3136
3137         /* count TX retry-fail as Tx errors */
3138         if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, fail);
3139
3140         usb_callout_reset(&rvp->ratectl_ch, hz, rum_ratectl_timeout, rvp);
3141         RUM_UNLOCK(sc);
3142 }
3143
3144 static void
3145 rum_scan_start(struct ieee80211com *ic)
3146 {
3147         struct rum_softc *sc = ic->ic_softc;
3148
3149         RUM_LOCK(sc);
3150         rum_abort_tsf_sync(sc);
3151         rum_set_bssid(sc, ieee80211broadcastaddr);
3152         RUM_UNLOCK(sc);
3153
3154 }
3155
3156 static void
3157 rum_scan_end(struct ieee80211com *ic)
3158 {
3159         struct rum_softc *sc = ic->ic_softc;
3160
3161         if (ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) {
3162                 RUM_LOCK(sc);
3163                 if (ic->ic_opmode != IEEE80211_M_AHDEMO)
3164                         rum_enable_tsf_sync(sc);
3165                 else
3166                         rum_enable_tsf(sc);
3167                 rum_set_bssid(sc, sc->sc_bssid);
3168                 RUM_UNLOCK(sc);
3169         }
3170 }
3171
3172 static void
3173 rum_set_channel(struct ieee80211com *ic)
3174 {
3175         struct rum_softc *sc = ic->ic_softc;
3176
3177         RUM_LOCK(sc);
3178         rum_set_chan(sc, ic->ic_curchan);
3179         RUM_UNLOCK(sc);
3180 }
3181
3182 static void
3183 rum_getradiocaps(struct ieee80211com *ic,
3184     int maxchans, int *nchans, struct ieee80211_channel chans[])
3185 {
3186         struct rum_softc *sc = ic->ic_softc;
3187         uint8_t bands[IEEE80211_MODE_BYTES];
3188
3189         memset(bands, 0, sizeof(bands));
3190         setbit(bands, IEEE80211_MODE_11B);
3191         setbit(bands, IEEE80211_MODE_11G);
3192         ieee80211_add_channel_list_2ghz(chans, maxchans, nchans,
3193             rum_chan_2ghz, nitems(rum_chan_2ghz), bands, 0);
3194
3195         if (sc->rf_rev == RT2573_RF_5225 || sc->rf_rev == RT2573_RF_5226) {
3196                 setbit(bands, IEEE80211_MODE_11A);
3197                 ieee80211_add_channel_list_5ghz(chans, maxchans, nchans,
3198                     rum_chan_5ghz, nitems(rum_chan_5ghz), bands, 0);
3199         }
3200 }
3201
3202 static int
3203 rum_get_rssi(struct rum_softc *sc, uint8_t raw)
3204 {
3205         struct ieee80211com *ic = &sc->sc_ic;
3206         int lna, agc, rssi;
3207
3208         lna = (raw >> 5) & 0x3;
3209         agc = raw & 0x1f;
3210
3211         if (lna == 0) {
3212                 /*
3213                  * No RSSI mapping
3214                  *
3215                  * NB: Since RSSI is relative to noise floor, -1 is
3216                  *     adequate for caller to know error happened.
3217                  */
3218                 return -1;
3219         }
3220
3221         rssi = (2 * agc) - RT2573_NOISE_FLOOR;
3222
3223         if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
3224                 rssi += sc->rssi_2ghz_corr;
3225
3226                 if (lna == 1)
3227                         rssi -= 64;
3228                 else if (lna == 2)
3229                         rssi -= 74;
3230                 else if (lna == 3)
3231                         rssi -= 90;
3232         } else {
3233                 rssi += sc->rssi_5ghz_corr;
3234
3235                 if (!sc->ext_5ghz_lna && lna != 1)
3236                         rssi += 4;
3237
3238                 if (lna == 1)
3239                         rssi -= 64;
3240                 else if (lna == 2)
3241                         rssi -= 86;
3242                 else if (lna == 3)
3243                         rssi -= 100;
3244         }
3245         return rssi;
3246 }
3247
3248 static int
3249 rum_pause(struct rum_softc *sc, int timeout)
3250 {
3251
3252         usb_pause_mtx(&sc->sc_lock, timeout);
3253         return (0);
3254 }
3255
3256 static device_method_t rum_methods[] = {
3257         /* Device interface */
3258         DEVMETHOD(device_probe,         rum_match),
3259         DEVMETHOD(device_attach,        rum_attach),
3260         DEVMETHOD(device_detach,        rum_detach),
3261         DEVMETHOD_END
3262 };
3263
3264 static driver_t rum_driver = {
3265         .name = "rum",
3266         .methods = rum_methods,
3267         .size = sizeof(struct rum_softc),
3268 };
3269
3270 static devclass_t rum_devclass;
3271
3272 DRIVER_MODULE(rum, uhub, rum_driver, rum_devclass, NULL, NULL);
3273 MODULE_DEPEND(rum, wlan, 1, 1, 1);
3274 MODULE_DEPEND(rum, usb, 1, 1, 1);
3275 MODULE_VERSION(rum, 1);
3276 #if 0   /* Not implemented by DragonFly */
3277 USB_PNP_HOST_INFO(rum_devs);
3278 #endif