Split mmap().
[dragonfly.git] / sys / vm / vm_fault.c
1 /*
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  *
10  * This code is derived from software contributed to Berkeley by
11  * The Mach Operating System project at Carnegie-Mellon University.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *      This product includes software developed by the University of
24  *      California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
42  *
43  *
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  *
69  * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
70  * $DragonFly: src/sys/vm/vm_fault.c,v 1.9 2003/11/03 17:11:23 dillon Exp $
71  */
72
73 /*
74  *      Page fault handling module.
75  */
76
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/proc.h>
80 #include <sys/vnode.h>
81 #include <sys/resourcevar.h>
82 #include <sys/vmmeter.h>
83
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <sys/lock.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_kern.h>
93 #include <vm/vm_pager.h>
94 #include <vm/vnode_pager.h>
95 #include <vm/vm_extern.h>
96 #include <vm/vm_page2.h>
97
98 static int vm_fault_additional_pages (vm_page_t, int,
99                                           int, vm_page_t *, int *);
100
101 #define VM_FAULT_READ_AHEAD 8
102 #define VM_FAULT_READ_BEHIND 7
103 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
104
105 struct faultstate {
106         vm_page_t m;
107         vm_object_t object;
108         vm_pindex_t pindex;
109         vm_page_t first_m;
110         vm_object_t     first_object;
111         vm_pindex_t first_pindex;
112         vm_map_t map;
113         vm_map_entry_t entry;
114         int lookup_still_valid;
115         struct vnode *vp;
116 };
117
118 static __inline void
119 release_page(struct faultstate *fs)
120 {
121         vm_page_wakeup(fs->m);
122         vm_page_deactivate(fs->m);
123         fs->m = NULL;
124 }
125
126 static __inline void
127 unlock_map(struct faultstate *fs)
128 {
129         if (fs->lookup_still_valid) {
130                 vm_map_lookup_done(fs->map, fs->entry, 0);
131                 fs->lookup_still_valid = FALSE;
132         }
133 }
134
135 static void
136 _unlock_things(struct faultstate *fs, int dealloc)
137 {
138         vm_object_pip_wakeup(fs->object);
139         if (fs->object != fs->first_object) {
140                 vm_page_free(fs->first_m);
141                 vm_object_pip_wakeup(fs->first_object);
142                 fs->first_m = NULL;
143         }
144         if (dealloc) {
145                 vm_object_deallocate(fs->first_object);
146         }
147         unlock_map(fs); 
148         if (fs->vp != NULL) { 
149                 vput(fs->vp);
150                 fs->vp = NULL;
151         }
152 }
153
154 #define unlock_things(fs) _unlock_things(fs, 0)
155 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
156
157 /*
158  * TRYPAGER - used by vm_fault to calculate whether the pager for the
159  *            current object *might* contain the page.
160  *
161  *            default objects are zero-fill, there is no real pager.
162  */
163
164 #define TRYPAGER        (fs.object->type != OBJT_DEFAULT && \
165                         (((fault_flags & VM_FAULT_WIRE_MASK) == 0) || wired))
166
167 /*
168  *      vm_fault:
169  *
170  *      Handle a page fault occurring at the given address,
171  *      requiring the given permissions, in the map specified.
172  *      If successful, the page is inserted into the
173  *      associated physical map.
174  *
175  *      NOTE: the given address should be truncated to the
176  *      proper page address.
177  *
178  *      KERN_SUCCESS is returned if the page fault is handled; otherwise,
179  *      a standard error specifying why the fault is fatal is returned.
180  *
181  *
182  *      The map in question must be referenced, and remains so.
183  *      Caller may hold no locks.
184  */
185 int
186 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
187 {
188         vm_prot_t prot;
189         int result;
190         boolean_t wired;
191         int map_generation;
192         vm_object_t next_object;
193         vm_page_t marray[VM_FAULT_READ];
194         int hardfault;
195         int faultcount;
196         struct faultstate fs;
197
198         mycpu->gd_cnt.v_vm_faults++;
199         hardfault = 0;
200
201 RetryFault:;
202
203         /*
204          * Find the backing store object and offset into it to begin the
205          * search.
206          */
207         fs.map = map;
208         if ((result = vm_map_lookup(&fs.map, vaddr,
209                 fault_type, &fs.entry, &fs.first_object,
210                 &fs.first_pindex, &prot, &wired)) != KERN_SUCCESS) {
211                 if ((result != KERN_PROTECTION_FAILURE) ||
212                         ((fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)) {
213                         return result;
214                 }
215
216                 /*
217                  * If we are user-wiring a r/w segment, and it is COW, then
218                  * we need to do the COW operation.  Note that we don't COW
219                  * currently RO sections now, because it is NOT desirable
220                  * to COW .text.  We simply keep .text from ever being COW'ed
221                  * and take the heat that one cannot debug wired .text sections.
222                  */
223                 result = vm_map_lookup(&fs.map, vaddr,
224                         VM_PROT_READ|VM_PROT_WRITE|VM_PROT_OVERRIDE_WRITE,
225                         &fs.entry, &fs.first_object, &fs.first_pindex, &prot, &wired);
226                 if (result != KERN_SUCCESS) {
227                         return result;
228                 }
229
230                 /*
231                  * If we don't COW now, on a user wire, the user will never
232                  * be able to write to the mapping.  If we don't make this
233                  * restriction, the bookkeeping would be nearly impossible.
234                  */
235                 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
236                         fs.entry->max_protection &= ~VM_PROT_WRITE;
237         }
238
239         map_generation = fs.map->timestamp;
240
241         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
242                 panic("vm_fault: fault on nofault entry, addr: %lx",
243                     (u_long)vaddr);
244         }
245
246         /*
247          * Make a reference to this object to prevent its disposal while we
248          * are messing with it.  Once we have the reference, the map is free
249          * to be diddled.  Since objects reference their shadows (and copies),
250          * they will stay around as well.
251          *
252          * Bump the paging-in-progress count to prevent size changes (e.g.
253          * truncation operations) during I/O.  This must be done after
254          * obtaining the vnode lock in order to avoid possible deadlocks.
255          */
256         vm_object_reference(fs.first_object);
257         fs.vp = vnode_pager_lock(fs.first_object);
258         vm_object_pip_add(fs.first_object, 1);
259
260         if ((fault_type & VM_PROT_WRITE) &&
261                 (fs.first_object->type == OBJT_VNODE)) {
262                 vm_freeze_copyopts(fs.first_object,
263                         fs.first_pindex, fs.first_pindex + 1);
264         }
265
266         fs.lookup_still_valid = TRUE;
267
268         if (wired)
269                 fault_type = prot;
270
271         fs.first_m = NULL;
272
273         /*
274          * Search for the page at object/offset.
275          */
276
277         fs.object = fs.first_object;
278         fs.pindex = fs.first_pindex;
279
280         while (TRUE) {
281                 /*
282                  * If the object is dead, we stop here
283                  */
284
285                 if (fs.object->flags & OBJ_DEAD) {
286                         unlock_and_deallocate(&fs);
287                         return (KERN_PROTECTION_FAILURE);
288                 }
289
290                 /*
291                  * See if page is resident
292                  */
293                         
294                 fs.m = vm_page_lookup(fs.object, fs.pindex);
295                 if (fs.m != NULL) {
296                         int queue, s;
297                         /*
298                          * Wait/Retry if the page is busy.  We have to do this
299                          * if the page is busy via either PG_BUSY or 
300                          * vm_page_t->busy because the vm_pager may be using
301                          * vm_page_t->busy for pageouts ( and even pageins if
302                          * it is the vnode pager ), and we could end up trying
303                          * to pagein and pageout the same page simultaneously.
304                          *
305                          * We can theoretically allow the busy case on a read
306                          * fault if the page is marked valid, but since such
307                          * pages are typically already pmap'd, putting that
308                          * special case in might be more effort then it is 
309                          * worth.  We cannot under any circumstances mess
310                          * around with a vm_page_t->busy page except, perhaps,
311                          * to pmap it.
312                          */
313                         if ((fs.m->flags & PG_BUSY) || fs.m->busy) {
314                                 unlock_things(&fs);
315                                 (void)vm_page_sleep_busy(fs.m, TRUE, "vmpfw");
316                                 mycpu->gd_cnt.v_intrans++;
317                                 vm_object_deallocate(fs.first_object);
318                                 goto RetryFault;
319                         }
320
321                         queue = fs.m->queue;
322                         s = splvm();
323                         vm_page_unqueue_nowakeup(fs.m);
324                         splx(s);
325
326                         if ((queue - fs.m->pc) == PQ_CACHE && vm_page_count_severe()) {
327                                 vm_page_activate(fs.m);
328                                 unlock_and_deallocate(&fs);
329                                 VM_WAITPFAULT;
330                                 goto RetryFault;
331                         }
332
333                         /*
334                          * Mark page busy for other processes, and the 
335                          * pagedaemon.  If it still isn't completely valid
336                          * (readable), jump to readrest, else break-out ( we
337                          * found the page ).
338                          */
339
340                         vm_page_busy(fs.m);
341                         if (((fs.m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
342                                 fs.m->object != kernel_object && fs.m->object != kmem_object) {
343                                 goto readrest;
344                         }
345
346                         break;
347                 }
348
349                 /*
350                  * Page is not resident, If this is the search termination
351                  * or the pager might contain the page, allocate a new page.
352                  */
353
354                 if (TRYPAGER || fs.object == fs.first_object) {
355                         if (fs.pindex >= fs.object->size) {
356                                 unlock_and_deallocate(&fs);
357                                 return (KERN_PROTECTION_FAILURE);
358                         }
359
360                         /*
361                          * Allocate a new page for this object/offset pair.
362                          */
363                         fs.m = NULL;
364                         if (!vm_page_count_severe()) {
365                                 fs.m = vm_page_alloc(fs.object, fs.pindex,
366                                     (fs.vp || fs.object->backing_object)? VM_ALLOC_NORMAL: VM_ALLOC_ZERO);
367                         }
368                         if (fs.m == NULL) {
369                                 unlock_and_deallocate(&fs);
370                                 VM_WAITPFAULT;
371                                 goto RetryFault;
372                         }
373                 }
374
375 readrest:
376                 /*
377                  * We have found a valid page or we have allocated a new page.
378                  * The page thus may not be valid or may not be entirely 
379                  * valid.
380                  *
381                  * Attempt to fault-in the page if there is a chance that the
382                  * pager has it, and potentially fault in additional pages
383                  * at the same time.
384                  */
385
386                 if (TRYPAGER) {
387                         int rv;
388                         int reqpage;
389                         int ahead, behind;
390                         u_char behavior = vm_map_entry_behavior(fs.entry);
391
392                         if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
393                                 ahead = 0;
394                                 behind = 0;
395                         } else {
396                                 behind = (vaddr - fs.entry->start) >> PAGE_SHIFT;
397                                 if (behind > VM_FAULT_READ_BEHIND)
398                                         behind = VM_FAULT_READ_BEHIND;
399
400                                 ahead = ((fs.entry->end - vaddr) >> PAGE_SHIFT) - 1;
401                                 if (ahead > VM_FAULT_READ_AHEAD)
402                                         ahead = VM_FAULT_READ_AHEAD;
403                         }
404
405                         if ((fs.first_object->type != OBJT_DEVICE) &&
406                             (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
407                                 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
408                                 fs.pindex >= fs.entry->lastr &&
409                                 fs.pindex < fs.entry->lastr + VM_FAULT_READ))
410                         ) {
411                                 vm_pindex_t firstpindex, tmppindex;
412
413                                 if (fs.first_pindex < 2 * VM_FAULT_READ)
414                                         firstpindex = 0;
415                                 else
416                                         firstpindex = fs.first_pindex - 2 * VM_FAULT_READ;
417
418                                 /*
419                                  * note: partially valid pages cannot be 
420                                  * included in the lookahead - NFS piecemeal
421                                  * writes will barf on it badly.
422                                  */
423
424                                 for(tmppindex = fs.first_pindex - 1;
425                                         tmppindex >= firstpindex;
426                                         --tmppindex) {
427                                         vm_page_t mt;
428                                         mt = vm_page_lookup( fs.first_object, tmppindex);
429                                         if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
430                                                 break;
431                                         if (mt->busy ||
432                                                 (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
433                                                 mt->hold_count ||
434                                                 mt->wire_count) 
435                                                 continue;
436                                         if (mt->dirty == 0)
437                                                 vm_page_test_dirty(mt);
438                                         if (mt->dirty) {
439                                                 vm_page_protect(mt, VM_PROT_NONE);
440                                                 vm_page_deactivate(mt);
441                                         } else {
442                                                 vm_page_cache(mt);
443                                         }
444                                 }
445
446                                 ahead += behind;
447                                 behind = 0;
448                         }
449
450                         /*
451                          * now we find out if any other pages should be paged
452                          * in at this time this routine checks to see if the
453                          * pages surrounding this fault reside in the same
454                          * object as the page for this fault.  If they do,
455                          * then they are faulted in also into the object.  The
456                          * array "marray" returned contains an array of
457                          * vm_page_t structs where one of them is the
458                          * vm_page_t passed to the routine.  The reqpage
459                          * return value is the index into the marray for the
460                          * vm_page_t passed to the routine.
461                          *
462                          * fs.m plus the additional pages are PG_BUSY'd.
463                          */
464                         faultcount = vm_fault_additional_pages(
465                             fs.m, behind, ahead, marray, &reqpage);
466
467                         /*
468                          * update lastr imperfectly (we do not know how much
469                          * getpages will actually read), but good enough.
470                          */
471                         fs.entry->lastr = fs.pindex + faultcount - behind;
472
473                         /*
474                          * Call the pager to retrieve the data, if any, after
475                          * releasing the lock on the map.  We hold a ref on
476                          * fs.object and the pages are PG_BUSY'd.
477                          */
478                         unlock_map(&fs);
479
480                         rv = faultcount ?
481                             vm_pager_get_pages(fs.object, marray, faultcount,
482                                 reqpage) : VM_PAGER_FAIL;
483
484                         if (rv == VM_PAGER_OK) {
485                                 /*
486                                  * Found the page. Leave it busy while we play
487                                  * with it.
488                                  */
489
490                                 /*
491                                  * Relookup in case pager changed page. Pager
492                                  * is responsible for disposition of old page
493                                  * if moved.
494                                  */
495                                 fs.m = vm_page_lookup(fs.object, fs.pindex);
496                                 if(!fs.m) {
497                                         unlock_and_deallocate(&fs);
498                                         goto RetryFault;
499                                 }
500
501                                 hardfault++;
502                                 break; /* break to PAGE HAS BEEN FOUND */
503                         }
504                         /*
505                          * Remove the bogus page (which does not exist at this
506                          * object/offset); before doing so, we must get back
507                          * our object lock to preserve our invariant.
508                          *
509                          * Also wake up any other process that may want to bring
510                          * in this page.
511                          *
512                          * If this is the top-level object, we must leave the
513                          * busy page to prevent another process from rushing
514                          * past us, and inserting the page in that object at
515                          * the same time that we are.
516                          */
517
518                         if (rv == VM_PAGER_ERROR)
519                                 printf("vm_fault: pager read error, pid %d (%s)\n",
520                                     curproc->p_pid, curproc->p_comm);
521                         /*
522                          * Data outside the range of the pager or an I/O error
523                          */
524                         /*
525                          * XXX - the check for kernel_map is a kludge to work
526                          * around having the machine panic on a kernel space
527                          * fault w/ I/O error.
528                          */
529                         if (((fs.map != kernel_map) && (rv == VM_PAGER_ERROR)) ||
530                                 (rv == VM_PAGER_BAD)) {
531                                 vm_page_free(fs.m);
532                                 fs.m = NULL;
533                                 unlock_and_deallocate(&fs);
534                                 return ((rv == VM_PAGER_ERROR) ? KERN_FAILURE : KERN_PROTECTION_FAILURE);
535                         }
536                         if (fs.object != fs.first_object) {
537                                 vm_page_free(fs.m);
538                                 fs.m = NULL;
539                                 /*
540                                  * XXX - we cannot just fall out at this
541                                  * point, m has been freed and is invalid!
542                                  */
543                         }
544                 }
545
546                 /*
547                  * We get here if the object has default pager (or unwiring) 
548                  * or the pager doesn't have the page.
549                  */
550                 if (fs.object == fs.first_object)
551                         fs.first_m = fs.m;
552
553                 /*
554                  * Move on to the next object.  Lock the next object before
555                  * unlocking the current one.
556                  */
557
558                 fs.pindex += OFF_TO_IDX(fs.object->backing_object_offset);
559                 next_object = fs.object->backing_object;
560                 if (next_object == NULL) {
561                         /*
562                          * If there's no object left, fill the page in the top
563                          * object with zeros.
564                          */
565                         if (fs.object != fs.first_object) {
566                                 vm_object_pip_wakeup(fs.object);
567
568                                 fs.object = fs.first_object;
569                                 fs.pindex = fs.first_pindex;
570                                 fs.m = fs.first_m;
571                         }
572                         fs.first_m = NULL;
573
574                         /*
575                          * Zero the page if necessary and mark it valid.
576                          */
577                         if ((fs.m->flags & PG_ZERO) == 0) {
578                                 vm_page_zero_fill(fs.m);
579                         } else {
580                                 mycpu->gd_cnt.v_ozfod++;
581                         }
582                         mycpu->gd_cnt.v_zfod++;
583                         fs.m->valid = VM_PAGE_BITS_ALL;
584                         break;  /* break to PAGE HAS BEEN FOUND */
585                 } else {
586                         if (fs.object != fs.first_object) {
587                                 vm_object_pip_wakeup(fs.object);
588                         }
589                         KASSERT(fs.object != next_object, ("object loop %p", next_object));
590                         fs.object = next_object;
591                         vm_object_pip_add(fs.object, 1);
592                 }
593         }
594
595         KASSERT((fs.m->flags & PG_BUSY) != 0,
596             ("vm_fault: not busy after main loop"));
597
598         /*
599          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
600          * is held.]
601          */
602
603         /*
604          * If the page is being written, but isn't already owned by the
605          * top-level object, we have to copy it into a new page owned by the
606          * top-level object.
607          */
608
609         if (fs.object != fs.first_object) {
610                 /*
611                  * We only really need to copy if we want to write it.
612                  */
613
614                 if (fault_type & VM_PROT_WRITE) {
615                         /*
616                          * This allows pages to be virtually copied from a 
617                          * backing_object into the first_object, where the 
618                          * backing object has no other refs to it, and cannot
619                          * gain any more refs.  Instead of a bcopy, we just 
620                          * move the page from the backing object to the 
621                          * first object.  Note that we must mark the page 
622                          * dirty in the first object so that it will go out 
623                          * to swap when needed.
624                          */
625                         if (map_generation == fs.map->timestamp &&
626                                 /*
627                                  * Only one shadow object
628                                  */
629                                 (fs.object->shadow_count == 1) &&
630                                 /*
631                                  * No COW refs, except us
632                                  */
633                                 (fs.object->ref_count == 1) &&
634                                 /*
635                                  * No one else can look this object up
636                                  */
637                                 (fs.object->handle == NULL) &&
638                                 /*
639                                  * No other ways to look the object up
640                                  */
641                                 ((fs.object->type == OBJT_DEFAULT) ||
642                                  (fs.object->type == OBJT_SWAP)) &&
643                                 /*
644                                  * We don't chase down the shadow chain
645                                  */
646                                 (fs.object == fs.first_object->backing_object) &&
647
648                                 /*
649                                  * grab the lock if we need to
650                                  */
651                                 (fs.lookup_still_valid ||
652                                  lockmgr(&fs.map->lock, LK_EXCLUSIVE|LK_NOWAIT, (void *)0, curthread) == 0)
653                             ) {
654                                 
655                                 fs.lookup_still_valid = 1;
656                                 /*
657                                  * get rid of the unnecessary page
658                                  */
659                                 vm_page_protect(fs.first_m, VM_PROT_NONE);
660                                 vm_page_free(fs.first_m);
661                                 fs.first_m = NULL;
662
663                                 /*
664                                  * grab the page and put it into the 
665                                  * process'es object.  The page is 
666                                  * automatically made dirty.
667                                  */
668                                 vm_page_rename(fs.m, fs.first_object, fs.first_pindex);
669                                 fs.first_m = fs.m;
670                                 vm_page_busy(fs.first_m);
671                                 fs.m = NULL;
672                                 mycpu->gd_cnt.v_cow_optim++;
673                         } else {
674                                 /*
675                                  * Oh, well, lets copy it.
676                                  */
677                                 vm_page_copy(fs.m, fs.first_m);
678                         }
679
680                         if (fs.m) {
681                                 /*
682                                  * We no longer need the old page or object.
683                                  */
684                                 release_page(&fs);
685                         }
686
687                         /*
688                          * fs.object != fs.first_object due to above 
689                          * conditional
690                          */
691
692                         vm_object_pip_wakeup(fs.object);
693
694                         /*
695                          * Only use the new page below...
696                          */
697
698                         mycpu->gd_cnt.v_cow_faults++;
699                         fs.m = fs.first_m;
700                         fs.object = fs.first_object;
701                         fs.pindex = fs.first_pindex;
702
703                 } else {
704                         prot &= ~VM_PROT_WRITE;
705                 }
706         }
707
708         /*
709          * We must verify that the maps have not changed since our last
710          * lookup.
711          */
712
713         if (!fs.lookup_still_valid &&
714                 (fs.map->timestamp != map_generation)) {
715                 vm_object_t retry_object;
716                 vm_pindex_t retry_pindex;
717                 vm_prot_t retry_prot;
718
719                 /*
720                  * Since map entries may be pageable, make sure we can take a
721                  * page fault on them.
722                  */
723
724                 /*
725                  * Unlock vnode before the lookup to avoid deadlock.   E.G.
726                  * avoid a deadlock between the inode and exec_map that can
727                  * occur due to locks being obtained in different orders.
728                  */
729
730                 if (fs.vp != NULL) {
731                         vput(fs.vp);
732                         fs.vp = NULL;
733                 }
734                 
735                 if (fs.map->infork) {
736                         release_page(&fs);
737                         unlock_and_deallocate(&fs);
738                         goto RetryFault;
739                 }
740
741                 /*
742                  * To avoid trying to write_lock the map while another process
743                  * has it read_locked (in vm_map_wire), we do not try for
744                  * write permission.  If the page is still writable, we will
745                  * get write permission.  If it is not, or has been marked
746                  * needs_copy, we enter the mapping without write permission,
747                  * and will merely take another fault.
748                  */
749                 result = vm_map_lookup(&fs.map, vaddr, fault_type & ~VM_PROT_WRITE,
750                     &fs.entry, &retry_object, &retry_pindex, &retry_prot, &wired);
751                 map_generation = fs.map->timestamp;
752
753                 /*
754                  * If we don't need the page any longer, put it on the active
755                  * list (the easiest thing to do here).  If no one needs it,
756                  * pageout will grab it eventually.
757                  */
758
759                 if (result != KERN_SUCCESS) {
760                         release_page(&fs);
761                         unlock_and_deallocate(&fs);
762                         return (result);
763                 }
764                 fs.lookup_still_valid = TRUE;
765
766                 if ((retry_object != fs.first_object) ||
767                     (retry_pindex != fs.first_pindex)) {
768                         release_page(&fs);
769                         unlock_and_deallocate(&fs);
770                         goto RetryFault;
771                 }
772                 /*
773                  * Check whether the protection has changed or the object has
774                  * been copied while we left the map unlocked. Changing from
775                  * read to write permission is OK - we leave the page
776                  * write-protected, and catch the write fault. Changing from
777                  * write to read permission means that we can't mark the page
778                  * write-enabled after all.
779                  */
780                 prot &= retry_prot;
781         }
782
783         /*
784          * Put this page into the physical map. We had to do the unlock above
785          * because pmap_enter may cause other faults.   We don't put the page
786          * back on the active queue until later so that the page-out daemon
787          * won't find us (yet).
788          */
789
790         if (prot & VM_PROT_WRITE) {
791                 vm_page_flag_set(fs.m, PG_WRITEABLE);
792                 vm_object_set_writeable_dirty(fs.m->object);
793
794                 /*
795                  * If the fault is a write, we know that this page is being
796                  * written NOW so dirty it explicitly to save on 
797                  * pmap_is_modified() calls later.
798                  *
799                  * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
800                  * if the page is already dirty to prevent data written with
801                  * the expectation of being synced from not being synced.
802                  * Likewise if this entry does not request NOSYNC then make
803                  * sure the page isn't marked NOSYNC.  Applications sharing
804                  * data should use the same flags to avoid ping ponging.
805                  *
806                  * Also tell the backing pager, if any, that it should remove
807                  * any swap backing since the page is now dirty.
808                  */
809                 if (fs.entry->eflags & MAP_ENTRY_NOSYNC) {
810                         if (fs.m->dirty == 0)
811                                 vm_page_flag_set(fs.m, PG_NOSYNC);
812                 } else {
813                         vm_page_flag_clear(fs.m, PG_NOSYNC);
814                 }
815                 if (fault_flags & VM_FAULT_DIRTY) {
816                         int s;
817                         vm_page_dirty(fs.m);
818                         s = splvm();
819                         vm_pager_page_unswapped(fs.m);
820                         splx(s);
821                 }
822         }
823
824         /*
825          * Page had better still be busy
826          */
827
828         KASSERT(fs.m->flags & PG_BUSY,
829                 ("vm_fault: page %p not busy!", fs.m));
830
831         unlock_things(&fs);
832
833         /*
834          * Sanity check: page must be completely valid or it is not fit to
835          * map into user space.  vm_pager_get_pages() ensures this.
836          */
837
838         if (fs.m->valid != VM_PAGE_BITS_ALL) {
839                 vm_page_zero_invalid(fs.m, TRUE);
840                 printf("Warning: page %p partially invalid on fault\n", fs.m);
841         }
842
843         pmap_enter(fs.map->pmap, vaddr, fs.m, prot, wired);
844
845         if (((fault_flags & VM_FAULT_WIRE_MASK) == 0) && (wired == 0)) {
846                 pmap_prefault(fs.map->pmap, vaddr, fs.entry);
847         }
848
849         vm_page_flag_clear(fs.m, PG_ZERO);
850         vm_page_flag_set(fs.m, PG_MAPPED|PG_REFERENCED);
851         if (fault_flags & VM_FAULT_HOLD)
852                 vm_page_hold(fs.m);
853
854         /*
855          * If the page is not wired down, then put it where the pageout daemon
856          * can find it.
857          */
858
859         if (fault_flags & VM_FAULT_WIRE_MASK) {
860                 if (wired)
861                         vm_page_wire(fs.m);
862                 else
863                         vm_page_unwire(fs.m, 1);
864         } else {
865                 vm_page_activate(fs.m);
866         }
867
868         if (curproc && (curproc->p_flag & P_INMEM) && curproc->p_stats) {
869                 if (hardfault) {
870                         curproc->p_stats->p_ru.ru_majflt++;
871                 } else {
872                         curproc->p_stats->p_ru.ru_minflt++;
873                 }
874         }
875
876         /*
877          * Unlock everything, and return
878          */
879
880         vm_page_wakeup(fs.m);
881         vm_object_deallocate(fs.first_object);
882
883         return (KERN_SUCCESS);
884
885 }
886
887 /*
888  *      vm_fault_wire:
889  *
890  *      Wire down a range of virtual addresses in a map.
891  */
892 int
893 vm_fault_wire(map, start, end)
894         vm_map_t map;
895         vm_offset_t start, end;
896 {
897
898         vm_offset_t va;
899         pmap_t pmap;
900         int rv;
901
902         pmap = vm_map_pmap(map);
903
904         /*
905          * Inform the physical mapping system that the range of addresses may
906          * not fault, so that page tables and such can be locked down as well.
907          */
908
909         pmap_pageable(pmap, start, end, FALSE);
910
911         /*
912          * We simulate a fault to get the page and enter it in the physical
913          * map.
914          */
915
916         for (va = start; va < end; va += PAGE_SIZE) {
917                 rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
918                         VM_FAULT_CHANGE_WIRING);
919                 if (rv) {
920                         if (va != start)
921                                 vm_fault_unwire(map, start, va);
922                         return (rv);
923                 }
924         }
925         return (KERN_SUCCESS);
926 }
927
928 /*
929  *      vm_fault_user_wire:
930  *
931  *      Wire down a range of virtual addresses in a map.  This
932  *      is for user mode though, so we only ask for read access
933  *      on currently read only sections.
934  */
935 int
936 vm_fault_user_wire(map, start, end)
937         vm_map_t map;
938         vm_offset_t start, end;
939 {
940
941         vm_offset_t va;
942         pmap_t pmap;
943         int rv;
944
945         pmap = vm_map_pmap(map);
946
947         /*
948          * Inform the physical mapping system that the range of addresses may
949          * not fault, so that page tables and such can be locked down as well.
950          */
951
952         pmap_pageable(pmap, start, end, FALSE);
953
954         /*
955          * We simulate a fault to get the page and enter it in the physical
956          * map.
957          */
958         for (va = start; va < end; va += PAGE_SIZE) {
959                 rv = vm_fault(map, va, VM_PROT_READ, VM_FAULT_USER_WIRE);
960                 if (rv) {
961                         if (va != start)
962                                 vm_fault_unwire(map, start, va);
963                         return (rv);
964                 }
965         }
966         return (KERN_SUCCESS);
967 }
968
969
970 /*
971  *      vm_fault_unwire:
972  *
973  *      Unwire a range of virtual addresses in a map.
974  */
975 void
976 vm_fault_unwire(map, start, end)
977         vm_map_t map;
978         vm_offset_t start, end;
979 {
980
981         vm_offset_t va;
982         vm_paddr_t pa;
983         pmap_t pmap;
984
985         pmap = vm_map_pmap(map);
986
987         /*
988          * Since the pages are wired down, we must be able to get their
989          * mappings from the physical map system.
990          */
991
992         for (va = start; va < end; va += PAGE_SIZE) {
993                 pa = pmap_extract(pmap, va);
994                 if (pa != 0) {
995                         pmap_change_wiring(pmap, va, FALSE);
996                         vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
997                 }
998         }
999
1000         /*
1001          * Inform the physical mapping system that the range of addresses may
1002          * fault, so that page tables and such may be unwired themselves.
1003          */
1004
1005         pmap_pageable(pmap, start, end, TRUE);
1006
1007 }
1008
1009 /*
1010  *      Routine:
1011  *              vm_fault_copy_entry
1012  *      Function:
1013  *              Copy all of the pages from a wired-down map entry to another.
1014  *
1015  *      In/out conditions:
1016  *              The source and destination maps must be locked for write.
1017  *              The source map entry must be wired down (or be a sharing map
1018  *              entry corresponding to a main map entry that is wired down).
1019  */
1020
1021 void
1022 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry)
1023         vm_map_t dst_map;
1024         vm_map_t src_map;
1025         vm_map_entry_t dst_entry;
1026         vm_map_entry_t src_entry;
1027 {
1028         vm_object_t dst_object;
1029         vm_object_t src_object;
1030         vm_ooffset_t dst_offset;
1031         vm_ooffset_t src_offset;
1032         vm_prot_t prot;
1033         vm_offset_t vaddr;
1034         vm_page_t dst_m;
1035         vm_page_t src_m;
1036
1037 #ifdef  lint
1038         src_map++;
1039 #endif  /* lint */
1040
1041         src_object = src_entry->object.vm_object;
1042         src_offset = src_entry->offset;
1043
1044         /*
1045          * Create the top-level object for the destination entry. (Doesn't
1046          * actually shadow anything - we copy the pages directly.)
1047          */
1048         dst_object = vm_object_allocate(OBJT_DEFAULT,
1049             (vm_size_t) OFF_TO_IDX(dst_entry->end - dst_entry->start));
1050
1051         dst_entry->object.vm_object = dst_object;
1052         dst_entry->offset = 0;
1053
1054         prot = dst_entry->max_protection;
1055
1056         /*
1057          * Loop through all of the pages in the entry's range, copying each
1058          * one from the source object (it should be there) to the destination
1059          * object.
1060          */
1061         for (vaddr = dst_entry->start, dst_offset = 0;
1062             vaddr < dst_entry->end;
1063             vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1064
1065                 /*
1066                  * Allocate a page in the destination object
1067                  */
1068                 do {
1069                         dst_m = vm_page_alloc(dst_object,
1070                                 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1071                         if (dst_m == NULL) {
1072                                 VM_WAIT;
1073                         }
1074                 } while (dst_m == NULL);
1075
1076                 /*
1077                  * Find the page in the source object, and copy it in.
1078                  * (Because the source is wired down, the page will be in
1079                  * memory.)
1080                  */
1081                 src_m = vm_page_lookup(src_object,
1082                         OFF_TO_IDX(dst_offset + src_offset));
1083                 if (src_m == NULL)
1084                         panic("vm_fault_copy_wired: page missing");
1085
1086                 vm_page_copy(src_m, dst_m);
1087
1088                 /*
1089                  * Enter it in the pmap...
1090                  */
1091
1092                 vm_page_flag_clear(dst_m, PG_ZERO);
1093                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1094                 vm_page_flag_set(dst_m, PG_WRITEABLE|PG_MAPPED);
1095
1096                 /*
1097                  * Mark it no longer busy, and put it on the active list.
1098                  */
1099                 vm_page_activate(dst_m);
1100                 vm_page_wakeup(dst_m);
1101         }
1102 }
1103
1104
1105 /*
1106  * This routine checks around the requested page for other pages that
1107  * might be able to be faulted in.  This routine brackets the viable
1108  * pages for the pages to be paged in.
1109  *
1110  * Inputs:
1111  *      m, rbehind, rahead
1112  *
1113  * Outputs:
1114  *  marray (array of vm_page_t), reqpage (index of requested page)
1115  *
1116  * Return value:
1117  *  number of pages in marray
1118  */
1119 static int
1120 vm_fault_additional_pages(m, rbehind, rahead, marray, reqpage)
1121         vm_page_t m;
1122         int rbehind;
1123         int rahead;
1124         vm_page_t *marray;
1125         int *reqpage;
1126 {
1127         int i,j;
1128         vm_object_t object;
1129         vm_pindex_t pindex, startpindex, endpindex, tpindex;
1130         vm_page_t rtm;
1131         int cbehind, cahead;
1132
1133         object = m->object;
1134         pindex = m->pindex;
1135
1136         /*
1137          * we don't fault-ahead for device pager
1138          */
1139         if (object->type == OBJT_DEVICE) {
1140                 *reqpage = 0;
1141                 marray[0] = m;
1142                 return 1;
1143         }
1144
1145         /*
1146          * if the requested page is not available, then give up now
1147          */
1148
1149         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1150                 return 0;
1151         }
1152
1153         if ((cbehind == 0) && (cahead == 0)) {
1154                 *reqpage = 0;
1155                 marray[0] = m;
1156                 return 1;
1157         }
1158
1159         if (rahead > cahead) {
1160                 rahead = cahead;
1161         }
1162
1163         if (rbehind > cbehind) {
1164                 rbehind = cbehind;
1165         }
1166
1167         /*
1168          * try to do any readahead that we might have free pages for.
1169          */
1170         if ((rahead + rbehind) >
1171                 ((vmstats.v_free_count + vmstats.v_cache_count) - vmstats.v_free_reserved)) {
1172                 pagedaemon_wakeup();
1173                 marray[0] = m;
1174                 *reqpage = 0;
1175                 return 1;
1176         }
1177
1178         /*
1179          * scan backward for the read behind pages -- in memory 
1180          */
1181         if (pindex > 0) {
1182                 if (rbehind > pindex) {
1183                         rbehind = pindex;
1184                         startpindex = 0;
1185                 } else {
1186                         startpindex = pindex - rbehind;
1187                 }
1188
1189                 for ( tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) {
1190                         if (vm_page_lookup( object, tpindex)) {
1191                                 startpindex = tpindex + 1;
1192                                 break;
1193                         }
1194                         if (tpindex == 0)
1195                                 break;
1196                 }
1197
1198                 for(i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
1199
1200                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1201                         if (rtm == NULL) {
1202                                 for (j = 0; j < i; j++) {
1203                                         vm_page_free(marray[j]);
1204                                 }
1205                                 marray[0] = m;
1206                                 *reqpage = 0;
1207                                 return 1;
1208                         }
1209
1210                         marray[i] = rtm;
1211                 }
1212         } else {
1213                 startpindex = 0;
1214                 i = 0;
1215         }
1216
1217         marray[i] = m;
1218         /* page offset of the required page */
1219         *reqpage = i;
1220
1221         tpindex = pindex + 1;
1222         i++;
1223
1224         /*
1225          * scan forward for the read ahead pages
1226          */
1227         endpindex = tpindex + rahead;
1228         if (endpindex > object->size)
1229                 endpindex = object->size;
1230
1231         for( ; tpindex < endpindex; i++, tpindex++) {
1232
1233                 if (vm_page_lookup(object, tpindex)) {
1234                         break;
1235                 }
1236
1237                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1238                 if (rtm == NULL) {
1239                         break;
1240                 }
1241
1242                 marray[i] = rtm;
1243         }
1244
1245         /* return number of bytes of pages */
1246         return i;
1247 }