Merge branch 'vendor/LIBRESSL'
[dragonfly.git] / contrib / binutils-2.27 / ld / ld.texinfo
1 \input texinfo
2 @setfilename ld.info
3 @c Copyright (C) 1991-2016 Free Software Foundation, Inc.
4 @syncodeindex ky cp
5 @c man begin INCLUDE
6 @include configdoc.texi
7 @c (configdoc.texi is generated by the Makefile)
8 @include bfdver.texi
9 @c man end
10
11 @c @smallbook
12
13 @macro gcctabopt{body}
14 @code{\body\}
15 @end macro
16
17 @c man begin NAME
18 @ifset man
19 @c Configure for the generation of man pages
20 @set UsesEnvVars
21 @set GENERIC
22 @set ARM
23 @set C6X
24 @set H8300
25 @set HPPA
26 @set I960
27 @set M68HC11
28 @set M68K
29 @set MIPS
30 @set MMIX
31 @set MSP430
32 @set NDS32
33 @set NIOSII
34 @set POWERPC
35 @set POWERPC64
36 @set Renesas
37 @set SPU
38 @set TICOFF
39 @set WIN32
40 @set XTENSA
41 @end ifset
42 @c man end
43
44 @ifnottex
45 @dircategory Software development
46 @direntry
47 * Ld: (ld).                       The GNU linker.
48 @end direntry
49 @end ifnottex
50
51 @copying
52 This file documents the @sc{gnu} linker LD
53 @ifset VERSION_PACKAGE
54 @value{VERSION_PACKAGE}
55 @end ifset
56 version @value{VERSION}.
57
58 Copyright @copyright{} 1991-2016 Free Software Foundation, Inc.
59
60 Permission is granted to copy, distribute and/or modify this document
61 under the terms of the GNU Free Documentation License, Version 1.3
62 or any later version published by the Free Software Foundation;
63 with no Invariant Sections, with no Front-Cover Texts, and with no
64 Back-Cover Texts.  A copy of the license is included in the
65 section entitled ``GNU Free Documentation License''.
66 @end copying
67 @iftex
68 @finalout
69 @setchapternewpage odd
70 @settitle The GNU linker
71 @titlepage
72 @title The GNU linker
73 @sp 1
74 @subtitle @code{ld}
75 @ifset VERSION_PACKAGE
76 @subtitle @value{VERSION_PACKAGE}
77 @end ifset
78 @subtitle Version @value{VERSION}
79 @author Steve Chamberlain
80 @author Ian Lance Taylor
81 @page
82
83 @tex
84 {\parskip=0pt
85 \hfill Red Hat Inc\par
86 \hfill nickc\@credhat.com, doc\@redhat.com\par
87 \hfill {\it The GNU linker}\par
88 \hfill Edited by Jeffrey Osier (jeffrey\@cygnus.com)\par
89 }
90 \global\parindent=0pt % Steve likes it this way.
91 @end tex
92
93 @vskip 0pt plus 1filll
94 @c man begin COPYRIGHT
95 Copyright @copyright{} 1991-2016 Free Software Foundation, Inc.
96
97 Permission is granted to copy, distribute and/or modify this document
98 under the terms of the GNU Free Documentation License, Version 1.3
99 or any later version published by the Free Software Foundation;
100 with no Invariant Sections, with no Front-Cover Texts, and with no
101 Back-Cover Texts.  A copy of the license is included in the
102 section entitled ``GNU Free Documentation License''.
103 @c man end
104
105 @end titlepage
106 @end iftex
107 @contents
108 @c FIXME: Talk about importance of *order* of args, cmds to linker!
109
110 @ifnottex
111 @node Top
112 @top LD
113 This file documents the @sc{gnu} linker ld
114 @ifset VERSION_PACKAGE
115 @value{VERSION_PACKAGE}
116 @end ifset
117 version @value{VERSION}.
118
119 This document is distributed under the terms of the GNU Free
120 Documentation License version 1.3.  A copy of the license is included
121 in the section entitled ``GNU Free Documentation License''.
122
123 @menu
124 * Overview::                    Overview
125 * Invocation::                  Invocation
126 * Scripts::                     Linker Scripts
127 @ifset GENERIC
128 * Machine Dependent::           Machine Dependent Features
129 @end ifset
130 @ifclear GENERIC
131 @ifset H8300
132 * H8/300::                      ld and the H8/300
133 @end ifset
134 @ifset Renesas
135 * Renesas::                     ld and other Renesas micros
136 @end ifset
137 @ifset I960
138 * i960::                        ld and the Intel 960 family
139 @end ifset
140 @ifset ARM
141 * ARM::                         ld and the ARM family
142 @end ifset
143 @ifset M68HC11
144 * M68HC11/68HC12::              ld and the Motorola 68HC11 and 68HC12 families
145 @end ifset
146 @ifset HPPA
147 * HPPA ELF32::                  ld and HPPA 32-bit ELF
148 @end ifset
149 @ifset M68K
150 * M68K::                        ld and Motorola 68K family
151 @end ifset
152 @ifset MIPS
153 * MIPS::                        ld and MIPS family
154 @end ifset
155 @ifset POWERPC
156 * PowerPC ELF32::               ld and PowerPC 32-bit ELF Support
157 @end ifset
158 @ifset POWERPC64
159 * PowerPC64 ELF64::             ld and PowerPC64 64-bit ELF Support
160 @end ifset
161 @ifset SPU
162 * SPU ELF::                     ld and SPU ELF Support
163 @end ifset
164 @ifset TICOFF
165 * TI COFF::                     ld and the TI COFF
166 @end ifset
167 @ifset WIN32
168 * Win32::                       ld and WIN32 (cygwin/mingw)
169 @end ifset
170 @ifset XTENSA
171 * Xtensa::                      ld and Xtensa Processors
172 @end ifset
173 @end ifclear
174 @ifclear SingleFormat
175 * BFD::                         BFD
176 @end ifclear
177 @c Following blank line required for remaining bug in makeinfo conds/menus
178
179 * Reporting Bugs::              Reporting Bugs
180 * MRI::                         MRI Compatible Script Files
181 * GNU Free Documentation License::  GNU Free Documentation License
182 * LD Index::                       LD Index
183 @end menu
184 @end ifnottex
185
186 @node Overview
187 @chapter Overview
188
189 @cindex @sc{gnu} linker
190 @cindex what is this?
191
192 @ifset man
193 @c man begin SYNOPSIS
194 ld [@b{options}] @var{objfile} @dots{}
195 @c man end
196
197 @c man begin SEEALSO
198 ar(1), nm(1), objcopy(1), objdump(1), readelf(1) and
199 the Info entries for @file{binutils} and
200 @file{ld}.
201 @c man end
202 @end ifset
203
204 @c man begin DESCRIPTION
205
206 @command{ld} combines a number of object and archive files, relocates
207 their data and ties up symbol references. Usually the last step in
208 compiling a program is to run @command{ld}.
209
210 @command{ld} accepts Linker Command Language files written in
211 a superset of AT&T's Link Editor Command Language syntax,
212 to provide explicit and total control over the linking process.
213
214 @ifset man
215 @c For the man only
216 This man page does not describe the command language; see the
217 @command{ld} entry in @code{info} for full details on the command
218 language and on other aspects of the GNU linker.
219 @end ifset
220
221 @ifclear SingleFormat
222 This version of @command{ld} uses the general purpose BFD libraries
223 to operate on object files. This allows @command{ld} to read, combine, and
224 write object files in many different formats---for example, COFF or
225 @code{a.out}.  Different formats may be linked together to produce any
226 available kind of object file.  @xref{BFD}, for more information.
227 @end ifclear
228
229 Aside from its flexibility, the @sc{gnu} linker is more helpful than other
230 linkers in providing diagnostic information.  Many linkers abandon
231 execution immediately upon encountering an error; whenever possible,
232 @command{ld} continues executing, allowing you to identify other errors
233 (or, in some cases, to get an output file in spite of the error).
234
235 @c man end
236
237 @node Invocation
238 @chapter Invocation
239
240 @c man begin DESCRIPTION
241
242 The @sc{gnu} linker @command{ld} is meant to cover a broad range of situations,
243 and to be as compatible as possible with other linkers.  As a result,
244 you have many choices to control its behavior.
245
246 @c man end
247
248 @ifset UsesEnvVars
249 @menu
250 * Options::                     Command Line Options
251 * Environment::                 Environment Variables
252 @end menu
253
254 @node Options
255 @section Command Line Options
256 @end ifset
257
258 @cindex command line
259 @cindex options
260
261 @c man begin OPTIONS
262
263 The linker supports a plethora of command-line options, but in actual
264 practice few of them are used in any particular context.
265 @cindex standard Unix system
266 For instance, a frequent use of @command{ld} is to link standard Unix
267 object files on a standard, supported Unix system.  On such a system, to
268 link a file @code{hello.o}:
269
270 @smallexample
271 ld -o @var{output} /lib/crt0.o hello.o -lc
272 @end smallexample
273
274 This tells @command{ld} to produce a file called @var{output} as the
275 result of linking the file @code{/lib/crt0.o} with @code{hello.o} and
276 the library @code{libc.a}, which will come from the standard search
277 directories.  (See the discussion of the @samp{-l} option below.)
278
279 Some of the command-line options to @command{ld} may be specified at any
280 point in the command line.  However, options which refer to files, such
281 as @samp{-l} or @samp{-T}, cause the file to be read at the point at
282 which the option appears in the command line, relative to the object
283 files and other file options.  Repeating non-file options with a
284 different argument will either have no further effect, or override prior
285 occurrences (those further to the left on the command line) of that
286 option.  Options which may be meaningfully specified more than once are
287 noted in the descriptions below.
288
289 @cindex object files
290 Non-option arguments are object files or archives which are to be linked
291 together.  They may follow, precede, or be mixed in with command-line
292 options, except that an object file argument may not be placed between
293 an option and its argument.
294
295 Usually the linker is invoked with at least one object file, but you can
296 specify other forms of binary input files using @samp{-l}, @samp{-R},
297 and the script command language.  If @emph{no} binary input files at all
298 are specified, the linker does not produce any output, and issues the
299 message @samp{No input files}.
300
301 If the linker cannot recognize the format of an object file, it will
302 assume that it is a linker script.  A script specified in this way
303 augments the main linker script used for the link (either the default
304 linker script or the one specified by using @samp{-T}).  This feature
305 permits the linker to link against a file which appears to be an object
306 or an archive, but actually merely defines some symbol values, or uses
307 @code{INPUT} or @code{GROUP} to load other objects.  Specifying a
308 script in this way merely augments the main linker script, with the
309 extra commands placed after the main script; use the @samp{-T} option
310 to replace the default linker script entirely, but note the effect of
311 the @code{INSERT} command.  @xref{Scripts}.
312
313 For options whose names are a single letter,
314 option arguments must either follow the option letter without intervening
315 whitespace, or be given as separate arguments immediately following the
316 option that requires them.
317
318 For options whose names are multiple letters, either one dash or two can
319 precede the option name; for example, @samp{-trace-symbol} and
320 @samp{--trace-symbol} are equivalent.  Note---there is one exception to
321 this rule.  Multiple letter options that start with a lower case 'o' can
322 only be preceded by two dashes.  This is to reduce confusion with the
323 @samp{-o} option.  So for example @samp{-omagic} sets the output file
324 name to @samp{magic} whereas @samp{--omagic} sets the NMAGIC flag on the
325 output.
326
327 Arguments to multiple-letter options must either be separated from the
328 option name by an equals sign, or be given as separate arguments
329 immediately following the option that requires them.  For example,
330 @samp{--trace-symbol foo} and @samp{--trace-symbol=foo} are equivalent.
331 Unique abbreviations of the names of multiple-letter options are
332 accepted.
333
334 Note---if the linker is being invoked indirectly, via a compiler driver
335 (e.g. @samp{gcc}) then all the linker command line options should be
336 prefixed by @samp{-Wl,} (or whatever is appropriate for the particular
337 compiler driver) like this:
338
339 @smallexample
340   gcc -Wl,--start-group foo.o bar.o -Wl,--end-group
341 @end smallexample
342
343 This is important, because otherwise the compiler driver program may
344 silently drop the linker options, resulting in a bad link.  Confusion
345 may also arise when passing options that require values through a
346 driver, as the use of a space between option and argument acts as
347 a separator, and causes the driver to pass only the option to the linker
348 and the argument to the compiler.  In this case, it is simplest to use
349 the joined forms of both single- and multiple-letter options, such as:
350
351 @smallexample
352   gcc foo.o bar.o -Wl,-eENTRY -Wl,-Map=a.map
353 @end smallexample
354
355 Here is a table of the generic command line switches accepted by the GNU
356 linker:
357
358 @table @gcctabopt
359 @include at-file.texi
360
361 @kindex -a @var{keyword}
362 @item -a @var{keyword}
363 This option is supported for HP/UX compatibility.  The @var{keyword}
364 argument must be one of the strings @samp{archive}, @samp{shared}, or
365 @samp{default}.  @samp{-aarchive} is functionally equivalent to
366 @samp{-Bstatic}, and the other two keywords are functionally equivalent
367 to @samp{-Bdynamic}.  This option may be used any number of times.
368
369 @kindex --audit @var{AUDITLIB}
370 @item --audit @var{AUDITLIB}
371 Adds @var{AUDITLIB} to the @code{DT_AUDIT} entry of the dynamic section.
372 @var{AUDITLIB} is not checked for existence, nor will it use the DT_SONAME
373 specified in the library.  If specified multiple times @code{DT_AUDIT}
374 will contain a colon separated list of audit interfaces to use. If the linker
375 finds an object with an audit entry while searching for shared libraries,
376 it will add a corresponding @code{DT_DEPAUDIT} entry in the output file.
377 This option is only meaningful on ELF platforms supporting the rtld-audit
378 interface.
379
380 @ifset I960
381 @cindex architectures
382 @kindex -A @var{arch}
383 @item -A @var{architecture}
384 @kindex --architecture=@var{arch}
385 @itemx --architecture=@var{architecture}
386 In the current release of @command{ld}, this option is useful only for the
387 Intel 960 family of architectures.  In that @command{ld} configuration, the
388 @var{architecture} argument identifies the particular architecture in
389 the 960 family, enabling some safeguards and modifying the
390 archive-library search path.  @xref{i960,,@command{ld} and the Intel 960
391 family}, for details.
392
393 Future releases of @command{ld} may support similar functionality for
394 other architecture families.
395 @end ifset
396
397 @ifclear SingleFormat
398 @cindex binary input format
399 @kindex -b @var{format}
400 @kindex --format=@var{format}
401 @cindex input format
402 @cindex input format
403 @item -b @var{input-format}
404 @itemx --format=@var{input-format}
405 @command{ld} may be configured to support more than one kind of object
406 file.  If your @command{ld} is configured this way, you can use the
407 @samp{-b} option to specify the binary format for input object files
408 that follow this option on the command line.  Even when @command{ld} is
409 configured to support alternative object formats, you don't usually need
410 to specify this, as @command{ld} should be configured to expect as a
411 default input format the most usual format on each machine.
412 @var{input-format} is a text string, the name of a particular format
413 supported by the BFD libraries.  (You can list the available binary
414 formats with @samp{objdump -i}.)
415 @xref{BFD}.
416
417 You may want to use this option if you are linking files with an unusual
418 binary format.  You can also use @samp{-b} to switch formats explicitly (when
419 linking object files of different formats), by including
420 @samp{-b @var{input-format}} before each group of object files in a
421 particular format.
422
423 The default format is taken from the environment variable
424 @code{GNUTARGET}.
425 @ifset UsesEnvVars
426 @xref{Environment}.
427 @end ifset
428 You can also define the input format from a script, using the command
429 @code{TARGET};
430 @ifclear man
431 see @ref{Format Commands}.
432 @end ifclear
433 @end ifclear
434
435 @kindex -c @var{MRI-cmdfile}
436 @kindex --mri-script=@var{MRI-cmdfile}
437 @cindex compatibility, MRI
438 @item -c @var{MRI-commandfile}
439 @itemx --mri-script=@var{MRI-commandfile}
440 For compatibility with linkers produced by MRI, @command{ld} accepts script
441 files written in an alternate, restricted command language, described in
442 @ifclear man
443 @ref{MRI,,MRI Compatible Script Files}.
444 @end ifclear
445 @ifset man
446 the MRI Compatible Script Files section of GNU ld documentation.
447 @end ifset
448 Introduce MRI script files with
449 the option @samp{-c}; use the @samp{-T} option to run linker
450 scripts written in the general-purpose @command{ld} scripting language.
451 If @var{MRI-cmdfile} does not exist, @command{ld} looks for it in the directories
452 specified by any @samp{-L} options.
453
454 @cindex common allocation
455 @kindex -d
456 @kindex -dc
457 @kindex -dp
458 @item -d
459 @itemx -dc
460 @itemx -dp
461 These three options are equivalent; multiple forms are supported for
462 compatibility with other linkers.  They assign space to common symbols
463 even if a relocatable output file is specified (with @samp{-r}).  The
464 script command @code{FORCE_COMMON_ALLOCATION} has the same effect.
465 @xref{Miscellaneous Commands}.
466
467 @kindex --depaudit @var{AUDITLIB}
468 @kindex -P @var{AUDITLIB}
469 @item --depaudit @var{AUDITLIB}
470 @itemx -P @var{AUDITLIB}
471 Adds @var{AUDITLIB} to the @code{DT_DEPAUDIT} entry of the dynamic section.
472 @var{AUDITLIB} is not checked for existence, nor will it use the DT_SONAME
473 specified in the library.  If specified multiple times @code{DT_DEPAUDIT}
474 will contain a colon separated list of audit interfaces to use.  This
475 option is only meaningful on ELF platforms supporting the rtld-audit interface.
476 The -P option is provided for Solaris compatibility.
477
478 @cindex entry point, from command line
479 @kindex -e @var{entry}
480 @kindex --entry=@var{entry}
481 @item -e @var{entry}
482 @itemx --entry=@var{entry}
483 Use @var{entry} as the explicit symbol for beginning execution of your
484 program, rather than the default entry point.  If there is no symbol
485 named @var{entry}, the linker will try to parse @var{entry} as a number,
486 and use that as the entry address (the number will be interpreted in
487 base 10; you may use a leading @samp{0x} for base 16, or a leading
488 @samp{0} for base 8).  @xref{Entry Point}, for a discussion of defaults
489 and other ways of specifying the entry point.
490
491 @kindex --exclude-libs
492 @item --exclude-libs @var{lib},@var{lib},...
493 Specifies a list of archive libraries from which symbols should not be automatically
494 exported.  The library names may be delimited by commas or colons.  Specifying
495 @code{--exclude-libs ALL} excludes symbols in all archive libraries from
496 automatic export.  This option is available only for the i386 PE targeted
497 port of the linker and for ELF targeted ports.  For i386 PE, symbols
498 explicitly listed in a .def file are still exported, regardless of this
499 option.  For ELF targeted ports, symbols affected by this option will
500 be treated as hidden.
501
502 @kindex --exclude-modules-for-implib
503 @item --exclude-modules-for-implib @var{module},@var{module},...
504 Specifies a list of object files or archive members, from which symbols
505 should not be automatically exported, but which should be copied wholesale
506 into the import library being generated during the link.  The module names
507 may be delimited by commas or colons, and must match exactly the filenames
508 used by @command{ld} to open the files; for archive members, this is simply
509 the member name, but for object files the name listed must include and
510 match precisely any path used to specify the input file on the linker's
511 command-line.  This option is available only for the i386 PE targeted port
512 of the linker.  Symbols explicitly listed in a .def file are still exported,
513 regardless of this option.
514
515 @cindex dynamic symbol table
516 @kindex -E
517 @kindex --export-dynamic
518 @kindex --no-export-dynamic
519 @item -E
520 @itemx --export-dynamic
521 @itemx --no-export-dynamic
522 When creating a dynamically linked executable, using the @option{-E}
523 option or the @option{--export-dynamic} option causes the linker to add
524 all symbols to the dynamic symbol table.  The dynamic symbol table is the
525 set of symbols which are visible from dynamic objects at run time.
526
527 If you do not use either of these options (or use the
528 @option{--no-export-dynamic} option to restore the default behavior), the
529 dynamic symbol table will normally contain only those symbols which are
530 referenced by some dynamic object mentioned in the link.
531
532 If you use @code{dlopen} to load a dynamic object which needs to refer
533 back to the symbols defined by the program, rather than some other
534 dynamic object, then you will probably need to use this option when
535 linking the program itself.
536
537 You can also use the dynamic list to control what symbols should
538 be added to the dynamic symbol table if the output format supports it.
539 See the description of @samp{--dynamic-list}.
540
541 Note that this option is specific to ELF targeted ports.  PE targets
542 support a similar function to export all symbols from a DLL or EXE; see
543 the description of @samp{--export-all-symbols} below.
544
545 @ifclear SingleFormat
546 @cindex big-endian objects
547 @cindex endianness
548 @kindex -EB
549 @item -EB
550 Link big-endian objects.  This affects the default output format.
551
552 @cindex little-endian objects
553 @kindex -EL
554 @item -EL
555 Link little-endian objects.  This affects the default output format.
556 @end ifclear
557
558 @kindex -f @var{name}
559 @kindex --auxiliary=@var{name}
560 @item -f @var{name}
561 @itemx --auxiliary=@var{name}
562 When creating an ELF shared object, set the internal DT_AUXILIARY field
563 to the specified name.  This tells the dynamic linker that the symbol
564 table of the shared object should be used as an auxiliary filter on the
565 symbol table of the shared object @var{name}.
566
567 If you later link a program against this filter object, then, when you
568 run the program, the dynamic linker will see the DT_AUXILIARY field.  If
569 the dynamic linker resolves any symbols from the filter object, it will
570 first check whether there is a definition in the shared object
571 @var{name}.  If there is one, it will be used instead of the definition
572 in the filter object.  The shared object @var{name} need not exist.
573 Thus the shared object @var{name} may be used to provide an alternative
574 implementation of certain functions, perhaps for debugging or for
575 machine specific performance.
576
577 This option may be specified more than once.  The DT_AUXILIARY entries
578 will be created in the order in which they appear on the command line.
579
580 @kindex -F @var{name}
581 @kindex --filter=@var{name}
582 @item -F @var{name}
583 @itemx --filter=@var{name}
584 When creating an ELF shared object, set the internal DT_FILTER field to
585 the specified name.  This tells the dynamic linker that the symbol table
586 of the shared object which is being created should be used as a filter
587 on the symbol table of the shared object @var{name}.
588
589 If you later link a program against this filter object, then, when you
590 run the program, the dynamic linker will see the DT_FILTER field.  The
591 dynamic linker will resolve symbols according to the symbol table of the
592 filter object as usual, but it will actually link to the definitions
593 found in the shared object @var{name}.  Thus the filter object can be
594 used to select a subset of the symbols provided by the object
595 @var{name}.
596
597 Some older linkers used the @option{-F} option throughout a compilation
598 toolchain for specifying object-file format for both input and output
599 object files.
600 @ifclear SingleFormat
601 The @sc{gnu} linker uses other mechanisms for this purpose: the
602 @option{-b}, @option{--format}, @option{--oformat} options, the
603 @code{TARGET} command in linker scripts, and the @code{GNUTARGET}
604 environment variable.
605 @end ifclear
606 The @sc{gnu} linker will ignore the @option{-F} option when not
607 creating an ELF shared object.
608
609 @cindex finalization function
610 @kindex -fini=@var{name}
611 @item -fini=@var{name}
612 When creating an ELF executable or shared object, call NAME when the
613 executable or shared object is unloaded, by setting DT_FINI to the
614 address of the function.  By default, the linker uses @code{_fini} as
615 the function to call.
616
617 @kindex -g
618 @item -g
619 Ignored.  Provided for compatibility with other tools.
620
621 @kindex -G @var{value}
622 @kindex --gpsize=@var{value}
623 @cindex object size
624 @item -G @var{value}
625 @itemx --gpsize=@var{value}
626 Set the maximum size of objects to be optimized using the GP register to
627 @var{size}.  This is only meaningful for object file formats such as
628 MIPS ELF that support putting large and small objects into different
629 sections.  This is ignored for other object file formats.
630
631 @cindex runtime library name
632 @kindex -h @var{name}
633 @kindex -soname=@var{name}
634 @item -h @var{name}
635 @itemx -soname=@var{name}
636 When creating an ELF shared object, set the internal DT_SONAME field to
637 the specified name.  When an executable is linked with a shared object
638 which has a DT_SONAME field, then when the executable is run the dynamic
639 linker will attempt to load the shared object specified by the DT_SONAME
640 field rather than the using the file name given to the linker.
641
642 @kindex -i
643 @cindex incremental link
644 @item -i
645 Perform an incremental link (same as option @samp{-r}).
646
647 @cindex initialization function
648 @kindex -init=@var{name}
649 @item -init=@var{name}
650 When creating an ELF executable or shared object, call NAME when the
651 executable or shared object is loaded, by setting DT_INIT to the address
652 of the function.  By default, the linker uses @code{_init} as the
653 function to call.
654
655 @cindex archive files, from cmd line
656 @kindex -l @var{namespec}
657 @kindex --library=@var{namespec}
658 @item -l @var{namespec}
659 @itemx --library=@var{namespec}
660 Add the archive or object file specified by @var{namespec} to the
661 list of files to link.  This option may be used any number of times.
662 If @var{namespec} is of the form @file{:@var{filename}}, @command{ld}
663 will search the library path for a file called @var{filename}, otherwise it
664 will search the library path for a file called @file{lib@var{namespec}.a}.
665
666 On systems which support shared libraries, @command{ld} may also search for
667 files other than @file{lib@var{namespec}.a}.  Specifically, on ELF
668 and SunOS systems, @command{ld} will search a directory for a library
669 called @file{lib@var{namespec}.so} before searching for one called
670 @file{lib@var{namespec}.a}.  (By convention, a @code{.so} extension
671 indicates a shared library.)  Note that this behavior does not apply
672 to @file{:@var{filename}}, which always specifies a file called
673 @var{filename}.
674
675 The linker will search an archive only once, at the location where it is
676 specified on the command line.  If the archive defines a symbol which
677 was undefined in some object which appeared before the archive on the
678 command line, the linker will include the appropriate file(s) from the
679 archive.  However, an undefined symbol in an object appearing later on
680 the command line will not cause the linker to search the archive again.
681
682 See the @option{-(} option for a way to force the linker to search
683 archives multiple times.
684
685 You may list the same archive multiple times on the command line.
686
687 @ifset GENERIC
688 This type of archive searching is standard for Unix linkers.  However,
689 if you are using @command{ld} on AIX, note that it is different from the
690 behaviour of the AIX linker.
691 @end ifset
692
693 @cindex search directory, from cmd line
694 @kindex -L @var{dir}
695 @kindex --library-path=@var{dir}
696 @item -L @var{searchdir}
697 @itemx --library-path=@var{searchdir}
698 Add path @var{searchdir} to the list of paths that @command{ld} will search
699 for archive libraries and @command{ld} control scripts.  You may use this
700 option any number of times.  The directories are searched in the order
701 in which they are specified on the command line.  Directories specified
702 on the command line are searched before the default directories.  All
703 @option{-L} options apply to all @option{-l} options, regardless of the
704 order in which the options appear.  @option{-L} options do not affect
705 how @command{ld} searches for a linker script unless @option{-T}
706 option is specified.
707
708 If @var{searchdir} begins with @code{=}, then the @code{=} will be replaced
709 by the @dfn{sysroot prefix}, controlled by the @samp{--sysroot} option, or
710 specified when the linker is configured.
711
712 @ifset UsesEnvVars
713 The default set of paths searched (without being specified with
714 @samp{-L}) depends on which emulation mode @command{ld} is using, and in
715 some cases also on how it was configured.  @xref{Environment}.
716 @end ifset
717
718 The paths can also be specified in a link script with the
719 @code{SEARCH_DIR} command.  Directories specified this way are searched
720 at the point in which the linker script appears in the command line.
721
722 @cindex emulation
723 @kindex -m @var{emulation}
724 @item -m @var{emulation}
725 Emulate the @var{emulation} linker.  You can list the available
726 emulations with the @samp{--verbose} or @samp{-V} options.
727
728 If the @samp{-m} option is not used, the emulation is taken from the
729 @code{LDEMULATION} environment variable, if that is defined.
730
731 Otherwise, the default emulation depends upon how the linker was
732 configured.
733
734 @cindex link map
735 @kindex -M
736 @kindex --print-map
737 @item -M
738 @itemx --print-map
739 Print a link map to the standard output.  A link map provides
740 information about the link, including the following:
741
742 @itemize @bullet
743 @item
744 Where object files are mapped into memory.
745 @item
746 How common symbols are allocated.
747 @item
748 All archive members included in the link, with a mention of the symbol
749 which caused the archive member to be brought in.
750 @item
751 The values assigned to symbols.
752
753 Note - symbols whose values are computed by an expression which
754 involves a reference to a previous value of the same symbol may not
755 have correct result displayed in the link map.  This is because the
756 linker discards intermediate results and only retains the final value
757 of an expression.  Under such circumstances the linker will display
758 the final value enclosed by square brackets.  Thus for example a
759 linker script containing:
760
761 @smallexample
762    foo = 1
763    foo = foo * 4
764    foo = foo + 8
765 @end smallexample
766
767 will produce the following output in the link map if the @option{-M}
768 option is used:
769
770 @smallexample
771    0x00000001                foo = 0x1
772    [0x0000000c]                foo = (foo * 0x4)
773    [0x0000000c]                foo = (foo + 0x8)
774 @end smallexample
775
776 See @ref{Expressions} for more information about expressions in linker
777 scripts.
778 @end itemize
779
780 @kindex -n
781 @cindex read-only text
782 @cindex NMAGIC
783 @kindex --nmagic
784 @item -n
785 @itemx --nmagic
786 Turn off page alignment of sections, and disable linking against shared
787 libraries.  If the output format supports Unix style magic numbers,
788 mark the output as @code{NMAGIC}.
789
790 @kindex -N
791 @kindex --omagic
792 @cindex read/write from cmd line
793 @cindex OMAGIC
794 @item -N
795 @itemx --omagic
796 Set the text and data sections to be readable and writable.  Also, do
797 not page-align the data segment, and disable linking against shared
798 libraries.  If the output format supports Unix style magic numbers,
799 mark the output as @code{OMAGIC}. Note: Although a writable text section
800 is allowed for PE-COFF targets, it does not conform to the format
801 specification published by Microsoft.
802
803 @kindex --no-omagic
804 @cindex OMAGIC
805 @item --no-omagic
806 This option negates most of the effects of the @option{-N} option.  It
807 sets the text section to be read-only, and forces the data segment to
808 be page-aligned.  Note - this option does not enable linking against
809 shared libraries.  Use @option{-Bdynamic} for this.
810
811 @kindex -o @var{output}
812 @kindex --output=@var{output}
813 @cindex naming the output file
814 @item -o @var{output}
815 @itemx --output=@var{output}
816 Use @var{output} as the name for the program produced by @command{ld}; if this
817 option is not specified, the name @file{a.out} is used by default.  The
818 script command @code{OUTPUT} can also specify the output file name.
819
820 @kindex -O @var{level}
821 @cindex generating optimized output
822 @item -O @var{level}
823 If @var{level} is a numeric values greater than zero @command{ld} optimizes
824 the output.  This might take significantly longer and therefore probably
825 should only be enabled for the final binary.  At the moment this
826 option only affects ELF shared library generation.  Future releases of
827 the linker may make more use of this option.  Also currently there is
828 no difference in the linker's behaviour for different non-zero values
829 of this option.  Again this may change with future releases.
830
831 @kindex --push-state
832 @cindex push state governing input file handling
833 @item --push-state
834 The @option{--push-state} allows to preserve the current state of the
835 flags which govern the input file handling so that they can all be
836 restored with one corresponding @option{--pop-state} option.
837
838 The option which are covered are: @option{-Bdynamic}, @option{-Bstatic},
839 @option{-dn}, @option{-dy}, @option{-call_shared}, @option{-non_shared},
840 @option{-static}, @option{-N}, @option{-n}, @option{--whole-archive},
841 @option{--no-whole-archive}, @option{-r}, @option{-Ur},
842 @option{--copy-dt-needed-entries}, @option{--no-copy-dt-needed-entries},
843 @option{--as-needed}, @option{--no-as-needed}, and @option{-a}.
844
845 One target for this option are specifications for @file{pkg-config}.  When
846 used with the @option{--libs} option all possibly needed libraries are
847 listed and then possibly linked with all the time.  It is better to return
848 something as follows:
849
850 @smallexample
851 -Wl,--push-state,--as-needed -libone -libtwo -Wl,--pop-state
852 @end smallexample
853
854 @kindex --pop-state
855 @cindex pop state governing input file handling
856 Undoes the effect of --push-state, restores the previous values of the
857 flags governing input file handling.
858
859 @kindex -q
860 @kindex --emit-relocs
861 @cindex retain relocations in final executable
862 @item -q
863 @itemx --emit-relocs
864 Leave relocation sections and contents in fully linked executables.
865 Post link analysis and optimization tools may need this information in
866 order to perform correct modifications of executables.  This results
867 in larger executables.
868
869 This option is currently only supported on ELF platforms.
870
871 @kindex --force-dynamic
872 @cindex forcing the creation of dynamic sections
873 @item --force-dynamic
874 Force the output file to have dynamic sections.  This option is specific
875 to VxWorks targets.
876
877 @cindex partial link
878 @cindex relocatable output
879 @kindex -r
880 @kindex --relocatable
881 @item -r
882 @itemx --relocatable
883 Generate relocatable output---i.e., generate an output file that can in
884 turn serve as input to @command{ld}.  This is often called @dfn{partial
885 linking}.  As a side effect, in environments that support standard Unix
886 magic numbers, this option also sets the output file's magic number to
887 @code{OMAGIC}.
888 @c ; see @option{-N}.
889 If this option is not specified, an absolute file is produced.  When
890 linking C++ programs, this option @emph{will not} resolve references to
891 constructors; to do that, use @samp{-Ur}.
892
893 When an input file does not have the same format as the output file,
894 partial linking is only supported if that input file does not contain any
895 relocations.  Different output formats can have further restrictions; for
896 example some @code{a.out}-based formats do not support partial linking
897 with input files in other formats at all.
898
899 This option does the same thing as @samp{-i}.
900
901 @kindex -R @var{file}
902 @kindex --just-symbols=@var{file}
903 @cindex symbol-only input
904 @item -R @var{filename}
905 @itemx --just-symbols=@var{filename}
906 Read symbol names and their addresses from @var{filename}, but do not
907 relocate it or include it in the output.  This allows your output file
908 to refer symbolically to absolute locations of memory defined in other
909 programs.  You may use this option more than once.
910
911 For compatibility with other ELF linkers, if the @option{-R} option is
912 followed by a directory name, rather than a file name, it is treated as
913 the @option{-rpath} option.
914
915 @kindex -s
916 @kindex --strip-all
917 @cindex strip all symbols
918 @item -s
919 @itemx --strip-all
920 Omit all symbol information from the output file.
921
922 @kindex -S
923 @kindex --strip-debug
924 @cindex strip debugger symbols
925 @item -S
926 @itemx --strip-debug
927 Omit debugger symbol information (but not all symbols) from the output file.
928
929 @kindex -t
930 @kindex --trace
931 @cindex input files, displaying
932 @item -t
933 @itemx --trace
934 Print the names of the input files as @command{ld} processes them.
935
936 @kindex -T @var{script}
937 @kindex --script=@var{script}
938 @cindex script files
939 @item -T @var{scriptfile}
940 @itemx --script=@var{scriptfile}
941 Use @var{scriptfile} as the linker script.  This script replaces
942 @command{ld}'s default linker script (rather than adding to it), so
943 @var{commandfile} must specify everything necessary to describe the
944 output file.  @xref{Scripts}.  If @var{scriptfile} does not exist in
945 the current directory, @code{ld} looks for it in the directories
946 specified by any preceding @samp{-L} options.  Multiple @samp{-T}
947 options accumulate.
948
949 @kindex -dT @var{script}
950 @kindex --default-script=@var{script}
951 @cindex script files
952 @item -dT @var{scriptfile}
953 @itemx --default-script=@var{scriptfile}
954 Use @var{scriptfile} as the default linker script.  @xref{Scripts}.
955
956 This option is similar to the @option{--script} option except that
957 processing of the script is delayed until after the rest of the
958 command line has been processed.  This allows options placed after the
959 @option{--default-script} option on the command line to affect the
960 behaviour of the linker script, which can be important when the linker
961 command line cannot be directly controlled by the user.  (eg because
962 the command line is being constructed by another tool, such as
963 @samp{gcc}).
964
965 @kindex -u @var{symbol}
966 @kindex --undefined=@var{symbol}
967 @cindex undefined symbol
968 @item -u @var{symbol}
969 @itemx --undefined=@var{symbol}
970 Force @var{symbol} to be entered in the output file as an undefined
971 symbol.  Doing this may, for example, trigger linking of additional
972 modules from standard libraries.  @samp{-u} may be repeated with
973 different option arguments to enter additional undefined symbols.  This
974 option is equivalent to the @code{EXTERN} linker script command.
975
976 If this option is being used to force additional modules to be pulled
977 into the link, and if it is an error for the symbol to remain
978 undefined, then the option @option{--require-defined} should be used
979 instead.
980
981 @kindex --require-defined=@var{symbol}
982 @cindex symbols, require defined
983 @cindex defined symbol
984 @item --require-defined=@var{symbol}
985 Require that @var{symbol} is defined in the output file.  This option
986 is the same as option @option{--undefined} except that if @var{symbol}
987 is not defined in the output file then the linker will issue an error
988 and exit.  The same effect can be achieved in a linker script by using
989 @code{EXTERN}, @code{ASSERT} and @code{DEFINED} together.  This option
990 can be used multiple times to require additional symbols.
991
992 @kindex -Ur
993 @cindex constructors
994 @item -Ur
995 For anything other than C++ programs, this option is equivalent to
996 @samp{-r}: it generates relocatable output---i.e., an output file that can in
997 turn serve as input to @command{ld}.  When linking C++ programs, @samp{-Ur}
998 @emph{does} resolve references to constructors, unlike @samp{-r}.
999 It does not work to use @samp{-Ur} on files that were themselves linked
1000 with @samp{-Ur}; once the constructor table has been built, it cannot
1001 be added to.  Use @samp{-Ur} only for the last partial link, and
1002 @samp{-r} for the others.
1003
1004 @kindex --orphan-handling=@var{MODE}
1005 @cindex orphan sections
1006 @cindex sections, orphan
1007 @item --orphan-handling=@var{MODE}
1008 Control how orphan sections are handled.  An orphan section is one not
1009 specifically mentioned in a linker script.  @xref{Orphan Sections}.
1010
1011 @var{MODE} can have any of the following values:
1012
1013 @table @code
1014 @item place
1015 Orphan sections are placed into a suitable output section following
1016 the strategy described in @ref{Orphan Sections}.  The option
1017 @samp{--unique} also effects how sections are placed.
1018
1019 @item discard
1020 All orphan sections are discarded, by placing them in the
1021 @samp{/DISCARD/} section (@pxref{Output Section Discarding}).
1022
1023 @item warn
1024 The linker will place the orphan section as for @code{place} and also
1025 issue a warning.
1026
1027 @item error
1028 The linker will exit with an error if any orphan section is found.
1029 @end table
1030
1031 The default if @samp{--orphan-handling} is not given is @code{place}.
1032
1033 @kindex --unique[=@var{SECTION}]
1034 @item --unique[=@var{SECTION}]
1035 Creates a separate output section for every input section matching
1036 @var{SECTION}, or if the optional wildcard @var{SECTION} argument is
1037 missing, for every orphan input section.  An orphan section is one not
1038 specifically mentioned in a linker script.  You may use this option
1039 multiple times on the command line;  It prevents the normal merging of
1040 input sections with the same name, overriding output section assignments
1041 in a linker script.
1042
1043 @kindex -v
1044 @kindex -V
1045 @kindex --version
1046 @cindex version
1047 @item -v
1048 @itemx --version
1049 @itemx -V
1050 Display the version number for @command{ld}.  The @option{-V} option also
1051 lists the supported emulations.
1052
1053 @kindex -x
1054 @kindex --discard-all
1055 @cindex deleting local symbols
1056 @item -x
1057 @itemx --discard-all
1058 Delete all local symbols.
1059
1060 @kindex -X
1061 @kindex --discard-locals
1062 @cindex local symbols, deleting
1063 @item -X
1064 @itemx --discard-locals
1065 Delete all temporary local symbols.  (These symbols start with
1066 system-specific local label prefixes, typically @samp{.L} for ELF systems
1067 or @samp{L} for traditional a.out systems.)
1068
1069 @kindex -y @var{symbol}
1070 @kindex --trace-symbol=@var{symbol}
1071 @cindex symbol tracing
1072 @item -y @var{symbol}
1073 @itemx --trace-symbol=@var{symbol}
1074 Print the name of each linked file in which @var{symbol} appears.  This
1075 option may be given any number of times.  On many systems it is necessary
1076 to prepend an underscore.
1077
1078 This option is useful when you have an undefined symbol in your link but
1079 don't know where the reference is coming from.
1080
1081 @kindex -Y @var{path}
1082 @item -Y @var{path}
1083 Add @var{path} to the default library search path.  This option exists
1084 for Solaris compatibility.
1085
1086 @kindex -z @var{keyword}
1087 @item -z @var{keyword}
1088 The recognized keywords are:
1089 @table @samp
1090
1091 @item combreloc
1092 Combines multiple reloc sections and sorts them to make dynamic symbol
1093 lookup caching possible.
1094
1095 @item common
1096 Generate common symbols with the STT_COMMON type druing a relocatable
1097 link.
1098
1099 @item defs
1100 Disallows undefined symbols in object files.  Undefined symbols in
1101 shared libraries are still allowed.
1102
1103 @item execstack
1104 Marks the object as requiring executable stack.
1105
1106 @item global
1107 This option is only meaningful when building a shared object.  It makes
1108 the symbols defined by this shared object available for symbol resolution
1109 of subsequently loaded libraries.
1110
1111 @item initfirst
1112 This option is only meaningful when building a shared object.
1113 It marks the object so that its runtime initialization will occur
1114 before the runtime initialization of any other objects brought into
1115 the process at the same time.  Similarly the runtime finalization of
1116 the object will occur after the runtime finalization of any other
1117 objects.
1118
1119 @item interpose
1120 Marks the object that its symbol table interposes before all symbols
1121 but the primary executable.
1122
1123 @item lazy
1124 When generating an executable or shared library, mark it to tell the
1125 dynamic linker to defer function call resolution to the point when
1126 the function is called (lazy binding), rather than at load time.
1127 Lazy binding is the default.
1128
1129 @item loadfltr
1130 Marks  the object that its filters be processed immediately at
1131 runtime.
1132
1133 @item muldefs
1134 Allows multiple definitions.
1135
1136 @item nocombreloc
1137 Disables multiple reloc sections combining.
1138
1139 @item nocommon
1140 Generate common symbols with the STT_OBJECT type druing a relocatable
1141 link.
1142
1143 @item nocopyreloc
1144 Disable linker generated .dynbss variables used in place of variables
1145 defined in shared libraries.  May result in dynamic text relocations.
1146
1147 @item nodefaultlib
1148 Marks the object that the search for dependencies of this object will
1149 ignore any default library search paths.
1150
1151 @item nodelete
1152 Marks the object shouldn't be unloaded at runtime.
1153
1154 @item nodlopen
1155 Marks the object not available to @code{dlopen}.
1156
1157 @item nodump
1158 Marks the object can not be dumped by @code{dldump}.
1159
1160 @item noexecstack
1161 Marks the object as not requiring executable stack.
1162
1163 @item text
1164 Treat DT_TEXTREL in shared object as error.
1165
1166 @item notext
1167 Don't treat DT_TEXTREL in shared object as error.
1168
1169 @item textoff
1170 Don't treat DT_TEXTREL in shared object as error.
1171
1172 @item norelro
1173 Don't create an ELF @code{PT_GNU_RELRO} segment header in the object.
1174
1175 @item now
1176 When generating an executable or shared library, mark it to tell the
1177 dynamic linker to resolve all symbols when the program is started, or
1178 when the shared library is linked to using dlopen, instead of
1179 deferring function call resolution to the point when the function is
1180 first called.
1181
1182 @item origin
1183 Marks the object may contain $ORIGIN.
1184
1185 @item relro
1186 Create an ELF @code{PT_GNU_RELRO} segment header in the object.
1187
1188 @item max-page-size=@var{value}
1189 Set the emulation maximum page size to @var{value}.
1190
1191 @item common-page-size=@var{value}
1192 Set the emulation common page size to @var{value}.
1193
1194 @item stack-size=@var{value}
1195 Specify a stack size for in an ELF @code{PT_GNU_STACK} segment.
1196 Specifying zero will override any default non-zero sized
1197 @code{PT_GNU_STACK} segment creation.
1198
1199 @item bndplt
1200 Always generate BND prefix in PLT entries. Supported for Linux/x86_64.
1201
1202 @item noextern-protected-data
1203 Don't treat protected data symbol as external when building shared
1204 library.  This option overrides linker backend default.  It can be used
1205 to workaround incorrect relocations against protected data symbols
1206 generated by compiler.  Updates on protected data symbols by another
1207 module aren't visible to the resulting shared library.  Supported for
1208 i386 and x86-64.
1209
1210 @item nodynamic-undefined-weak
1211 Don't treat undefined weak symbols as dynamic when building executable.
1212 This option overrides linker backend default.  It can be used to avoid
1213 dynamic relocations against undefined weak symbols in executable.
1214 Supported for i386 and x86-64.
1215
1216 @item noreloc-overflow
1217 Disable relocation overflow check.  This can be used to disable
1218 relocation overflow check if there will be no dynamic relocation
1219 overflow at run-time.  Supported for x86_64.
1220
1221 @item call-nop=prefix-addr
1222 @itemx call-nop=prefix-nop
1223 @itemx call-nop=suffix-nop
1224 @itemx call-nop=prefix-@var{byte}
1225 @itemx call-nop=suffix-@var{byte}
1226 Specify the 1-byte @code{NOP} padding when transforming indirect call
1227 to a locally defined function, foo, via its GOT slot.
1228 @option{call-nop=prefix-addr} generates @code{0x67 call foo}.
1229 @option{call-nop=prefix-nop} generates @code{0x90 call foo}.
1230 @option{call-nop=suffix-nop} generates @code{call foo 0x90}.
1231 @option{call-nop=prefix-@var{byte}} generates @code{@var{byte} call foo}.
1232 @option{call-nop=suffix-@var{byte}} generates @code{call foo @var{byte}}.
1233 Supported for i386 and x86_64.
1234
1235 @end table
1236
1237 Other keywords are ignored for Solaris compatibility.
1238
1239 @kindex -(
1240 @cindex groups of archives
1241 @item -( @var{archives} -)
1242 @itemx --start-group @var{archives} --end-group
1243 The @var{archives} should be a list of archive files.  They may be
1244 either explicit file names, or @samp{-l} options.
1245
1246 The specified archives are searched repeatedly until no new undefined
1247 references are created.  Normally, an archive is searched only once in
1248 the order that it is specified on the command line.  If a symbol in that
1249 archive is needed to resolve an undefined symbol referred to by an
1250 object in an archive that appears later on the command line, the linker
1251 would not be able to resolve that reference.  By grouping the archives,
1252 they all be searched repeatedly until all possible references are
1253 resolved.
1254
1255 Using this option has a significant performance cost.  It is best to use
1256 it only when there are unavoidable circular references between two or
1257 more archives.
1258
1259 @kindex --accept-unknown-input-arch
1260 @kindex --no-accept-unknown-input-arch
1261 @item --accept-unknown-input-arch
1262 @itemx --no-accept-unknown-input-arch
1263 Tells the linker to accept input files whose architecture cannot be
1264 recognised.  The assumption is that the user knows what they are doing
1265 and deliberately wants to link in these unknown input files.  This was
1266 the default behaviour of the linker, before release 2.14.  The default
1267 behaviour from release 2.14 onwards is to reject such input files, and
1268 so the @samp{--accept-unknown-input-arch} option has been added to
1269 restore the old behaviour.
1270
1271 @kindex --as-needed
1272 @kindex --no-as-needed
1273 @item --as-needed
1274 @itemx --no-as-needed
1275 This option affects ELF DT_NEEDED tags for dynamic libraries mentioned
1276 on the command line after the @option{--as-needed} option.  Normally
1277 the linker will add a DT_NEEDED tag for each dynamic library mentioned
1278 on the command line, regardless of whether the library is actually
1279 needed or not.  @option{--as-needed} causes a DT_NEEDED tag to only be
1280 emitted for a library that @emph{at that point in the link} satisfies a
1281 non-weak undefined symbol reference from a regular object file or, if
1282 the library is not found in the DT_NEEDED lists of other needed libraries, a
1283 non-weak undefined symbol reference from another needed dynamic library.
1284 Object files or libraries appearing on the command line @emph{after}
1285 the library in question do not affect whether the library is seen as
1286 needed.  This is similar to the rules for extraction of object files
1287 from archives.  @option{--no-as-needed} restores the default behaviour.
1288
1289 @kindex --add-needed
1290 @kindex --no-add-needed
1291 @item --add-needed
1292 @itemx --no-add-needed
1293 These two options have been deprecated because of the similarity of
1294 their names to the @option{--as-needed} and @option{--no-as-needed}
1295 options.  They have been replaced by @option{--copy-dt-needed-entries}
1296 and @option{--no-copy-dt-needed-entries}.
1297
1298 @kindex -assert @var{keyword}
1299 @item -assert @var{keyword}
1300 This option is ignored for SunOS compatibility.
1301
1302 @kindex -Bdynamic
1303 @kindex -dy
1304 @kindex -call_shared
1305 @item -Bdynamic
1306 @itemx -dy
1307 @itemx -call_shared
1308 Link against dynamic libraries.  This is only meaningful on platforms
1309 for which shared libraries are supported.  This option is normally the
1310 default on such platforms.  The different variants of this option are
1311 for compatibility with various systems.  You may use this option
1312 multiple times on the command line: it affects library searching for
1313 @option{-l} options which follow it.
1314
1315 @kindex -Bgroup
1316 @item -Bgroup
1317 Set the @code{DF_1_GROUP} flag in the @code{DT_FLAGS_1} entry in the dynamic
1318 section.  This causes the runtime linker to handle lookups in this
1319 object and its dependencies to be performed only inside the group.
1320 @option{--unresolved-symbols=report-all} is implied.  This option is
1321 only meaningful on ELF platforms which support shared libraries.
1322
1323 @kindex -Bstatic
1324 @kindex -dn
1325 @kindex -non_shared
1326 @kindex -static
1327 @item -Bstatic
1328 @itemx -dn
1329 @itemx -non_shared
1330 @itemx -static
1331 Do not link against shared libraries.  This is only meaningful on
1332 platforms for which shared libraries are supported.  The different
1333 variants of this option are for compatibility with various systems.  You
1334 may use this option multiple times on the command line: it affects
1335 library searching for @option{-l} options which follow it.  This
1336 option also implies @option{--unresolved-symbols=report-all}.  This
1337 option can be used with @option{-shared}.  Doing so means that a
1338 shared library is being created but that all of the library's external
1339 references must be resolved by pulling in entries from static
1340 libraries.
1341
1342 @kindex -Bsymbolic
1343 @item -Bsymbolic
1344 When creating a shared library, bind references to global symbols to the
1345 definition within the shared library, if any.  Normally, it is possible
1346 for a program linked against a shared library to override the definition
1347 within the shared library.  This option can also be used with the
1348 @option{--export-dynamic} option, when creating a position independent
1349 executable, to bind references to global symbols to the definition within
1350 the executable.  This option is only meaningful on ELF platforms which
1351 support shared libraries and position independent executables.
1352
1353 @kindex -Bsymbolic-functions
1354 @item -Bsymbolic-functions
1355 When creating a shared library, bind references to global function
1356 symbols to the definition within the shared library, if any.
1357 This option can also be used with the @option{--export-dynamic} option,
1358 when creating a position independent executable, to bind references
1359 to global function symbols to the definition within the executable.
1360 This option is only meaningful on ELF platforms which support shared
1361 libraries and position independent executables.
1362
1363 @kindex --dynamic-list=@var{dynamic-list-file}
1364 @item --dynamic-list=@var{dynamic-list-file}
1365 Specify the name of a dynamic list file to the linker.  This is
1366 typically used when creating shared libraries to specify a list of
1367 global symbols whose references shouldn't be bound to the definition
1368 within the shared library, or creating dynamically linked executables
1369 to specify a list of symbols which should be added to the symbol table
1370 in the executable.  This option is only meaningful on ELF platforms
1371 which support shared libraries.
1372
1373 The format of the dynamic list is the same as the version node without
1374 scope and node name.  See @ref{VERSION} for more information.
1375
1376 @kindex --dynamic-list-data
1377 @item --dynamic-list-data
1378 Include all global data symbols to the dynamic list.
1379
1380 @kindex --dynamic-list-cpp-new
1381 @item --dynamic-list-cpp-new
1382 Provide the builtin dynamic list for C++ operator new and delete.  It
1383 is mainly useful for building shared libstdc++.
1384
1385 @kindex --dynamic-list-cpp-typeinfo
1386 @item --dynamic-list-cpp-typeinfo
1387 Provide the builtin dynamic list for C++ runtime type identification.
1388
1389 @kindex --check-sections
1390 @kindex --no-check-sections
1391 @item --check-sections
1392 @itemx --no-check-sections
1393 Asks the linker @emph{not} to check section addresses after they have
1394 been assigned to see if there are any overlaps.  Normally the linker will
1395 perform this check, and if it finds any overlaps it will produce
1396 suitable error messages.  The linker does know about, and does make
1397 allowances for sections in overlays.  The default behaviour can be
1398 restored by using the command line switch @option{--check-sections}.
1399 Section overlap is not usually checked for relocatable links.  You can
1400 force checking in that case by using the @option{--check-sections}
1401 option.
1402
1403 @kindex --copy-dt-needed-entries
1404 @kindex --no-copy-dt-needed-entries
1405 @item --copy-dt-needed-entries
1406 @itemx --no-copy-dt-needed-entries
1407 This option affects the treatment of dynamic libraries referred to
1408 by DT_NEEDED tags @emph{inside} ELF dynamic libraries mentioned on the
1409 command line.  Normally the linker won't add a DT_NEEDED tag to the
1410 output binary for each library mentioned in a DT_NEEDED tag in an
1411 input dynamic library.  With @option{--copy-dt-needed-entries}
1412 specified on the command line however any dynamic libraries that
1413 follow it will have their DT_NEEDED entries added.  The default
1414 behaviour can be restored with @option{--no-copy-dt-needed-entries}.
1415
1416 This option also has an effect on the resolution of symbols in dynamic
1417 libraries.  With @option{--copy-dt-needed-entries} dynamic libraries
1418 mentioned on the command line will be recursively searched, following
1419 their DT_NEEDED tags to other libraries, in order to resolve symbols
1420 required by the output binary.  With the default setting however
1421 the searching of dynamic libraries that follow it will stop with the
1422 dynamic library itself.  No DT_NEEDED links will be traversed to resolve
1423 symbols.
1424
1425 @cindex cross reference table
1426 @kindex --cref
1427 @item --cref
1428 Output a cross reference table.  If a linker map file is being
1429 generated, the cross reference table is printed to the map file.
1430 Otherwise, it is printed on the standard output.
1431
1432 The format of the table is intentionally simple, so that it may be
1433 easily processed by a script if necessary.  The symbols are printed out,
1434 sorted by name.  For each symbol, a list of file names is given.  If the
1435 symbol is defined, the first file listed is the location of the
1436 definition.  If the symbol is defined as a common value then any files
1437 where this happens appear next.  Finally any files that reference the
1438 symbol are listed.
1439
1440 @cindex common allocation
1441 @kindex --no-define-common
1442 @item --no-define-common
1443 This option inhibits the assignment of addresses to common symbols.
1444 The script command @code{INHIBIT_COMMON_ALLOCATION} has the same effect.
1445 @xref{Miscellaneous Commands}.
1446
1447 The @samp{--no-define-common} option allows decoupling
1448 the decision to assign addresses to Common symbols from the choice
1449 of the output file type; otherwise a non-Relocatable output type
1450 forces assigning addresses to Common symbols.
1451 Using @samp{--no-define-common} allows Common symbols that are referenced
1452 from a shared library to be assigned addresses only in the main program.
1453 This eliminates the unused duplicate space in the shared library,
1454 and also prevents any possible confusion over resolving to the wrong
1455 duplicate when there are many dynamic modules with specialized search
1456 paths for runtime symbol resolution.
1457
1458 @cindex symbols, from command line
1459 @kindex --defsym=@var{symbol}=@var{exp}
1460 @item --defsym=@var{symbol}=@var{expression}
1461 Create a global symbol in the output file, containing the absolute
1462 address given by @var{expression}.  You may use this option as many
1463 times as necessary to define multiple symbols in the command line.  A
1464 limited form of arithmetic is supported for the @var{expression} in this
1465 context: you may give a hexadecimal constant or the name of an existing
1466 symbol, or use @code{+} and @code{-} to add or subtract hexadecimal
1467 constants or symbols.  If you need more elaborate expressions, consider
1468 using the linker command language from a script (@pxref{Assignments}).
1469 @emph{Note:} there should be no white space between @var{symbol}, the
1470 equals sign (``@key{=}''), and @var{expression}.
1471
1472 @cindex demangling, from command line
1473 @kindex --demangle[=@var{style}]
1474 @kindex --no-demangle
1475 @item --demangle[=@var{style}]
1476 @itemx --no-demangle
1477 These options control whether to demangle symbol names in error messages
1478 and other output.  When the linker is told to demangle, it tries to
1479 present symbol names in a readable fashion: it strips leading
1480 underscores if they are used by the object file format, and converts C++
1481 mangled symbol names into user readable names.  Different compilers have
1482 different mangling styles.  The optional demangling style argument can be used
1483 to choose an appropriate demangling style for your compiler.  The linker will
1484 demangle by default unless the environment variable @samp{COLLECT_NO_DEMANGLE}
1485 is set.  These options may be used to override the default.
1486
1487 @cindex dynamic linker, from command line
1488 @kindex -I@var{file}
1489 @kindex --dynamic-linker=@var{file}
1490 @item -I@var{file}
1491 @itemx --dynamic-linker=@var{file}
1492 Set the name of the dynamic linker.  This is only meaningful when
1493 generating dynamically linked ELF executables.  The default dynamic
1494 linker is normally correct; don't use this unless you know what you are
1495 doing.
1496
1497 @kindex --no-dynamic-linker
1498 @item --no-dynamic-linker
1499 When producing an executable file, omit the request for a dynamic
1500 linker to be used at load-time.  This is only meaningful for ELF
1501 executables that contain dynamic relocations, and usually requires
1502 entry point code that is capable of processing these relocations.
1503
1504 @kindex --fatal-warnings
1505 @kindex --no-fatal-warnings
1506 @item --fatal-warnings
1507 @itemx --no-fatal-warnings
1508 Treat all warnings as errors.  The default behaviour can be restored
1509 with the option @option{--no-fatal-warnings}.
1510
1511 @kindex --force-exe-suffix
1512 @item  --force-exe-suffix
1513 Make sure that an output file has a .exe suffix.
1514
1515 If a successfully built fully linked output file does not have a
1516 @code{.exe} or @code{.dll} suffix, this option forces the linker to copy
1517 the output file to one of the same name with a @code{.exe} suffix. This
1518 option is useful when using unmodified Unix makefiles on a Microsoft
1519 Windows host, since some versions of Windows won't run an image unless
1520 it ends in a @code{.exe} suffix.
1521
1522 @kindex --gc-sections
1523 @kindex --no-gc-sections
1524 @cindex garbage collection
1525 @item --gc-sections
1526 @itemx --no-gc-sections
1527 Enable garbage collection of unused input sections.  It is ignored on
1528 targets that do not support this option.  The default behaviour (of not
1529 performing this garbage collection) can be restored by specifying
1530 @samp{--no-gc-sections} on the command line.  Note that garbage
1531 collection for COFF and PE format targets is supported, but the
1532 implementation is currently considered to be experimental.
1533
1534 @samp{--gc-sections} decides which input sections are used by
1535 examining symbols and relocations.  The section containing the entry
1536 symbol and all sections containing symbols undefined on the
1537 command-line will be kept, as will sections containing symbols
1538 referenced by dynamic objects.  Note that when building shared
1539 libraries, the linker must assume that any visible symbol is
1540 referenced.  Once this initial set of sections has been determined,
1541 the linker recursively marks as used any section referenced by their
1542 relocations.  See @samp{--entry} and @samp{--undefined}.
1543
1544 This option can be set when doing a partial link (enabled with option
1545 @samp{-r}).  In this case the root of symbols kept must be explicitly
1546 specified either by an @samp{--entry} or @samp{--undefined} option or by
1547 a @code{ENTRY} command in the linker script.
1548
1549 @kindex --print-gc-sections
1550 @kindex --no-print-gc-sections
1551 @cindex garbage collection
1552 @item --print-gc-sections
1553 @itemx --no-print-gc-sections
1554 List all sections removed by garbage collection.  The listing is
1555 printed on stderr.  This option is only effective if garbage
1556 collection has been enabled via the @samp{--gc-sections}) option.  The
1557 default behaviour (of not listing the sections that are removed) can
1558 be restored by specifying @samp{--no-print-gc-sections} on the command
1559 line.
1560
1561 @kindex --print-output-format
1562 @cindex output format
1563 @item --print-output-format
1564 Print the name of the default output format (perhaps influenced by
1565 other command-line options).  This is the string that would appear
1566 in an @code{OUTPUT_FORMAT} linker script command (@pxref{File Commands}).
1567
1568 @kindex --print-memory-usage
1569 @cindex memory usage
1570 @item --print-memory-usage
1571 Print used size, total size and used size of memory regions created with
1572 the @ref{MEMORY} command.  This is useful on embedded targets to have a
1573 quick view of amount of free memory.  The format of the output has one
1574 headline and one line per region.  It is both human readable and easily
1575 parsable by tools.  Here is an example of an output:
1576
1577 @smallexample
1578 Memory region         Used Size  Region Size  %age Used
1579              ROM:        256 KB         1 MB     25.00%
1580              RAM:          32 B         2 GB      0.00%
1581 @end smallexample
1582
1583 @cindex help
1584 @cindex usage
1585 @kindex --help
1586 @item --help
1587 Print a summary of the command-line options on the standard output and exit.
1588
1589 @kindex --target-help
1590 @item --target-help
1591 Print a summary of all target specific options on the standard output and exit.
1592
1593 @kindex -Map=@var{mapfile}
1594 @item -Map=@var{mapfile}
1595 Print a link map to the file @var{mapfile}.  See the description of the
1596 @option{-M} option, above.
1597
1598 @cindex memory usage
1599 @kindex --no-keep-memory
1600 @item --no-keep-memory
1601 @command{ld} normally optimizes for speed over memory usage by caching the
1602 symbol tables of input files in memory.  This option tells @command{ld} to
1603 instead optimize for memory usage, by rereading the symbol tables as
1604 necessary.  This may be required if @command{ld} runs out of memory space
1605 while linking a large executable.
1606
1607 @kindex --no-undefined
1608 @kindex -z defs
1609 @item --no-undefined
1610 @itemx -z defs
1611 Report unresolved symbol references from regular object files.  This
1612 is done even if the linker is creating a non-symbolic shared library.
1613 The switch @option{--[no-]allow-shlib-undefined} controls the
1614 behaviour for reporting unresolved references found in shared
1615 libraries being linked in.
1616
1617 @kindex --allow-multiple-definition
1618 @kindex -z muldefs
1619 @item --allow-multiple-definition
1620 @itemx -z muldefs
1621 Normally when a symbol is defined multiple times, the linker will
1622 report a fatal error. These options allow multiple definitions and the
1623 first definition will be used.
1624
1625 @kindex --allow-shlib-undefined
1626 @kindex --no-allow-shlib-undefined
1627 @item --allow-shlib-undefined
1628 @itemx --no-allow-shlib-undefined
1629 Allows or disallows undefined symbols in shared libraries.
1630 This switch is similar to @option{--no-undefined} except that it
1631 determines the behaviour when the undefined symbols are in a
1632 shared library rather than a regular object file.  It does not affect
1633 how undefined symbols in regular object files are handled.
1634
1635 The default behaviour is to report errors for any undefined symbols
1636 referenced in shared libraries if the linker is being used to create
1637 an executable, but to allow them if the linker is being used to create
1638 a shared library.
1639
1640 The reasons for allowing undefined symbol references in shared
1641 libraries specified at link time are that:
1642
1643 @itemize @bullet
1644 @item
1645 A shared library specified at link time may not be the same as the one
1646 that is available at load time, so the symbol might actually be
1647 resolvable at load time.
1648 @item
1649 There are some operating systems, eg BeOS and HPPA, where undefined
1650 symbols in shared libraries are normal.
1651
1652 The BeOS kernel for example patches shared libraries at load time to
1653 select whichever function is most appropriate for the current
1654 architecture.  This is used, for example, to dynamically select an
1655 appropriate memset function.
1656 @end itemize
1657
1658 @kindex --no-undefined-version
1659 @item --no-undefined-version
1660 Normally when a symbol has an undefined version, the linker will ignore
1661 it. This option disallows symbols with undefined version and a fatal error
1662 will be issued instead.
1663
1664 @kindex --default-symver
1665 @item --default-symver
1666 Create and use a default symbol version (the soname) for unversioned
1667 exported symbols.
1668
1669 @kindex --default-imported-symver
1670 @item --default-imported-symver
1671 Create and use a default symbol version (the soname) for unversioned
1672 imported symbols.
1673
1674 @kindex --no-warn-mismatch
1675 @item --no-warn-mismatch
1676 Normally @command{ld} will give an error if you try to link together input
1677 files that are mismatched for some reason, perhaps because they have
1678 been compiled for different processors or for different endiannesses.
1679 This option tells @command{ld} that it should silently permit such possible
1680 errors.  This option should only be used with care, in cases when you
1681 have taken some special action that ensures that the linker errors are
1682 inappropriate.
1683
1684 @kindex --no-warn-search-mismatch
1685 @item --no-warn-search-mismatch
1686 Normally @command{ld} will give a warning if it finds an incompatible
1687 library during a library search.  This option silences the warning.
1688
1689 @kindex --no-whole-archive
1690 @item --no-whole-archive
1691 Turn off the effect of the @option{--whole-archive} option for subsequent
1692 archive files.
1693
1694 @cindex output file after errors
1695 @kindex --noinhibit-exec
1696 @item --noinhibit-exec
1697 Retain the executable output file whenever it is still usable.
1698 Normally, the linker will not produce an output file if it encounters
1699 errors during the link process; it exits without writing an output file
1700 when it issues any error whatsoever.
1701
1702 @kindex -nostdlib
1703 @item -nostdlib
1704 Only search library directories explicitly specified on the
1705 command line.  Library directories specified in linker scripts
1706 (including linker scripts specified on the command line) are ignored.
1707
1708 @ifclear SingleFormat
1709 @kindex --oformat=@var{output-format}
1710 @item --oformat=@var{output-format}
1711 @command{ld} may be configured to support more than one kind of object
1712 file.  If your @command{ld} is configured this way, you can use the
1713 @samp{--oformat} option to specify the binary format for the output
1714 object file.  Even when @command{ld} is configured to support alternative
1715 object formats, you don't usually need to specify this, as @command{ld}
1716 should be configured to produce as a default output format the most
1717 usual format on each machine.  @var{output-format} is a text string, the
1718 name of a particular format supported by the BFD libraries.  (You can
1719 list the available binary formats with @samp{objdump -i}.)  The script
1720 command @code{OUTPUT_FORMAT} can also specify the output format, but
1721 this option overrides it.  @xref{BFD}.
1722 @end ifclear
1723
1724 @kindex -pie
1725 @kindex --pic-executable
1726 @item -pie
1727 @itemx --pic-executable
1728 @cindex position independent executables
1729 Create a position independent executable.  This is currently only supported on
1730 ELF platforms.  Position independent executables are similar to shared
1731 libraries in that they are relocated by the dynamic linker to the virtual
1732 address the OS chooses for them (which can vary between invocations).  Like
1733 normal dynamically linked executables they can be executed and symbols
1734 defined in the executable cannot be overridden by shared libraries.
1735
1736 @kindex -qmagic
1737 @item -qmagic
1738 This option is ignored for Linux compatibility.
1739
1740 @kindex -Qy
1741 @item -Qy
1742 This option is ignored for SVR4 compatibility.
1743
1744 @kindex --relax
1745 @cindex synthesizing linker
1746 @cindex relaxing addressing modes
1747 @cindex --no-relax
1748 @item --relax
1749 @itemx --no-relax
1750 An option with machine dependent effects.
1751 @ifset GENERIC
1752 This option is only supported on a few targets.
1753 @end ifset
1754 @ifset H8300
1755 @xref{H8/300,,@command{ld} and the H8/300}.
1756 @end ifset
1757 @ifset I960
1758 @xref{i960,, @command{ld} and the Intel 960 family}.
1759 @end ifset
1760 @ifset XTENSA
1761 @xref{Xtensa,, @command{ld} and Xtensa Processors}.
1762 @end ifset
1763 @ifset M68HC11
1764 @xref{M68HC11/68HC12,,@command{ld} and the 68HC11 and 68HC12}.
1765 @end ifset
1766 @ifset NIOSII
1767 @xref{Nios II,,@command{ld} and the Altera Nios II}.
1768 @end ifset
1769 @ifset POWERPC
1770 @xref{PowerPC ELF32,,@command{ld} and PowerPC 32-bit ELF Support}.
1771 @end ifset
1772
1773 On some platforms the @samp{--relax} option performs target specific,
1774 global optimizations that become possible when the linker resolves
1775 addressing in the program, such as relaxing address modes,
1776 synthesizing new instructions, selecting shorter version of current
1777 instructions, and combining constant values.
1778
1779 On some platforms these link time global optimizations may make symbolic
1780 debugging of the resulting executable impossible.
1781 @ifset GENERIC
1782 This is known to be the case for the Matsushita MN10200 and MN10300
1783 family of processors.
1784 @end ifset
1785
1786 @ifset GENERIC
1787 On platforms where this is not supported, @samp{--relax} is accepted,
1788 but ignored.
1789 @end ifset
1790
1791 On platforms where @samp{--relax} is accepted the option
1792 @samp{--no-relax} can be used to disable the feature.
1793
1794 @cindex retaining specified symbols
1795 @cindex stripping all but some symbols
1796 @cindex symbols, retaining selectively
1797 @kindex --retain-symbols-file=@var{filename}
1798 @item --retain-symbols-file=@var{filename}
1799 Retain @emph{only} the symbols listed in the file @var{filename},
1800 discarding all others.  @var{filename} is simply a flat file, with one
1801 symbol name per line.  This option is especially useful in environments
1802 @ifset GENERIC
1803 (such as VxWorks)
1804 @end ifset
1805 where a large global symbol table is accumulated gradually, to conserve
1806 run-time memory.
1807
1808 @samp{--retain-symbols-file} does @emph{not} discard undefined symbols,
1809 or symbols needed for relocations.
1810
1811 You may only specify @samp{--retain-symbols-file} once in the command
1812 line.  It overrides @samp{-s} and @samp{-S}.
1813
1814 @ifset GENERIC
1815 @item -rpath=@var{dir}
1816 @cindex runtime library search path
1817 @kindex -rpath=@var{dir}
1818 Add a directory to the runtime library search path.  This is used when
1819 linking an ELF executable with shared objects.  All @option{-rpath}
1820 arguments are concatenated and passed to the runtime linker, which uses
1821 them to locate shared objects at runtime.  The @option{-rpath} option is
1822 also used when locating shared objects which are needed by shared
1823 objects explicitly included in the link; see the description of the
1824 @option{-rpath-link} option.  If @option{-rpath} is not used when linking an
1825 ELF executable, the contents of the environment variable
1826 @code{LD_RUN_PATH} will be used if it is defined.
1827
1828 The @option{-rpath} option may also be used on SunOS.  By default, on
1829 SunOS, the linker will form a runtime search path out of all the
1830 @option{-L} options it is given.  If a @option{-rpath} option is used, the
1831 runtime search path will be formed exclusively using the @option{-rpath}
1832 options, ignoring the @option{-L} options.  This can be useful when using
1833 gcc, which adds many @option{-L} options which may be on NFS mounted
1834 file systems.
1835
1836 For compatibility with other ELF linkers, if the @option{-R} option is
1837 followed by a directory name, rather than a file name, it is treated as
1838 the @option{-rpath} option.
1839 @end ifset
1840
1841 @ifset GENERIC
1842 @cindex link-time runtime library search path
1843 @kindex -rpath-link=@var{dir}
1844 @item -rpath-link=@var{dir}
1845 When using ELF or SunOS, one shared library may require another.  This
1846 happens when an @code{ld -shared} link includes a shared library as one
1847 of the input files.
1848
1849 When the linker encounters such a dependency when doing a non-shared,
1850 non-relocatable link, it will automatically try to locate the required
1851 shared library and include it in the link, if it is not included
1852 explicitly.  In such a case, the @option{-rpath-link} option
1853 specifies the first set of directories to search.  The
1854 @option{-rpath-link} option may specify a sequence of directory names
1855 either by specifying a list of names separated by colons, or by
1856 appearing multiple times.
1857
1858 This option should be used with caution as it overrides the search path
1859 that may have been hard compiled into a shared library. In such a case it
1860 is possible to use unintentionally a different search path than the
1861 runtime linker would do.
1862
1863 The linker uses the following search paths to locate required shared
1864 libraries:
1865 @enumerate
1866 @item
1867 Any directories specified by @option{-rpath-link} options.
1868 @item
1869 Any directories specified by @option{-rpath} options.  The difference
1870 between @option{-rpath} and @option{-rpath-link} is that directories
1871 specified by @option{-rpath} options are included in the executable and
1872 used at runtime, whereas the @option{-rpath-link} option is only effective
1873 at link time. Searching @option{-rpath} in this way is only supported
1874 by native linkers and cross linkers which have been configured with
1875 the @option{--with-sysroot} option.
1876 @item
1877 On an ELF system, for native linkers, if the @option{-rpath} and
1878 @option{-rpath-link} options were not used, search the contents of the
1879 environment variable @code{LD_RUN_PATH}.
1880 @item
1881 On SunOS, if the @option{-rpath} option was not used, search any
1882 directories specified using @option{-L} options.
1883 @item
1884 For a native linker, search the contents of the environment
1885 variable @code{LD_LIBRARY_PATH}.
1886 @item
1887 For a native ELF linker, the directories in @code{DT_RUNPATH} or
1888 @code{DT_RPATH} of a shared library are searched for shared
1889 libraries needed by it. The @code{DT_RPATH} entries are ignored if
1890 @code{DT_RUNPATH} entries exist.
1891 @item
1892 The default directories, normally @file{/lib} and @file{/usr/lib}.
1893 @item
1894 For a native linker on an ELF system, if the file @file{/etc/ld.so.conf}
1895 exists, the list of directories found in that file.
1896 @end enumerate
1897
1898 If the required shared library is not found, the linker will issue a
1899 warning and continue with the link.
1900 @end ifset
1901
1902 @kindex -shared
1903 @kindex -Bshareable
1904 @item -shared
1905 @itemx -Bshareable
1906 @cindex shared libraries
1907 Create a shared library.  This is currently only supported on ELF, XCOFF
1908 and SunOS platforms.  On SunOS, the linker will automatically create a
1909 shared library if the @option{-e} option is not used and there are
1910 undefined symbols in the link.
1911
1912 @kindex --sort-common
1913 @item --sort-common
1914 @itemx --sort-common=ascending
1915 @itemx --sort-common=descending
1916 This option tells @command{ld} to sort the common symbols by alignment in
1917 ascending or descending order when it places them in the appropriate output
1918 sections.  The symbol alignments considered are sixteen-byte or larger,
1919 eight-byte, four-byte, two-byte, and one-byte. This is to prevent gaps
1920 between symbols due to alignment constraints.  If no sorting order is
1921 specified, then descending order is assumed.
1922
1923 @kindex --sort-section=name
1924 @item --sort-section=name
1925 This option will apply @code{SORT_BY_NAME} to all wildcard section
1926 patterns in the linker script.
1927
1928 @kindex --sort-section=alignment
1929 @item --sort-section=alignment
1930 This option will apply @code{SORT_BY_ALIGNMENT} to all wildcard section
1931 patterns in the linker script.
1932
1933 @kindex --split-by-file
1934 @item --split-by-file[=@var{size}]
1935 Similar to @option{--split-by-reloc} but creates a new output section for
1936 each input file when @var{size} is reached.  @var{size} defaults to a
1937 size of 1 if not given.
1938
1939 @kindex --split-by-reloc
1940 @item --split-by-reloc[=@var{count}]
1941 Tries to creates extra sections in the output file so that no single
1942 output section in the file contains more than @var{count} relocations.
1943 This is useful when generating huge relocatable files for downloading into
1944 certain real time kernels with the COFF object file format; since COFF
1945 cannot represent more than 65535 relocations in a single section.  Note
1946 that this will fail to work with object file formats which do not
1947 support arbitrary sections.  The linker will not split up individual
1948 input sections for redistribution, so if a single input section contains
1949 more than @var{count} relocations one output section will contain that
1950 many relocations.  @var{count} defaults to a value of 32768.
1951
1952 @kindex --stats
1953 @item --stats
1954 Compute and display statistics about the operation of the linker, such
1955 as execution time and memory usage.
1956
1957 @kindex --sysroot=@var{directory}
1958 @item --sysroot=@var{directory}
1959 Use @var{directory} as the location of the sysroot, overriding the
1960 configure-time default.  This option is only supported by linkers
1961 that were configured using @option{--with-sysroot}.
1962
1963 @kindex --traditional-format
1964 @cindex traditional format
1965 @item --traditional-format
1966 For some targets, the output of @command{ld} is different in some ways from
1967 the output of some existing linker.  This switch requests @command{ld} to
1968 use the traditional format instead.
1969
1970 @cindex dbx
1971 For example, on SunOS, @command{ld} combines duplicate entries in the
1972 symbol string table.  This can reduce the size of an output file with
1973 full debugging information by over 30 percent.  Unfortunately, the SunOS
1974 @code{dbx} program can not read the resulting program (@code{gdb} has no
1975 trouble).  The @samp{--traditional-format} switch tells @command{ld} to not
1976 combine duplicate entries.
1977
1978 @kindex --section-start=@var{sectionname}=@var{org}
1979 @item --section-start=@var{sectionname}=@var{org}
1980 Locate a section in the output file at the absolute
1981 address given by @var{org}.  You may use this option as many
1982 times as necessary to locate multiple sections in the command
1983 line.
1984 @var{org} must be a single hexadecimal integer;
1985 for compatibility with other linkers, you may omit the leading
1986 @samp{0x} usually associated with hexadecimal values.  @emph{Note:} there
1987 should be no white space between @var{sectionname}, the equals
1988 sign (``@key{=}''), and @var{org}.
1989
1990 @kindex -Tbss=@var{org}
1991 @kindex -Tdata=@var{org}
1992 @kindex -Ttext=@var{org}
1993 @cindex segment origins, cmd line
1994 @item -Tbss=@var{org}
1995 @itemx -Tdata=@var{org}
1996 @itemx -Ttext=@var{org}
1997 Same as @option{--section-start}, with @code{.bss}, @code{.data} or
1998 @code{.text} as the @var{sectionname}.
1999
2000 @kindex -Ttext-segment=@var{org}
2001 @item -Ttext-segment=@var{org}
2002 @cindex text segment origin, cmd line
2003 When creating an ELF executable, it will set the address of the first
2004 byte of the text segment.
2005
2006 @kindex -Trodata-segment=@var{org}
2007 @item -Trodata-segment=@var{org}
2008 @cindex rodata segment origin, cmd line
2009 When creating an ELF executable or shared object for a target where
2010 the read-only data is in its own segment separate from the executable
2011 text, it will set the address of the first byte of the read-only data segment.
2012
2013 @kindex -Tldata-segment=@var{org}
2014 @item -Tldata-segment=@var{org}
2015 @cindex ldata segment origin, cmd line
2016 When creating an ELF executable or shared object for x86-64 medium memory
2017 model, it will set the address of the first byte of the ldata segment.
2018
2019 @kindex --unresolved-symbols
2020 @item --unresolved-symbols=@var{method}
2021 Determine how to handle unresolved symbols.  There are four possible
2022 values for @samp{method}:
2023
2024 @table @samp
2025 @item ignore-all
2026 Do not report any unresolved symbols.
2027
2028 @item report-all
2029 Report all unresolved symbols.  This is the default.
2030
2031 @item ignore-in-object-files
2032 Report unresolved symbols that are contained in shared libraries, but
2033 ignore them if they come from regular object files.
2034
2035 @item ignore-in-shared-libs
2036 Report unresolved symbols that come from regular object files, but
2037 ignore them if they come from shared libraries.  This can be useful
2038 when creating a dynamic binary and it is known that all the shared
2039 libraries that it should be referencing are included on the linker's
2040 command line.
2041 @end table
2042
2043 The behaviour for shared libraries on their own can also be controlled
2044 by the @option{--[no-]allow-shlib-undefined} option.
2045
2046 Normally the linker will generate an error message for each reported
2047 unresolved symbol but the option @option{--warn-unresolved-symbols}
2048 can change this to a warning.
2049
2050 @kindex --verbose[=@var{NUMBER}]
2051 @cindex verbose[=@var{NUMBER}]
2052 @item --dll-verbose
2053 @itemx --verbose[=@var{NUMBER}]
2054 Display the version number for @command{ld} and list the linker emulations
2055 supported.  Display which input files can and cannot be opened.  Display
2056 the linker script being used by the linker. If the optional @var{NUMBER}
2057 argument > 1, plugin symbol status will also be displayed.
2058
2059 @kindex --version-script=@var{version-scriptfile}
2060 @cindex version script, symbol versions
2061 @item --version-script=@var{version-scriptfile}
2062 Specify the name of a version script to the linker.  This is typically
2063 used when creating shared libraries to specify additional information
2064 about the version hierarchy for the library being created.  This option
2065 is only fully supported on ELF platforms which support shared libraries;
2066 see @ref{VERSION}.  It is partially supported on PE platforms, which can
2067 use version scripts to filter symbol visibility in auto-export mode: any
2068 symbols marked @samp{local} in the version script will not be exported.
2069 @xref{WIN32}.
2070
2071 @kindex --warn-common
2072 @cindex warnings, on combining symbols
2073 @cindex combining symbols, warnings on
2074 @item --warn-common
2075 Warn when a common symbol is combined with another common symbol or with
2076 a symbol definition.  Unix linkers allow this somewhat sloppy practice,
2077 but linkers on some other operating systems do not.  This option allows
2078 you to find potential problems from combining global symbols.
2079 Unfortunately, some C libraries use this practice, so you may get some
2080 warnings about symbols in the libraries as well as in your programs.
2081
2082 There are three kinds of global symbols, illustrated here by C examples:
2083
2084 @table @samp
2085 @item int i = 1;
2086 A definition, which goes in the initialized data section of the output
2087 file.
2088
2089 @item extern int i;
2090 An undefined reference, which does not allocate space.
2091 There must be either a definition or a common symbol for the
2092 variable somewhere.
2093
2094 @item int i;
2095 A common symbol.  If there are only (one or more) common symbols for a
2096 variable, it goes in the uninitialized data area of the output file.
2097 The linker merges multiple common symbols for the same variable into a
2098 single symbol.  If they are of different sizes, it picks the largest
2099 size.  The linker turns a common symbol into a declaration, if there is
2100 a definition of the same variable.
2101 @end table
2102
2103 The @samp{--warn-common} option can produce five kinds of warnings.
2104 Each warning consists of a pair of lines: the first describes the symbol
2105 just encountered, and the second describes the previous symbol
2106 encountered with the same name.  One or both of the two symbols will be
2107 a common symbol.
2108
2109 @enumerate
2110 @item
2111 Turning a common symbol into a reference, because there is already a
2112 definition for the symbol.
2113 @smallexample
2114 @var{file}(@var{section}): warning: common of `@var{symbol}'
2115    overridden by definition
2116 @var{file}(@var{section}): warning: defined here
2117 @end smallexample
2118
2119 @item
2120 Turning a common symbol into a reference, because a later definition for
2121 the symbol is encountered.  This is the same as the previous case,
2122 except that the symbols are encountered in a different order.
2123 @smallexample
2124 @var{file}(@var{section}): warning: definition of `@var{symbol}'
2125    overriding common
2126 @var{file}(@var{section}): warning: common is here
2127 @end smallexample
2128
2129 @item
2130 Merging a common symbol with a previous same-sized common symbol.
2131 @smallexample
2132 @var{file}(@var{section}): warning: multiple common
2133    of `@var{symbol}'
2134 @var{file}(@var{section}): warning: previous common is here
2135 @end smallexample
2136
2137 @item
2138 Merging a common symbol with a previous larger common symbol.
2139 @smallexample
2140 @var{file}(@var{section}): warning: common of `@var{symbol}'
2141    overridden by larger common
2142 @var{file}(@var{section}): warning: larger common is here
2143 @end smallexample
2144
2145 @item
2146 Merging a common symbol with a previous smaller common symbol.  This is
2147 the same as the previous case, except that the symbols are
2148 encountered in a different order.
2149 @smallexample
2150 @var{file}(@var{section}): warning: common of `@var{symbol}'
2151    overriding smaller common
2152 @var{file}(@var{section}): warning: smaller common is here
2153 @end smallexample
2154 @end enumerate
2155
2156 @kindex --warn-constructors
2157 @item --warn-constructors
2158 Warn if any global constructors are used.  This is only useful for a few
2159 object file formats.  For formats like COFF or ELF, the linker can not
2160 detect the use of global constructors.
2161
2162 @kindex --warn-multiple-gp
2163 @item --warn-multiple-gp
2164 Warn if multiple global pointer values are required in the output file.
2165 This is only meaningful for certain processors, such as the Alpha.
2166 Specifically, some processors put large-valued constants in a special
2167 section.  A special register (the global pointer) points into the middle
2168 of this section, so that constants can be loaded efficiently via a
2169 base-register relative addressing mode.  Since the offset in
2170 base-register relative mode is fixed and relatively small (e.g., 16
2171 bits), this limits the maximum size of the constant pool.  Thus, in
2172 large programs, it is often necessary to use multiple global pointer
2173 values in order to be able to address all possible constants.  This
2174 option causes a warning to be issued whenever this case occurs.
2175
2176 @kindex --warn-once
2177 @cindex warnings, on undefined symbols
2178 @cindex undefined symbols, warnings on
2179 @item --warn-once
2180 Only warn once for each undefined symbol, rather than once per module
2181 which refers to it.
2182
2183 @kindex --warn-section-align
2184 @cindex warnings, on section alignment
2185 @cindex section alignment, warnings on
2186 @item --warn-section-align
2187 Warn if the address of an output section is changed because of
2188 alignment.  Typically, the alignment will be set by an input section.
2189 The address will only be changed if it not explicitly specified; that
2190 is, if the @code{SECTIONS} command does not specify a start address for
2191 the section (@pxref{SECTIONS}).
2192
2193 @kindex --warn-shared-textrel
2194 @item --warn-shared-textrel
2195 Warn if the linker adds a DT_TEXTREL to a shared object.
2196
2197 @kindex --warn-alternate-em
2198 @item --warn-alternate-em
2199 Warn if an object has alternate ELF machine code.
2200
2201 @kindex --warn-unresolved-symbols
2202 @item --warn-unresolved-symbols
2203 If the linker is going to report an unresolved symbol (see the option
2204 @option{--unresolved-symbols}) it will normally generate an error.
2205 This option makes it generate a warning instead.
2206
2207 @kindex --error-unresolved-symbols
2208 @item --error-unresolved-symbols
2209 This restores the linker's default behaviour of generating errors when
2210 it is reporting unresolved symbols.
2211
2212 @kindex --whole-archive
2213 @cindex including an entire archive
2214 @item --whole-archive
2215 For each archive mentioned on the command line after the
2216 @option{--whole-archive} option, include every object file in the archive
2217 in the link, rather than searching the archive for the required object
2218 files.  This is normally used to turn an archive file into a shared
2219 library, forcing every object to be included in the resulting shared
2220 library.  This option may be used more than once.
2221
2222 Two notes when using this option from gcc: First, gcc doesn't know
2223 about this option, so you have to use @option{-Wl,-whole-archive}.
2224 Second, don't forget to use @option{-Wl,-no-whole-archive} after your
2225 list of archives, because gcc will add its own list of archives to
2226 your link and you may not want this flag to affect those as well.
2227
2228 @kindex --wrap=@var{symbol}
2229 @item --wrap=@var{symbol}
2230 Use a wrapper function for @var{symbol}.  Any undefined reference to
2231 @var{symbol} will be resolved to @code{__wrap_@var{symbol}}.  Any
2232 undefined reference to @code{__real_@var{symbol}} will be resolved to
2233 @var{symbol}.
2234
2235 This can be used to provide a wrapper for a system function.  The
2236 wrapper function should be called @code{__wrap_@var{symbol}}.  If it
2237 wishes to call the system function, it should call
2238 @code{__real_@var{symbol}}.
2239
2240 Here is a trivial example:
2241
2242 @smallexample
2243 void *
2244 __wrap_malloc (size_t c)
2245 @{
2246   printf ("malloc called with %zu\n", c);
2247   return __real_malloc (c);
2248 @}
2249 @end smallexample
2250
2251 If you link other code with this file using @option{--wrap malloc}, then
2252 all calls to @code{malloc} will call the function @code{__wrap_malloc}
2253 instead.  The call to @code{__real_malloc} in @code{__wrap_malloc} will
2254 call the real @code{malloc} function.
2255
2256 You may wish to provide a @code{__real_malloc} function as well, so that
2257 links without the @option{--wrap} option will succeed.  If you do this,
2258 you should not put the definition of @code{__real_malloc} in the same
2259 file as @code{__wrap_malloc}; if you do, the assembler may resolve the
2260 call before the linker has a chance to wrap it to @code{malloc}.
2261
2262 @kindex --eh-frame-hdr
2263 @item --eh-frame-hdr
2264 Request creation of @code{.eh_frame_hdr} section and ELF
2265 @code{PT_GNU_EH_FRAME} segment header.
2266
2267 @kindex --ld-generated-unwind-info
2268 @item --no-ld-generated-unwind-info
2269 Request creation of @code{.eh_frame} unwind info for linker
2270 generated code sections like PLT.  This option is on by default
2271 if linker generated unwind info is supported.
2272
2273 @kindex --enable-new-dtags
2274 @kindex --disable-new-dtags
2275 @item --enable-new-dtags
2276 @itemx --disable-new-dtags
2277 This linker can create the new dynamic tags in ELF. But the older ELF
2278 systems may not understand them. If you specify
2279 @option{--enable-new-dtags}, the new dynamic tags will be created as needed
2280 and older dynamic tags will be omitted.
2281 If you specify @option{--disable-new-dtags}, no new dynamic tags will be
2282 created. By default, the new dynamic tags are not created. Note that
2283 those options are only available for ELF systems.
2284
2285 @kindex --hash-size=@var{number}
2286 @item --hash-size=@var{number}
2287 Set the default size of the linker's hash tables to a prime number
2288 close to @var{number}.  Increasing this value can reduce the length of
2289 time it takes the linker to perform its tasks, at the expense of
2290 increasing the linker's memory requirements.  Similarly reducing this
2291 value can reduce the memory requirements at the expense of speed.
2292
2293 @kindex --hash-style=@var{style}
2294 @item --hash-style=@var{style}
2295 Set the type of linker's hash table(s).  @var{style} can be either
2296 @code{sysv} for classic ELF @code{.hash} section, @code{gnu} for
2297 new style GNU @code{.gnu.hash} section or @code{both} for both
2298 the classic ELF @code{.hash} and new style GNU @code{.gnu.hash}
2299 hash tables.  The default is @code{sysv}.
2300
2301 @kindex --compress-debug-sections=none
2302 @kindex --compress-debug-sections=zlib
2303 @kindex --compress-debug-sections=zlib-gnu
2304 @kindex --compress-debug-sections=zlib-gabi
2305 @item --compress-debug-sections=none
2306 @itemx --compress-debug-sections=zlib
2307 @itemx --compress-debug-sections=zlib-gnu
2308 @itemx --compress-debug-sections=zlib-gabi
2309 On ELF platforms , these options control how DWARF debug sections are
2310 compressed using zlib.  @option{--compress-debug-sections=none} doesn't
2311 compress DWARF debug sections.
2312 @option{--compress-debug-sections=zlib-gnu} compresses DWARF debug
2313 sections and rename debug section names to begin with @samp{.zdebug}
2314 instead of @samp{.debug}.  @option{--compress-debug-sections=zlib}
2315 and @option{--compress-debug-sections=zlib-gabi}
2316 compress DWARF debug sections with SHF_COMPRESSED from the ELF ABI.
2317 The default behaviour varies depending upon the target involved and
2318 the configure options used to build the toolchain.  The default can be
2319 determined by examing the output from the linker's @option{--help} option.
2320
2321 @kindex --reduce-memory-overheads
2322 @item --reduce-memory-overheads
2323 This option reduces memory requirements at ld runtime, at the expense of
2324 linking speed.  This was introduced to select the old O(n^2) algorithm
2325 for link map file generation, rather than the new O(n) algorithm which uses
2326 about 40% more memory for symbol storage.
2327
2328 Another effect of the switch is to set the default hash table size to
2329 1021, which again saves memory at the cost of lengthening the linker's
2330 run time.  This is not done however if the @option{--hash-size} switch
2331 has been used.
2332
2333 The @option{--reduce-memory-overheads} switch may be also be used to
2334 enable other tradeoffs in future versions of the linker.
2335
2336 @kindex --build-id
2337 @kindex --build-id=@var{style}
2338 @item --build-id
2339 @itemx --build-id=@var{style}
2340 Request the creation of a @code{.note.gnu.build-id} ELF note section
2341 or a @code{.buildid} COFF section.  The contents of the note are
2342 unique bits identifying this linked file.  @var{style} can be
2343 @code{uuid} to use 128 random bits, @code{sha1} to use a 160-bit
2344 @sc{SHA1} hash on the normative parts of the output contents,
2345 @code{md5} to use a 128-bit @sc{MD5} hash on the normative parts of
2346 the output contents, or @code{0x@var{hexstring}} to use a chosen bit
2347 string specified as an even number of hexadecimal digits (@code{-} and
2348 @code{:} characters between digit pairs are ignored).  If @var{style}
2349 is omitted, @code{sha1} is used.
2350
2351 The @code{md5} and @code{sha1} styles produces an identifier
2352 that is always the same in an identical output file, but will be
2353 unique among all nonidentical output files.  It is not intended
2354 to be compared as a checksum for the file's contents.  A linked
2355 file may be changed later by other tools, but the build ID bit
2356 string identifying the original linked file does not change.
2357
2358 Passing @code{none} for @var{style} disables the setting from any
2359 @code{--build-id} options earlier on the command line.
2360 @end table
2361
2362 @c man end
2363
2364 @subsection Options Specific to i386 PE Targets
2365
2366 @c man begin OPTIONS
2367
2368 The i386 PE linker supports the @option{-shared} option, which causes
2369 the output to be a dynamically linked library (DLL) instead of a
2370 normal executable.  You should name the output @code{*.dll} when you
2371 use this option.  In addition, the linker fully supports the standard
2372 @code{*.def} files, which may be specified on the linker command line
2373 like an object file (in fact, it should precede archives it exports
2374 symbols from, to ensure that they get linked in, just like a normal
2375 object file).
2376
2377 In addition to the options common to all targets, the i386 PE linker
2378 support additional command line options that are specific to the i386
2379 PE target.  Options that take values may be separated from their
2380 values by either a space or an equals sign.
2381
2382 @table @gcctabopt
2383
2384 @kindex --add-stdcall-alias
2385 @item --add-stdcall-alias
2386 If given, symbols with a stdcall suffix (@@@var{nn}) will be exported
2387 as-is and also with the suffix stripped.
2388 [This option is specific to the i386 PE targeted port of the linker]
2389
2390 @kindex --base-file
2391 @item --base-file @var{file}
2392 Use @var{file} as the name of a file in which to save the base
2393 addresses of all the relocations needed for generating DLLs with
2394 @file{dlltool}.
2395 [This is an i386 PE specific option]
2396
2397 @kindex --dll
2398 @item --dll
2399 Create a DLL instead of a regular executable.  You may also use
2400 @option{-shared} or specify a @code{LIBRARY} in a given @code{.def}
2401 file.
2402 [This option is specific to the i386 PE targeted port of the linker]
2403
2404 @kindex --enable-long-section-names
2405 @kindex --disable-long-section-names
2406 @item --enable-long-section-names
2407 @itemx --disable-long-section-names
2408 The PE variants of the COFF object format add an extension that permits
2409 the use of section names longer than eight characters, the normal limit
2410 for COFF.  By default, these names are only allowed in object files, as
2411 fully-linked executable images do not carry the COFF string table required
2412 to support the longer names.  As a GNU extension, it is possible to
2413 allow their use in executable images as well, or to (probably pointlessly!)
2414 disallow it in object files, by using these two options.  Executable images
2415 generated with these long section names are slightly non-standard, carrying
2416 as they do a string table, and may generate confusing output when examined
2417 with non-GNU PE-aware tools, such as file viewers and dumpers.  However,
2418 GDB relies on the use of PE long section names to find Dwarf-2 debug
2419 information sections in an executable image at runtime, and so if neither
2420 option is specified on the command-line, @command{ld} will enable long
2421 section names, overriding the default and technically correct behaviour,
2422 when it finds the presence of debug information while linking an executable
2423 image and not stripping symbols.
2424 [This option is valid for all PE targeted ports of the linker]
2425
2426 @kindex --enable-stdcall-fixup
2427 @kindex --disable-stdcall-fixup
2428 @item --enable-stdcall-fixup
2429 @itemx --disable-stdcall-fixup
2430 If the link finds a symbol that it cannot resolve, it will attempt to
2431 do ``fuzzy linking'' by looking for another defined symbol that differs
2432 only in the format of the symbol name (cdecl vs stdcall) and will
2433 resolve that symbol by linking to the match.  For example, the
2434 undefined symbol @code{_foo} might be linked to the function
2435 @code{_foo@@12}, or the undefined symbol @code{_bar@@16} might be linked
2436 to the function @code{_bar}.  When the linker does this, it prints a
2437 warning, since it normally should have failed to link, but sometimes
2438 import libraries generated from third-party dlls may need this feature
2439 to be usable.  If you specify @option{--enable-stdcall-fixup}, this
2440 feature is fully enabled and warnings are not printed.  If you specify
2441 @option{--disable-stdcall-fixup}, this feature is disabled and such
2442 mismatches are considered to be errors.
2443 [This option is specific to the i386 PE targeted port of the linker]
2444
2445 @kindex --leading-underscore
2446 @kindex --no-leading-underscore
2447 @item --leading-underscore
2448 @itemx --no-leading-underscore
2449 For most targets default symbol-prefix is an underscore and is defined
2450 in target's description. By this option it is possible to
2451 disable/enable the default underscore symbol-prefix.
2452
2453 @cindex DLLs, creating
2454 @kindex --export-all-symbols
2455 @item --export-all-symbols
2456 If given, all global symbols in the objects used to build a DLL will
2457 be exported by the DLL.  Note that this is the default if there
2458 otherwise wouldn't be any exported symbols.  When symbols are
2459 explicitly exported via DEF files or implicitly exported via function
2460 attributes, the default is to not export anything else unless this
2461 option is given.  Note that the symbols @code{DllMain@@12},
2462 @code{DllEntryPoint@@0}, @code{DllMainCRTStartup@@12}, and
2463 @code{impure_ptr} will not be automatically
2464 exported.  Also, symbols imported from other DLLs will not be
2465 re-exported, nor will symbols specifying the DLL's internal layout
2466 such as those beginning with @code{_head_} or ending with
2467 @code{_iname}.  In addition, no symbols from @code{libgcc},
2468 @code{libstd++}, @code{libmingw32}, or @code{crtX.o} will be exported.
2469 Symbols whose names begin with @code{__rtti_} or @code{__builtin_} will
2470 not be exported, to help with C++ DLLs.  Finally, there is an
2471 extensive list of cygwin-private symbols that are not exported
2472 (obviously, this applies on when building DLLs for cygwin targets).
2473 These cygwin-excludes are: @code{_cygwin_dll_entry@@12},
2474 @code{_cygwin_crt0_common@@8}, @code{_cygwin_noncygwin_dll_entry@@12},
2475 @code{_fmode}, @code{_impure_ptr}, @code{cygwin_attach_dll},
2476 @code{cygwin_premain0}, @code{cygwin_premain1}, @code{cygwin_premain2},
2477 @code{cygwin_premain3}, and @code{environ}.
2478 [This option is specific to the i386 PE targeted port of the linker]
2479
2480 @kindex --exclude-symbols
2481 @item --exclude-symbols @var{symbol},@var{symbol},...
2482 Specifies a list of symbols which should not be automatically
2483 exported.  The symbol names may be delimited by commas or colons.
2484 [This option is specific to the i386 PE targeted port of the linker]
2485
2486 @kindex --exclude-all-symbols
2487 @item --exclude-all-symbols
2488 Specifies no symbols should be automatically exported.
2489 [This option is specific to the i386 PE targeted port of the linker]
2490
2491 @kindex --file-alignment
2492 @item --file-alignment
2493 Specify the file alignment.  Sections in the file will always begin at
2494 file offsets which are multiples of this number.  This defaults to
2495 512.
2496 [This option is specific to the i386 PE targeted port of the linker]
2497
2498 @cindex heap size
2499 @kindex --heap
2500 @item --heap @var{reserve}
2501 @itemx --heap @var{reserve},@var{commit}
2502 Specify the number of bytes of memory to reserve (and optionally commit)
2503 to be used as heap for this program.  The default is 1MB reserved, 4K
2504 committed.
2505 [This option is specific to the i386 PE targeted port of the linker]
2506
2507 @cindex image base
2508 @kindex --image-base
2509 @item --image-base @var{value}
2510 Use @var{value} as the base address of your program or dll.  This is
2511 the lowest memory location that will be used when your program or dll
2512 is loaded.  To reduce the need to relocate and improve performance of
2513 your dlls, each should have a unique base address and not overlap any
2514 other dlls.  The default is 0x400000 for executables, and 0x10000000
2515 for dlls.
2516 [This option is specific to the i386 PE targeted port of the linker]
2517
2518 @kindex --kill-at
2519 @item --kill-at
2520 If given, the stdcall suffixes (@@@var{nn}) will be stripped from
2521 symbols before they are exported.
2522 [This option is specific to the i386 PE targeted port of the linker]
2523
2524 @kindex --large-address-aware
2525 @item --large-address-aware
2526 If given, the appropriate bit in the ``Characteristics'' field of the COFF
2527 header is set to indicate that this executable supports virtual addresses
2528 greater than 2 gigabytes.  This should be used in conjunction with the /3GB
2529 or /USERVA=@var{value} megabytes switch in the ``[operating systems]''
2530 section of the BOOT.INI.  Otherwise, this bit has no effect.
2531 [This option is specific to PE targeted ports of the linker]
2532
2533 @kindex --disable-large-address-aware
2534 @item --disable-large-address-aware
2535 Reverts the effect of a previous @samp{--large-address-aware} option.
2536 This is useful if @samp{--large-address-aware} is always set by the compiler
2537 driver (e.g. Cygwin gcc) and the executable does not support virtual
2538 addresses greater than 2 gigabytes.
2539 [This option is specific to PE targeted ports of the linker]
2540
2541 @kindex --major-image-version
2542 @item --major-image-version @var{value}
2543 Sets the major number of the ``image version''.  Defaults to 1.
2544 [This option is specific to the i386 PE targeted port of the linker]
2545
2546 @kindex --major-os-version
2547 @item --major-os-version @var{value}
2548 Sets the major number of the ``os version''.  Defaults to 4.
2549 [This option is specific to the i386 PE targeted port of the linker]
2550
2551 @kindex --major-subsystem-version
2552 @item --major-subsystem-version @var{value}
2553 Sets the major number of the ``subsystem version''.  Defaults to 4.
2554 [This option is specific to the i386 PE targeted port of the linker]
2555
2556 @kindex --minor-image-version
2557 @item --minor-image-version @var{value}
2558 Sets the minor number of the ``image version''.  Defaults to 0.
2559 [This option is specific to the i386 PE targeted port of the linker]
2560
2561 @kindex --minor-os-version
2562 @item --minor-os-version @var{value}
2563 Sets the minor number of the ``os version''.  Defaults to 0.
2564 [This option is specific to the i386 PE targeted port of the linker]
2565
2566 @kindex --minor-subsystem-version
2567 @item --minor-subsystem-version @var{value}
2568 Sets the minor number of the ``subsystem version''.  Defaults to 0.
2569 [This option is specific to the i386 PE targeted port of the linker]
2570
2571 @cindex DEF files, creating
2572 @cindex DLLs, creating
2573 @kindex --output-def
2574 @item --output-def @var{file}
2575 The linker will create the file @var{file} which will contain a DEF
2576 file corresponding to the DLL the linker is generating.  This DEF file
2577 (which should be called @code{*.def}) may be used to create an import
2578 library with @code{dlltool} or may be used as a reference to
2579 automatically or implicitly exported symbols.
2580 [This option is specific to the i386 PE targeted port of the linker]
2581
2582 @cindex DLLs, creating
2583 @kindex --out-implib
2584 @item --out-implib @var{file}
2585 The linker will create the file @var{file} which will contain an
2586 import lib corresponding to the DLL the linker is generating. This
2587 import lib (which should be called @code{*.dll.a} or @code{*.a}
2588 may be used to link clients against the generated DLL; this behaviour
2589 makes it possible to skip a separate @code{dlltool} import library
2590 creation step.
2591 [This option is specific to the i386 PE targeted port of the linker]
2592
2593 @kindex --enable-auto-image-base
2594 @item --enable-auto-image-base
2595 @itemx --enable-auto-image-base=@var{value}
2596 Automatically choose the image base for DLLs, optionally starting with base
2597 @var{value}, unless one is specified using the @code{--image-base} argument.
2598 By using a hash generated from the dllname to create unique image bases
2599 for each DLL, in-memory collisions and relocations which can delay program
2600 execution are avoided.
2601 [This option is specific to the i386 PE targeted port of the linker]
2602
2603 @kindex --disable-auto-image-base
2604 @item --disable-auto-image-base
2605 Do not automatically generate a unique image base.  If there is no
2606 user-specified image base (@code{--image-base}) then use the platform
2607 default.
2608 [This option is specific to the i386 PE targeted port of the linker]
2609
2610 @cindex DLLs, linking to
2611 @kindex --dll-search-prefix
2612 @item --dll-search-prefix @var{string}
2613 When linking dynamically to a dll without an import library,
2614 search for @code{<string><basename>.dll} in preference to
2615 @code{lib<basename>.dll}. This behaviour allows easy distinction
2616 between DLLs built for the various "subplatforms": native, cygwin,
2617 uwin, pw, etc.  For instance, cygwin DLLs typically use
2618 @code{--dll-search-prefix=cyg}.
2619 [This option is specific to the i386 PE targeted port of the linker]
2620
2621 @kindex --enable-auto-import
2622 @item --enable-auto-import
2623 Do sophisticated linking of @code{_symbol} to @code{__imp__symbol} for
2624 DATA imports from DLLs, and create the necessary thunking symbols when
2625 building the import libraries with those DATA exports. Note: Use of the
2626 'auto-import' extension will cause the text section of the image file
2627 to be made writable. This does not conform to the PE-COFF format
2628 specification published by Microsoft.
2629
2630 Note - use of the 'auto-import' extension will also cause read only
2631 data which would normally be placed into the .rdata section to be
2632 placed into the .data section instead.  This is in order to work
2633 around a problem with consts that is described here:
2634 http://www.cygwin.com/ml/cygwin/2004-09/msg01101.html
2635
2636 Using 'auto-import' generally will 'just work' -- but sometimes you may
2637 see this message:
2638
2639 "variable '<var>' can't be auto-imported. Please read the
2640 documentation for ld's @code{--enable-auto-import} for details."
2641
2642 This message occurs when some (sub)expression accesses an address
2643 ultimately given by the sum of two constants (Win32 import tables only
2644 allow one).  Instances where this may occur include accesses to member
2645 fields of struct variables imported from a DLL, as well as using a
2646 constant index into an array variable imported from a DLL.  Any
2647 multiword variable (arrays, structs, long long, etc) may trigger
2648 this error condition.  However, regardless of the exact data type
2649 of the offending exported variable, ld will always detect it, issue
2650 the warning, and exit.
2651
2652 There are several ways to address this difficulty, regardless of the
2653 data type of the exported variable:
2654
2655 One way is to use --enable-runtime-pseudo-reloc switch. This leaves the task
2656 of adjusting references in your client code for runtime environment, so
2657 this method works only when runtime environment supports this feature.
2658
2659 A second solution is to force one of the 'constants' to be a variable --
2660 that is, unknown and un-optimizable at compile time.  For arrays,
2661 there are two possibilities: a) make the indexee (the array's address)
2662 a variable, or b) make the 'constant' index a variable.  Thus:
2663
2664 @example
2665 extern type extern_array[];
2666 extern_array[1] -->
2667    @{ volatile type *t=extern_array; t[1] @}
2668 @end example
2669
2670 or
2671
2672 @example
2673 extern type extern_array[];
2674 extern_array[1] -->
2675    @{ volatile int t=1; extern_array[t] @}
2676 @end example
2677
2678 For structs (and most other multiword data types) the only option
2679 is to make the struct itself (or the long long, or the ...) variable:
2680
2681 @example
2682 extern struct s extern_struct;
2683 extern_struct.field -->
2684    @{ volatile struct s *t=&extern_struct; t->field @}
2685 @end example
2686
2687 or
2688
2689 @example
2690 extern long long extern_ll;
2691 extern_ll -->
2692   @{ volatile long long * local_ll=&extern_ll; *local_ll @}
2693 @end example
2694
2695 A third method of dealing with this difficulty is to abandon
2696 'auto-import' for the offending symbol and mark it with
2697 @code{__declspec(dllimport)}.  However, in practice that
2698 requires using compile-time #defines to indicate whether you are
2699 building a DLL, building client code that will link to the DLL, or
2700 merely building/linking to a static library.   In making the choice
2701 between the various methods of resolving the 'direct address with
2702 constant offset' problem, you should consider typical real-world usage:
2703
2704 Original:
2705 @example
2706 --foo.h
2707 extern int arr[];
2708 --foo.c
2709 #include "foo.h"
2710 void main(int argc, char **argv)@{
2711   printf("%d\n",arr[1]);
2712 @}
2713 @end example
2714
2715 Solution 1:
2716 @example
2717 --foo.h
2718 extern int arr[];
2719 --foo.c
2720 #include "foo.h"
2721 void main(int argc, char **argv)@{
2722   /* This workaround is for win32 and cygwin; do not "optimize" */
2723   volatile int *parr = arr;
2724   printf("%d\n",parr[1]);
2725 @}
2726 @end example
2727
2728 Solution 2:
2729 @example
2730 --foo.h
2731 /* Note: auto-export is assumed (no __declspec(dllexport)) */
2732 #if (defined(_WIN32) || defined(__CYGWIN__)) && \
2733   !(defined(FOO_BUILD_DLL) || defined(FOO_STATIC))
2734 #define FOO_IMPORT __declspec(dllimport)
2735 #else
2736 #define FOO_IMPORT
2737 #endif
2738 extern FOO_IMPORT int arr[];
2739 --foo.c
2740 #include "foo.h"
2741 void main(int argc, char **argv)@{
2742   printf("%d\n",arr[1]);
2743 @}
2744 @end example
2745
2746 A fourth way to avoid this problem is to re-code your
2747 library to use a functional interface rather than a data interface
2748 for the offending variables (e.g. set_foo() and get_foo() accessor
2749 functions).
2750 [This option is specific to the i386 PE targeted port of the linker]
2751
2752 @kindex --disable-auto-import
2753 @item --disable-auto-import
2754 Do not attempt to do sophisticated linking of @code{_symbol} to
2755 @code{__imp__symbol} for DATA imports from DLLs.
2756 [This option is specific to the i386 PE targeted port of the linker]
2757
2758 @kindex --enable-runtime-pseudo-reloc
2759 @item --enable-runtime-pseudo-reloc
2760 If your code contains expressions described in --enable-auto-import section,
2761 that is, DATA imports from DLL with non-zero offset, this switch will create
2762 a vector of 'runtime pseudo relocations' which can be used by runtime
2763 environment to adjust references to such data in your client code.
2764 [This option is specific to the i386 PE targeted port of the linker]
2765
2766 @kindex --disable-runtime-pseudo-reloc
2767 @item --disable-runtime-pseudo-reloc
2768 Do not create pseudo relocations for non-zero offset DATA imports from
2769 DLLs.
2770 [This option is specific to the i386 PE targeted port of the linker]
2771
2772 @kindex --enable-extra-pe-debug
2773 @item --enable-extra-pe-debug
2774 Show additional debug info related to auto-import symbol thunking.
2775 [This option is specific to the i386 PE targeted port of the linker]
2776
2777 @kindex --section-alignment
2778 @item --section-alignment
2779 Sets the section alignment.  Sections in memory will always begin at
2780 addresses which are a multiple of this number.  Defaults to 0x1000.
2781 [This option is specific to the i386 PE targeted port of the linker]
2782
2783 @cindex stack size
2784 @kindex --stack
2785 @item --stack @var{reserve}
2786 @itemx --stack @var{reserve},@var{commit}
2787 Specify the number of bytes of memory to reserve (and optionally commit)
2788 to be used as stack for this program.  The default is 2MB reserved, 4K
2789 committed.
2790 [This option is specific to the i386 PE targeted port of the linker]
2791
2792 @kindex --subsystem
2793 @item --subsystem @var{which}
2794 @itemx --subsystem @var{which}:@var{major}
2795 @itemx --subsystem @var{which}:@var{major}.@var{minor}
2796 Specifies the subsystem under which your program will execute.  The
2797 legal values for @var{which} are @code{native}, @code{windows},
2798 @code{console}, @code{posix}, and @code{xbox}.  You may optionally set
2799 the subsystem version also.  Numeric values are also accepted for
2800 @var{which}.
2801 [This option is specific to the i386 PE targeted port of the linker]
2802
2803 The following options set flags in the @code{DllCharacteristics} field
2804 of the PE file header:
2805 [These options are specific to PE targeted ports of the linker]
2806
2807 @kindex --high-entropy-va
2808 @item --high-entropy-va
2809 Image is compatible with 64-bit address space layout randomization
2810 (ASLR).
2811
2812 @kindex --dynamicbase
2813 @item --dynamicbase
2814 The image base address may be relocated using address space layout
2815 randomization (ASLR).  This feature was introduced with MS Windows
2816 Vista for i386 PE targets.
2817
2818 @kindex --forceinteg
2819 @item --forceinteg
2820 Code integrity checks are enforced.
2821
2822 @kindex --nxcompat
2823 @item --nxcompat
2824 The image is compatible with the Data Execution Prevention.
2825 This feature was introduced with MS Windows XP SP2 for i386 PE targets.
2826
2827 @kindex --no-isolation
2828 @item --no-isolation
2829 Although the image understands isolation, do not isolate the image.
2830
2831 @kindex --no-seh
2832 @item --no-seh
2833 The image does not use SEH. No SE handler may be called from
2834 this image.
2835
2836 @kindex --no-bind
2837 @item --no-bind
2838 Do not bind this image.
2839
2840 @kindex --wdmdriver
2841 @item --wdmdriver
2842 The driver uses the MS Windows Driver Model.
2843
2844 @kindex --tsaware
2845 @item --tsaware
2846 The image is Terminal Server aware.
2847
2848 @kindex --insert-timestamp
2849 @item --insert-timestamp
2850 @itemx --no-insert-timestamp
2851 Insert a real timestamp into the image.  This is the default behaviour
2852 as it matches legacy code and it means that the image will work with
2853 other, proprietary tools.  The problem with this default is that it
2854 will result in slightly different images being produced each time the
2855 same sources are linked.  The option @option{--no-insert-timestamp}
2856 can be used to insert a zero value for the timestamp, this ensuring
2857 that binaries produced from identical sources will compare
2858 identically.
2859 @end table
2860
2861 @c man end
2862
2863 @ifset C6X
2864 @subsection Options specific to C6X uClinux targets
2865
2866 @c man begin OPTIONS
2867
2868 The C6X uClinux target uses a binary format called DSBT to support shared
2869 libraries.  Each shared library in the system needs to have a unique index;
2870 all executables use an index of 0.
2871
2872 @table @gcctabopt
2873
2874 @kindex --dsbt-size
2875 @item --dsbt-size @var{size}
2876 This option sets the number of entries in the DSBT of the current executable
2877 or shared library to @var{size}.  The default is to create a table with 64
2878 entries.
2879
2880 @kindex --dsbt-index
2881 @item --dsbt-index @var{index}
2882 This option sets the DSBT index of the current executable or shared library
2883 to @var{index}.  The default is 0, which is appropriate for generating
2884 executables.  If a shared library is generated with a DSBT index of 0, the
2885 @code{R_C6000_DSBT_INDEX} relocs are copied into the output file.
2886
2887 @kindex --no-merge-exidx-entries
2888 The @samp{--no-merge-exidx-entries} switch disables the merging of adjacent
2889 exidx entries in frame unwind info.
2890
2891 @end table
2892
2893 @c man end
2894 @end ifset
2895
2896 @ifset M68HC11
2897 @subsection Options specific to Motorola 68HC11 and 68HC12 targets
2898
2899 @c man begin OPTIONS
2900
2901 The 68HC11 and 68HC12 linkers support specific options to control the
2902 memory bank switching mapping and trampoline code generation.
2903
2904 @table @gcctabopt
2905
2906 @kindex --no-trampoline
2907 @item --no-trampoline
2908 This option disables the generation of trampoline. By default a trampoline
2909 is generated for each far function which is called using a @code{jsr}
2910 instruction (this happens when a pointer to a far function is taken).
2911
2912 @kindex --bank-window
2913 @item --bank-window @var{name}
2914 This option indicates to the linker the name of the memory region in
2915 the @samp{MEMORY} specification that describes the memory bank window.
2916 The definition of such region is then used by the linker to compute
2917 paging and addresses within the memory window.
2918
2919 @end table
2920
2921 @c man end
2922 @end ifset
2923
2924 @ifset M68K
2925 @subsection Options specific to Motorola 68K target
2926
2927 @c man begin OPTIONS
2928
2929 The following options are supported to control handling of GOT generation
2930 when linking for 68K targets.
2931
2932 @table @gcctabopt
2933
2934 @kindex --got
2935 @item --got=@var{type}
2936 This option tells the linker which GOT generation scheme to use.
2937 @var{type} should be one of @samp{single}, @samp{negative},
2938 @samp{multigot} or @samp{target}.  For more information refer to the
2939 Info entry for @file{ld}.
2940
2941 @end table
2942
2943 @c man end
2944 @end ifset
2945
2946 @ifset MIPS
2947 @subsection Options specific to MIPS targets
2948
2949 @c man begin OPTIONS
2950
2951 The following options are supported to control microMIPS instruction
2952 generation when linking for MIPS targets.
2953
2954 @table @gcctabopt
2955
2956 @kindex --insn32
2957 @item --insn32
2958 @kindex --no-insn32
2959 @itemx --no-insn32
2960 These options control the choice of microMIPS instructions used in code
2961 generated by the linker, such as that in the PLT or lazy binding stubs,
2962 or in relaxation.  If @samp{--insn32} is used, then the linker only uses
2963 32-bit instruction encodings.  By default or if @samp{--no-insn32} is
2964 used, all instruction encodings are used, including 16-bit ones where
2965 possible.
2966
2967 @end table
2968
2969 @c man end
2970 @end ifset
2971
2972 @ifset UsesEnvVars
2973 @node Environment
2974 @section Environment Variables
2975
2976 @c man begin ENVIRONMENT
2977
2978 You can change the behaviour of @command{ld} with the environment variables
2979 @ifclear SingleFormat
2980 @code{GNUTARGET},
2981 @end ifclear
2982 @code{LDEMULATION} and @code{COLLECT_NO_DEMANGLE}.
2983
2984 @ifclear SingleFormat
2985 @kindex GNUTARGET
2986 @cindex default input format
2987 @code{GNUTARGET} determines the input-file object format if you don't
2988 use @samp{-b} (or its synonym @samp{--format}).  Its value should be one
2989 of the BFD names for an input format (@pxref{BFD}).  If there is no
2990 @code{GNUTARGET} in the environment, @command{ld} uses the natural format
2991 of the target. If @code{GNUTARGET} is set to @code{default} then BFD
2992 attempts to discover the input format by examining binary input files;
2993 this method often succeeds, but there are potential ambiguities, since
2994 there is no method of ensuring that the magic number used to specify
2995 object-file formats is unique.  However, the configuration procedure for
2996 BFD on each system places the conventional format for that system first
2997 in the search-list, so ambiguities are resolved in favor of convention.
2998 @end ifclear
2999
3000 @kindex LDEMULATION
3001 @cindex default emulation
3002 @cindex emulation, default
3003 @code{LDEMULATION} determines the default emulation if you don't use the
3004 @samp{-m} option.  The emulation can affect various aspects of linker
3005 behaviour, particularly the default linker script.  You can list the
3006 available emulations with the @samp{--verbose} or @samp{-V} options.  If
3007 the @samp{-m} option is not used, and the @code{LDEMULATION} environment
3008 variable is not defined, the default emulation depends upon how the
3009 linker was configured.
3010
3011 @kindex COLLECT_NO_DEMANGLE
3012 @cindex demangling, default
3013 Normally, the linker will default to demangling symbols.  However, if
3014 @code{COLLECT_NO_DEMANGLE} is set in the environment, then it will
3015 default to not demangling symbols.  This environment variable is used in
3016 a similar fashion by the @code{gcc} linker wrapper program.  The default
3017 may be overridden by the @samp{--demangle} and @samp{--no-demangle}
3018 options.
3019
3020 @c man end
3021 @end ifset
3022
3023 @node Scripts
3024 @chapter Linker Scripts
3025
3026 @cindex scripts
3027 @cindex linker scripts
3028 @cindex command files
3029 Every link is controlled by a @dfn{linker script}.  This script is
3030 written in the linker command language.
3031
3032 The main purpose of the linker script is to describe how the sections in
3033 the input files should be mapped into the output file, and to control
3034 the memory layout of the output file.  Most linker scripts do nothing
3035 more than this.  However, when necessary, the linker script can also
3036 direct the linker to perform many other operations, using the commands
3037 described below.
3038
3039 The linker always uses a linker script.  If you do not supply one
3040 yourself, the linker will use a default script that is compiled into the
3041 linker executable.  You can use the @samp{--verbose} command line option
3042 to display the default linker script.  Certain command line options,
3043 such as @samp{-r} or @samp{-N}, will affect the default linker script.
3044
3045 You may supply your own linker script by using the @samp{-T} command
3046 line option.  When you do this, your linker script will replace the
3047 default linker script.
3048
3049 You may also use linker scripts implicitly by naming them as input files
3050 to the linker, as though they were files to be linked.  @xref{Implicit
3051 Linker Scripts}.
3052
3053 @menu
3054 * Basic Script Concepts::       Basic Linker Script Concepts
3055 * Script Format::               Linker Script Format
3056 * Simple Example::              Simple Linker Script Example
3057 * Simple Commands::             Simple Linker Script Commands
3058 * Assignments::                 Assigning Values to Symbols
3059 * SECTIONS::                    SECTIONS Command
3060 * MEMORY::                      MEMORY Command
3061 * PHDRS::                       PHDRS Command
3062 * VERSION::                     VERSION Command
3063 * Expressions::                 Expressions in Linker Scripts
3064 * Implicit Linker Scripts::     Implicit Linker Scripts
3065 @end menu
3066
3067 @node Basic Script Concepts
3068 @section Basic Linker Script Concepts
3069 @cindex linker script concepts
3070 We need to define some basic concepts and vocabulary in order to
3071 describe the linker script language.
3072
3073 The linker combines input files into a single output file.  The output
3074 file and each input file are in a special data format known as an
3075 @dfn{object file format}.  Each file is called an @dfn{object file}.
3076 The output file is often called an @dfn{executable}, but for our
3077 purposes we will also call it an object file.  Each object file has,
3078 among other things, a list of @dfn{sections}.  We sometimes refer to a
3079 section in an input file as an @dfn{input section}; similarly, a section
3080 in the output file is an @dfn{output section}.
3081
3082 Each section in an object file has a name and a size.  Most sections
3083 also have an associated block of data, known as the @dfn{section
3084 contents}.  A section may be marked as @dfn{loadable}, which means that
3085 the contents should be loaded into memory when the output file is run.
3086 A section with no contents may be @dfn{allocatable}, which means that an
3087 area in memory should be set aside, but nothing in particular should be
3088 loaded there (in some cases this memory must be zeroed out).  A section
3089 which is neither loadable nor allocatable typically contains some sort
3090 of debugging information.
3091
3092 Every loadable or allocatable output section has two addresses.  The
3093 first is the @dfn{VMA}, or virtual memory address.  This is the address
3094 the section will have when the output file is run.  The second is the
3095 @dfn{LMA}, or load memory address.  This is the address at which the
3096 section will be loaded.  In most cases the two addresses will be the
3097 same.  An example of when they might be different is when a data section
3098 is loaded into ROM, and then copied into RAM when the program starts up
3099 (this technique is often used to initialize global variables in a ROM
3100 based system).  In this case the ROM address would be the LMA, and the
3101 RAM address would be the VMA.
3102
3103 You can see the sections in an object file by using the @code{objdump}
3104 program with the @samp{-h} option.
3105
3106 Every object file also has a list of @dfn{symbols}, known as the
3107 @dfn{symbol table}.  A symbol may be defined or undefined.  Each symbol
3108 has a name, and each defined symbol has an address, among other
3109 information.  If you compile a C or C++ program into an object file, you
3110 will get a defined symbol for every defined function and global or
3111 static variable.  Every undefined function or global variable which is
3112 referenced in the input file will become an undefined symbol.
3113
3114 You can see the symbols in an object file by using the @code{nm}
3115 program, or by using the @code{objdump} program with the @samp{-t}
3116 option.
3117
3118 @node Script Format
3119 @section Linker Script Format
3120 @cindex linker script format
3121 Linker scripts are text files.
3122
3123 You write a linker script as a series of commands.  Each command is
3124 either a keyword, possibly followed by arguments, or an assignment to a
3125 symbol.  You may separate commands using semicolons.  Whitespace is
3126 generally ignored.
3127
3128 Strings such as file or format names can normally be entered directly.
3129 If the file name contains a character such as a comma which would
3130 otherwise serve to separate file names, you may put the file name in
3131 double quotes.  There is no way to use a double quote character in a
3132 file name.
3133
3134 You may include comments in linker scripts just as in C, delimited by
3135 @samp{/*} and @samp{*/}.  As in C, comments are syntactically equivalent
3136 to whitespace.
3137
3138 @node Simple Example
3139 @section Simple Linker Script Example
3140 @cindex linker script example
3141 @cindex example of linker script
3142 Many linker scripts are fairly simple.
3143
3144 The simplest possible linker script has just one command:
3145 @samp{SECTIONS}.  You use the @samp{SECTIONS} command to describe the
3146 memory layout of the output file.
3147
3148 The @samp{SECTIONS} command is a powerful command.  Here we will
3149 describe a simple use of it.  Let's assume your program consists only of
3150 code, initialized data, and uninitialized data.  These will be in the
3151 @samp{.text}, @samp{.data}, and @samp{.bss} sections, respectively.
3152 Let's assume further that these are the only sections which appear in
3153 your input files.
3154
3155 For this example, let's say that the code should be loaded at address
3156 0x10000, and that the data should start at address 0x8000000.  Here is a
3157 linker script which will do that:
3158 @smallexample
3159 SECTIONS
3160 @{
3161   . = 0x10000;
3162   .text : @{ *(.text) @}
3163   . = 0x8000000;
3164   .data : @{ *(.data) @}
3165   .bss : @{ *(.bss) @}
3166 @}
3167 @end smallexample
3168
3169 You write the @samp{SECTIONS} command as the keyword @samp{SECTIONS},
3170 followed by a series of symbol assignments and output section
3171 descriptions enclosed in curly braces.
3172
3173 The first line inside the @samp{SECTIONS} command of the above example
3174 sets the value of the special symbol @samp{.}, which is the location
3175 counter.  If you do not specify the address of an output section in some
3176 other way (other ways are described later), the address is set from the
3177 current value of the location counter.  The location counter is then
3178 incremented by the size of the output section.  At the start of the
3179 @samp{SECTIONS} command, the location counter has the value @samp{0}.
3180
3181 The second line defines an output section, @samp{.text}.  The colon is
3182 required syntax which may be ignored for now.  Within the curly braces
3183 after the output section name, you list the names of the input sections
3184 which should be placed into this output section.  The @samp{*} is a
3185 wildcard which matches any file name.  The expression @samp{*(.text)}
3186 means all @samp{.text} input sections in all input files.
3187
3188 Since the location counter is @samp{0x10000} when the output section
3189 @samp{.text} is defined, the linker will set the address of the
3190 @samp{.text} section in the output file to be @samp{0x10000}.
3191
3192 The remaining lines define the @samp{.data} and @samp{.bss} sections in
3193 the output file.  The linker will place the @samp{.data} output section
3194 at address @samp{0x8000000}.  After the linker places the @samp{.data}
3195 output section, the value of the location counter will be
3196 @samp{0x8000000} plus the size of the @samp{.data} output section.  The
3197 effect is that the linker will place the @samp{.bss} output section
3198 immediately after the @samp{.data} output section in memory.
3199
3200 The linker will ensure that each output section has the required
3201 alignment, by increasing the location counter if necessary.  In this
3202 example, the specified addresses for the @samp{.text} and @samp{.data}
3203 sections will probably satisfy any alignment constraints, but the linker
3204 may have to create a small gap between the @samp{.data} and @samp{.bss}
3205 sections.
3206
3207 That's it!  That's a simple and complete linker script.
3208
3209 @node Simple Commands
3210 @section Simple Linker Script Commands
3211 @cindex linker script simple commands
3212 In this section we describe the simple linker script commands.
3213
3214 @menu
3215 * Entry Point::                 Setting the entry point
3216 * File Commands::               Commands dealing with files
3217 @ifclear SingleFormat
3218 * Format Commands::             Commands dealing with object file formats
3219 @end ifclear
3220
3221 * REGION_ALIAS::                Assign alias names to memory regions
3222 * Miscellaneous Commands::      Other linker script commands
3223 @end menu
3224
3225 @node Entry Point
3226 @subsection Setting the Entry Point
3227 @kindex ENTRY(@var{symbol})
3228 @cindex start of execution
3229 @cindex first instruction
3230 @cindex entry point
3231 The first instruction to execute in a program is called the @dfn{entry
3232 point}.  You can use the @code{ENTRY} linker script command to set the
3233 entry point.  The argument is a symbol name:
3234 @smallexample
3235 ENTRY(@var{symbol})
3236 @end smallexample
3237
3238 There are several ways to set the entry point.  The linker will set the
3239 entry point by trying each of the following methods in order, and
3240 stopping when one of them succeeds:
3241 @itemize @bullet
3242 @item
3243 the @samp{-e} @var{entry} command-line option;
3244 @item
3245 the @code{ENTRY(@var{symbol})} command in a linker script;
3246 @item
3247 the value of a target specific symbol, if it is defined;  For many
3248 targets this is @code{start}, but PE and BeOS based systems for example
3249 check a list of possible entry symbols, matching the first one found.
3250 @item
3251 the address of the first byte of the @samp{.text} section, if present;
3252 @item
3253 The address @code{0}.
3254 @end itemize
3255
3256 @node File Commands
3257 @subsection Commands Dealing with Files
3258 @cindex linker script file commands
3259 Several linker script commands deal with files.
3260
3261 @table @code
3262 @item INCLUDE @var{filename}
3263 @kindex INCLUDE @var{filename}
3264 @cindex including a linker script
3265 Include the linker script @var{filename} at this point.  The file will
3266 be searched for in the current directory, and in any directory specified
3267 with the @option{-L} option.  You can nest calls to @code{INCLUDE} up to
3268 10 levels deep.
3269
3270 You can place @code{INCLUDE} directives at the top level, in @code{MEMORY} or
3271 @code{SECTIONS} commands, or in output section descriptions.
3272
3273 @item INPUT(@var{file}, @var{file}, @dots{})
3274 @itemx INPUT(@var{file} @var{file} @dots{})
3275 @kindex INPUT(@var{files})
3276 @cindex input files in linker scripts
3277 @cindex input object files in linker scripts
3278 @cindex linker script input object files
3279 The @code{INPUT} command directs the linker to include the named files
3280 in the link, as though they were named on the command line.
3281
3282 For example, if you always want to include @file{subr.o} any time you do
3283 a link, but you can't be bothered to put it on every link command line,
3284 then you can put @samp{INPUT (subr.o)} in your linker script.
3285
3286 In fact, if you like, you can list all of your input files in the linker
3287 script, and then invoke the linker with nothing but a @samp{-T} option.
3288
3289 In case a @dfn{sysroot prefix} is configured, and the filename starts
3290 with the @samp{/} character, and the script being processed was
3291 located inside the @dfn{sysroot prefix}, the filename will be looked
3292 for in the @dfn{sysroot prefix}.  Otherwise, the linker will try to
3293 open the file in the current directory.  If it is not found, the
3294 linker will search through the archive library search path.
3295 The @dfn{sysroot prefix} can also be forced by specifying @code{=}
3296 as the first character in the filename path.  See also the
3297 description of @samp{-L} in @ref{Options,,Command Line Options}.
3298
3299 If you use @samp{INPUT (-l@var{file})}, @command{ld} will transform the
3300 name to @code{lib@var{file}.a}, as with the command line argument
3301 @samp{-l}.
3302
3303 When you use the @code{INPUT} command in an implicit linker script, the
3304 files will be included in the link at the point at which the linker
3305 script file is included.  This can affect archive searching.
3306
3307 @item GROUP(@var{file}, @var{file}, @dots{})
3308 @itemx GROUP(@var{file} @var{file} @dots{})
3309 @kindex GROUP(@var{files})
3310 @cindex grouping input files
3311 The @code{GROUP} command is like @code{INPUT}, except that the named
3312 files should all be archives, and they are searched repeatedly until no
3313 new undefined references are created.  See the description of @samp{-(}
3314 in @ref{Options,,Command Line Options}.
3315
3316 @item AS_NEEDED(@var{file}, @var{file}, @dots{})
3317 @itemx AS_NEEDED(@var{file} @var{file} @dots{})
3318 @kindex AS_NEEDED(@var{files})
3319 This construct can appear only inside of the @code{INPUT} or @code{GROUP}
3320 commands, among other filenames.  The files listed will be handled
3321 as if they appear directly in the @code{INPUT} or @code{GROUP} commands,
3322 with the exception of ELF shared libraries, that will be added only
3323 when they are actually needed.  This construct essentially enables
3324 @option{--as-needed} option for all the files listed inside of it
3325 and restores previous @option{--as-needed} resp. @option{--no-as-needed}
3326 setting afterwards.
3327
3328 @item OUTPUT(@var{filename})
3329 @kindex OUTPUT(@var{filename})
3330 @cindex output file name in linker script
3331 The @code{OUTPUT} command names the output file.  Using
3332 @code{OUTPUT(@var{filename})} in the linker script is exactly like using
3333 @samp{-o @var{filename}} on the command line (@pxref{Options,,Command
3334 Line Options}).  If both are used, the command line option takes
3335 precedence.
3336
3337 You can use the @code{OUTPUT} command to define a default name for the
3338 output file other than the usual default of @file{a.out}.
3339
3340 @item SEARCH_DIR(@var{path})
3341 @kindex SEARCH_DIR(@var{path})
3342 @cindex library search path in linker script
3343 @cindex archive search path in linker script
3344 @cindex search path in linker script
3345 The @code{SEARCH_DIR} command adds @var{path} to the list of paths where
3346 @command{ld} looks for archive libraries.  Using
3347 @code{SEARCH_DIR(@var{path})} is exactly like using @samp{-L @var{path}}
3348 on the command line (@pxref{Options,,Command Line Options}).  If both
3349 are used, then the linker will search both paths.  Paths specified using
3350 the command line option are searched first.
3351
3352 @item STARTUP(@var{filename})
3353 @kindex STARTUP(@var{filename})
3354 @cindex first input file
3355 The @code{STARTUP} command is just like the @code{INPUT} command, except
3356 that @var{filename} will become the first input file to be linked, as
3357 though it were specified first on the command line.  This may be useful
3358 when using a system in which the entry point is always the start of the
3359 first file.
3360 @end table
3361
3362 @ifclear SingleFormat
3363 @node Format Commands
3364 @subsection Commands Dealing with Object File Formats
3365 A couple of linker script commands deal with object file formats.
3366
3367 @table @code
3368 @item OUTPUT_FORMAT(@var{bfdname})
3369 @itemx OUTPUT_FORMAT(@var{default}, @var{big}, @var{little})
3370 @kindex OUTPUT_FORMAT(@var{bfdname})
3371 @cindex output file format in linker script
3372 The @code{OUTPUT_FORMAT} command names the BFD format to use for the
3373 output file (@pxref{BFD}).  Using @code{OUTPUT_FORMAT(@var{bfdname})} is
3374 exactly like using @samp{--oformat @var{bfdname}} on the command line
3375 (@pxref{Options,,Command Line Options}).  If both are used, the command
3376 line option takes precedence.
3377
3378 You can use @code{OUTPUT_FORMAT} with three arguments to use different
3379 formats based on the @samp{-EB} and @samp{-EL} command line options.
3380 This permits the linker script to set the output format based on the
3381 desired endianness.
3382
3383 If neither @samp{-EB} nor @samp{-EL} are used, then the output format
3384 will be the first argument, @var{default}.  If @samp{-EB} is used, the
3385 output format will be the second argument, @var{big}.  If @samp{-EL} is
3386 used, the output format will be the third argument, @var{little}.
3387
3388 For example, the default linker script for the MIPS ELF target uses this
3389 command:
3390 @smallexample
3391 OUTPUT_FORMAT(elf32-bigmips, elf32-bigmips, elf32-littlemips)
3392 @end smallexample
3393 This says that the default format for the output file is
3394 @samp{elf32-bigmips}, but if the user uses the @samp{-EL} command line
3395 option, the output file will be created in the @samp{elf32-littlemips}
3396 format.
3397
3398 @item TARGET(@var{bfdname})
3399 @kindex TARGET(@var{bfdname})
3400 @cindex input file format in linker script
3401 The @code{TARGET} command names the BFD format to use when reading input
3402 files.  It affects subsequent @code{INPUT} and @code{GROUP} commands.
3403 This command is like using @samp{-b @var{bfdname}} on the command line
3404 (@pxref{Options,,Command Line Options}).  If the @code{TARGET} command
3405 is used but @code{OUTPUT_FORMAT} is not, then the last @code{TARGET}
3406 command is also used to set the format for the output file.  @xref{BFD}.
3407 @end table
3408 @end ifclear
3409
3410 @node REGION_ALIAS
3411 @subsection Assign alias names to memory regions
3412 @kindex REGION_ALIAS(@var{alias}, @var{region})
3413 @cindex region alias
3414 @cindex region names
3415
3416 Alias names can be added to existing memory regions created with the
3417 @ref{MEMORY} command.  Each name corresponds to at most one memory region.
3418
3419 @smallexample
3420 REGION_ALIAS(@var{alias}, @var{region})
3421 @end smallexample
3422
3423 The @code{REGION_ALIAS} function creates an alias name @var{alias} for the
3424 memory region @var{region}.  This allows a flexible mapping of output sections
3425 to memory regions.  An example follows.
3426
3427 Suppose we have an application for embedded systems which come with various
3428 memory storage devices.  All have a general purpose, volatile memory @code{RAM}
3429 that allows code execution or data storage.  Some may have a read-only,
3430 non-volatile memory @code{ROM} that allows code execution and read-only data
3431 access.  The last variant is a read-only, non-volatile memory @code{ROM2} with
3432 read-only data access and no code execution capability.  We have four output
3433 sections:
3434
3435 @itemize @bullet
3436 @item
3437 @code{.text} program code;
3438 @item
3439 @code{.rodata} read-only data;
3440 @item
3441 @code{.data} read-write initialized data;
3442 @item
3443 @code{.bss} read-write zero initialized data.
3444 @end itemize
3445
3446 The goal is to provide a linker command file that contains a system independent
3447 part defining the output sections and a system dependent part mapping the
3448 output sections to the memory regions available on the system.  Our embedded
3449 systems come with three different memory setups @code{A}, @code{B} and
3450 @code{C}:
3451 @multitable @columnfractions .25 .25 .25 .25
3452 @item Section @tab Variant A @tab Variant B @tab Variant C
3453 @item .text @tab RAM @tab ROM @tab ROM
3454 @item .rodata @tab RAM @tab ROM @tab ROM2
3455 @item .data @tab RAM @tab RAM/ROM @tab RAM/ROM2
3456 @item .bss @tab RAM @tab RAM @tab RAM
3457 @end multitable
3458 The notation @code{RAM/ROM} or @code{RAM/ROM2} means that this section is
3459 loaded into region @code{ROM} or @code{ROM2} respectively.  Please note that
3460 the load address of the @code{.data} section starts in all three variants at
3461 the end of the @code{.rodata} section.
3462
3463 The base linker script that deals with the output sections follows.  It
3464 includes the system dependent @code{linkcmds.memory} file that describes the
3465 memory layout:
3466 @smallexample
3467 INCLUDE linkcmds.memory
3468
3469 SECTIONS
3470   @{
3471     .text :
3472       @{
3473         *(.text)
3474       @} > REGION_TEXT
3475     .rodata :
3476       @{
3477         *(.rodata)
3478         rodata_end = .;
3479       @} > REGION_RODATA
3480     .data : AT (rodata_end)
3481       @{
3482         data_start = .;
3483         *(.data)
3484       @} > REGION_DATA
3485     data_size = SIZEOF(.data);
3486     data_load_start = LOADADDR(.data);
3487     .bss :
3488       @{
3489         *(.bss)
3490       @} > REGION_BSS
3491   @}
3492 @end smallexample
3493
3494 Now we need three different @code{linkcmds.memory} files to define memory
3495 regions and alias names.  The content of @code{linkcmds.memory} for the three
3496 variants @code{A}, @code{B} and @code{C}:
3497 @table @code
3498 @item A
3499 Here everything goes into the @code{RAM}.
3500 @smallexample
3501 MEMORY
3502   @{
3503     RAM : ORIGIN = 0, LENGTH = 4M
3504   @}
3505
3506 REGION_ALIAS("REGION_TEXT", RAM);
3507 REGION_ALIAS("REGION_RODATA", RAM);
3508 REGION_ALIAS("REGION_DATA", RAM);
3509 REGION_ALIAS("REGION_BSS", RAM);
3510 @end smallexample
3511 @item B
3512 Program code and read-only data go into the @code{ROM}.  Read-write data goes
3513 into the @code{RAM}.  An image of the initialized data is loaded into the
3514 @code{ROM} and will be copied during system start into the @code{RAM}.
3515 @smallexample
3516 MEMORY
3517   @{
3518     ROM : ORIGIN = 0, LENGTH = 3M
3519     RAM : ORIGIN = 0x10000000, LENGTH = 1M
3520   @}
3521
3522 REGION_ALIAS("REGION_TEXT", ROM);
3523 REGION_ALIAS("REGION_RODATA", ROM);
3524 REGION_ALIAS("REGION_DATA", RAM);
3525 REGION_ALIAS("REGION_BSS", RAM);
3526 @end smallexample
3527 @item C
3528 Program code goes into the @code{ROM}.  Read-only data goes into the
3529 @code{ROM2}.  Read-write data goes into the @code{RAM}.  An image of the
3530 initialized data is loaded into the @code{ROM2} and will be copied during
3531 system start into the @code{RAM}.
3532 @smallexample
3533 MEMORY
3534   @{
3535     ROM : ORIGIN = 0, LENGTH = 2M
3536     ROM2 : ORIGIN = 0x10000000, LENGTH = 1M
3537     RAM : ORIGIN = 0x20000000, LENGTH = 1M
3538   @}
3539
3540 REGION_ALIAS("REGION_TEXT", ROM);
3541 REGION_ALIAS("REGION_RODATA", ROM2);
3542 REGION_ALIAS("REGION_DATA", RAM);
3543 REGION_ALIAS("REGION_BSS", RAM);
3544 @end smallexample
3545 @end table
3546
3547 It is possible to write a common system initialization routine to copy the
3548 @code{.data} section from @code{ROM} or @code{ROM2} into the @code{RAM} if
3549 necessary:
3550 @smallexample
3551 #include <string.h>
3552
3553 extern char data_start [];
3554 extern char data_size [];
3555 extern char data_load_start [];
3556
3557 void copy_data(void)
3558 @{
3559   if (data_start != data_load_start)
3560     @{
3561       memcpy(data_start, data_load_start, (size_t) data_size);
3562     @}
3563 @}
3564 @end smallexample
3565
3566 @node Miscellaneous Commands
3567 @subsection Other Linker Script Commands
3568 There are a few other linker scripts commands.
3569
3570 @table @code
3571 @item ASSERT(@var{exp}, @var{message})
3572 @kindex ASSERT
3573 @cindex assertion in linker script
3574 Ensure that @var{exp} is non-zero.  If it is zero, then exit the linker
3575 with an error code, and print @var{message}.
3576
3577 Note that assertions are checked before the final stages of linking
3578 take place.  This means that expressions involving symbols PROVIDEd
3579 inside section definitions will fail if the user has not set values
3580 for those symbols.  The only exception to this rule is PROVIDEd
3581 symbols that just reference dot.  Thus an assertion like this:
3582
3583 @smallexample
3584   .stack :
3585   @{
3586     PROVIDE (__stack = .);
3587     PROVIDE (__stack_size = 0x100);
3588     ASSERT ((__stack > (_end + __stack_size)), "Error: No room left for the stack");
3589   @}
3590 @end smallexample
3591
3592 will fail if @code{__stack_size} is not defined elsewhere.  Symbols
3593 PROVIDEd outside of section definitions are evaluated earlier, so they
3594 can be used inside ASSERTions.  Thus:
3595
3596 @smallexample
3597   PROVIDE (__stack_size = 0x100);
3598   .stack :
3599   @{
3600     PROVIDE (__stack = .);
3601     ASSERT ((__stack > (_end + __stack_size)), "Error: No room left for the stack");
3602   @}
3603 @end smallexample
3604
3605 will work.
3606
3607 @item EXTERN(@var{symbol} @var{symbol} @dots{})
3608 @kindex EXTERN
3609 @cindex undefined symbol in linker script
3610 Force @var{symbol} to be entered in the output file as an undefined
3611 symbol.  Doing this may, for example, trigger linking of additional
3612 modules from standard libraries.  You may list several @var{symbol}s for
3613 each @code{EXTERN}, and you may use @code{EXTERN} multiple times.  This
3614 command has the same effect as the @samp{-u} command-line option.
3615
3616 @item FORCE_COMMON_ALLOCATION
3617 @kindex FORCE_COMMON_ALLOCATION
3618 @cindex common allocation in linker script
3619 This command has the same effect as the @samp{-d} command-line option:
3620 to make @command{ld} assign space to common symbols even if a relocatable
3621 output file is specified (@samp{-r}).
3622
3623 @item INHIBIT_COMMON_ALLOCATION
3624 @kindex INHIBIT_COMMON_ALLOCATION
3625 @cindex common allocation in linker script
3626 This command has the same effect as the @samp{--no-define-common}
3627 command-line option: to make @code{ld} omit the assignment of addresses
3628 to common symbols even for a non-relocatable output file.
3629
3630 @item INSERT [ AFTER | BEFORE ] @var{output_section}
3631 @kindex INSERT
3632 @cindex insert user script into default script
3633 This command is typically used in a script specified by @samp{-T} to
3634 augment the default @code{SECTIONS} with, for example, overlays.  It
3635 inserts all prior linker script statements after (or before)
3636 @var{output_section}, and also causes @samp{-T} to not override the
3637 default linker script.  The exact insertion point is as for orphan
3638 sections.  @xref{Location Counter}.  The insertion happens after the
3639 linker has mapped input sections to output sections.  Prior to the
3640 insertion, since @samp{-T} scripts are parsed before the default
3641 linker script, statements in the @samp{-T} script occur before the
3642 default linker script statements in the internal linker representation
3643 of the script.  In particular, input section assignments will be made
3644 to @samp{-T} output sections before those in the default script.  Here
3645 is an example of how a @samp{-T} script using @code{INSERT} might look:
3646
3647 @smallexample
3648 SECTIONS
3649 @{
3650   OVERLAY :
3651   @{
3652     .ov1 @{ ov1*(.text) @}
3653     .ov2 @{ ov2*(.text) @}
3654   @}
3655 @}
3656 INSERT AFTER .text;
3657 @end smallexample
3658
3659 @item NOCROSSREFS(@var{section} @var{section} @dots{})
3660 @kindex NOCROSSREFS(@var{sections})
3661 @cindex cross references
3662 This command may be used to tell @command{ld} to issue an error about any
3663 references among certain output sections.
3664
3665 In certain types of programs, particularly on embedded systems when
3666 using overlays, when one section is loaded into memory, another section
3667 will not be.  Any direct references between the two sections would be
3668 errors.  For example, it would be an error if code in one section called
3669 a function defined in the other section.
3670
3671 The @code{NOCROSSREFS} command takes a list of output section names.  If
3672 @command{ld} detects any cross references between the sections, it reports
3673 an error and returns a non-zero exit status.  Note that the
3674 @code{NOCROSSREFS} command uses output section names, not input section
3675 names.
3676
3677 @item NOCROSSREFS_TO(@var{tosection} @var{fromsection} @dots{})
3678 @kindex NOCROSSREFS_TO(@var{tosection} @var{fromsections})
3679 @cindex cross references
3680 This command may be used to tell @command{ld} to issue an error about any
3681 references to one section from a list of other sections.
3682
3683 The @code{NOCROSSREFS} command is useful when ensuring that two or more
3684 output sections are entirely independent but there are situations where
3685 a one-way dependency is needed. For example, in a multi-core application
3686 there may be shared code that can be called from each core but for safety
3687 must never call back.
3688
3689 The @code{NOCROSSREFS_TO} command takes a list of output section names.
3690 The first section can not be referenced from any of the other sections.
3691 If @command{ld} detects any references to the first section from any of
3692 the other sections, it reports an error and returns a non-zero exit
3693 status.  Note that the @code{NOCROSSREFS_TO} command uses output section
3694 names, not input section names.
3695
3696 @ifclear SingleFormat
3697 @item OUTPUT_ARCH(@var{bfdarch})
3698 @kindex OUTPUT_ARCH(@var{bfdarch})
3699 @cindex machine architecture
3700 @cindex architecture
3701 Specify a particular output machine architecture.  The argument is one
3702 of the names used by the BFD library (@pxref{BFD}).  You can see the
3703 architecture of an object file by using the @code{objdump} program with
3704 the @samp{-f} option.
3705 @end ifclear
3706
3707 @item LD_FEATURE(@var{string})
3708 @kindex LD_FEATURE(@var{string})
3709 This command may be used to modify @command{ld} behavior.  If
3710 @var{string} is @code{"SANE_EXPR"} then absolute symbols and numbers
3711 in a script are simply treated as numbers everywhere.
3712 @xref{Expression Section}.
3713 @end table
3714
3715 @node Assignments
3716 @section Assigning Values to Symbols
3717 @cindex assignment in scripts
3718 @cindex symbol definition, scripts
3719 @cindex variables, defining
3720 You may assign a value to a symbol in a linker script.  This will define
3721 the symbol and place it into the symbol table with a global scope.
3722
3723 @menu
3724 * Simple Assignments::          Simple Assignments
3725 * HIDDEN::                      HIDDEN
3726 * PROVIDE::                     PROVIDE
3727 * PROVIDE_HIDDEN::              PROVIDE_HIDDEN
3728 * Source Code Reference::       How to use a linker script defined symbol in source code
3729 @end menu
3730
3731 @node Simple Assignments
3732 @subsection Simple Assignments
3733
3734 You may assign to a symbol using any of the C assignment operators:
3735
3736 @table @code
3737 @item @var{symbol} = @var{expression} ;
3738 @itemx @var{symbol} += @var{expression} ;
3739 @itemx @var{symbol} -= @var{expression} ;
3740 @itemx @var{symbol} *= @var{expression} ;
3741 @itemx @var{symbol} /= @var{expression} ;
3742 @itemx @var{symbol} <<= @var{expression} ;
3743 @itemx @var{symbol} >>= @var{expression} ;
3744 @itemx @var{symbol} &= @var{expression} ;
3745 @itemx @var{symbol} |= @var{expression} ;
3746 @end table
3747
3748 The first case will define @var{symbol} to the value of
3749 @var{expression}.  In the other cases, @var{symbol} must already be
3750 defined, and the value will be adjusted accordingly.
3751
3752 The special symbol name @samp{.} indicates the location counter.  You
3753 may only use this within a @code{SECTIONS} command.  @xref{Location Counter}.
3754
3755 The semicolon after @var{expression} is required.
3756
3757 Expressions are defined below; see @ref{Expressions}.
3758
3759 You may write symbol assignments as commands in their own right, or as
3760 statements within a @code{SECTIONS} command, or as part of an output
3761 section description in a @code{SECTIONS} command.
3762
3763 The section of the symbol will be set from the section of the
3764 expression; for more information, see @ref{Expression Section}.
3765
3766 Here is an example showing the three different places that symbol
3767 assignments may be used:
3768
3769 @smallexample
3770 floating_point = 0;
3771 SECTIONS
3772 @{
3773   .text :
3774     @{
3775       *(.text)
3776       _etext = .;
3777     @}
3778   _bdata = (. + 3) & ~ 3;
3779   .data : @{ *(.data) @}
3780 @}
3781 @end smallexample
3782 @noindent
3783 In this example, the symbol @samp{floating_point} will be defined as
3784 zero.  The symbol @samp{_etext} will be defined as the address following
3785 the last @samp{.text} input section.  The symbol @samp{_bdata} will be
3786 defined as the address following the @samp{.text} output section aligned
3787 upward to a 4 byte boundary.
3788
3789 @node HIDDEN
3790 @subsection HIDDEN
3791 @cindex HIDDEN
3792 For ELF targeted ports, define a symbol that will be hidden and won't be
3793 exported.  The syntax is @code{HIDDEN(@var{symbol} = @var{expression})}.
3794
3795 Here is the example from @ref{Simple Assignments}, rewritten to use
3796 @code{HIDDEN}:
3797
3798 @smallexample
3799 HIDDEN(floating_point = 0);
3800 SECTIONS
3801 @{
3802   .text :
3803     @{
3804       *(.text)
3805       HIDDEN(_etext = .);
3806     @}
3807   HIDDEN(_bdata = (. + 3) & ~ 3);
3808   .data : @{ *(.data) @}
3809 @}
3810 @end smallexample
3811 @noindent
3812 In this case none of the three symbols will be visible outside this module.
3813
3814 @node PROVIDE
3815 @subsection PROVIDE
3816 @cindex PROVIDE
3817 In some cases, it is desirable for a linker script to define a symbol
3818 only if it is referenced and is not defined by any object included in
3819 the link.  For example, traditional linkers defined the symbol
3820 @samp{etext}.  However, ANSI C requires that the user be able to use
3821 @samp{etext} as a function name without encountering an error.  The
3822 @code{PROVIDE} keyword may be used to define a symbol, such as
3823 @samp{etext}, only if it is referenced but not defined.  The syntax is
3824 @code{PROVIDE(@var{symbol} = @var{expression})}.
3825
3826 Here is an example of using @code{PROVIDE} to define @samp{etext}:
3827 @smallexample
3828 SECTIONS
3829 @{
3830   .text :
3831     @{
3832       *(.text)
3833       _etext = .;
3834       PROVIDE(etext = .);
3835     @}
3836 @}
3837 @end smallexample
3838
3839 In this example, if the program defines @samp{_etext} (with a leading
3840 underscore), the linker will give a multiple definition error.  If, on
3841 the other hand, the program defines @samp{etext} (with no leading
3842 underscore), the linker will silently use the definition in the program.
3843 If the program references @samp{etext} but does not define it, the
3844 linker will use the definition in the linker script.
3845
3846 @node PROVIDE_HIDDEN
3847 @subsection PROVIDE_HIDDEN
3848 @cindex PROVIDE_HIDDEN
3849 Similar to @code{PROVIDE}.  For ELF targeted ports, the symbol will be
3850 hidden and won't be exported.
3851
3852 @node Source Code Reference
3853 @subsection Source Code Reference
3854
3855 Accessing a linker script defined variable from source code is not
3856 intuitive.  In particular a linker script symbol is not equivalent to
3857 a variable declaration in a high level language, it is instead a
3858 symbol that does not have a value.
3859
3860 Before going further, it is important to note that compilers often
3861 transform names in the source code into different names when they are
3862 stored in the symbol table.  For example, Fortran compilers commonly
3863 prepend or append an underscore, and C++ performs extensive @samp{name
3864 mangling}.  Therefore there might be a discrepancy between the name
3865 of a variable as it is used in source code and the name of the same
3866 variable as it is defined in a linker script.  For example in C a
3867 linker script variable might be referred to as:
3868
3869 @smallexample
3870   extern int foo;
3871 @end smallexample
3872
3873 But in the linker script it might be defined as:
3874
3875 @smallexample
3876   _foo = 1000;
3877 @end smallexample
3878
3879 In the remaining examples however it is assumed that no name
3880 transformation has taken place.
3881
3882 When a symbol is declared in a high level language such as C, two
3883 things happen.  The first is that the compiler reserves enough space
3884 in the program's memory to hold the @emph{value} of the symbol.  The
3885 second is that the compiler creates an entry in the program's symbol
3886 table which holds the symbol's @emph{address}.  ie the symbol table
3887 contains the address of the block of memory holding the symbol's
3888 value.  So for example the following C declaration, at file scope:
3889
3890 @smallexample
3891   int foo = 1000;
3892 @end smallexample
3893
3894 creates an entry called @samp{foo} in the symbol table.  This entry
3895 holds the address of an @samp{int} sized block of memory where the
3896 number 1000 is initially stored.
3897
3898 When a program references a symbol the compiler generates code that
3899 first accesses the symbol table to find the address of the symbol's
3900 memory block and then code to read the value from that memory block.
3901 So:
3902
3903 @smallexample
3904   foo = 1;
3905 @end smallexample
3906
3907 looks up the symbol @samp{foo} in the symbol table, gets the address
3908 associated with this symbol and then writes the value 1 into that
3909 address.  Whereas:
3910
3911 @smallexample
3912   int * a = & foo;
3913 @end smallexample
3914
3915 looks up the symbol @samp{foo} in the symbol table, gets its address
3916 and then copies this address into the block of memory associated with
3917 the variable @samp{a}.
3918
3919 Linker scripts symbol declarations, by contrast, create an entry in
3920 the symbol table but do not assign any memory to them.  Thus they are
3921 an address without a value.  So for example the linker script definition:
3922
3923 @smallexample
3924   foo = 1000;
3925 @end smallexample
3926
3927 creates an entry in the symbol table called @samp{foo} which holds
3928 the address of memory location 1000, but nothing special is stored at
3929 address 1000.  This means that you cannot access the @emph{value} of a
3930 linker script defined symbol - it has no value - all you can do is
3931 access the @emph{address} of a linker script defined symbol.
3932
3933 Hence when you are using a linker script defined symbol in source code
3934 you should always take the address of the symbol, and never attempt to
3935 use its value.  For example suppose you want to copy the contents of a
3936 section of memory called .ROM into a section called .FLASH and the
3937 linker script contains these declarations:
3938
3939 @smallexample
3940 @group
3941   start_of_ROM   = .ROM;
3942   end_of_ROM     = .ROM + sizeof (.ROM);
3943   start_of_FLASH = .FLASH;
3944 @end group
3945 @end smallexample
3946
3947 Then the C source code to perform the copy would be:
3948
3949 @smallexample
3950 @group
3951   extern char start_of_ROM, end_of_ROM, start_of_FLASH;
3952
3953   memcpy (& start_of_FLASH, & start_of_ROM, & end_of_ROM - & start_of_ROM);
3954 @end group
3955 @end smallexample
3956
3957 Note the use of the @samp{&} operators.  These are correct.
3958 Alternatively the symbols can be treated as the names of vectors or
3959 arrays and then the code will again work as expected:
3960
3961 @smallexample
3962 @group
3963   extern char start_of_ROM[], end_of_ROM[], start_of_FLASH[];
3964
3965   memcpy (start_of_FLASH, start_of_ROM, end_of_ROM - start_of_ROM);
3966 @end group
3967 @end smallexample
3968
3969 Note how using this method does not require the use of @samp{&}
3970 operators.
3971
3972 @node SECTIONS
3973 @section SECTIONS Command
3974 @kindex SECTIONS
3975 The @code{SECTIONS} command tells the linker how to map input sections
3976 into output sections, and how to place the output sections in memory.
3977
3978 The format of the @code{SECTIONS} command is:
3979 @smallexample
3980 SECTIONS
3981 @{
3982   @var{sections-command}
3983   @var{sections-command}
3984   @dots{}
3985 @}
3986 @end smallexample
3987
3988 Each @var{sections-command} may of be one of the following:
3989
3990 @itemize @bullet
3991 @item
3992 an @code{ENTRY} command (@pxref{Entry Point,,Entry command})
3993 @item
3994 a symbol assignment (@pxref{Assignments})
3995 @item
3996 an output section description
3997 @item
3998 an overlay description
3999 @end itemize
4000
4001 The @code{ENTRY} command and symbol assignments are permitted inside the
4002 @code{SECTIONS} command for convenience in using the location counter in
4003 those commands.  This can also make the linker script easier to
4004 understand because you can use those commands at meaningful points in
4005 the layout of the output file.
4006
4007 Output section descriptions and overlay descriptions are described
4008 below.
4009
4010 If you do not use a @code{SECTIONS} command in your linker script, the
4011 linker will place each input section into an identically named output
4012 section in the order that the sections are first encountered in the
4013 input files.  If all input sections are present in the first file, for
4014 example, the order of sections in the output file will match the order
4015 in the first input file.  The first section will be at address zero.
4016
4017 @menu
4018 * Output Section Description::  Output section description
4019 * Output Section Name::         Output section name
4020 * Output Section Address::      Output section address
4021 * Input Section::               Input section description
4022 * Output Section Data::         Output section data
4023 * Output Section Keywords::     Output section keywords
4024 * Output Section Discarding::   Output section discarding
4025 * Output Section Attributes::   Output section attributes
4026 * Overlay Description::         Overlay description
4027 @end menu
4028
4029 @node Output Section Description
4030 @subsection Output Section Description
4031 The full description of an output section looks like this:
4032 @smallexample
4033 @group
4034 @var{section} [@var{address}] [(@var{type})] :
4035   [AT(@var{lma})]
4036   [ALIGN(@var{section_align}) | ALIGN_WITH_INPUT]
4037   [SUBALIGN(@var{subsection_align})]
4038   [@var{constraint}]
4039   @{
4040     @var{output-section-command}
4041     @var{output-section-command}
4042     @dots{}
4043   @} [>@var{region}] [AT>@var{lma_region}] [:@var{phdr} :@var{phdr} @dots{}] [=@var{fillexp}] [,]
4044 @end group
4045 @end smallexample
4046
4047 Most output sections do not use most of the optional section attributes.
4048
4049 The whitespace around @var{section} is required, so that the section
4050 name is unambiguous.  The colon and the curly braces are also required.
4051 The comma at the end may be required if a @var{fillexp} is used and
4052 the next @var{sections-command} looks like a continuation of the expression.
4053 The line breaks and other white space are optional.
4054
4055 Each @var{output-section-command} may be one of the following:
4056
4057 @itemize @bullet
4058 @item
4059 a symbol assignment (@pxref{Assignments})
4060 @item
4061 an input section description (@pxref{Input Section})
4062 @item
4063 data values to include directly (@pxref{Output Section Data})
4064 @item
4065 a special output section keyword (@pxref{Output Section Keywords})
4066 @end itemize
4067
4068 @node Output Section Name
4069 @subsection Output Section Name
4070 @cindex name, section
4071 @cindex section name
4072 The name of the output section is @var{section}.  @var{section} must
4073 meet the constraints of your output format.  In formats which only
4074 support a limited number of sections, such as @code{a.out}, the name
4075 must be one of the names supported by the format (@code{a.out}, for
4076 example, allows only @samp{.text}, @samp{.data} or @samp{.bss}). If the
4077 output format supports any number of sections, but with numbers and not
4078 names (as is the case for Oasys), the name should be supplied as a
4079 quoted numeric string.  A section name may consist of any sequence of
4080 characters, but a name which contains any unusual characters such as
4081 commas must be quoted.
4082
4083 The output section name @samp{/DISCARD/} is special; @ref{Output Section
4084 Discarding}.
4085
4086 @node Output Section Address
4087 @subsection Output Section Address
4088 @cindex address, section
4089 @cindex section address
4090 The @var{address} is an expression for the VMA (the virtual memory
4091 address) of the output section.  This address is optional, but if it
4092 is provided then the output address will be set exactly as specified.
4093
4094 If the output address is not specified then one will be chosen for the
4095 section, based on the heuristic below.  This address will be adjusted
4096 to fit the alignment requirement of the output section.  The
4097 alignment requirement is the strictest alignment of any input section
4098 contained within the output section.
4099
4100 The output section address heuristic is as follows:
4101
4102 @itemize @bullet
4103 @item
4104 If an output memory @var{region} is set for the section then it
4105 is added to this region and its address will be the next free address
4106 in that region.
4107
4108 @item
4109 If the MEMORY command has been used to create a list of memory
4110 regions then the first region which has attributes compatible with the
4111 section is selected to contain it.  The section's output address will
4112 be the next free address in that region; @ref{MEMORY}.
4113
4114 @item
4115 If no memory regions were specified, or none match the section then
4116 the output address will be based on the current value of the location
4117 counter.
4118 @end itemize
4119
4120 @noindent
4121 For example:
4122
4123 @smallexample
4124 .text . : @{ *(.text) @}
4125 @end smallexample
4126
4127 @noindent
4128 and
4129
4130 @smallexample
4131 .text : @{ *(.text) @}
4132 @end smallexample
4133
4134 @noindent
4135 are subtly different.  The first will set the address of the
4136 @samp{.text} output section to the current value of the location
4137 counter.  The second will set it to the current value of the location
4138 counter aligned to the strictest alignment of any of the @samp{.text}
4139 input sections.
4140
4141 The @var{address} may be an arbitrary expression; @ref{Expressions}.
4142 For example, if you want to align the section on a 0x10 byte boundary,
4143 so that the lowest four bits of the section address are zero, you could
4144 do something like this:
4145 @smallexample
4146 .text ALIGN(0x10) : @{ *(.text) @}
4147 @end smallexample
4148 @noindent
4149 This works because @code{ALIGN} returns the current location counter
4150 aligned upward to the specified value.
4151
4152 Specifying @var{address} for a section will change the value of the
4153 location counter, provided that the section is non-empty.  (Empty
4154 sections are ignored).
4155
4156 @node Input Section
4157 @subsection Input Section Description
4158 @cindex input sections
4159 @cindex mapping input sections to output sections
4160 The most common output section command is an input section description.
4161
4162 The input section description is the most basic linker script operation.
4163 You use output sections to tell the linker how to lay out your program
4164 in memory.  You use input section descriptions to tell the linker how to
4165 map the input files into your memory layout.
4166
4167 @menu
4168 * Input Section Basics::        Input section basics
4169 * Input Section Wildcards::     Input section wildcard patterns
4170 * Input Section Common::        Input section for common symbols
4171 * Input Section Keep::          Input section and garbage collection
4172 * Input Section Example::       Input section example
4173 @end menu
4174
4175 @node Input Section Basics
4176 @subsubsection Input Section Basics
4177 @cindex input section basics
4178 An input section description consists of a file name optionally followed
4179 by a list of section names in parentheses.
4180
4181 The file name and the section name may be wildcard patterns, which we
4182 describe further below (@pxref{Input Section Wildcards}).
4183
4184 The most common input section description is to include all input
4185 sections with a particular name in the output section.  For example, to
4186 include all input @samp{.text} sections, you would write:
4187 @smallexample
4188 *(.text)
4189 @end smallexample
4190 @noindent
4191 Here the @samp{*} is a wildcard which matches any file name.  To exclude a list
4192 of files from matching the file name wildcard, EXCLUDE_FILE may be used to
4193 match all files except the ones specified in the EXCLUDE_FILE list.  For
4194 example:
4195 @smallexample
4196 *(EXCLUDE_FILE (*crtend.o *otherfile.o) .ctors)
4197 @end smallexample
4198 will cause all .ctors sections from all files except @file{crtend.o} and
4199 @file{otherfile.o} to be included.
4200
4201 There are two ways to include more than one section:
4202 @smallexample
4203 *(.text .rdata)
4204 *(.text) *(.rdata)
4205 @end smallexample
4206 @noindent
4207 The difference between these is the order in which the @samp{.text} and
4208 @samp{.rdata} input sections will appear in the output section.  In the
4209 first example, they will be intermingled, appearing in the same order as
4210 they are found in the linker input.  In the second example, all
4211 @samp{.text} input sections will appear first, followed by all
4212 @samp{.rdata} input sections.
4213
4214 You can specify a file name to include sections from a particular file.
4215 You would do this if one or more of your files contain special data that
4216 needs to be at a particular location in memory.  For example:
4217 @smallexample
4218 data.o(.data)
4219 @end smallexample
4220
4221 To refine the sections that are included based on the section flags
4222 of an input section, INPUT_SECTION_FLAGS may be used.
4223
4224 Here is a simple example for using Section header flags for ELF sections:
4225
4226 @smallexample
4227 @group
4228 SECTIONS @{
4229   .text : @{ INPUT_SECTION_FLAGS (SHF_MERGE & SHF_STRINGS) *(.text) @}
4230   .text2 :  @{ INPUT_SECTION_FLAGS (!SHF_WRITE) *(.text) @}
4231 @}
4232 @end group
4233 @end smallexample
4234
4235 In this example, the output section @samp{.text} will be comprised of any
4236 input section matching the name *(.text) whose section header flags
4237 @code{SHF_MERGE} and @code{SHF_STRINGS} are set.  The output section
4238 @samp{.text2} will be comprised of any input section matching the name *(.text)
4239 whose section header flag @code{SHF_WRITE} is clear.
4240
4241 You can also specify files within archives by writing a pattern
4242 matching the archive, a colon, then the pattern matching the file,
4243 with no whitespace around the colon.
4244
4245 @table @samp
4246 @item archive:file
4247 matches file within archive
4248 @item archive:
4249 matches the whole archive
4250 @item :file
4251 matches file but not one in an archive
4252 @end table
4253
4254 Either one or both of @samp{archive} and @samp{file} can contain shell
4255 wildcards.  On DOS based file systems, the linker will assume that a
4256 single letter followed by a colon is a drive specifier, so
4257 @samp{c:myfile.o} is a simple file specification, not @samp{myfile.o}
4258 within an archive called @samp{c}.  @samp{archive:file} filespecs may
4259 also be used within an @code{EXCLUDE_FILE} list, but may not appear in
4260 other linker script contexts.  For instance, you cannot extract a file
4261 from an archive by using @samp{archive:file} in an @code{INPUT}
4262 command.
4263
4264 If you use a file name without a list of sections, then all sections in
4265 the input file will be included in the output section.  This is not
4266 commonly done, but it may by useful on occasion.  For example:
4267 @smallexample
4268 data.o
4269 @end smallexample
4270
4271 When you use a file name which is not an @samp{archive:file} specifier
4272 and does not contain any wild card
4273 characters, the linker will first see if you also specified the file
4274 name on the linker command line or in an @code{INPUT} command.  If you
4275 did not, the linker will attempt to open the file as an input file, as
4276 though it appeared on the command line.  Note that this differs from an
4277 @code{INPUT} command, because the linker will not search for the file in
4278 the archive search path.
4279
4280 @node Input Section Wildcards
4281 @subsubsection Input Section Wildcard Patterns
4282 @cindex input section wildcards
4283 @cindex wildcard file name patterns
4284 @cindex file name wildcard patterns
4285 @cindex section name wildcard patterns
4286 In an input section description, either the file name or the section
4287 name or both may be wildcard patterns.
4288
4289 The file name of @samp{*} seen in many examples is a simple wildcard
4290 pattern for the file name.
4291
4292 The wildcard patterns are like those used by the Unix shell.
4293
4294 @table @samp
4295 @item *
4296 matches any number of characters
4297 @item ?
4298 matches any single character
4299 @item [@var{chars}]
4300 matches a single instance of any of the @var{chars}; the @samp{-}
4301 character may be used to specify a range of characters, as in
4302 @samp{[a-z]} to match any lower case letter
4303 @item \
4304 quotes the following character
4305 @end table
4306
4307 When a file name is matched with a wildcard, the wildcard characters
4308 will not match a @samp{/} character (used to separate directory names on
4309 Unix).  A pattern consisting of a single @samp{*} character is an
4310 exception; it will always match any file name, whether it contains a
4311 @samp{/} or not.  In a section name, the wildcard characters will match
4312 a @samp{/} character.
4313
4314 File name wildcard patterns only match files which are explicitly
4315 specified on the command line or in an @code{INPUT} command.  The linker
4316 does not search directories to expand wildcards.
4317
4318 If a file name matches more than one wildcard pattern, or if a file name
4319 appears explicitly and is also matched by a wildcard pattern, the linker
4320 will use the first match in the linker script.  For example, this
4321 sequence of input section descriptions is probably in error, because the
4322 @file{data.o} rule will not be used:
4323 @smallexample
4324 .data : @{ *(.data) @}
4325 .data1 : @{ data.o(.data) @}
4326 @end smallexample
4327
4328 @cindex SORT_BY_NAME
4329 Normally, the linker will place files and sections matched by wildcards
4330 in the order in which they are seen during the link.  You can change
4331 this by using the @code{SORT_BY_NAME} keyword, which appears before a wildcard
4332 pattern in parentheses (e.g., @code{SORT_BY_NAME(.text*)}).  When the
4333 @code{SORT_BY_NAME} keyword is used, the linker will sort the files or sections
4334 into ascending order by name before placing them in the output file.
4335
4336 @cindex SORT_BY_ALIGNMENT
4337 @code{SORT_BY_ALIGNMENT} is very similar to @code{SORT_BY_NAME}. The
4338 difference is @code{SORT_BY_ALIGNMENT} will sort sections into
4339 descending order by alignment before placing them in the output file.
4340 Larger alignments are placed before smaller alignments in order to
4341 reduce the amount of padding necessary.
4342
4343 @cindex SORT_BY_INIT_PRIORITY
4344 @code{SORT_BY_INIT_PRIORITY} is very similar to @code{SORT_BY_NAME}. The
4345 difference is @code{SORT_BY_INIT_PRIORITY} will sort sections into
4346 ascending order by numerical value of the GCC init_priority attribute
4347 encoded in the section name before placing them in the output file.
4348
4349 @cindex SORT
4350 @code{SORT} is an alias for @code{SORT_BY_NAME}.
4351
4352 When there are nested section sorting commands in linker script, there
4353 can be at most 1 level of nesting for section sorting commands.
4354
4355 @enumerate
4356 @item
4357 @code{SORT_BY_NAME} (@code{SORT_BY_ALIGNMENT} (wildcard section pattern)).
4358 It will sort the input sections by name first, then by alignment if two
4359 sections have the same name.
4360 @item
4361 @code{SORT_BY_ALIGNMENT} (@code{SORT_BY_NAME} (wildcard section pattern)).
4362 It will sort the input sections by alignment first, then by name if two
4363 sections have the same alignment.
4364 @item
4365 @code{SORT_BY_NAME} (@code{SORT_BY_NAME} (wildcard section pattern)) is
4366 treated the same as @code{SORT_BY_NAME} (wildcard section pattern).
4367 @item
4368 @code{SORT_BY_ALIGNMENT} (@code{SORT_BY_ALIGNMENT} (wildcard section pattern))
4369 is treated the same as @code{SORT_BY_ALIGNMENT} (wildcard section pattern).
4370 @item
4371 All other nested section sorting commands are invalid.
4372 @end enumerate
4373
4374 When both command line section sorting option and linker script
4375 section sorting command are used, section sorting command always
4376 takes precedence over the command line option.
4377
4378 If the section sorting command in linker script isn't nested, the
4379 command line option will make the section sorting command to be
4380 treated as nested sorting command.
4381
4382 @enumerate
4383 @item
4384 @code{SORT_BY_NAME} (wildcard section pattern ) with
4385 @option{--sort-sections alignment} is equivalent to
4386 @code{SORT_BY_NAME} (@code{SORT_BY_ALIGNMENT} (wildcard section pattern)).
4387 @item
4388 @code{SORT_BY_ALIGNMENT} (wildcard section pattern) with
4389 @option{--sort-section name} is equivalent to
4390 @code{SORT_BY_ALIGNMENT} (@code{SORT_BY_NAME} (wildcard section pattern)).
4391 @end enumerate
4392
4393 If the section sorting command in linker script is nested, the
4394 command line option will be ignored.
4395
4396 @cindex SORT_NONE
4397 @code{SORT_NONE} disables section sorting by ignoring the command line
4398 section sorting option.
4399
4400 If you ever get confused about where input sections are going, use the
4401 @samp{-M} linker option to generate a map file.  The map file shows
4402 precisely how input sections are mapped to output sections.
4403
4404 This example shows how wildcard patterns might be used to partition
4405 files.  This linker script directs the linker to place all @samp{.text}
4406 sections in @samp{.text} and all @samp{.bss} sections in @samp{.bss}.
4407 The linker will place the @samp{.data} section from all files beginning
4408 with an upper case character in @samp{.DATA}; for all other files, the
4409 linker will place the @samp{.data} section in @samp{.data}.
4410 @smallexample
4411 @group
4412 SECTIONS @{
4413   .text : @{ *(.text) @}
4414   .DATA : @{ [A-Z]*(.data) @}
4415   .data : @{ *(.data) @}
4416   .bss : @{ *(.bss) @}
4417 @}
4418 @end group
4419 @end smallexample
4420
4421 @node Input Section Common
4422 @subsubsection Input Section for Common Symbols
4423 @cindex common symbol placement
4424 @cindex uninitialized data placement
4425 A special notation is needed for common symbols, because in many object
4426 file formats common symbols do not have a particular input section.  The
4427 linker treats common symbols as though they are in an input section
4428 named @samp{COMMON}.
4429
4430 You may use file names with the @samp{COMMON} section just as with any
4431 other input sections.  You can use this to place common symbols from a
4432 particular input file in one section while common symbols from other
4433 input files are placed in another section.
4434
4435 In most cases, common symbols in input files will be placed in the
4436 @samp{.bss} section in the output file.  For example:
4437 @smallexample
4438 .bss @{ *(.bss) *(COMMON) @}
4439 @end smallexample
4440
4441 @cindex scommon section
4442 @cindex small common symbols
4443 Some object file formats have more than one type of common symbol.  For
4444 example, the MIPS ELF object file format distinguishes standard common
4445 symbols and small common symbols.  In this case, the linker will use a
4446 different special section name for other types of common symbols.  In
4447 the case of MIPS ELF, the linker uses @samp{COMMON} for standard common
4448 symbols and @samp{.scommon} for small common symbols.  This permits you
4449 to map the different types of common symbols into memory at different
4450 locations.
4451
4452 @cindex [COMMON]
4453 You will sometimes see @samp{[COMMON]} in old linker scripts.  This
4454 notation is now considered obsolete.  It is equivalent to
4455 @samp{*(COMMON)}.
4456
4457 @node Input Section Keep
4458 @subsubsection Input Section and Garbage Collection
4459 @cindex KEEP
4460 @cindex garbage collection
4461 When link-time garbage collection is in use (@samp{--gc-sections}),
4462 it is often useful to mark sections that should not be eliminated.
4463 This is accomplished by surrounding an input section's wildcard entry
4464 with @code{KEEP()}, as in @code{KEEP(*(.init))} or
4465 @code{KEEP(SORT_BY_NAME(*)(.ctors))}.
4466
4467 @node Input Section Example
4468 @subsubsection Input Section Example
4469 The following example is a complete linker script.  It tells the linker
4470 to read all of the sections from file @file{all.o} and place them at the
4471 start of output section @samp{outputa} which starts at location
4472 @samp{0x10000}.  All of section @samp{.input1} from file @file{foo.o}
4473 follows immediately, in the same output section.  All of section
4474 @samp{.input2} from @file{foo.o} goes into output section
4475 @samp{outputb}, followed by section @samp{.input1} from @file{foo1.o}.
4476 All of the remaining @samp{.input1} and @samp{.input2} sections from any
4477 files are written to output section @samp{outputc}.
4478
4479 @smallexample
4480 @group
4481 SECTIONS @{
4482   outputa 0x10000 :
4483     @{
4484     all.o
4485     foo.o (.input1)
4486     @}
4487 @end group
4488 @group
4489   outputb :
4490     @{
4491     foo.o (.input2)
4492     foo1.o (.input1)
4493     @}
4494 @end group
4495 @group
4496   outputc :
4497     @{
4498     *(.input1)
4499     *(.input2)
4500     @}
4501 @}
4502 @end group
4503 @end smallexample
4504
4505 @node Output Section Data
4506 @subsection Output Section Data
4507 @cindex data
4508 @cindex section data
4509 @cindex output section data
4510 @kindex BYTE(@var{expression})
4511 @kindex SHORT(@var{expression})
4512 @kindex LONG(@var{expression})
4513 @kindex QUAD(@var{expression})
4514 @kindex SQUAD(@var{expression})
4515 You can include explicit bytes of data in an output section by using
4516 @code{BYTE}, @code{SHORT}, @code{LONG}, @code{QUAD}, or @code{SQUAD} as
4517 an output section command.  Each keyword is followed by an expression in
4518 parentheses providing the value to store (@pxref{Expressions}).  The
4519 value of the expression is stored at the current value of the location
4520 counter.
4521
4522 The @code{BYTE}, @code{SHORT}, @code{LONG}, and @code{QUAD} commands
4523 store one, two, four, and eight bytes (respectively).  After storing the
4524 bytes, the location counter is incremented by the number of bytes
4525 stored.
4526
4527 For example, this will store the byte 1 followed by the four byte value
4528 of the symbol @samp{addr}:
4529 @smallexample
4530 BYTE(1)
4531 LONG(addr)
4532 @end smallexample
4533
4534 When using a 64 bit host or target, @code{QUAD} and @code{SQUAD} are the
4535 same; they both store an 8 byte, or 64 bit, value.  When both host and
4536 target are 32 bits, an expression is computed as 32 bits.  In this case
4537 @code{QUAD} stores a 32 bit value zero extended to 64 bits, and
4538 @code{SQUAD} stores a 32 bit value sign extended to 64 bits.
4539
4540 If the object file format of the output file has an explicit endianness,
4541 which is the normal case, the value will be stored in that endianness.
4542 When the object file format does not have an explicit endianness, as is
4543 true of, for example, S-records, the value will be stored in the
4544 endianness of the first input object file.
4545
4546 Note---these commands only work inside a section description and not
4547 between them, so the following will produce an error from the linker:
4548 @smallexample
4549 SECTIONS @{@ .text : @{@ *(.text) @}@ LONG(1) .data : @{@ *(.data) @}@ @}@
4550 @end smallexample
4551 whereas this will work:
4552 @smallexample
4553 SECTIONS @{@ .text : @{@ *(.text) ; LONG(1) @}@ .data : @{@ *(.data) @}@ @}@
4554 @end smallexample
4555
4556 @kindex FILL(@var{expression})
4557 @cindex holes, filling
4558 @cindex unspecified memory
4559 You may use the @code{FILL} command to set the fill pattern for the
4560 current section.  It is followed by an expression in parentheses.  Any
4561 otherwise unspecified regions of memory within the section (for example,
4562 gaps left due to the required alignment of input sections) are filled
4563 with the value of the expression, repeated as
4564 necessary.  A @code{FILL} statement covers memory locations after the
4565 point at which it occurs in the section definition; by including more
4566 than one @code{FILL} statement, you can have different fill patterns in
4567 different parts of an output section.
4568
4569 This example shows how to fill unspecified regions of memory with the
4570 value @samp{0x90}:
4571 @smallexample
4572 FILL(0x90909090)
4573 @end smallexample
4574
4575 The @code{FILL} command is similar to the @samp{=@var{fillexp}} output
4576 section attribute, but it only affects the
4577 part of the section following the @code{FILL} command, rather than the
4578 entire section.  If both are used, the @code{FILL} command takes
4579 precedence.  @xref{Output Section Fill}, for details on the fill
4580 expression.
4581
4582 @node Output Section Keywords
4583 @subsection Output Section Keywords
4584 There are a couple of keywords which can appear as output section
4585 commands.
4586
4587 @table @code
4588 @kindex CREATE_OBJECT_SYMBOLS
4589 @cindex input filename symbols
4590 @cindex filename symbols
4591 @item CREATE_OBJECT_SYMBOLS
4592 The command tells the linker to create a symbol for each input file.
4593 The name of each symbol will be the name of the corresponding input
4594 file.  The section of each symbol will be the output section in which
4595 the @code{CREATE_OBJECT_SYMBOLS} command appears.
4596
4597 This is conventional for the a.out object file format.  It is not
4598 normally used for any other object file format.
4599
4600 @kindex CONSTRUCTORS
4601 @cindex C++ constructors, arranging in link
4602 @cindex constructors, arranging in link
4603 @item CONSTRUCTORS
4604 When linking using the a.out object file format, the linker uses an
4605 unusual set construct to support C++ global constructors and
4606 destructors.  When linking object file formats which do not support
4607 arbitrary sections, such as ECOFF and XCOFF, the linker will
4608 automatically recognize C++ global constructors and destructors by name.
4609 For these object file formats, the @code{CONSTRUCTORS} command tells the
4610 linker to place constructor information in the output section where the
4611 @code{CONSTRUCTORS} command appears.  The @code{CONSTRUCTORS} command is
4612 ignored for other object file formats.
4613
4614 The symbol @w{@code{__CTOR_LIST__}} marks the start of the global
4615 constructors, and the symbol @w{@code{__CTOR_END__}} marks the end.
4616 Similarly, @w{@code{__DTOR_LIST__}} and @w{@code{__DTOR_END__}} mark
4617 the start and end of the global destructors.  The
4618 first word in the list is the number of entries, followed by the address
4619 of each constructor or destructor, followed by a zero word.  The
4620 compiler must arrange to actually run the code.  For these object file
4621 formats @sc{gnu} C++ normally calls constructors from a subroutine
4622 @code{__main}; a call to @code{__main} is automatically inserted into
4623 the startup code for @code{main}.  @sc{gnu} C++ normally runs
4624 destructors either by using @code{atexit}, or directly from the function
4625 @code{exit}.
4626
4627 For object file formats such as @code{COFF} or @code{ELF} which support
4628 arbitrary section names, @sc{gnu} C++ will normally arrange to put the
4629 addresses of global constructors and destructors into the @code{.ctors}
4630 and @code{.dtors} sections.  Placing the following sequence into your
4631 linker script will build the sort of table which the @sc{gnu} C++
4632 runtime code expects to see.
4633
4634 @smallexample
4635       __CTOR_LIST__ = .;
4636       LONG((__CTOR_END__ - __CTOR_LIST__) / 4 - 2)
4637       *(.ctors)
4638       LONG(0)
4639       __CTOR_END__ = .;
4640       __DTOR_LIST__ = .;
4641       LONG((__DTOR_END__ - __DTOR_LIST__) / 4 - 2)
4642       *(.dtors)
4643       LONG(0)
4644       __DTOR_END__ = .;
4645 @end smallexample
4646
4647 If you are using the @sc{gnu} C++ support for initialization priority,
4648 which provides some control over the order in which global constructors
4649 are run, you must sort the constructors at link time to ensure that they
4650 are executed in the correct order.  When using the @code{CONSTRUCTORS}
4651 command, use @samp{SORT_BY_NAME(CONSTRUCTORS)} instead.  When using the
4652 @code{.ctors} and @code{.dtors} sections, use @samp{*(SORT_BY_NAME(.ctors))} and
4653 @samp{*(SORT_BY_NAME(.dtors))} instead of just @samp{*(.ctors)} and
4654 @samp{*(.dtors)}.
4655
4656 Normally the compiler and linker will handle these issues automatically,
4657 and you will not need to concern yourself with them.  However, you may
4658 need to consider this if you are using C++ and writing your own linker
4659 scripts.
4660
4661 @end table
4662
4663 @node Output Section Discarding
4664 @subsection Output Section Discarding
4665 @cindex discarding sections
4666 @cindex sections, discarding
4667 @cindex removing sections
4668 The linker will not normally create output sections with no contents.
4669 This is for convenience when referring to input sections that may or
4670 may not be present in any of the input files.  For example:
4671 @smallexample
4672 .foo : @{ *(.foo) @}
4673 @end smallexample
4674 @noindent
4675 will only create a @samp{.foo} section in the output file if there is a
4676 @samp{.foo} section in at least one input file, and if the input
4677 sections are not all empty.  Other link script directives that allocate
4678 space in an output section will also create the output section.  So
4679 too will assignments to dot even if the assignment does not create
4680 space, except for @samp{. = 0}, @samp{. = . + 0}, @samp{. = sym},
4681 @samp{. = . + sym} and @samp{. = ALIGN (. != 0, expr, 1)} when
4682 @samp{sym} is an absolute symbol of value 0 defined in the script.
4683 This allows you to force output of an empty section with @samp{. = .}.
4684
4685 The linker will ignore address assignments (@pxref{Output Section Address})
4686 on discarded output sections, except when the linker script defines
4687 symbols in the output section.  In that case the linker will obey
4688 the address assignments, possibly advancing dot even though the
4689 section is discarded.
4690
4691 @cindex /DISCARD/
4692 The special output section name @samp{/DISCARD/} may be used to discard
4693 input sections.  Any input sections which are assigned to an output
4694 section named @samp{/DISCARD/} are not included in the output file.
4695
4696 @node Output Section Attributes
4697 @subsection Output Section Attributes
4698 @cindex output section attributes
4699 We showed above that the full description of an output section looked
4700 like this:
4701
4702 @smallexample
4703 @group
4704 @var{section} [@var{address}] [(@var{type})] :
4705   [AT(@var{lma})]
4706   [ALIGN(@var{section_align})]
4707   [SUBALIGN(@var{subsection_align})]
4708   [@var{constraint}]
4709   @{
4710     @var{output-section-command}
4711     @var{output-section-command}
4712     @dots{}
4713   @} [>@var{region}] [AT>@var{lma_region}] [:@var{phdr} :@var{phdr} @dots{}] [=@var{fillexp}]
4714 @end group
4715 @end smallexample
4716
4717 We've already described @var{section}, @var{address}, and
4718 @var{output-section-command}.  In this section we will describe the
4719 remaining section attributes.
4720
4721 @menu
4722 * Output Section Type::         Output section type
4723 * Output Section LMA::          Output section LMA
4724 * Forced Output Alignment::     Forced Output Alignment
4725 * Forced Input Alignment::      Forced Input Alignment
4726 * Output Section Constraint::   Output section constraint
4727 * Output Section Region::       Output section region
4728 * Output Section Phdr::         Output section phdr
4729 * Output Section Fill::         Output section fill
4730 @end menu
4731
4732 @node Output Section Type
4733 @subsubsection Output Section Type
4734 Each output section may have a type.  The type is a keyword in
4735 parentheses.  The following types are defined:
4736
4737 @table @code
4738 @item NOLOAD
4739 The section should be marked as not loadable, so that it will not be
4740 loaded into memory when the program is run.
4741 @item DSECT
4742 @itemx COPY
4743 @itemx INFO
4744 @itemx OVERLAY
4745 These type names are supported for backward compatibility, and are
4746 rarely used.  They all have the same effect: the section should be
4747 marked as not allocatable, so that no memory is allocated for the
4748 section when the program is run.
4749 @end table
4750
4751 @kindex NOLOAD
4752 @cindex prevent unnecessary loading
4753 @cindex loading, preventing
4754 The linker normally sets the attributes of an output section based on
4755 the input sections which map into it.  You can override this by using
4756 the section type.  For example, in the script sample below, the
4757 @samp{ROM} section is addressed at memory location @samp{0} and does not
4758 need to be loaded when the program is run.
4759 @smallexample
4760 @group
4761 SECTIONS @{
4762   ROM 0 (NOLOAD) : @{ @dots{} @}
4763   @dots{}
4764 @}
4765 @end group
4766 @end smallexample
4767
4768 @node Output Section LMA
4769 @subsubsection Output Section LMA
4770 @kindex AT>@var{lma_region}
4771 @kindex AT(@var{lma})
4772 @cindex load address
4773 @cindex section load address
4774 Every section has a virtual address (VMA) and a load address (LMA); see
4775 @ref{Basic Script Concepts}.  The virtual address is specified by the
4776 @pxref{Output Section Address} described earlier.  The load address is
4777 specified by the @code{AT} or @code{AT>} keywords.  Specifying a load
4778 address is optional.
4779
4780 The @code{AT} keyword takes an expression as an argument.  This
4781 specifies the exact load address of the section.  The @code{AT>} keyword
4782 takes the name of a memory region as an argument.  @xref{MEMORY}.  The
4783 load address of the section is set to the next free address in the
4784 region, aligned to the section's alignment requirements.
4785
4786 If neither @code{AT} nor @code{AT>} is specified for an allocatable
4787 section, the linker will use the following heuristic to determine the
4788 load address:
4789
4790 @itemize @bullet
4791 @item
4792 If the section has a specific VMA address, then this is used as
4793 the LMA address as well.
4794
4795 @item
4796 If the section is not allocatable then its LMA is set to its VMA.
4797
4798 @item
4799 Otherwise if a memory region can be found that is compatible
4800 with the current section, and this region contains at least one
4801 section, then the LMA is set so the difference between the
4802 VMA and LMA is the same as the difference between the VMA and LMA of
4803 the last section in the located region.
4804
4805 @item
4806 If no memory regions have been declared then a default region
4807 that covers the entire address space is used in the previous step.
4808
4809 @item
4810 If no suitable region could be found, or there was no previous
4811 section then the LMA is set equal to the VMA.
4812 @end itemize
4813
4814 @cindex ROM initialized data
4815 @cindex initialized data in ROM
4816 This feature is designed to make it easy to build a ROM image.  For
4817 example, the following linker script creates three output sections: one
4818 called @samp{.text}, which starts at @code{0x1000}, one called
4819 @samp{.mdata}, which is loaded at the end of the @samp{.text} section
4820 even though its VMA is @code{0x2000}, and one called @samp{.bss} to hold
4821 uninitialized data at address @code{0x3000}.  The symbol @code{_data} is
4822 defined with the value @code{0x2000}, which shows that the location
4823 counter holds the VMA value, not the LMA value.
4824
4825 @smallexample
4826 @group
4827 SECTIONS
4828   @{
4829   .text 0x1000 : @{ *(.text) _etext = . ; @}
4830   .mdata 0x2000 :
4831     AT ( ADDR (.text) + SIZEOF (.text) )
4832     @{ _data = . ; *(.data); _edata = . ;  @}
4833   .bss 0x3000 :
4834     @{ _bstart = . ;  *(.bss) *(COMMON) ; _bend = . ;@}
4835 @}
4836 @end group
4837 @end smallexample
4838
4839 The run-time initialization code for use with a program generated with
4840 this linker script would include something like the following, to copy
4841 the initialized data from the ROM image to its runtime address.  Notice
4842 how this code takes advantage of the symbols defined by the linker
4843 script.
4844
4845 @smallexample
4846 @group
4847 extern char _etext, _data, _edata, _bstart, _bend;
4848 char *src = &_etext;
4849 char *dst = &_data;
4850
4851 /* ROM has data at end of text; copy it.  */
4852 while (dst < &_edata)
4853   *dst++ = *src++;
4854
4855 /* Zero bss.  */
4856 for (dst = &_bstart; dst< &_bend; dst++)
4857   *dst = 0;
4858 @end group
4859 @end smallexample
4860
4861 @node Forced Output Alignment
4862 @subsubsection Forced Output Alignment
4863 @kindex ALIGN(@var{section_align})
4864 @cindex forcing output section alignment
4865 @cindex output section alignment
4866 You can increase an output section's alignment by using ALIGN.  As an
4867 alternative you can enforce that the difference between the VMA and LMA remains
4868 intact throughout this output section with the ALIGN_WITH_INPUT attribute.
4869
4870 @node Forced Input Alignment
4871 @subsubsection Forced Input Alignment
4872 @kindex SUBALIGN(@var{subsection_align})
4873 @cindex forcing input section alignment
4874 @cindex input section alignment
4875 You can force input section alignment within an output section by using
4876 SUBALIGN.  The value specified overrides any alignment given by input
4877 sections, whether larger or smaller.
4878
4879 @node Output Section Constraint
4880 @subsubsection Output Section Constraint
4881 @kindex ONLY_IF_RO
4882 @kindex ONLY_IF_RW
4883 @cindex constraints on output sections
4884 You can specify that an output section should only be created if all
4885 of its input sections are read-only or all of its input sections are
4886 read-write by using the keyword @code{ONLY_IF_RO} and
4887 @code{ONLY_IF_RW} respectively.
4888
4889 @node Output Section Region
4890 @subsubsection Output Section Region
4891 @kindex >@var{region}
4892 @cindex section, assigning to memory region
4893 @cindex memory regions and sections
4894 You can assign a section to a previously defined region of memory by
4895 using @samp{>@var{region}}.  @xref{MEMORY}.
4896
4897 Here is a simple example:
4898 @smallexample
4899 @group
4900 MEMORY @{ rom : ORIGIN = 0x1000, LENGTH = 0x1000 @}
4901 SECTIONS @{ ROM : @{ *(.text) @} >rom @}
4902 @end group
4903 @end smallexample
4904
4905 @node Output Section Phdr
4906 @subsubsection Output Section Phdr
4907 @kindex :@var{phdr}
4908 @cindex section, assigning to program header
4909 @cindex program headers and sections
4910 You can assign a section to a previously defined program segment by
4911 using @samp{:@var{phdr}}.  @xref{PHDRS}.  If a section is assigned to
4912 one or more segments, then all subsequent allocated sections will be
4913 assigned to those segments as well, unless they use an explicitly
4914 @code{:@var{phdr}} modifier.  You can use @code{:NONE} to tell the
4915 linker to not put the section in any segment at all.
4916
4917 Here is a simple example:
4918 @smallexample
4919 @group
4920 PHDRS @{ text PT_LOAD ; @}
4921 SECTIONS @{ .text : @{ *(.text) @} :text @}
4922 @end group
4923 @end smallexample
4924
4925 @node Output Section Fill
4926 @subsubsection Output Section Fill
4927 @kindex =@var{fillexp}
4928 @cindex section fill pattern
4929 @cindex fill pattern, entire section
4930 You can set the fill pattern for an entire section by using
4931 @samp{=@var{fillexp}}.  @var{fillexp} is an expression
4932 (@pxref{Expressions}).  Any otherwise unspecified regions of memory
4933 within the output section (for example, gaps left due to the required
4934 alignment of input sections) will be filled with the value, repeated as
4935 necessary.  If the fill expression is a simple hex number, ie. a string
4936 of hex digit starting with @samp{0x} and without a trailing @samp{k} or @samp{M}, then
4937 an arbitrarily long sequence of hex digits can be used to specify the
4938 fill pattern;  Leading zeros become part of the pattern too.  For all
4939 other cases, including extra parentheses or a unary @code{+}, the fill
4940 pattern is the four least significant bytes of the value of the
4941 expression.  In all cases, the number is big-endian.
4942
4943 You can also change the fill value with a @code{FILL} command in the
4944 output section commands; (@pxref{Output Section Data}).
4945
4946 Here is a simple example:
4947 @smallexample
4948 @group
4949 SECTIONS @{ .text : @{ *(.text) @} =0x90909090 @}
4950 @end group
4951 @end smallexample
4952
4953 @node Overlay Description
4954 @subsection Overlay Description
4955 @kindex OVERLAY
4956 @cindex overlays
4957 An overlay description provides an easy way to describe sections which
4958 are to be loaded as part of a single memory image but are to be run at
4959 the same memory address.  At run time, some sort of overlay manager will
4960 copy the overlaid sections in and out of the runtime memory address as
4961 required, perhaps by simply manipulating addressing bits.  This approach
4962 can be useful, for example, when a certain region of memory is faster
4963 than another.
4964
4965 Overlays are described using the @code{OVERLAY} command.  The
4966 @code{OVERLAY} command is used within a @code{SECTIONS} command, like an
4967 output section description.  The full syntax of the @code{OVERLAY}
4968 command is as follows:
4969 @smallexample
4970 @group
4971 OVERLAY [@var{start}] : [NOCROSSREFS] [AT ( @var{ldaddr} )]
4972   @{
4973     @var{secname1}
4974       @{
4975         @var{output-section-command}
4976         @var{output-section-command}
4977         @dots{}
4978       @} [:@var{phdr}@dots{}] [=@var{fill}]
4979     @var{secname2}
4980       @{
4981         @var{output-section-command}
4982         @var{output-section-command}
4983         @dots{}
4984       @} [:@var{phdr}@dots{}] [=@var{fill}]
4985     @dots{}
4986   @} [>@var{region}] [:@var{phdr}@dots{}] [=@var{fill}] [,]
4987 @end group
4988 @end smallexample
4989
4990 Everything is optional except @code{OVERLAY} (a keyword), and each
4991 section must have a name (@var{secname1} and @var{secname2} above).  The
4992 section definitions within the @code{OVERLAY} construct are identical to
4993 those within the general @code{SECTIONS} construct (@pxref{SECTIONS}),
4994 except that no addresses and no memory regions may be defined for
4995 sections within an @code{OVERLAY}.
4996
4997 The comma at the end may be required if a @var{fill} is used and
4998 the next @var{sections-command} looks like a continuation of the expression.
4999
5000 The sections are all defined with the same starting address.  The load
5001 addresses of the sections are arranged such that they are consecutive in
5002 memory starting at the load address used for the @code{OVERLAY} as a
5003 whole (as with normal section definitions, the load address is optional,
5004 and defaults to the start address; the start address is also optional,
5005 and defaults to the current value of the location counter).
5006
5007 If the @code{NOCROSSREFS} keyword is used, and there are any
5008 references among the sections, the linker will report an error.  Since
5009 the sections all run at the same address, it normally does not make
5010 sense for one section to refer directly to another.
5011 @xref{Miscellaneous Commands, NOCROSSREFS}.
5012
5013 For each section within the @code{OVERLAY}, the linker automatically
5014 provides two symbols.  The symbol @code{__load_start_@var{secname}} is
5015 defined as the starting load address of the section.  The symbol
5016 @code{__load_stop_@var{secname}} is defined as the final load address of
5017 the section.  Any characters within @var{secname} which are not legal
5018 within C identifiers are removed.  C (or assembler) code may use these
5019 symbols to move the overlaid sections around as necessary.
5020
5021 At the end of the overlay, the value of the location counter is set to
5022 the start address of the overlay plus the size of the largest section.
5023
5024 Here is an example.  Remember that this would appear inside a
5025 @code{SECTIONS} construct.
5026 @smallexample
5027 @group
5028   OVERLAY 0x1000 : AT (0x4000)
5029    @{
5030      .text0 @{ o1/*.o(.text) @}
5031      .text1 @{ o2/*.o(.text) @}
5032    @}
5033 @end group
5034 @end smallexample
5035 @noindent
5036 This will define both @samp{.text0} and @samp{.text1} to start at
5037 address 0x1000.  @samp{.text0} will be loaded at address 0x4000, and
5038 @samp{.text1} will be loaded immediately after @samp{.text0}.  The
5039 following symbols will be defined if referenced: @code{__load_start_text0},
5040 @code{__load_stop_text0}, @code{__load_start_text1},
5041 @code{__load_stop_text1}.
5042
5043 C code to copy overlay @code{.text1} into the overlay area might look
5044 like the following.
5045
5046 @smallexample
5047 @group
5048   extern char __load_start_text1, __load_stop_text1;
5049   memcpy ((char *) 0x1000, &__load_start_text1,
5050           &__load_stop_text1 - &__load_start_text1);
5051 @end group
5052 @end smallexample
5053
5054 Note that the @code{OVERLAY} command is just syntactic sugar, since
5055 everything it does can be done using the more basic commands.  The above
5056 example could have been written identically as follows.
5057
5058 @smallexample
5059 @group
5060   .text0 0x1000 : AT (0x4000) @{ o1/*.o(.text) @}
5061   PROVIDE (__load_start_text0 = LOADADDR (.text0));
5062   PROVIDE (__load_stop_text0 = LOADADDR (.text0) + SIZEOF (.text0));
5063   .text1 0x1000 : AT (0x4000 + SIZEOF (.text0)) @{ o2/*.o(.text) @}
5064   PROVIDE (__load_start_text1 = LOADADDR (.text1));
5065   PROVIDE (__load_stop_text1 = LOADADDR (.text1) + SIZEOF (.text1));
5066   . = 0x1000 + MAX (SIZEOF (.text0), SIZEOF (.text1));
5067 @end group
5068 @end smallexample
5069
5070 @node MEMORY
5071 @section MEMORY Command
5072 @kindex MEMORY
5073 @cindex memory regions
5074 @cindex regions of memory
5075 @cindex allocating memory
5076 @cindex discontinuous memory
5077 The linker's default configuration permits allocation of all available
5078 memory.  You can override this by using the @code{MEMORY} command.
5079
5080 The @code{MEMORY} command describes the location and size of blocks of
5081 memory in the target.  You can use it to describe which memory regions
5082 may be used by the linker, and which memory regions it must avoid.  You
5083 can then assign sections to particular memory regions.  The linker will
5084 set section addresses based on the memory regions, and will warn about
5085 regions that become too full.  The linker will not shuffle sections
5086 around to fit into the available regions.
5087
5088 A linker script may contain many uses of the @code{MEMORY} command,
5089 however, all memory blocks defined are treated as if they were
5090 specified inside a single @code{MEMORY} command.  The syntax for
5091 @code{MEMORY} is:
5092 @smallexample
5093 @group
5094 MEMORY
5095   @{
5096     @var{name} [(@var{attr})] : ORIGIN = @var{origin}, LENGTH = @var{len}
5097     @dots{}
5098   @}
5099 @end group
5100 @end smallexample
5101
5102 The @var{name} is a name used in the linker script to refer to the
5103 region.  The region name has no meaning outside of the linker script.
5104 Region names are stored in a separate name space, and will not conflict
5105 with symbol names, file names, or section names.  Each memory region
5106 must have a distinct name within the @code{MEMORY} command.  However you can
5107 add later alias names to existing memory regions with the @ref{REGION_ALIAS}
5108 command.
5109
5110 @cindex memory region attributes
5111 The @var{attr} string is an optional list of attributes that specify
5112 whether to use a particular memory region for an input section which is
5113 not explicitly mapped in the linker script.  As described in
5114 @ref{SECTIONS}, if you do not specify an output section for some input
5115 section, the linker will create an output section with the same name as
5116 the input section.  If you define region attributes, the linker will use
5117 them to select the memory region for the output section that it creates.
5118
5119 The @var{attr} string must consist only of the following characters:
5120 @table @samp
5121 @item R
5122 Read-only section
5123 @item W
5124 Read/write section
5125 @item X
5126 Executable section
5127 @item A
5128 Allocatable section
5129 @item I
5130 Initialized section
5131 @item L
5132 Same as @samp{I}
5133 @item !
5134 Invert the sense of any of the attributes that follow
5135 @end table
5136
5137 If a unmapped section matches any of the listed attributes other than
5138 @samp{!}, it will be placed in the memory region.  The @samp{!}
5139 attribute reverses this test, so that an unmapped section will be placed
5140 in the memory region only if it does not match any of the listed
5141 attributes.
5142
5143 @kindex ORIGIN =
5144 @kindex o =
5145 @kindex org =
5146 The @var{origin} is an numerical expression for the start address of
5147 the memory region.  The expression must evaluate to a constant and it
5148 cannot involve any symbols.  The keyword @code{ORIGIN} may be
5149 abbreviated to @code{org} or @code{o} (but not, for example,
5150 @code{ORG}).
5151
5152 @kindex LENGTH =
5153 @kindex len =
5154 @kindex l =
5155 The @var{len} is an expression for the size in bytes of the memory
5156 region.  As with the @var{origin} expression, the expression must
5157 be numerical only and must evaluate to a constant.  The keyword
5158 @code{LENGTH} may be abbreviated to @code{len} or @code{l}.
5159
5160 In the following example, we specify that there are two memory regions
5161 available for allocation: one starting at @samp{0} for 256 kilobytes,
5162 and the other starting at @samp{0x40000000} for four megabytes.  The
5163 linker will place into the @samp{rom} memory region every section which
5164 is not explicitly mapped into a memory region, and is either read-only
5165 or executable.  The linker will place other sections which are not
5166 explicitly mapped into a memory region into the @samp{ram} memory
5167 region.
5168
5169 @smallexample
5170 @group
5171 MEMORY
5172   @{
5173     rom (rx)  : ORIGIN = 0, LENGTH = 256K
5174     ram (!rx) : org = 0x40000000, l = 4M
5175   @}
5176 @end group
5177 @end smallexample
5178
5179 Once you define a memory region, you can direct the linker to place
5180 specific output sections into that memory region by using the
5181 @samp{>@var{region}} output section attribute.  For example, if you have
5182 a memory region named @samp{mem}, you would use @samp{>mem} in the
5183 output section definition.  @xref{Output Section Region}.  If no address
5184 was specified for the output section, the linker will set the address to
5185 the next available address within the memory region.  If the combined
5186 output sections directed to a memory region are too large for the
5187 region, the linker will issue an error message.
5188
5189 It is possible to access the origin and length of a memory in an
5190 expression via the @code{ORIGIN(@var{memory})} and
5191 @code{LENGTH(@var{memory})} functions:
5192
5193 @smallexample
5194 @group
5195   _fstack = ORIGIN(ram) + LENGTH(ram) - 4;
5196 @end group
5197 @end smallexample
5198
5199 @node PHDRS
5200 @section PHDRS Command
5201 @kindex PHDRS
5202 @cindex program headers
5203 @cindex ELF program headers
5204 @cindex program segments
5205 @cindex segments, ELF
5206 The ELF object file format uses @dfn{program headers}, also knows as
5207 @dfn{segments}.  The program headers describe how the program should be
5208 loaded into memory.  You can print them out by using the @code{objdump}
5209 program with the @samp{-p} option.
5210
5211 When you run an ELF program on a native ELF system, the system loader
5212 reads the program headers in order to figure out how to load the
5213 program.  This will only work if the program headers are set correctly.
5214 This manual does not describe the details of how the system loader
5215 interprets program headers; for more information, see the ELF ABI.
5216
5217 The linker will create reasonable program headers by default.  However,
5218 in some cases, you may need to specify the program headers more
5219 precisely.  You may use the @code{PHDRS} command for this purpose.  When
5220 the linker sees the @code{PHDRS} command in the linker script, it will
5221 not create any program headers other than the ones specified.
5222
5223 The linker only pays attention to the @code{PHDRS} command when
5224 generating an ELF output file.  In other cases, the linker will simply
5225 ignore @code{PHDRS}.
5226
5227 This is the syntax of the @code{PHDRS} command.  The words @code{PHDRS},
5228 @code{FILEHDR}, @code{AT}, and @code{FLAGS} are keywords.
5229
5230 @smallexample
5231 @group
5232 PHDRS
5233 @{
5234   @var{name} @var{type} [ FILEHDR ] [ PHDRS ] [ AT ( @var{address} ) ]
5235         [ FLAGS ( @var{flags} ) ] ;
5236 @}
5237 @end group
5238 @end smallexample
5239
5240 The @var{name} is used only for reference in the @code{SECTIONS} command
5241 of the linker script.  It is not put into the output file.  Program
5242 header names are stored in a separate name space, and will not conflict
5243 with symbol names, file names, or section names.  Each program header
5244 must have a distinct name.  The headers are processed in order and it
5245 is usual for them to map to sections in ascending load address order.
5246
5247 Certain program header types describe segments of memory which the
5248 system loader will load from the file.  In the linker script, you
5249 specify the contents of these segments by placing allocatable output
5250 sections in the segments.  You use the @samp{:@var{phdr}} output section
5251 attribute to place a section in a particular segment.  @xref{Output
5252 Section Phdr}.
5253
5254 It is normal to put certain sections in more than one segment.  This
5255 merely implies that one segment of memory contains another.  You may
5256 repeat @samp{:@var{phdr}}, using it once for each segment which should
5257 contain the section.
5258
5259 If you place a section in one or more segments using @samp{:@var{phdr}},
5260 then the linker will place all subsequent allocatable sections which do
5261 not specify @samp{:@var{phdr}} in the same segments.  This is for
5262 convenience, since generally a whole set of contiguous sections will be
5263 placed in a single segment.  You can use @code{:NONE} to override the
5264 default segment and tell the linker to not put the section in any
5265 segment at all.
5266
5267 @kindex FILEHDR
5268 @kindex PHDRS
5269 You may use the @code{FILEHDR} and @code{PHDRS} keywords after
5270 the program header type to further describe the contents of the segment.
5271 The @code{FILEHDR} keyword means that the segment should include the ELF
5272 file header.  The @code{PHDRS} keyword means that the segment should
5273 include the ELF program headers themselves.  If applied to a loadable
5274 segment (@code{PT_LOAD}), all prior loadable segments must have one of
5275 these keywords.
5276
5277 The @var{type} may be one of the following.  The numbers indicate the
5278 value of the keyword.
5279
5280 @table @asis
5281 @item @code{PT_NULL} (0)
5282 Indicates an unused program header.
5283
5284 @item @code{PT_LOAD} (1)
5285 Indicates that this program header describes a segment to be loaded from
5286 the file.
5287
5288 @item @code{PT_DYNAMIC} (2)
5289 Indicates a segment where dynamic linking information can be found.
5290
5291 @item @code{PT_INTERP} (3)
5292 Indicates a segment where the name of the program interpreter may be
5293 found.
5294
5295 @item @code{PT_NOTE} (4)
5296 Indicates a segment holding note information.
5297
5298 @item @code{PT_SHLIB} (5)
5299 A reserved program header type, defined but not specified by the ELF
5300 ABI.
5301
5302 @item @code{PT_PHDR} (6)
5303 Indicates a segment where the program headers may be found.
5304
5305 @item @var{expression}
5306 An expression giving the numeric type of the program header.  This may
5307 be used for types not defined above.
5308 @end table
5309
5310 You can specify that a segment should be loaded at a particular address
5311 in memory by using an @code{AT} expression.  This is identical to the
5312 @code{AT} command used as an output section attribute (@pxref{Output
5313 Section LMA}).  The @code{AT} command for a program header overrides the
5314 output section attribute.
5315
5316 The linker will normally set the segment flags based on the sections
5317 which comprise the segment.  You may use the @code{FLAGS} keyword to
5318 explicitly specify the segment flags.  The value of @var{flags} must be
5319 an integer.  It is used to set the @code{p_flags} field of the program
5320 header.
5321
5322 Here is an example of @code{PHDRS}.  This shows a typical set of program
5323 headers used on a native ELF system.
5324
5325 @example
5326 @group
5327 PHDRS
5328 @{
5329   headers PT_PHDR PHDRS ;
5330   interp PT_INTERP ;
5331   text PT_LOAD FILEHDR PHDRS ;
5332   data PT_LOAD ;
5333   dynamic PT_DYNAMIC ;
5334 @}
5335
5336 SECTIONS
5337 @{
5338   . = SIZEOF_HEADERS;
5339   .interp : @{ *(.interp) @} :text :interp
5340   .text : @{ *(.text) @} :text
5341   .rodata : @{ *(.rodata) @} /* defaults to :text */
5342   @dots{}
5343   . = . + 0x1000; /* move to a new page in memory */
5344   .data : @{ *(.data) @} :data
5345   .dynamic : @{ *(.dynamic) @} :data :dynamic
5346   @dots{}
5347 @}
5348 @end group
5349 @end example
5350
5351 @node VERSION
5352 @section VERSION Command
5353 @kindex VERSION @{script text@}
5354 @cindex symbol versions
5355 @cindex version script
5356 @cindex versions of symbols
5357 The linker supports symbol versions when using ELF.  Symbol versions are
5358 only useful when using shared libraries.  The dynamic linker can use
5359 symbol versions to select a specific version of a function when it runs
5360 a program that may have been linked against an earlier version of the
5361 shared library.
5362
5363 You can include a version script directly in the main linker script, or
5364 you can supply the version script as an implicit linker script.  You can
5365 also use the @samp{--version-script} linker option.
5366
5367 The syntax of the @code{VERSION} command is simply
5368 @smallexample
5369 VERSION @{ version-script-commands @}
5370 @end smallexample
5371
5372 The format of the version script commands is identical to that used by
5373 Sun's linker in Solaris 2.5.  The version script defines a tree of
5374 version nodes.  You specify the node names and interdependencies in the
5375 version script.  You can specify which symbols are bound to which
5376 version nodes, and you can reduce a specified set of symbols to local
5377 scope so that they are not globally visible outside of the shared
5378 library.
5379
5380 The easiest way to demonstrate the version script language is with a few
5381 examples.
5382
5383 @smallexample
5384 VERS_1.1 @{
5385          global:
5386                  foo1;
5387          local:
5388                  old*;
5389                  original*;
5390                  new*;
5391 @};
5392
5393 VERS_1.2 @{
5394                  foo2;
5395 @} VERS_1.1;
5396
5397 VERS_2.0 @{
5398                  bar1; bar2;
5399          extern "C++" @{
5400                  ns::*;
5401                  "f(int, double)";
5402          @};
5403 @} VERS_1.2;
5404 @end smallexample
5405
5406 This example version script defines three version nodes.  The first
5407 version node defined is @samp{VERS_1.1}; it has no other dependencies.
5408 The script binds the symbol @samp{foo1} to @samp{VERS_1.1}.  It reduces
5409 a number of symbols to local scope so that they are not visible outside
5410 of the shared library; this is done using wildcard patterns, so that any
5411 symbol whose name begins with @samp{old}, @samp{original}, or @samp{new}
5412 is matched.  The wildcard patterns available are the same as those used
5413 in the shell when matching filenames (also known as ``globbing'').
5414 However, if you specify the symbol name inside double quotes, then the
5415 name is treated as literal, rather than as a glob pattern.
5416
5417 Next, the version script defines node @samp{VERS_1.2}.  This node
5418 depends upon @samp{VERS_1.1}.  The script binds the symbol @samp{foo2}
5419 to the version node @samp{VERS_1.2}.
5420
5421 Finally, the version script defines node @samp{VERS_2.0}.  This node
5422 depends upon @samp{VERS_1.2}.  The scripts binds the symbols @samp{bar1}
5423 and @samp{bar2} are bound to the version node @samp{VERS_2.0}.
5424
5425 When the linker finds a symbol defined in a library which is not
5426 specifically bound to a version node, it will effectively bind it to an
5427 unspecified base version of the library.  You can bind all otherwise
5428 unspecified symbols to a given version node by using @samp{global: *;}
5429 somewhere in the version script.  Note that it's slightly crazy to use
5430 wildcards in a global spec except on the last version node.  Global
5431 wildcards elsewhere run the risk of accidentally adding symbols to the
5432 set exported for an old version.  That's wrong since older versions
5433 ought to have a fixed set of symbols.
5434
5435 The names of the version nodes have no specific meaning other than what
5436 they might suggest to the person reading them.  The @samp{2.0} version
5437 could just as well have appeared in between @samp{1.1} and @samp{1.2}.
5438 However, this would be a confusing way to write a version script.
5439
5440 Node name can be omitted, provided it is the only version node
5441 in the version script.  Such version script doesn't assign any versions to
5442 symbols, only selects which symbols will be globally visible out and which
5443 won't.
5444
5445 @smallexample
5446 @{ global: foo; bar; local: *; @};
5447 @end smallexample
5448
5449 When you link an application against a shared library that has versioned
5450 symbols, the application itself knows which version of each symbol it
5451 requires, and it also knows which version nodes it needs from each
5452 shared library it is linked against.  Thus at runtime, the dynamic
5453 loader can make a quick check to make sure that the libraries you have
5454 linked against do in fact supply all of the version nodes that the
5455 application will need to resolve all of the dynamic symbols.  In this
5456 way it is possible for the dynamic linker to know with certainty that
5457 all external symbols that it needs will be resolvable without having to
5458 search for each symbol reference.
5459
5460 The symbol versioning is in effect a much more sophisticated way of
5461 doing minor version checking that SunOS does.  The fundamental problem
5462 that is being addressed here is that typically references to external
5463 functions are bound on an as-needed basis, and are not all bound when
5464 the application starts up.  If a shared library is out of date, a
5465 required interface may be missing; when the application tries to use
5466 that interface, it may suddenly and unexpectedly fail.  With symbol
5467 versioning, the user will get a warning when they start their program if
5468 the libraries being used with the application are too old.
5469
5470 There are several GNU extensions to Sun's versioning approach.  The
5471 first of these is the ability to bind a symbol to a version node in the
5472 source file where the symbol is defined instead of in the versioning
5473 script.  This was done mainly to reduce the burden on the library
5474 maintainer.  You can do this by putting something like:
5475 @smallexample
5476 __asm__(".symver original_foo,foo@@VERS_1.1");
5477 @end smallexample
5478 @noindent
5479 in the C source file.  This renames the function @samp{original_foo} to
5480 be an alias for @samp{foo} bound to the version node @samp{VERS_1.1}.
5481 The @samp{local:} directive can be used to prevent the symbol
5482 @samp{original_foo} from being exported. A @samp{.symver} directive
5483 takes precedence over a version script.
5484
5485 The second GNU extension is to allow multiple versions of the same
5486 function to appear in a given shared library.  In this way you can make
5487 an incompatible change to an interface without increasing the major
5488 version number of the shared library, while still allowing applications
5489 linked against the old interface to continue to function.
5490
5491 To do this, you must use multiple @samp{.symver} directives in the
5492 source file.  Here is an example:
5493
5494 @smallexample
5495 __asm__(".symver original_foo,foo@@");
5496 __asm__(".symver old_foo,foo@@VERS_1.1");
5497 __asm__(".symver old_foo1,foo@@VERS_1.2");
5498 __asm__(".symver new_foo,foo@@@@VERS_2.0");
5499 @end smallexample
5500
5501 In this example, @samp{foo@@} represents the symbol @samp{foo} bound to the
5502 unspecified base version of the symbol.  The source file that contains this
5503 example would define 4 C functions: @samp{original_foo}, @samp{old_foo},
5504 @samp{old_foo1}, and @samp{new_foo}.
5505
5506 When you have multiple definitions of a given symbol, there needs to be
5507 some way to specify a default version to which external references to
5508 this symbol will be bound.  You can do this with the
5509 @samp{foo@@@@VERS_2.0} type of @samp{.symver} directive.  You can only
5510 declare one version of a symbol as the default in this manner; otherwise
5511 you would effectively have multiple definitions of the same symbol.
5512
5513 If you wish to bind a reference to a specific version of the symbol
5514 within the shared library, you can use the aliases of convenience
5515 (i.e., @samp{old_foo}), or you can use the @samp{.symver} directive to
5516 specifically bind to an external version of the function in question.
5517
5518 You can also specify the language in the version script:
5519
5520 @smallexample
5521 VERSION extern "lang" @{ version-script-commands @}
5522 @end smallexample
5523
5524 The supported @samp{lang}s are @samp{C}, @samp{C++}, and @samp{Java}.
5525 The linker will iterate over the list of symbols at the link time and
5526 demangle them according to @samp{lang} before matching them to the
5527 patterns specified in @samp{version-script-commands}.  The default
5528 @samp{lang} is @samp{C}.
5529
5530 Demangled names may contains spaces and other special characters.  As
5531 described above, you can use a glob pattern to match demangled names,
5532 or you can use a double-quoted string to match the string exactly.  In
5533 the latter case, be aware that minor differences (such as differing
5534 whitespace) between the version script and the demangler output will
5535 cause a mismatch.  As the exact string generated by the demangler
5536 might change in the future, even if the mangled name does not, you
5537 should check that all of your version directives are behaving as you
5538 expect when you upgrade.
5539
5540 @node Expressions
5541 @section Expressions in Linker Scripts
5542 @cindex expressions
5543 @cindex arithmetic
5544 The syntax for expressions in the linker script language is identical to
5545 that of C expressions.  All expressions are evaluated as integers.  All
5546 expressions are evaluated in the same size, which is 32 bits if both the
5547 host and target are 32 bits, and is otherwise 64 bits.
5548
5549 You can use and set symbol values in expressions.
5550
5551 The linker defines several special purpose builtin functions for use in
5552 expressions.
5553
5554 @menu
5555 * Constants::                   Constants
5556 * Symbolic Constants::          Symbolic constants
5557 * Symbols::                     Symbol Names
5558 * Orphan Sections::             Orphan Sections
5559 * Location Counter::            The Location Counter
5560 * Operators::                   Operators
5561 * Evaluation::                  Evaluation
5562 * Expression Section::          The Section of an Expression
5563 * Builtin Functions::           Builtin Functions
5564 @end menu
5565
5566 @node Constants
5567 @subsection Constants
5568 @cindex integer notation
5569 @cindex constants in linker scripts
5570 All constants are integers.
5571
5572 As in C, the linker considers an integer beginning with @samp{0} to be
5573 octal, and an integer beginning with @samp{0x} or @samp{0X} to be
5574 hexadecimal.  Alternatively the linker accepts suffixes of @samp{h} or
5575 @samp{H} for hexadecimal, @samp{o} or @samp{O} for octal, @samp{b} or
5576 @samp{B} for binary and @samp{d} or @samp{D} for decimal.  Any integer
5577 value without a prefix or a suffix is considered to be decimal.
5578
5579 @cindex scaled integers
5580 @cindex K and M integer suffixes
5581 @cindex M and K integer suffixes
5582 @cindex suffixes for integers
5583 @cindex integer suffixes
5584 In addition, you can use the suffixes @code{K} and @code{M} to scale a
5585 constant by
5586 @c TEXI2ROFF-KILL
5587 @ifnottex
5588 @c END TEXI2ROFF-KILL
5589 @code{1024} or @code{1024*1024}
5590 @c TEXI2ROFF-KILL
5591 @end ifnottex
5592 @tex
5593 ${\rm 1024}$ or ${\rm 1024}^2$
5594 @end tex
5595 @c END TEXI2ROFF-KILL
5596 respectively.  For example, the following
5597 all refer to the same quantity:
5598
5599 @smallexample
5600 _fourk_1 = 4K;
5601 _fourk_2 = 4096;
5602 _fourk_3 = 0x1000;
5603 _fourk_4 = 10000o;
5604 @end smallexample
5605
5606 Note - the @code{K} and @code{M} suffixes cannot be used in
5607 conjunction with the base suffixes mentioned above.
5608
5609 @node Symbolic Constants
5610 @subsection Symbolic Constants
5611 @cindex symbolic constants
5612 @kindex CONSTANT
5613 It is possible to refer to target specific constants via the use of
5614 the @code{CONSTANT(@var{name})} operator, where @var{name} is one of:
5615
5616 @table @code
5617 @item MAXPAGESIZE
5618 @kindex MAXPAGESIZE
5619 The target's maximum page size.
5620
5621 @item COMMONPAGESIZE
5622 @kindex COMMONPAGESIZE
5623 The target's default page size.
5624 @end table
5625
5626 So for example:
5627
5628 @smallexample
5629   .text ALIGN (CONSTANT (MAXPAGESIZE)) : @{ *(.text) @}
5630 @end smallexample
5631
5632 will create a text section aligned to the largest page boundary
5633 supported by the target.
5634
5635 @node Symbols
5636 @subsection Symbol Names
5637 @cindex symbol names
5638 @cindex names
5639 @cindex quoted symbol names
5640 @kindex "
5641 Unless quoted, symbol names start with a letter, underscore, or period
5642 and may include letters, digits, underscores, periods, and hyphens.
5643 Unquoted symbol names must not conflict with any keywords.  You can
5644 specify a symbol which contains odd characters or has the same name as a
5645 keyword by surrounding the symbol name in double quotes:
5646 @smallexample
5647 "SECTION" = 9;
5648 "with a space" = "also with a space" + 10;
5649 @end smallexample
5650
5651 Since symbols can contain many non-alphabetic characters, it is safest
5652 to delimit symbols with spaces.  For example, @samp{A-B} is one symbol,
5653 whereas @samp{A - B} is an expression involving subtraction.
5654
5655 @node Orphan Sections
5656 @subsection Orphan Sections
5657 @cindex orphan
5658 Orphan sections are sections present in the input files which
5659 are not explicitly placed into the output file by the linker
5660 script.  The linker will still copy these sections into the
5661 output file, but it has to guess as to where they should be
5662 placed.  The linker uses a simple heuristic to do this.  It
5663 attempts to place orphan sections after non-orphan sections of the
5664 same attribute, such as code vs data, loadable vs non-loadable, etc.
5665 If there is not enough room to do this then it places
5666 at the end of the file.
5667
5668 For ELF targets, the attribute of the section includes section type as
5669 well as section flag.
5670
5671 The command line options @samp{--orphan-handling} and @samp{--unique}
5672 (@pxref{Options,,Command Line Options}) can be used to control which
5673 output sections an orphan is placed in.
5674
5675 If an orphaned section's name is representable as a C identifier then
5676 the linker will automatically @pxref{PROVIDE} two symbols:
5677 __start_SECNAME and __stop_SECNAME, where SECNAME is the name of the
5678 section.  These indicate the start address and end address of the
5679 orphaned section respectively.  Note: most section names are not
5680 representable as C identifiers because they contain a @samp{.}
5681 character.
5682
5683 @node Location Counter
5684 @subsection The Location Counter
5685 @kindex .
5686 @cindex dot
5687 @cindex location counter
5688 @cindex current output location
5689 The special linker variable @dfn{dot} @samp{.} always contains the
5690 current output location counter.  Since the @code{.} always refers to a
5691 location in an output section, it may only appear in an expression
5692 within a @code{SECTIONS} command.  The @code{.} symbol may appear
5693 anywhere that an ordinary symbol is allowed in an expression.
5694
5695 @cindex holes
5696 Assigning a value to @code{.} will cause the location counter to be
5697 moved.  This may be used to create holes in the output section.  The
5698 location counter may not be moved backwards inside an output section,
5699 and may not be moved backwards outside of an output section if so
5700 doing creates areas with overlapping LMAs.
5701
5702 @smallexample
5703 SECTIONS
5704 @{
5705   output :
5706     @{
5707       file1(.text)
5708       . = . + 1000;
5709       file2(.text)
5710       . += 1000;
5711       file3(.text)
5712     @} = 0x12345678;
5713 @}
5714 @end smallexample
5715 @noindent
5716 In the previous example, the @samp{.text} section from @file{file1} is
5717 located at the beginning of the output section @samp{output}.  It is
5718 followed by a 1000 byte gap.  Then the @samp{.text} section from
5719 @file{file2} appears, also with a 1000 byte gap following before the
5720 @samp{.text} section from @file{file3}.  The notation @samp{= 0x12345678}
5721 specifies what data to write in the gaps (@pxref{Output Section Fill}).
5722
5723 @cindex dot inside sections
5724 Note: @code{.} actually refers to the byte offset from the start of the
5725 current containing object.  Normally this is the @code{SECTIONS}
5726 statement, whose start address is 0, hence @code{.} can be used as an
5727 absolute address.  If @code{.} is used inside a section description
5728 however, it refers to the byte offset from the start of that section,
5729 not an absolute address.  Thus in a script like this:
5730
5731 @smallexample
5732 SECTIONS
5733 @{
5734     . = 0x100
5735     .text: @{
5736       *(.text)
5737       . = 0x200
5738     @}
5739     . = 0x500
5740     .data: @{
5741       *(.data)
5742       . += 0x600
5743     @}
5744 @}
5745 @end smallexample
5746
5747 The @samp{.text} section will be assigned a starting address of 0x100
5748 and a size of exactly 0x200 bytes, even if there is not enough data in
5749 the @samp{.text} input sections to fill this area.  (If there is too
5750 much data, an error will be produced because this would be an attempt to
5751 move @code{.} backwards).  The @samp{.data} section will start at 0x500
5752 and it will have an extra 0x600 bytes worth of space after the end of
5753 the values from the @samp{.data} input sections and before the end of
5754 the @samp{.data} output section itself.
5755
5756 @cindex dot outside sections
5757 Setting symbols to the value of the location counter outside of an
5758 output section statement can result in unexpected values if the linker
5759 needs to place orphan sections.  For example, given the following:
5760
5761 @smallexample
5762 SECTIONS
5763 @{
5764     start_of_text = . ;
5765     .text: @{ *(.text) @}
5766     end_of_text = . ;
5767
5768     start_of_data = . ;
5769     .data: @{ *(.data) @}
5770     end_of_data = . ;
5771 @}
5772 @end smallexample
5773
5774 If the linker needs to place some input section, e.g. @code{.rodata},
5775 not mentioned in the script, it might choose to place that section
5776 between @code{.text} and @code{.data}.  You might think the linker
5777 should place @code{.rodata} on the blank line in the above script, but
5778 blank lines are of no particular significance to the linker.  As well,
5779 the linker doesn't associate the above symbol names with their
5780 sections.  Instead, it assumes that all assignments or other
5781 statements belong to the previous output section, except for the
5782 special case of an assignment to @code{.}.  I.e., the linker will
5783 place the orphan @code{.rodata} section as if the script was written
5784 as follows:
5785
5786 @smallexample
5787 SECTIONS
5788 @{
5789     start_of_text = . ;
5790     .text: @{ *(.text) @}
5791     end_of_text = . ;
5792
5793     start_of_data = . ;
5794     .rodata: @{ *(.rodata) @}
5795     .data: @{ *(.data) @}
5796     end_of_data = . ;
5797 @}
5798 @end smallexample
5799
5800 This may or may not be the script author's intention for the value of
5801 @code{start_of_data}.  One way to influence the orphan section
5802 placement is to assign the location counter to itself, as the linker
5803 assumes that an assignment to @code{.} is setting the start address of
5804 a following output section and thus should be grouped with that
5805 section.  So you could write:
5806
5807 @smallexample
5808 SECTIONS
5809 @{
5810     start_of_text = . ;
5811     .text: @{ *(.text) @}
5812     end_of_text = . ;
5813
5814     . = . ;
5815     start_of_data = . ;
5816     .data: @{ *(.data) @}
5817     end_of_data = . ;
5818 @}
5819 @end smallexample
5820
5821 Now, the orphan @code{.rodata} section will be placed between
5822 @code{end_of_text} and @code{start_of_data}.
5823
5824 @need 2000
5825 @node Operators
5826 @subsection Operators
5827 @cindex operators for arithmetic
5828 @cindex arithmetic operators
5829 @cindex precedence in expressions
5830 The linker recognizes the standard C set of arithmetic operators, with
5831 the standard bindings and precedence levels:
5832 @c TEXI2ROFF-KILL
5833 @ifnottex
5834 @c END TEXI2ROFF-KILL
5835 @smallexample
5836 precedence      associativity   Operators                Notes
5837 (highest)
5838 1               left            !  -  ~                  (1)
5839 2               left            *  /  %
5840 3               left            +  -
5841 4               left            >>  <<
5842 5               left            ==  !=  >  <  <=  >=
5843 6               left            &
5844 7               left            |
5845 8               left            &&
5846 9               left            ||
5847 10              right           ? :
5848 11              right           &=  +=  -=  *=  /=       (2)
5849 (lowest)
5850 @end smallexample
5851 Notes:
5852 (1) Prefix operators
5853 (2) @xref{Assignments}.
5854 @c TEXI2ROFF-KILL
5855 @end ifnottex
5856 @tex
5857 \vskip \baselineskip
5858 %"lispnarrowing" is the extra indent used generally for smallexample
5859 \hskip\lispnarrowing\vbox{\offinterlineskip
5860 \hrule
5861 \halign
5862 {\vrule#&\strut\hfil\ #\ \hfil&\vrule#&\strut\hfil\ #\ \hfil&\vrule#&\strut\hfil\ {\tt #}\ \hfil&\vrule#\cr
5863 height2pt&\omit&&\omit&&\omit&\cr
5864 &Precedence&&  Associativity  &&{\rm Operators}&\cr
5865 height2pt&\omit&&\omit&&\omit&\cr
5866 \noalign{\hrule}
5867 height2pt&\omit&&\omit&&\omit&\cr
5868 &highest&&&&&\cr
5869 % '176 is tilde, '~' in tt font
5870 &1&&left&&\qquad-          \char'176\      !\qquad\dag&\cr
5871 &2&&left&&*          /        \%&\cr
5872 &3&&left&&+          -&\cr
5873 &4&&left&&>>         <<&\cr
5874 &5&&left&&==         !=       >      <      <=      >=&\cr
5875 &6&&left&&\&&\cr
5876 &7&&left&&|&\cr
5877 &8&&left&&{\&\&}&\cr
5878 &9&&left&&||&\cr
5879 &10&&right&&?        :&\cr
5880 &11&&right&&\qquad\&=      +=       -=     *=     /=\qquad\ddag&\cr
5881 &lowest&&&&&\cr
5882 height2pt&\omit&&\omit&&\omit&\cr}
5883 \hrule}
5884 @end tex
5885 @iftex
5886 {
5887 @obeylines@parskip=0pt@parindent=0pt
5888 @dag@quad Prefix operators.
5889 @ddag@quad @xref{Assignments}.
5890 }
5891 @end iftex
5892 @c END TEXI2ROFF-KILL
5893
5894 @node Evaluation
5895 @subsection Evaluation
5896 @cindex lazy evaluation
5897 @cindex expression evaluation order
5898 The linker evaluates expressions lazily.  It only computes the value of
5899 an expression when absolutely necessary.
5900
5901 The linker needs some information, such as the value of the start
5902 address of the first section, and the origins and lengths of memory
5903 regions, in order to do any linking at all.  These values are computed
5904 as soon as possible when the linker reads in the linker script.
5905
5906 However, other values (such as symbol values) are not known or needed
5907 until after storage allocation.  Such values are evaluated later, when
5908 other information (such as the sizes of output sections) is available
5909 for use in the symbol assignment expression.
5910
5911 The sizes of sections cannot be known until after allocation, so
5912 assignments dependent upon these are not performed until after
5913 allocation.
5914
5915 Some expressions, such as those depending upon the location counter
5916 @samp{.}, must be evaluated during section allocation.
5917
5918 If the result of an expression is required, but the value is not
5919 available, then an error results.  For example, a script like the
5920 following
5921 @smallexample
5922 @group
5923 SECTIONS
5924   @{
5925     .text 9+this_isnt_constant :
5926       @{ *(.text) @}
5927   @}
5928 @end group
5929 @end smallexample
5930 @noindent
5931 will cause the error message @samp{non constant expression for initial
5932 address}.
5933
5934 @node Expression Section
5935 @subsection The Section of an Expression
5936 @cindex expression sections
5937 @cindex absolute expressions
5938 @cindex relative expressions
5939 @cindex absolute and relocatable symbols
5940 @cindex relocatable and absolute symbols
5941 @cindex symbols, relocatable and absolute
5942 Addresses and symbols may be section relative, or absolute.  A section
5943 relative symbol is relocatable.  If you request relocatable output
5944 using the @samp{-r} option, a further link operation may change the
5945 value of a section relative symbol.  On the other hand, an absolute
5946 symbol will retain the same value throughout any further link
5947 operations.
5948
5949 Some terms in linker expressions are addresses.  This is true of
5950 section relative symbols and for builtin functions that return an
5951 address, such as @code{ADDR}, @code{LOADADDR}, @code{ORIGIN} and
5952 @code{SEGMENT_START}.  Other terms are simply numbers, or are builtin
5953 functions that return a non-address value, such as @code{LENGTH}.
5954 One complication is that unless you set @code{LD_FEATURE ("SANE_EXPR")}
5955 (@pxref{Miscellaneous Commands}), numbers and absolute symbols are treated
5956 differently depending on their location, for compatibility with older
5957 versions of @code{ld}.  Expressions appearing outside an output
5958 section definition treat all numbers as absolute addresses.
5959 Expressions appearing inside an output section definition treat
5960 absolute symbols as numbers.  If @code{LD_FEATURE ("SANE_EXPR")} is
5961 given, then absolute symbols and numbers are simply treated as numbers
5962 everywhere.
5963
5964 In the following simple example,
5965
5966 @smallexample
5967 @group
5968 SECTIONS
5969   @{
5970     . = 0x100;
5971     __executable_start = 0x100;
5972     .data :
5973     @{
5974       . = 0x10;
5975       __data_start = 0x10;
5976       *(.data)
5977     @}
5978     @dots{}
5979   @}
5980 @end group
5981 @end smallexample
5982
5983 both @code{.} and @code{__executable_start} are set to the absolute
5984 address 0x100 in the first two assignments, then both @code{.} and
5985 @code{__data_start} are set to 0x10 relative to the @code{.data}
5986 section in the second two assignments.
5987
5988 For expressions involving numbers, relative addresses and absolute
5989 addresses, ld follows these rules to evaluate terms:
5990
5991 @itemize @bullet
5992 @item
5993 Unary operations on an absolute address or number, and binary
5994 operations on two absolute addresses or two numbers, or between one
5995 absolute address and a number, apply the operator to the value(s).
5996 @item
5997 Unary operations on a relative address, and binary operations on two
5998 relative addresses in the same section or between one relative address
5999 and a number, apply the operator to the offset part of the address(es).
6000 @item
6001 Other binary operations, that is, between two relative addresses not
6002 in the same section, or between a relative address and an absolute
6003 address, first convert any non-absolute term to an absolute address
6004 before applying the operator.
6005 @end itemize
6006
6007 The result section of each sub-expression is as follows:
6008
6009 @itemize @bullet
6010 @item
6011 An operation involving only numbers results in a number.
6012 @item
6013 The result of comparisons, @samp{&&} and @samp{||} is also a number.
6014 @item
6015 The result of other binary arithmetic and logical operations on two
6016 relative addresses in the same section or two absolute addresses
6017 (after above conversions) is also a number.
6018 @item
6019 The result of other operations on relative addresses or one
6020 relative address and a number, is a relative address in the same
6021 section as the relative operand(s).
6022 @item
6023 The result of other operations on absolute addresses (after above
6024 conversions) is an absolute address.
6025 @end itemize
6026
6027 You can use the builtin function @code{ABSOLUTE} to force an expression
6028 to be absolute when it would otherwise be relative.  For example, to
6029 create an absolute symbol set to the address of the end of the output
6030 section @samp{.data}:
6031 @smallexample
6032 SECTIONS
6033   @{
6034     .data : @{ *(.data) _edata = ABSOLUTE(.); @}
6035   @}
6036 @end smallexample
6037 @noindent
6038 If @samp{ABSOLUTE} were not used, @samp{_edata} would be relative to the
6039 @samp{.data} section.
6040
6041 Using @code{LOADADDR} also forces an expression absolute, since this
6042 particular builtin function returns an absolute address.
6043
6044 @node Builtin Functions
6045 @subsection Builtin Functions
6046 @cindex functions in expressions
6047 The linker script language includes a number of builtin functions for
6048 use in linker script expressions.
6049
6050 @table @code
6051 @item ABSOLUTE(@var{exp})
6052 @kindex ABSOLUTE(@var{exp})
6053 @cindex expression, absolute
6054 Return the absolute (non-relocatable, as opposed to non-negative) value
6055 of the expression @var{exp}.  Primarily useful to assign an absolute
6056 value to a symbol within a section definition, where symbol values are
6057 normally section relative.  @xref{Expression Section}.
6058
6059 @item ADDR(@var{section})
6060 @kindex ADDR(@var{section})
6061 @cindex section address in expression
6062 Return the address (VMA) of the named @var{section}.  Your
6063 script must previously have defined the location of that section.  In
6064 the following example, @code{start_of_output_1}, @code{symbol_1} and
6065 @code{symbol_2} are assigned equivalent values, except that
6066 @code{symbol_1} will be relative to the @code{.output1} section while
6067 the other two will be absolute:
6068 @smallexample
6069 @group
6070 SECTIONS @{ @dots{}
6071   .output1 :
6072     @{
6073     start_of_output_1 = ABSOLUTE(.);
6074     @dots{}
6075     @}
6076   .output :
6077     @{
6078     symbol_1 = ADDR(.output1);
6079     symbol_2 = start_of_output_1;
6080     @}
6081 @dots{} @}
6082 @end group
6083 @end smallexample
6084
6085 @item ALIGN(@var{align})
6086 @itemx ALIGN(@var{exp},@var{align})
6087 @kindex ALIGN(@var{align})
6088 @kindex ALIGN(@var{exp},@var{align})
6089 @cindex round up location counter
6090 @cindex align location counter
6091 @cindex round up expression
6092 @cindex align expression
6093 Return the location counter (@code{.}) or arbitrary expression aligned
6094 to the next @var{align} boundary.  The single operand @code{ALIGN}
6095 doesn't change the value of the location counter---it just does
6096 arithmetic on it.  The two operand @code{ALIGN} allows an arbitrary
6097 expression to be aligned upwards (@code{ALIGN(@var{align})} is
6098 equivalent to @code{ALIGN(ABSOLUTE(.), @var{align})}).
6099
6100 Here is an example which aligns the output @code{.data} section to the
6101 next @code{0x2000} byte boundary after the preceding section and sets a
6102 variable within the section to the next @code{0x8000} boundary after the
6103 input sections:
6104 @smallexample
6105 @group
6106 SECTIONS @{ @dots{}
6107   .data ALIGN(0x2000): @{
6108     *(.data)
6109     variable = ALIGN(0x8000);
6110   @}
6111 @dots{} @}
6112 @end group
6113 @end smallexample
6114 @noindent
6115 The first use of @code{ALIGN} in this example specifies the location of
6116 a section because it is used as the optional @var{address} attribute of
6117 a section definition (@pxref{Output Section Address}).  The second use
6118 of @code{ALIGN} is used to defines the value of a symbol.
6119
6120 The builtin function @code{NEXT} is closely related to @code{ALIGN}.
6121
6122 @item ALIGNOF(@var{section})
6123 @kindex ALIGNOF(@var{section})
6124 @cindex section alignment
6125 Return the alignment in bytes of the named @var{section}, if that section has
6126 been allocated.  If the section has not been allocated when this is
6127 evaluated, the linker will report an error. In the following example,
6128 the alignment of the @code{.output} section is stored as the first
6129 value in that section.
6130 @smallexample
6131 @group
6132 SECTIONS@{ @dots{}
6133   .output @{
6134     LONG (ALIGNOF (.output))
6135     @dots{}
6136     @}
6137 @dots{} @}
6138 @end group
6139 @end smallexample
6140
6141 @item BLOCK(@var{exp})
6142 @kindex BLOCK(@var{exp})
6143 This is a synonym for @code{ALIGN}, for compatibility with older linker
6144 scripts.  It is most often seen when setting the address of an output
6145 section.
6146
6147 @item DATA_SEGMENT_ALIGN(@var{maxpagesize}, @var{commonpagesize})
6148 @kindex DATA_SEGMENT_ALIGN(@var{maxpagesize}, @var{commonpagesize})
6149 This is equivalent to either
6150 @smallexample
6151 (ALIGN(@var{maxpagesize}) + (. & (@var{maxpagesize} - 1)))
6152 @end smallexample
6153 or
6154 @smallexample
6155 (ALIGN(@var{maxpagesize})
6156  + ((. + @var{commonpagesize} - 1) & (@var{maxpagesize} - @var{commonpagesize})))
6157 @end smallexample
6158 @noindent
6159 depending on whether the latter uses fewer @var{commonpagesize} sized pages
6160 for the data segment (area between the result of this expression and
6161 @code{DATA_SEGMENT_END}) than the former or not.
6162 If the latter form is used, it means @var{commonpagesize} bytes of runtime
6163 memory will be saved at the expense of up to @var{commonpagesize} wasted
6164 bytes in the on-disk file.
6165
6166 This expression can only be used directly in @code{SECTIONS} commands, not in
6167 any output section descriptions and only once in the linker script.
6168 @var{commonpagesize} should be less or equal to @var{maxpagesize} and should
6169 be the system page size the object wants to be optimized for (while still
6170 working on system page sizes up to @var{maxpagesize}).
6171
6172 @noindent
6173 Example:
6174 @smallexample
6175   . = DATA_SEGMENT_ALIGN(0x10000, 0x2000);
6176 @end smallexample
6177
6178 @item DATA_SEGMENT_END(@var{exp})
6179 @kindex DATA_SEGMENT_END(@var{exp})
6180 This defines the end of data segment for @code{DATA_SEGMENT_ALIGN}
6181 evaluation purposes.
6182
6183 @smallexample
6184   . = DATA_SEGMENT_END(.);
6185 @end smallexample
6186
6187 @item DATA_SEGMENT_RELRO_END(@var{offset}, @var{exp})
6188 @kindex DATA_SEGMENT_RELRO_END(@var{offset}, @var{exp})
6189 This defines the end of the @code{PT_GNU_RELRO} segment when
6190 @samp{-z relro} option is used.
6191 When @samp{-z relro} option is not present, @code{DATA_SEGMENT_RELRO_END}
6192 does nothing, otherwise @code{DATA_SEGMENT_ALIGN} is padded so that
6193 @var{exp} + @var{offset} is aligned to the most commonly used page
6194 boundary for particular target.  If present in the linker script,
6195 it must always come in between @code{DATA_SEGMENT_ALIGN} and
6196 @code{DATA_SEGMENT_END}.  Evaluates to the second argument plus any
6197 padding needed at the end of the @code{PT_GNU_RELRO} segment due to
6198 section alignment.
6199
6200 @smallexample
6201   . = DATA_SEGMENT_RELRO_END(24, .);
6202 @end smallexample
6203
6204 @item DEFINED(@var{symbol})
6205 @kindex DEFINED(@var{symbol})
6206 @cindex symbol defaults
6207 Return 1 if @var{symbol} is in the linker global symbol table and is
6208 defined before the statement using DEFINED in the script, otherwise
6209 return 0.  You can use this function to provide
6210 default values for symbols.  For example, the following script fragment
6211 shows how to set a global symbol @samp{begin} to the first location in
6212 the @samp{.text} section---but if a symbol called @samp{begin} already
6213 existed, its value is preserved:
6214
6215 @smallexample
6216 @group
6217 SECTIONS @{ @dots{}
6218   .text : @{
6219     begin = DEFINED(begin) ? begin : . ;
6220     @dots{}
6221   @}
6222   @dots{}
6223 @}
6224 @end group
6225 @end smallexample
6226
6227 @item LENGTH(@var{memory})
6228 @kindex LENGTH(@var{memory})
6229 Return the length of the memory region named @var{memory}.
6230
6231 @item LOADADDR(@var{section})
6232 @kindex LOADADDR(@var{section})
6233 @cindex section load address in expression
6234 Return the absolute LMA of the named @var{section}.  (@pxref{Output
6235 Section LMA}).
6236
6237 @item LOG2CEIL(@var{exp})
6238 @kindex LOG2CEIL(@var{exp})
6239 Return the binary logarithm of @var{exp} rounded towards infinity.
6240 @code{LOG2CEIL(0)} returns 0.
6241
6242 @kindex MAX
6243 @item MAX(@var{exp1}, @var{exp2})
6244 Returns the maximum of @var{exp1} and @var{exp2}.
6245
6246 @kindex MIN
6247 @item MIN(@var{exp1}, @var{exp2})
6248 Returns the minimum of @var{exp1} and @var{exp2}.
6249
6250 @item NEXT(@var{exp})
6251 @kindex NEXT(@var{exp})
6252 @cindex unallocated address, next
6253 Return the next unallocated address that is a multiple of @var{exp}.
6254 This function is closely related to @code{ALIGN(@var{exp})}; unless you
6255 use the @code{MEMORY} command to define discontinuous memory for the
6256 output file, the two functions are equivalent.
6257
6258 @item ORIGIN(@var{memory})
6259 @kindex ORIGIN(@var{memory})
6260 Return the origin of the memory region named @var{memory}.
6261
6262 @item SEGMENT_START(@var{segment}, @var{default})
6263 @kindex SEGMENT_START(@var{segment}, @var{default})
6264 Return the base address of the named @var{segment}.  If an explicit
6265 value has already been given for this segment (with a command-line
6266 @samp{-T} option) then that value will be returned otherwise the value
6267 will be @var{default}.  At present, the @samp{-T} command-line option
6268 can only be used to set the base address for the ``text'', ``data'', and
6269 ``bss'' sections, but you can use @code{SEGMENT_START} with any segment
6270 name.
6271
6272 @item SIZEOF(@var{section})
6273 @kindex SIZEOF(@var{section})
6274 @cindex section size
6275 Return the size in bytes of the named @var{section}, if that section has
6276 been allocated.  If the section has not been allocated when this is
6277 evaluated, the linker will report an error.  In the following example,
6278 @code{symbol_1} and @code{symbol_2} are assigned identical values:
6279 @smallexample
6280 @group
6281 SECTIONS@{ @dots{}
6282   .output @{
6283     .start = . ;
6284     @dots{}
6285     .end = . ;
6286     @}
6287   symbol_1 = .end - .start ;
6288   symbol_2 = SIZEOF(.output);
6289 @dots{} @}
6290 @end group
6291 @end smallexample
6292
6293 @item SIZEOF_HEADERS
6294 @itemx sizeof_headers
6295 @kindex SIZEOF_HEADERS
6296 @cindex header size
6297 Return the size in bytes of the output file's headers.  This is
6298 information which appears at the start of the output file.  You can use
6299 this number when setting the start address of the first section, if you
6300 choose, to facilitate paging.
6301
6302 @cindex not enough room for program headers
6303 @cindex program headers, not enough room
6304 When producing an ELF output file, if the linker script uses the
6305 @code{SIZEOF_HEADERS} builtin function, the linker must compute the
6306 number of program headers before it has determined all the section
6307 addresses and sizes.  If the linker later discovers that it needs
6308 additional program headers, it will report an error @samp{not enough
6309 room for program headers}.  To avoid this error, you must avoid using
6310 the @code{SIZEOF_HEADERS} function, or you must rework your linker
6311 script to avoid forcing the linker to use additional program headers, or
6312 you must define the program headers yourself using the @code{PHDRS}
6313 command (@pxref{PHDRS}).
6314 @end table
6315
6316 @node Implicit Linker Scripts
6317 @section Implicit Linker Scripts
6318 @cindex implicit linker scripts
6319 If you specify a linker input file which the linker can not recognize as
6320 an object file or an archive file, it will try to read the file as a
6321 linker script.  If the file can not be parsed as a linker script, the
6322 linker will report an error.
6323
6324 An implicit linker script will not replace the default linker script.
6325
6326 Typically an implicit linker script would contain only symbol
6327 assignments, or the @code{INPUT}, @code{GROUP}, or @code{VERSION}
6328 commands.
6329
6330 Any input files read because of an implicit linker script will be read
6331 at the position in the command line where the implicit linker script was
6332 read.  This can affect archive searching.
6333
6334 @ifset GENERIC
6335 @node Machine Dependent
6336 @chapter Machine Dependent Features
6337
6338 @cindex machine dependencies
6339 @command{ld} has additional features on some platforms; the following
6340 sections describe them.  Machines where @command{ld} has no additional
6341 functionality are not listed.
6342
6343 @menu
6344 @ifset H8300
6345 * H8/300::                      @command{ld} and the H8/300
6346 @end ifset
6347 @ifset I960
6348 * i960::                        @command{ld} and the Intel 960 family
6349 @end ifset
6350 @ifset M68HC11
6351 * M68HC11/68HC12::              @code{ld} and the Motorola 68HC11 and 68HC12 families
6352 @end ifset
6353 @ifset ARM
6354 * ARM::                         @command{ld} and the ARM family
6355 @end ifset
6356 @ifset HPPA
6357 * HPPA ELF32::                  @command{ld} and HPPA 32-bit ELF
6358 @end ifset
6359 @ifset M68K
6360 * M68K::                        @command{ld} and the Motorola 68K family
6361 @end ifset
6362 @ifset MIPS
6363 * MIPS::                        @command{ld} and the MIPS family
6364 @end ifset
6365 @ifset MMIX
6366 * MMIX::                        @command{ld} and MMIX
6367 @end ifset
6368 @ifset MSP430
6369 * MSP430::                      @command{ld} and MSP430
6370 @end ifset
6371 @ifset NDS32
6372 * NDS32::                       @command{ld} and NDS32
6373 @end ifset
6374 @ifset NIOSII
6375 * Nios II::                     @command{ld} and the Altera Nios II
6376 @end ifset
6377 @ifset POWERPC
6378 * PowerPC ELF32::               @command{ld} and PowerPC 32-bit ELF Support
6379 @end ifset
6380 @ifset POWERPC64
6381 * PowerPC64 ELF64::             @command{ld} and PowerPC64 64-bit ELF Support
6382 @end ifset
6383 @ifset SPU
6384 * SPU ELF::                     @command{ld} and SPU ELF Support
6385 @end ifset
6386 @ifset TICOFF
6387 * TI COFF::                     @command{ld} and TI COFF
6388 @end ifset
6389 @ifset WIN32
6390 * WIN32::                       @command{ld} and WIN32 (cygwin/mingw)
6391 @end ifset
6392 @ifset XTENSA
6393 * Xtensa::                      @command{ld} and Xtensa Processors
6394 @end ifset
6395 @end menu
6396 @end ifset
6397
6398 @ifset H8300
6399 @ifclear GENERIC
6400 @raisesections
6401 @end ifclear
6402
6403 @node H8/300
6404 @section @command{ld} and the H8/300
6405
6406 @cindex H8/300 support
6407 For the H8/300, @command{ld} can perform these global optimizations when
6408 you specify the @samp{--relax} command-line option.
6409
6410 @table @emph
6411 @cindex relaxing on H8/300
6412 @item relaxing address modes
6413 @command{ld} finds all @code{jsr} and @code{jmp} instructions whose
6414 targets are within eight bits, and turns them into eight-bit
6415 program-counter relative @code{bsr} and @code{bra} instructions,
6416 respectively.
6417
6418 @cindex synthesizing on H8/300
6419 @item synthesizing instructions
6420 @c FIXME: specifically mov.b, or any mov instructions really? -> mov.b only, at least on H8, H8H, H8S
6421 @command{ld} finds all @code{mov.b} instructions which use the
6422 sixteen-bit absolute address form, but refer to the top
6423 page of memory, and changes them to use the eight-bit address form.
6424 (That is: the linker turns @samp{mov.b @code{@@}@var{aa}:16} into
6425 @samp{mov.b @code{@@}@var{aa}:8} whenever the address @var{aa} is in the
6426 top page of memory).
6427
6428 @command{ld} finds all @code{mov} instructions which use the register
6429 indirect with 32-bit displacement addressing mode, but use a small
6430 displacement inside 16-bit displacement range, and changes them to use
6431 the 16-bit displacement form.  (That is: the linker turns @samp{mov.b
6432 @code{@@}@var{d}:32,ERx} into @samp{mov.b @code{@@}@var{d}:16,ERx}
6433 whenever the displacement @var{d} is in the 16 bit signed integer
6434 range. Only implemented in ELF-format ld).
6435
6436 @item bit manipulation instructions
6437 @command{ld} finds all bit manipulation instructions like @code{band, bclr,
6438 biand, bild, bior, bist, bixor, bld, bnot, bor, bset, bst, btst, bxor}
6439 which use 32 bit and 16 bit absolute address form, but refer to the top
6440 page of memory, and changes them to use the 8 bit address form.
6441 (That is: the linker turns @samp{bset #xx:3,@code{@@}@var{aa}:32} into
6442 @samp{bset #xx:3,@code{@@}@var{aa}:8} whenever the address @var{aa} is in
6443 the top page of memory).
6444
6445 @item system control instructions
6446 @command{ld} finds all @code{ldc.w, stc.w} instructions which use the
6447 32 bit absolute address form, but refer to the top page of memory, and
6448 changes them to use 16 bit address form.
6449 (That is: the linker turns @samp{ldc.w @code{@@}@var{aa}:32,ccr} into
6450 @samp{ldc.w @code{@@}@var{aa}:16,ccr} whenever the address @var{aa} is in
6451 the top page of memory).
6452 @end table
6453
6454 @ifclear GENERIC
6455 @lowersections
6456 @end ifclear
6457 @end ifset
6458
6459 @ifclear GENERIC
6460 @ifset Renesas
6461 @c This stuff is pointless to say unless you're especially concerned
6462 @c with Renesas chips; don't enable it for generic case, please.
6463 @node Renesas
6464 @chapter @command{ld} and Other Renesas Chips
6465
6466 @command{ld} also supports the Renesas (formerly Hitachi) H8/300H,
6467 H8/500, and SH chips.  No special features, commands, or command-line
6468 options are required for these chips.
6469 @end ifset
6470 @end ifclear
6471
6472 @ifset I960
6473 @ifclear GENERIC
6474 @raisesections
6475 @end ifclear
6476
6477 @node i960
6478 @section @command{ld} and the Intel 960 Family
6479
6480 @cindex i960 support
6481
6482 You can use the @samp{-A@var{architecture}} command line option to
6483 specify one of the two-letter names identifying members of the 960
6484 family; the option specifies the desired output target, and warns of any
6485 incompatible instructions in the input files.  It also modifies the
6486 linker's search strategy for archive libraries, to support the use of
6487 libraries specific to each particular architecture, by including in the
6488 search loop names suffixed with the string identifying the architecture.
6489
6490 For example, if your @command{ld} command line included @w{@samp{-ACA}} as
6491 well as @w{@samp{-ltry}}, the linker would look (in its built-in search
6492 paths, and in any paths you specify with @samp{-L}) for a library with
6493 the names
6494
6495 @smallexample
6496 @group
6497 try
6498 libtry.a
6499 tryca
6500 libtryca.a
6501 @end group
6502 @end smallexample
6503
6504 @noindent
6505 The first two possibilities would be considered in any event; the last
6506 two are due to the use of @w{@samp{-ACA}}.
6507
6508 You can meaningfully use @samp{-A} more than once on a command line, since
6509 the 960 architecture family allows combination of target architectures; each
6510 use will add another pair of name variants to search for when @w{@samp{-l}}
6511 specifies a library.
6512
6513 @cindex @option{--relax} on i960
6514 @cindex relaxing on i960
6515 @command{ld} supports the @samp{--relax} option for the i960 family.  If
6516 you specify @samp{--relax}, @command{ld} finds all @code{balx} and
6517 @code{calx} instructions whose targets are within 24 bits, and turns
6518 them into 24-bit program-counter relative @code{bal} and @code{cal}
6519 instructions, respectively.  @command{ld} also turns @code{cal}
6520 instructions into @code{bal} instructions when it determines that the
6521 target subroutine is a leaf routine (that is, the target subroutine does
6522 not itself call any subroutines).
6523
6524 @ifclear GENERIC
6525 @lowersections
6526 @end ifclear
6527 @end ifset
6528
6529 @ifset ARM
6530 @ifclear GENERIC
6531 @raisesections
6532 @end ifclear
6533
6534 @ifset M68HC11
6535 @ifclear GENERIC
6536 @raisesections
6537 @end ifclear
6538
6539 @node M68HC11/68HC12
6540 @section @command{ld} and the Motorola 68HC11 and 68HC12 families
6541
6542 @cindex M68HC11 and 68HC12 support
6543
6544 @subsection Linker Relaxation
6545
6546 For the Motorola 68HC11, @command{ld} can perform these global
6547 optimizations when you specify the @samp{--relax} command-line option.
6548
6549 @table @emph
6550 @cindex relaxing on M68HC11
6551 @item relaxing address modes
6552 @command{ld} finds all @code{jsr} and @code{jmp} instructions whose
6553 targets are within eight bits, and turns them into eight-bit
6554 program-counter relative @code{bsr} and @code{bra} instructions,
6555 respectively.
6556
6557 @command{ld} also looks at all 16-bit extended addressing modes and
6558 transforms them in a direct addressing mode when the address is in
6559 page 0 (between 0 and 0x0ff).
6560
6561 @item relaxing gcc instruction group
6562 When @command{gcc} is called with @option{-mrelax}, it can emit group
6563 of instructions that the linker can optimize to use a 68HC11 direct
6564 addressing mode. These instructions consists of @code{bclr} or
6565 @code{bset} instructions.
6566
6567 @end table
6568
6569 @subsection Trampoline Generation
6570
6571 @cindex trampoline generation on M68HC11
6572 @cindex trampoline generation on M68HC12
6573 For 68HC11 and 68HC12, @command{ld} can generate trampoline code to
6574 call a far function using a normal @code{jsr} instruction. The linker
6575 will also change the relocation to some far function to use the
6576 trampoline address instead of the function address. This is typically the
6577 case when a pointer to a function is taken. The pointer will in fact
6578 point to the function trampoline.
6579
6580 @ifclear GENERIC
6581 @lowersections
6582 @end ifclear
6583 @end ifset
6584
6585 @node ARM
6586 @section @command{ld} and the ARM family
6587
6588 @cindex ARM interworking support
6589 @kindex --support-old-code
6590 For the ARM, @command{ld} will generate code stubs to allow functions calls
6591 between ARM and Thumb code.  These stubs only work with code that has
6592 been compiled and assembled with the @samp{-mthumb-interwork} command
6593 line option.  If it is necessary to link with old ARM object files or
6594 libraries, which have not been compiled with the -mthumb-interwork
6595 option then the @samp{--support-old-code} command line switch should be
6596 given to the linker.  This will make it generate larger stub functions
6597 which will work with non-interworking aware ARM code.  Note, however,
6598 the linker does not support generating stubs for function calls to
6599 non-interworking aware Thumb code.
6600
6601 @cindex thumb entry point
6602 @cindex entry point, thumb
6603 @kindex --thumb-entry=@var{entry}
6604 The @samp{--thumb-entry} switch is a duplicate of the generic
6605 @samp{--entry} switch, in that it sets the program's starting address.
6606 But it also sets the bottom bit of the address, so that it can be
6607 branched to using a BX instruction, and the program will start
6608 executing in Thumb mode straight away.
6609
6610 @cindex PE import table prefixing
6611 @kindex --use-nul-prefixed-import-tables
6612 The @samp{--use-nul-prefixed-import-tables} switch is specifying, that
6613 the import tables idata4 and idata5 have to be generated with a zero
6614 element prefix for import libraries. This is the old style to generate
6615 import tables. By default this option is turned off.
6616
6617 @cindex BE8
6618 @kindex --be8
6619 The @samp{--be8} switch instructs @command{ld} to generate BE8 format
6620 executables.  This option is only valid when linking big-endian
6621 objects - ie ones which have been assembled with the @option{-EB}
6622 option.  The resulting image will contain big-endian data and
6623 little-endian code.
6624
6625 @cindex TARGET1
6626 @kindex --target1-rel
6627 @kindex --target1-abs
6628 The @samp{R_ARM_TARGET1} relocation is typically used for entries in the
6629 @samp{.init_array} section.  It is interpreted as either @samp{R_ARM_REL32}
6630 or @samp{R_ARM_ABS32}, depending on the target.  The @samp{--target1-rel}
6631 and @samp{--target1-abs} switches override the default.
6632
6633 @cindex TARGET2
6634 @kindex --target2=@var{type}
6635 The @samp{--target2=type} switch overrides the default definition of the
6636 @samp{R_ARM_TARGET2} relocation.  Valid values for @samp{type}, their
6637 meanings, and target defaults are as follows:
6638 @table @samp
6639 @item rel
6640 @samp{R_ARM_REL32} (arm*-*-elf, arm*-*-eabi)
6641 @item abs
6642 @samp{R_ARM_ABS32} (arm*-*-symbianelf)
6643 @item got-rel
6644 @samp{R_ARM_GOT_PREL} (arm*-*-linux, arm*-*-*bsd)
6645 @end table
6646
6647 @cindex FIX_V4BX
6648 @kindex --fix-v4bx
6649 The @samp{R_ARM_V4BX} relocation (defined by the ARM AAELF
6650 specification) enables objects compiled for the ARMv4 architecture to be
6651 interworking-safe when linked with other objects compiled for ARMv4t, but
6652 also allows pure ARMv4 binaries to be built from the same ARMv4 objects.
6653
6654 In the latter case, the switch @option{--fix-v4bx} must be passed to the
6655 linker, which causes v4t @code{BX rM} instructions to be rewritten as
6656 @code{MOV PC,rM}, since v4 processors do not have a @code{BX} instruction.
6657
6658 In the former case, the switch should not be used, and @samp{R_ARM_V4BX}
6659 relocations are ignored.
6660
6661 @cindex FIX_V4BX_INTERWORKING
6662 @kindex --fix-v4bx-interworking
6663 Replace @code{BX rM} instructions identified by @samp{R_ARM_V4BX}
6664 relocations with a branch to the following veneer:
6665
6666 @smallexample
6667 TST rM, #1
6668 MOVEQ PC, rM
6669 BX Rn
6670 @end smallexample
6671
6672 This allows generation of libraries/applications that work on ARMv4 cores
6673 and are still interworking safe.  Note that the above veneer clobbers the
6674 condition flags, so may cause incorrect program behavior in rare cases.
6675
6676 @cindex USE_BLX
6677 @kindex --use-blx
6678 The @samp{--use-blx} switch enables the linker to use ARM/Thumb
6679 BLX instructions (available on ARMv5t and above) in various
6680 situations. Currently it is used to perform calls via the PLT from Thumb
6681 code using BLX rather than using BX and a mode-switching stub before
6682 each PLT entry. This should lead to such calls executing slightly faster.
6683
6684 This option is enabled implicitly for SymbianOS, so there is no need to
6685 specify it if you are using that target.
6686
6687 @cindex VFP11_DENORM_FIX
6688 @kindex --vfp11-denorm-fix
6689 The @samp{--vfp11-denorm-fix} switch enables a link-time workaround for a
6690 bug in certain VFP11 coprocessor hardware, which sometimes allows
6691 instructions with denorm operands (which must be handled by support code)
6692 to have those operands overwritten by subsequent instructions before
6693 the support code can read the intended values.
6694
6695 The bug may be avoided in scalar mode if you allow at least one
6696 intervening instruction between a VFP11 instruction which uses a register
6697 and another instruction which writes to the same register, or at least two
6698 intervening instructions if vector mode is in use. The bug only affects
6699 full-compliance floating-point mode: you do not need this workaround if
6700 you are using "runfast" mode. Please contact ARM for further details.
6701
6702 If you know you are using buggy VFP11 hardware, you can
6703 enable this workaround by specifying the linker option
6704 @samp{--vfp-denorm-fix=scalar} if you are using the VFP11 scalar
6705 mode only, or @samp{--vfp-denorm-fix=vector} if you are using
6706 vector mode (the latter also works for scalar code). The default is
6707 @samp{--vfp-denorm-fix=none}.
6708
6709 If the workaround is enabled, instructions are scanned for
6710 potentially-troublesome sequences, and a veneer is created for each
6711 such sequence which may trigger the erratum. The veneer consists of the
6712 first instruction of the sequence and a branch back to the subsequent
6713 instruction. The original instruction is then replaced with a branch to
6714 the veneer. The extra cycles required to call and return from the veneer
6715 are sufficient to avoid the erratum in both the scalar and vector cases.
6716
6717 @cindex ARM1176 erratum workaround
6718 @kindex --fix-arm1176
6719 @kindex --no-fix-arm1176
6720 The @samp{--fix-arm1176} switch enables a link-time workaround for an erratum
6721 in certain ARM1176 processors.  The workaround is enabled by default if you
6722 are targeting ARM v6 (excluding ARM v6T2) or earlier.  It can be disabled
6723 unconditionally by specifying @samp{--no-fix-arm1176}.
6724
6725 Further information is available in the ``ARM1176JZ-S and ARM1176JZF-S
6726 Programmer Advice Notice'' available on the ARM documentation website at:
6727 http://infocenter.arm.com/.
6728
6729 @cindex STM32L4xx erratum workaround
6730 @kindex --fix-stm32l4xx-629360
6731
6732 The @samp{--fix-stm32l4xx-629360} switch enables a link-time
6733 workaround for a bug in the bus matrix / memory controller for some of
6734 the STM32 Cortex-M4 based products (STM32L4xx).  When accessing
6735 off-chip memory via the affected bus for bus reads of 9 words or more,
6736 the bus can generate corrupt data and/or abort.  These are only
6737 core-initiated accesses (not DMA), and might affect any access:
6738 integer loads such as LDM, POP and floating-point loads such as VLDM,
6739 VPOP.  Stores are not affected.
6740
6741 The bug can be avoided by splitting memory accesses into the
6742 necessary chunks to keep bus reads below 8 words.
6743
6744 The workaround is not enabled by default, this is equivalent to use
6745 @samp{--fix-stm32l4xx-629360=none}.  If you know you are using buggy
6746 STM32L4xx hardware, you can enable the workaround by specifying the
6747 linker option @samp{--fix-stm32l4xx-629360}, or the equivalent
6748 @samp{--fix-stm32l4xx-629360=default}.
6749
6750 If the workaround is enabled, instructions are scanned for
6751 potentially-troublesome sequences, and a veneer is created for each
6752 such sequence which may trigger the erratum.  The veneer consists in a
6753 replacement sequence emulating the behaviour of the original one and a
6754 branch back to the subsequent instruction.  The original instruction is
6755 then replaced with a branch to the veneer.
6756
6757 The workaround does not always preserve the memory access order for
6758 the LDMDB instruction, when the instruction loads the PC.
6759
6760 The workaround is not able to handle problematic instructions when
6761 they are in the middle of an IT block, since a branch is not allowed
6762 there.  In that case, the linker reports a warning and no replacement
6763 occurs.
6764
6765 The workaround is not able to replace problematic instructions with a
6766 PC-relative branch instruction if the @samp{.text} section is too
6767 large.  In that case, when the branch that replaces the original code
6768 cannot be encoded, the linker reports a warning and no replacement
6769 occurs.
6770
6771 @cindex NO_ENUM_SIZE_WARNING
6772 @kindex --no-enum-size-warning
6773 The @option{--no-enum-size-warning} switch prevents the linker from
6774 warning when linking object files that specify incompatible EABI
6775 enumeration size attributes.  For example, with this switch enabled,
6776 linking of an object file using 32-bit enumeration values with another
6777 using enumeration values fitted into the smallest possible space will
6778 not be diagnosed.
6779
6780 @cindex NO_WCHAR_SIZE_WARNING
6781 @kindex --no-wchar-size-warning
6782 The @option{--no-wchar-size-warning} switch prevents the linker from
6783 warning when linking object files that specify incompatible EABI
6784 @code{wchar_t} size attributes.  For example, with this switch enabled,
6785 linking of an object file using 32-bit @code{wchar_t} values with another
6786 using 16-bit @code{wchar_t} values will not be diagnosed.
6787
6788 @cindex PIC_VENEER
6789 @kindex --pic-veneer
6790 The @samp{--pic-veneer} switch makes the linker use PIC sequences for
6791 ARM/Thumb interworking veneers, even if the rest of the binary
6792 is not PIC.  This avoids problems on uClinux targets where
6793 @samp{--emit-relocs} is used to generate relocatable binaries.
6794
6795 @cindex STUB_GROUP_SIZE
6796 @kindex --stub-group-size=@var{N}
6797 The linker will automatically generate and insert small sequences of
6798 code into a linked ARM ELF executable whenever an attempt is made to
6799 perform a function call to a symbol that is too far away.  The
6800 placement of these sequences of instructions - called stubs - is
6801 controlled by the command line option @option{--stub-group-size=N}.
6802 The placement is important because a poor choice can create a need for
6803 duplicate stubs, increasing the code size.  The linker will try to
6804 group stubs together in order to reduce interruptions to the flow of
6805 code, but it needs guidance as to how big these groups should be and
6806 where they should be placed.
6807
6808 The value of @samp{N}, the parameter to the
6809 @option{--stub-group-size=} option controls where the stub groups are
6810 placed.  If it is negative then all stubs are placed after the first
6811 branch that needs them.  If it is positive then the stubs can be
6812 placed either before or after the branches that need them.  If the
6813 value of @samp{N} is 1 (either +1 or -1) then the linker will choose
6814 exactly where to place groups of stubs, using its built in heuristics.
6815 A value of @samp{N} greater than 1 (or smaller than -1) tells the
6816 linker that a single group of stubs can service at most @samp{N} bytes
6817 from the input sections.
6818
6819 The default, if @option{--stub-group-size=} is not specified, is
6820 @samp{N = +1}.
6821
6822 Farcalls stubs insertion is fully supported for the ARM-EABI target
6823 only, because it relies on object files properties not present
6824 otherwise.
6825
6826 @cindex Cortex-A8 erratum workaround
6827 @kindex --fix-cortex-a8
6828 @kindex --no-fix-cortex-a8
6829 The @samp{--fix-cortex-a8} switch enables a link-time workaround for an erratum in certain Cortex-A8 processors.  The workaround is enabled by default if you are targeting the ARM v7-A architecture profile.  It can be enabled otherwise by specifying @samp{--fix-cortex-a8}, or disabled unconditionally by specifying @samp{--no-fix-cortex-a8}.
6830
6831 The erratum only affects Thumb-2 code.  Please contact ARM for further details.
6832
6833 @cindex Cortex-A53 erratum 835769 workaround
6834 @kindex --fix-cortex-a53-835769
6835 @kindex --no-fix-cortex-a53-835769
6836 The @samp{--fix-cortex-a53-835769} switch enables a link-time workaround for erratum 835769 present on certain early revisions of Cortex-A53 processors.  The workaround is disabled by default.  It can be enabled by specifying @samp{--fix-cortex-a53-835769}, or disabled unconditionally by specifying @samp{--no-fix-cortex-a53-835769}.
6837
6838 Please contact ARM for further details.
6839
6840 @kindex --merge-exidx-entries
6841 @kindex --no-merge-exidx-entries
6842 @cindex Merging exidx entries
6843 The @samp{--no-merge-exidx-entries} switch disables the merging of adjacent exidx entries in debuginfo.
6844
6845 @kindex --long-plt
6846 @cindex 32-bit PLT entries
6847 The @samp{--long-plt} option enables the use of 16 byte PLT entries
6848 which support up to 4Gb of code.  The default is to use 12 byte PLT
6849 entries which only support 512Mb of code.
6850
6851 @kindex --no-apply-dynamic-relocs
6852 @cindex AArch64 rela addend
6853 The @samp{--no-apply-dynamic-relocs} option makes AArch64 linker do not apply
6854 link-time values for dynamic relocations.
6855
6856 @ifclear GENERIC
6857 @lowersections
6858 @end ifclear
6859 @end ifset
6860
6861 @ifset HPPA
6862 @ifclear GENERIC
6863 @raisesections
6864 @end ifclear
6865
6866 @node HPPA ELF32
6867 @section @command{ld} and HPPA 32-bit ELF Support
6868 @cindex HPPA multiple sub-space stubs
6869 @kindex --multi-subspace
6870 When generating a shared library, @command{ld} will by default generate
6871 import stubs suitable for use with a single sub-space application.
6872 The @samp{--multi-subspace} switch causes @command{ld} to generate export
6873 stubs, and different (larger) import stubs suitable for use with
6874 multiple sub-spaces.
6875
6876 @cindex HPPA stub grouping
6877 @kindex --stub-group-size=@var{N}
6878 Long branch stubs and import/export stubs are placed by @command{ld} in
6879 stub sections located between groups of input sections.
6880 @samp{--stub-group-size} specifies the maximum size of a group of input
6881 sections handled by one stub section.  Since branch offsets are signed,
6882 a stub section may serve two groups of input sections, one group before
6883 the stub section, and one group after it.  However, when using
6884 conditional branches that require stubs, it may be better (for branch
6885 prediction) that stub sections only serve one group of input sections.
6886 A negative value for @samp{N} chooses this scheme, ensuring that
6887 branches to stubs always use a negative offset.  Two special values of
6888 @samp{N} are recognized, @samp{1} and @samp{-1}.  These both instruct
6889 @command{ld} to automatically size input section groups for the branch types
6890 detected, with the same behaviour regarding stub placement as other
6891 positive or negative values of @samp{N} respectively.
6892
6893 Note that @samp{--stub-group-size} does not split input sections.  A
6894 single input section larger than the group size specified will of course
6895 create a larger group (of one section).  If input sections are too
6896 large, it may not be possible for a branch to reach its stub.
6897
6898 @ifclear GENERIC
6899 @lowersections
6900 @end ifclear
6901 @end ifset
6902
6903 @ifset M68K
6904 @ifclear GENERIC
6905 @raisesections
6906 @end ifclear
6907
6908 @node M68K
6909 @section @command{ld} and the Motorola 68K family
6910
6911 @cindex Motorola 68K GOT generation
6912 @kindex --got=@var{type}
6913 The @samp{--got=@var{type}} option lets you choose the GOT generation scheme.
6914 The choices are @samp{single}, @samp{negative}, @samp{multigot} and
6915 @samp{target}.  When @samp{target} is selected the linker chooses
6916 the default GOT generation scheme for the current target.
6917 @samp{single} tells the linker to generate a single GOT with
6918 entries only at non-negative offsets.
6919 @samp{negative} instructs the linker to generate a single GOT with
6920 entries at both negative and positive offsets.  Not all environments
6921 support such GOTs.
6922 @samp{multigot} allows the linker to generate several GOTs in the
6923 output file.  All GOT references from a single input object
6924 file access the same GOT, but references from different input object
6925 files might access different GOTs.  Not all environments support such GOTs.
6926
6927 @ifclear GENERIC
6928 @lowersections
6929 @end ifclear
6930 @end ifset
6931
6932 @ifset MIPS
6933 @ifclear GENERIC
6934 @raisesections
6935 @end ifclear
6936
6937 @node MIPS
6938 @section @command{ld} and the MIPS family
6939
6940 @cindex MIPS microMIPS instruction choice selection
6941 @kindex --insn32
6942 @kindex --no-insn32
6943 The @samp{--insn32} and @samp{--no-insn32} options control the choice of
6944 microMIPS instructions used in code generated by the linker, such as that
6945 in the PLT or lazy binding stubs, or in relaxation.  If @samp{--insn32} is
6946 used, then the linker only uses 32-bit instruction encodings.  By default
6947 or if @samp{--no-insn32} is used, all instruction encodings are used,
6948 including 16-bit ones where possible.
6949
6950 @ifclear GENERIC
6951 @lowersections
6952 @end ifclear
6953 @end ifset
6954
6955 @ifset MMIX
6956 @ifclear GENERIC
6957 @raisesections
6958 @end ifclear
6959
6960 @node MMIX
6961 @section @code{ld} and MMIX
6962 For MMIX, there is a choice of generating @code{ELF} object files or
6963 @code{mmo} object files when linking.  The simulator @code{mmix}
6964 understands the @code{mmo} format.  The binutils @code{objcopy} utility
6965 can translate between the two formats.
6966
6967 There is one special section, the @samp{.MMIX.reg_contents} section.
6968 Contents in this section is assumed to correspond to that of global
6969 registers, and symbols referring to it are translated to special symbols,
6970 equal to registers.  In a final link, the start address of the
6971 @samp{.MMIX.reg_contents} section corresponds to the first allocated
6972 global register multiplied by 8.  Register @code{$255} is not included in
6973 this section; it is always set to the program entry, which is at the
6974 symbol @code{Main} for @code{mmo} files.
6975
6976 Global symbols with the prefix @code{__.MMIX.start.}, for example
6977 @code{__.MMIX.start..text} and @code{__.MMIX.start..data} are special.
6978 The default linker script uses these to set the default start address
6979 of a section.
6980
6981 Initial and trailing multiples of zero-valued 32-bit words in a section,
6982 are left out from an mmo file.
6983
6984 @ifclear GENERIC
6985 @lowersections
6986 @end ifclear
6987 @end ifset
6988
6989 @ifset MSP430
6990 @ifclear GENERIC
6991 @raisesections
6992 @end ifclear
6993
6994 @node  MSP430
6995 @section @code{ld} and MSP430
6996 For the MSP430 it is possible to select the MPU architecture.  The flag @samp{-m [mpu type]}
6997 will select an appropriate linker script for selected MPU type.  (To get a list of known MPUs
6998 just pass @samp{-m help} option to the linker).
6999
7000 @cindex MSP430 extra sections
7001 The linker will recognize some extra sections which are MSP430 specific:
7002
7003 @table @code
7004 @item @samp{.vectors}
7005 Defines a portion of ROM where interrupt vectors located.
7006
7007 @item @samp{.bootloader}
7008 Defines the bootloader portion of the ROM (if applicable).  Any code
7009 in this section will be uploaded to the MPU.
7010
7011 @item @samp{.infomem}
7012 Defines an information memory section (if applicable).  Any code in
7013 this section will be uploaded to the MPU.
7014
7015 @item @samp{.infomemnobits}
7016 This is the same as the @samp{.infomem} section except that any code
7017 in this section will not be uploaded to the MPU.
7018
7019 @item @samp{.noinit}
7020 Denotes a portion of RAM located above @samp{.bss} section.
7021
7022 The last two sections are used by gcc.
7023 @end table
7024
7025 @ifclear GENERIC
7026 @lowersections
7027 @end ifclear
7028 @end ifset
7029
7030 @ifset NDS32
7031 @ifclear GENERIC
7032 @raisesections
7033 @end ifclear
7034
7035 @node NDS32
7036 @section @code{ld} and NDS32
7037 @kindex relaxing on NDS32
7038 For NDS32, there are some options to select relaxation behavior.  The linker
7039 relaxes objects according to these options.
7040
7041 @table @code
7042 @item @samp{--m[no-]fp-as-gp}
7043 Disable/enable fp-as-gp relaxation.
7044
7045 @item @samp{--mexport-symbols=FILE}
7046 Exporting symbols and their address into FILE as linker script.
7047
7048 @item @samp{--m[no-]ex9}
7049 Disable/enable link-time EX9 relaxation.
7050
7051 @item @samp{--mexport-ex9=FILE}
7052 Export the EX9 table after linking.
7053
7054 @item @samp{--mimport-ex9=FILE}
7055 Import the Ex9 table for EX9 relaxation.
7056
7057 @item @samp{--mupdate-ex9}
7058 Update the existing EX9 table.
7059
7060 @item @samp{--mex9-limit=NUM}
7061 Maximum number of entries in the ex9 table.
7062
7063 @item @samp{--mex9-loop-aware}
7064 Avoid generating the EX9 instruction inside the loop.
7065
7066 @item @samp{--m[no-]ifc}
7067 Disable/enable the link-time IFC optimization.
7068
7069 @item @samp{--mifc-loop-aware}
7070 Avoid generating the IFC instruction inside the loop.
7071 @end table
7072
7073 @ifclear GENERIC
7074 @lowersections
7075 @end ifclear
7076 @end ifset
7077
7078 @ifset NIOSII
7079 @ifclear GENERIC
7080 @raisesections
7081 @end ifclear
7082
7083 @node Nios II
7084 @section @command{ld} and the Altera Nios II
7085 @cindex Nios II call relaxation
7086 @kindex --relax on Nios II
7087
7088 Call and immediate jump instructions on Nios II processors are limited to
7089 transferring control to addresses in the same 256MB memory segment,
7090 which may result in @command{ld} giving
7091 @samp{relocation truncated to fit} errors with very large programs.
7092 The command-line option @option{--relax} enables the generation of
7093 trampolines that can access the entire 32-bit address space for calls
7094 outside the normal @code{call} and @code{jmpi} address range.  These
7095 trampolines are inserted at section boundaries, so may not themselves
7096 be reachable if an input section and its associated call trampolines are
7097 larger than 256MB.
7098
7099 The @option{--relax} option is enabled by default unless @option{-r}
7100 is also specified.  You can disable trampoline generation by using the
7101 @option{--no-relax} linker option.  You can also disable this optimization
7102 locally by using the @samp{set .noat} directive in assembly-language
7103 source files, as the linker-inserted trampolines use the @code{at}
7104 register as a temporary.
7105
7106 Note that the linker @option{--relax} option is independent of assembler
7107 relaxation options, and that using the GNU assembler's @option{-relax-all}
7108 option interferes with the linker's more selective call instruction relaxation.
7109
7110 @ifclear GENERIC
7111 @lowersections
7112 @end ifclear
7113 @end ifset
7114
7115 @ifset POWERPC
7116 @ifclear GENERIC
7117 @raisesections
7118 @end ifclear
7119
7120 @node PowerPC ELF32
7121 @section @command{ld} and PowerPC 32-bit ELF Support
7122 @cindex PowerPC long branches
7123 @kindex --relax on PowerPC
7124 Branches on PowerPC processors are limited to a signed 26-bit
7125 displacement, which may result in @command{ld} giving
7126 @samp{relocation truncated to fit} errors with very large programs.
7127 @samp{--relax} enables the generation of trampolines that can access
7128 the entire 32-bit address space.  These trampolines are inserted at
7129 section boundaries, so may not themselves be reachable if an input
7130 section exceeds 33M in size.  You may combine @samp{-r} and
7131 @samp{--relax} to add trampolines in a partial link.  In that case
7132 both branches to undefined symbols and inter-section branches are also
7133 considered potentially out of range, and trampolines inserted.
7134
7135 @cindex PowerPC ELF32 options
7136 @table @option
7137 @cindex PowerPC PLT
7138 @kindex --bss-plt
7139 @item --bss-plt
7140 Current PowerPC GCC accepts a @samp{-msecure-plt} option that
7141 generates code capable of using a newer PLT and GOT layout that has
7142 the security advantage of no executable section ever needing to be
7143 writable and no writable section ever being executable.  PowerPC
7144 @command{ld} will generate this layout, including stubs to access the
7145 PLT, if all input files (including startup and static libraries) were
7146 compiled with @samp{-msecure-plt}.  @samp{--bss-plt} forces the old
7147 BSS PLT (and GOT layout) which can give slightly better performance.
7148
7149 @kindex --secure-plt
7150 @item --secure-plt
7151 @command{ld} will use the new PLT and GOT layout if it is linking new
7152 @samp{-fpic} or @samp{-fPIC} code, but does not do so automatically
7153 when linking non-PIC code.  This option requests the new PLT and GOT
7154 layout.  A warning will be given if some object file requires the old
7155 style BSS PLT.
7156
7157 @cindex PowerPC GOT
7158 @kindex --sdata-got
7159 @item --sdata-got
7160 The new secure PLT and GOT are placed differently relative to other
7161 sections compared to older BSS PLT and GOT placement.  The location of
7162 @code{.plt} must change because the new secure PLT is an initialized
7163 section while the old PLT is uninitialized.  The reason for the
7164 @code{.got} change is more subtle:  The new placement allows
7165 @code{.got} to be read-only in applications linked with
7166 @samp{-z relro -z now}.  However, this placement means that
7167 @code{.sdata} cannot always be used in shared libraries, because the
7168 PowerPC ABI accesses @code{.sdata} in shared libraries from the GOT
7169 pointer.  @samp{--sdata-got} forces the old GOT placement.  PowerPC
7170 GCC doesn't use @code{.sdata} in shared libraries, so this option is
7171 really only useful for other compilers that may do so.
7172
7173 @cindex PowerPC stub symbols
7174 @kindex --emit-stub-syms
7175 @item --emit-stub-syms
7176 This option causes @command{ld} to label linker stubs with a local
7177 symbol that encodes the stub type and destination.
7178
7179 @cindex PowerPC TLS optimization
7180 @kindex --no-tls-optimize
7181 @item --no-tls-optimize
7182 PowerPC @command{ld} normally performs some optimization of code
7183 sequences used to access Thread-Local Storage.  Use this option to
7184 disable the optimization.
7185 @end table
7186
7187 @ifclear GENERIC
7188 @lowersections
7189 @end ifclear
7190 @end ifset
7191
7192 @ifset POWERPC64
7193 @ifclear GENERIC
7194 @raisesections
7195 @end ifclear
7196
7197 @node PowerPC64 ELF64
7198 @section @command{ld} and PowerPC64 64-bit ELF Support
7199
7200 @cindex PowerPC64 ELF64 options
7201 @table @option
7202 @cindex PowerPC64 stub grouping
7203 @kindex --stub-group-size
7204 @item --stub-group-size
7205 Long branch stubs, PLT call stubs  and TOC adjusting stubs are placed
7206 by @command{ld} in stub sections located between groups of input sections.
7207 @samp{--stub-group-size} specifies the maximum size of a group of input
7208 sections handled by one stub section.  Since branch offsets are signed,
7209 a stub section may serve two groups of input sections, one group before
7210 the stub section, and one group after it.  However, when using
7211 conditional branches that require stubs, it may be better (for branch
7212 prediction) that stub sections only serve one group of input sections.
7213 A negative value for @samp{N} chooses this scheme, ensuring that
7214 branches to stubs always use a negative offset.  Two special values of
7215 @samp{N} are recognized, @samp{1} and @samp{-1}.  These both instruct
7216 @command{ld} to automatically size input section groups for the branch types
7217 detected, with the same behaviour regarding stub placement as other
7218 positive or negative values of @samp{N} respectively.
7219
7220 Note that @samp{--stub-group-size} does not split input sections.  A
7221 single input section larger than the group size specified will of course
7222 create a larger group (of one section).  If input sections are too
7223 large, it may not be possible for a branch to reach its stub.
7224
7225 @cindex PowerPC64 stub symbols
7226 @kindex --emit-stub-syms
7227 @item --emit-stub-syms
7228 This option causes @command{ld} to label linker stubs with a local
7229 symbol that encodes the stub type and destination.
7230
7231 @cindex PowerPC64 dot symbols
7232 @kindex --dotsyms
7233 @kindex --no-dotsyms
7234 @item --dotsyms
7235 @itemx --no-dotsyms
7236 These two options control how @command{ld} interprets version patterns
7237 in a version script.  Older PowerPC64 compilers emitted both a
7238 function descriptor symbol with the same name as the function, and a
7239 code entry symbol with the name prefixed by a dot (@samp{.}).  To
7240 properly version a function @samp{foo}, the version script thus needs
7241 to control both @samp{foo} and @samp{.foo}.  The option
7242 @samp{--dotsyms}, on by default, automatically adds the required
7243 dot-prefixed patterns.  Use @samp{--no-dotsyms} to disable this
7244 feature.
7245
7246 @cindex PowerPC64 register save/restore functions
7247 @kindex --save-restore-funcs
7248 @kindex --no-save-restore-funcs
7249 @item --save-restore-funcs
7250 @itemx --no-save-restore-funcs
7251 These two options control whether PowerPC64 @command{ld} automatically
7252 provides out-of-line register save and restore functions used by
7253 @samp{-Os} code.  The default is to provide any such referenced
7254 function for a normal final link, and to not do so for a relocatable
7255 link.
7256
7257 @cindex PowerPC64 TLS optimization
7258 @kindex --no-tls-optimize
7259 @item --no-tls-optimize
7260 PowerPC64 @command{ld} normally performs some optimization of code
7261 sequences used to access Thread-Local Storage.  Use this option to
7262 disable the optimization.
7263
7264 @cindex PowerPC64 __tls_get_addr optimization
7265 @kindex --tls-get-addr-optimize
7266 @kindex --no-tls-get-addr-optimize
7267 @item --tls-get-addr-optimize
7268 @itemx --no-tls-get-addr-optimize
7269 These options control whether PowerPC64 @command{ld} uses a special
7270 stub to call __tls_get_addr.  PowerPC64 glibc 2.22 and later support
7271 an optimization that allows the second and subsequent calls to
7272 @code{__tls_get_addr} for a given symbol to be resolved by the special
7273 stub without calling in to glibc.  By default the linker enables this
7274 option when glibc advertises the availability of __tls_get_addr_opt.
7275 Forcing this option on when using an older glibc won't do much besides
7276 slow down your applications, but may be useful if linking an
7277 application against an older glibc with the expectation that it will
7278 normally be used on systems having a newer glibc.
7279
7280 @cindex PowerPC64 OPD optimization
7281 @kindex --no-opd-optimize
7282 @item --no-opd-optimize
7283 PowerPC64 @command{ld} normally removes @code{.opd} section entries
7284 corresponding to deleted link-once functions, or functions removed by
7285 the action of @samp{--gc-sections} or linker script @code{/DISCARD/}.
7286 Use this option to disable @code{.opd} optimization.
7287
7288 @cindex PowerPC64 OPD spacing
7289 @kindex --non-overlapping-opd
7290 @item --non-overlapping-opd
7291 Some PowerPC64 compilers have an option to generate compressed
7292 @code{.opd} entries spaced 16 bytes apart, overlapping the third word,
7293 the static chain pointer (unused in C) with the first word of the next
7294 entry.  This option expands such entries to the full 24 bytes.
7295
7296 @cindex PowerPC64 TOC optimization
7297 @kindex --no-toc-optimize
7298 @item --no-toc-optimize
7299 PowerPC64 @command{ld} normally removes unused @code{.toc} section
7300 entries.  Such entries are detected by examining relocations that
7301 reference the TOC in code sections.  A reloc in a deleted code section
7302 marks a TOC word as unneeded, while a reloc in a kept code section
7303 marks a TOC word as needed.  Since the TOC may reference itself, TOC
7304 relocs are also examined.  TOC words marked as both needed and
7305 unneeded will of course be kept.  TOC words without any referencing
7306 reloc are assumed to be part of a multi-word entry, and are kept or
7307 discarded as per the nearest marked preceding word.  This works
7308 reliably for compiler generated code, but may be incorrect if assembly
7309 code is used to insert TOC entries.  Use this option to disable the
7310 optimization.
7311
7312 @cindex PowerPC64 multi-TOC
7313 @kindex --no-multi-toc
7314 @item --no-multi-toc
7315 If given any toc option besides @code{-mcmodel=medium} or
7316 @code{-mcmodel=large}, PowerPC64 GCC generates code for a TOC model
7317 where TOC
7318 entries are accessed with a 16-bit offset from r2.  This limits the
7319 total TOC size to 64K.  PowerPC64 @command{ld} extends this limit by
7320 grouping code sections such that each group uses less than 64K for its
7321 TOC entries, then inserts r2 adjusting stubs between inter-group
7322 calls.  @command{ld} does not split apart input sections, so cannot
7323 help if a single input file has a @code{.toc} section that exceeds
7324 64K, most likely from linking multiple files with @command{ld -r}.
7325 Use this option to turn off this feature.
7326
7327 @cindex PowerPC64 TOC sorting
7328 @kindex --no-toc-sort
7329 @item --no-toc-sort
7330 By default, @command{ld} sorts TOC sections so that those whose file
7331 happens to have a section called @code{.init} or @code{.fini} are
7332 placed first, followed by TOC sections referenced by code generated
7333 with PowerPC64 gcc's @code{-mcmodel=small}, and lastly TOC sections
7334 referenced only by code generated with PowerPC64 gcc's
7335 @code{-mcmodel=medium} or @code{-mcmodel=large} options.  Doing this
7336 results in better TOC grouping for multi-TOC.  Use this option to turn
7337 off this feature.
7338
7339 @cindex PowerPC64 PLT stub alignment
7340 @kindex --plt-align
7341 @kindex --no-plt-align
7342 @item --plt-align
7343 @itemx --no-plt-align
7344 Use these options to control whether individual PLT call stubs are
7345 padded so that they don't cross a 32-byte boundary, or to the
7346 specified power of two boundary when using @code{--plt-align=}.  Note
7347 that this isn't alignment in the usual sense.  By default PLT call
7348 stubs are packed tightly.
7349
7350 @cindex PowerPC64 PLT call stub static chain
7351 @kindex --plt-static-chain
7352 @kindex --no-plt-static-chain
7353 @item --plt-static-chain
7354 @itemx --no-plt-static-chain
7355 Use these options to control whether PLT call stubs load the static
7356 chain pointer (r11).  @code{ld} defaults to not loading the static
7357 chain since there is never any need to do so on a PLT call.
7358
7359 @cindex PowerPC64 PLT call stub thread safety
7360 @kindex --plt-thread-safe
7361 @kindex --no-plt-thread-safe
7362 @item --plt-thread-safe
7363 @itemx --no-thread-safe
7364 With power7's weakly ordered memory model, it is possible when using
7365 lazy binding for ld.so to update a plt entry in one thread and have
7366 another thread see the individual plt entry words update in the wrong
7367 order, despite ld.so carefully writing in the correct order and using
7368 memory write barriers.  To avoid this we need some sort of read
7369 barrier in the call stub, or use LD_BIND_NOW=1.  By default, @code{ld}
7370 looks for calls to commonly used functions that create threads, and if
7371 seen, adds the necessary barriers.  Use these options to change the
7372 default behaviour.
7373 @end table
7374
7375 @ifclear GENERIC
7376 @lowersections
7377 @end ifclear
7378 @end ifset
7379
7380 @ifset SPU
7381 @ifclear GENERIC
7382 @raisesections
7383 @end ifclear
7384
7385 @node SPU ELF
7386 @section @command{ld} and SPU ELF Support
7387
7388 @cindex SPU ELF options
7389 @table @option
7390
7391 @cindex SPU plugins
7392 @kindex --plugin
7393 @item --plugin
7394 This option marks an executable as a PIC plugin module.
7395
7396 @cindex SPU overlays
7397 @kindex --no-overlays
7398 @item --no-overlays
7399 Normally, @command{ld} recognizes calls to functions within overlay
7400 regions, and redirects such calls to an overlay manager via a stub.
7401 @command{ld} also provides a built-in overlay manager.  This option
7402 turns off all this special overlay handling.
7403
7404 @cindex SPU overlay stub symbols
7405 @kindex --emit-stub-syms
7406 @item --emit-stub-syms
7407 This option causes @command{ld} to label overlay stubs with a local
7408 symbol that encodes the stub type and destination.
7409
7410 @cindex SPU extra overlay stubs
7411 @kindex --extra-overlay-stubs
7412 @item --extra-overlay-stubs
7413 This option causes @command{ld} to add overlay call stubs on all
7414 function calls out of overlay regions.  Normally stubs are not added
7415 on calls to non-overlay regions.
7416
7417 @cindex SPU local store size
7418 @kindex --local-store=lo:hi
7419 @item --local-store=lo:hi
7420 @command{ld} usually checks that a final executable for SPU fits in
7421 the address range 0 to 256k.  This option may be used to change the
7422 range.  Disable the check entirely with @option{--local-store=0:0}.
7423
7424 @cindex SPU
7425 @kindex --stack-analysis
7426 @item --stack-analysis
7427 SPU local store space is limited.  Over-allocation of stack space
7428 unnecessarily limits space available for code and data, while
7429 under-allocation results in runtime failures.  If given this option,
7430 @command{ld} will provide an estimate of maximum stack usage.
7431 @command{ld} does this by examining symbols in code sections to
7432 determine the extents of functions, and looking at function prologues
7433 for stack adjusting instructions.  A call-graph is created by looking
7434 for relocations on branch instructions.  The graph is then searched
7435 for the maximum stack usage path.  Note that this analysis does not
7436 find calls made via function pointers, and does not handle recursion
7437 and other cycles in the call graph.  Stack usage may be
7438 under-estimated if your code makes such calls.  Also, stack usage for
7439 dynamic allocation, e.g. alloca, will not be detected.  If a link map
7440 is requested, detailed information about each function's stack usage
7441 and calls will be given.
7442
7443 @cindex SPU
7444 @kindex --emit-stack-syms
7445 @item --emit-stack-syms
7446 This option, if given along with @option{--stack-analysis} will result
7447 in @command{ld} emitting stack sizing symbols for each function.
7448 These take the form @code{__stack_<function_name>} for global
7449 functions, and @code{__stack_<number>_<function_name>} for static
7450 functions.  @code{<number>} is the section id in hex.  The value of
7451 such symbols is the stack requirement for the corresponding function.
7452 The symbol size will be zero, type @code{STT_NOTYPE}, binding
7453 @code{STB_LOCAL}, and section @code{SHN_ABS}.
7454 @end table
7455
7456 @ifclear GENERIC
7457 @lowersections
7458 @end ifclear
7459 @end ifset
7460
7461 @ifset TICOFF
7462 @ifclear GENERIC
7463 @raisesections
7464 @end ifclear
7465
7466 @node TI COFF
7467 @section @command{ld}'s Support for Various TI COFF Versions
7468 @cindex TI COFF versions
7469 @kindex --format=@var{version}
7470 The @samp{--format} switch allows selection of one of the various
7471 TI COFF versions.  The latest of this writing is 2; versions 0 and 1 are
7472 also supported.  The TI COFF versions also vary in header byte-order
7473 format; @command{ld} will read any version or byte order, but the output
7474 header format depends on the default specified by the specific target.
7475
7476 @ifclear GENERIC
7477 @lowersections
7478 @end ifclear
7479 @end ifset
7480
7481 @ifset WIN32
7482 @ifclear GENERIC
7483 @raisesections
7484 @end ifclear
7485
7486 @node WIN32
7487 @section @command{ld} and WIN32 (cygwin/mingw)
7488
7489 This section describes some of the win32 specific @command{ld} issues.
7490 See @ref{Options,,Command Line Options} for detailed description of the
7491 command line options mentioned here.
7492
7493 @table @emph
7494 @cindex import libraries
7495 @item import libraries
7496 The standard Windows linker creates and uses so-called import
7497 libraries, which contains information for linking to dll's.  They are
7498 regular static archives and are handled as any other static
7499 archive.  The cygwin and mingw ports of @command{ld} have specific
7500 support for creating such libraries provided with the
7501 @samp{--out-implib} command line option.
7502
7503 @item   exporting DLL symbols
7504 @cindex exporting DLL symbols
7505 The cygwin/mingw @command{ld} has several ways to export symbols for dll's.
7506
7507 @table @emph
7508 @item   using auto-export functionality
7509 @cindex using auto-export functionality
7510 By default @command{ld} exports symbols with the auto-export functionality,
7511 which is controlled by the following command line options:
7512
7513 @itemize
7514 @item --export-all-symbols   [This is the default]
7515 @item --exclude-symbols
7516 @item --exclude-libs
7517 @item --exclude-modules-for-implib
7518 @item --version-script
7519 @end itemize
7520
7521 When auto-export is in operation, @command{ld} will export all the non-local
7522 (global and common) symbols it finds in a DLL, with the exception of a few
7523 symbols known to belong to the system's runtime and libraries.  As it will
7524 often not be desirable to export all of a DLL's symbols, which may include
7525 private functions that are not part of any public interface, the command-line
7526 options listed above may be used to filter symbols out from the list for
7527 exporting.  The @samp{--output-def} option can be used in order to see the
7528 final list of exported symbols with all exclusions taken into effect.
7529
7530 If @samp{--export-all-symbols} is not given explicitly on the
7531 command line, then the default auto-export behavior will be @emph{disabled}
7532 if either of the following are true:
7533
7534 @itemize
7535 @item A DEF file is used.
7536 @item Any symbol in any object file was marked with the __declspec(dllexport) attribute.
7537 @end itemize
7538
7539 @item   using a DEF file
7540 @cindex using a DEF file
7541 Another way of exporting symbols is using a DEF file.  A DEF file is
7542 an ASCII file containing definitions of symbols which should be
7543 exported when a dll is created.  Usually it is named @samp{<dll
7544 name>.def} and is added as any other object file to the linker's
7545 command line.  The file's name must end in @samp{.def} or @samp{.DEF}.
7546
7547 @example
7548 gcc -o <output> <objectfiles> <dll name>.def
7549 @end example
7550
7551 Using a DEF file turns off the normal auto-export behavior, unless the
7552 @samp{--export-all-symbols} option is also used.
7553
7554 Here is an example of a DEF file for a shared library called @samp{xyz.dll}:
7555
7556 @example
7557 LIBRARY "xyz.dll" BASE=0x20000000
7558
7559 EXPORTS
7560 foo
7561 bar
7562 _bar = bar
7563 another_foo = abc.dll.afoo
7564 var1 DATA
7565 doo = foo == foo2
7566 eoo DATA == var1
7567 @end example
7568
7569 This example defines a DLL with a non-default base address and seven
7570 symbols in the export table. The third exported symbol @code{_bar} is an
7571 alias for the second. The fourth symbol, @code{another_foo} is resolved
7572 by "forwarding" to another module and treating it as an alias for
7573 @code{afoo} exported from the DLL @samp{abc.dll}. The final symbol
7574 @code{var1} is declared to be a data object. The @samp{doo} symbol in
7575 export library is an alias of @samp{foo}, which gets the string name
7576 in export table @samp{foo2}. The @samp{eoo} symbol is an data export
7577 symbol, which gets in export table the name @samp{var1}.
7578
7579 The optional @code{LIBRARY <name>} command indicates the @emph{internal}
7580 name of the output DLL. If @samp{<name>} does not include a suffix,
7581 the default library suffix, @samp{.DLL} is appended.
7582
7583 When the .DEF file is used to build an application, rather than a
7584 library, the @code{NAME <name>} command should be used instead of
7585 @code{LIBRARY}. If @samp{<name>} does not include a suffix, the default
7586 executable suffix, @samp{.EXE} is appended.
7587
7588 With either @code{LIBRARY <name>} or @code{NAME <name>} the optional
7589 specification @code{BASE = <number>} may be used to specify a
7590 non-default base address for the image.
7591
7592 If neither @code{LIBRARY <name>} nor  @code{NAME <name>} is specified,
7593 or they specify an empty string, the internal name is the same as the
7594 filename specified on the command line.
7595
7596 The complete specification of an export symbol is:
7597
7598 @example
7599 EXPORTS
7600   ( (  ( <name1> [ = <name2> ] )
7601      | ( <name1> = <module-name> . <external-name>))
7602   [ @@ <integer> ] [NONAME] [DATA] [CONSTANT] [PRIVATE] [== <name3>] ) *
7603 @end example
7604
7605 Declares @samp{<name1>} as an exported symbol from the DLL, or declares
7606 @samp{<name1>} as an exported alias for @samp{<name2>}; or declares
7607 @samp{<name1>} as a "forward" alias for the symbol
7608 @samp{<external-name>} in the DLL @samp{<module-name>}.
7609 Optionally, the symbol may be exported by the specified ordinal
7610 @samp{<integer>} alias. The optional @samp{<name3>} is the to be used
7611 string in import/export table for the symbol.
7612
7613 The optional keywords that follow the declaration indicate:
7614
7615 @code{NONAME}: Do not put the symbol name in the DLL's export table.  It
7616 will still be exported by its ordinal alias (either the value specified
7617 by the .def specification or, otherwise, the value assigned by the
7618 linker). The symbol name, however, does remain visible in the import
7619 library (if any), unless @code{PRIVATE} is also specified.
7620
7621 @code{DATA}: The symbol is a variable or object, rather than a function.
7622 The import lib will export only an indirect reference to @code{foo} as
7623 the symbol @code{_imp__foo} (ie, @code{foo} must be resolved as
7624 @code{*_imp__foo}).
7625
7626 @code{CONSTANT}: Like @code{DATA}, but put the undecorated @code{foo} as
7627 well as @code{_imp__foo} into the import library. Both refer to the
7628 read-only import address table's pointer to the variable, not to the
7629 variable itself. This can be dangerous. If the user code fails to add
7630 the @code{dllimport} attribute and also fails to explicitly add the
7631 extra indirection that the use of the attribute enforces, the
7632 application will behave unexpectedly.
7633
7634 @code{PRIVATE}: Put the symbol in the DLL's export table, but do not put
7635 it into the static import library used to resolve imports at link time. The
7636 symbol can still be imported using the @code{LoadLibrary/GetProcAddress}
7637 API at runtime or by by using the GNU ld extension of linking directly to
7638 the DLL without an import library.
7639
7640 See ld/deffilep.y in the binutils sources for the full specification of
7641 other DEF file statements
7642
7643 @cindex creating a DEF file
7644 While linking a shared dll, @command{ld} is able to create a DEF file
7645 with the @samp{--output-def <file>} command line option.
7646
7647 @item   Using decorations
7648 @cindex Using decorations
7649 Another way of marking symbols for export is to modify the source code
7650 itself, so that when building the DLL each symbol to be exported is
7651 declared as:
7652
7653 @example
7654 __declspec(dllexport) int a_variable
7655 __declspec(dllexport) void a_function(int with_args)
7656 @end example
7657
7658 All such symbols will be exported from the DLL.  If, however,
7659 any of the object files in the DLL contain symbols decorated in
7660 this way, then the normal auto-export behavior is disabled, unless
7661 the @samp{--export-all-symbols} option is also used.
7662
7663 Note that object files that wish to access these symbols must @emph{not}
7664 decorate them with dllexport.  Instead, they should use dllimport,
7665 instead:
7666
7667 @example
7668 __declspec(dllimport) int a_variable
7669 __declspec(dllimport) void a_function(int with_args)
7670 @end example
7671
7672 This complicates the structure of library header files, because
7673 when included by the library itself the header must declare the
7674 variables and functions as dllexport, but when included by client
7675 code the header must declare them as dllimport.  There are a number
7676 of idioms that are typically used to do this; often client code can
7677 omit the __declspec() declaration completely.  See
7678 @samp{--enable-auto-import} and @samp{automatic data imports} for more
7679 information.
7680 @end table
7681
7682 @cindex automatic data imports
7683 @item automatic data imports
7684 The standard Windows dll format supports data imports from dlls only
7685 by adding special decorations (dllimport/dllexport), which let the
7686 compiler produce specific assembler instructions to deal with this
7687 issue.  This increases the effort necessary to port existing Un*x
7688 code to these platforms, especially for large
7689 c++ libraries and applications.  The auto-import feature, which was
7690 initially provided by Paul Sokolovsky, allows one to omit the
7691 decorations to achieve a behavior that conforms to that on POSIX/Un*x
7692 platforms. This feature is enabled with the @samp{--enable-auto-import}
7693 command-line option, although it is enabled by default on cygwin/mingw.
7694 The @samp{--enable-auto-import} option itself now serves mainly to
7695 suppress any warnings that are ordinarily emitted when linked objects
7696 trigger the feature's use.
7697
7698 auto-import of variables does not always work flawlessly without
7699 additional assistance.  Sometimes, you will see this message
7700
7701 "variable '<var>' can't be auto-imported. Please read the
7702 documentation for ld's @code{--enable-auto-import} for details."
7703
7704 The @samp{--enable-auto-import} documentation explains why this error
7705 occurs, and several methods that can be used to overcome this difficulty.
7706 One of these methods is the @emph{runtime pseudo-relocs} feature, described
7707 below.
7708
7709 @cindex runtime pseudo-relocation
7710 For complex variables imported from DLLs (such as structs or classes),
7711 object files typically contain a base address for the variable and an
7712 offset (@emph{addend}) within the variable--to specify a particular
7713 field or public member, for instance.  Unfortunately, the runtime loader used
7714 in win32 environments is incapable of fixing these references at runtime
7715 without the additional information supplied by dllimport/dllexport decorations.
7716 The standard auto-import feature described above is unable to resolve these
7717 references.
7718
7719 The @samp{--enable-runtime-pseudo-relocs} switch allows these references to
7720 be resolved without error, while leaving the task of adjusting the references
7721 themselves (with their non-zero addends) to specialized code provided by the
7722 runtime environment.  Recent versions of the cygwin and mingw environments and
7723 compilers provide this runtime support; older versions do not.  However, the
7724 support is only necessary on the developer's platform; the compiled result will
7725 run without error on an older system.
7726
7727 @samp{--enable-runtime-pseudo-relocs} is not the default; it must be explicitly
7728 enabled as needed.
7729
7730 @cindex direct linking to a dll
7731 @item direct linking to a dll
7732 The cygwin/mingw ports of @command{ld} support the direct linking,
7733 including data symbols, to a dll without the usage of any import
7734 libraries.  This is much faster and uses much less memory than does the
7735 traditional import library method, especially when linking large
7736 libraries or applications.  When @command{ld} creates an import lib, each
7737 function or variable exported from the dll is stored in its own bfd, even
7738 though a single bfd could contain many exports.  The overhead involved in
7739 storing, loading, and processing so many bfd's is quite large, and explains the
7740 tremendous time, memory, and storage needed to link against particularly
7741 large or complex libraries when using import libs.
7742
7743 Linking directly to a dll uses no extra command-line switches other than
7744 @samp{-L} and @samp{-l}, because @command{ld} already searches for a number
7745 of names to match each library.  All that is needed from the developer's
7746 perspective is an understanding of this search, in order to force ld to
7747 select the dll instead of an import library.
7748
7749
7750 For instance, when ld is called with the argument @samp{-lxxx} it will attempt
7751 to find, in the first directory of its search path,
7752
7753 @example
7754 libxxx.dll.a
7755 xxx.dll.a
7756 libxxx.a
7757 xxx.lib
7758 cygxxx.dll (*)
7759 libxxx.dll
7760 xxx.dll
7761 @end example
7762
7763 before moving on to the next directory in the search path.
7764
7765 (*) Actually, this is not @samp{cygxxx.dll} but in fact is @samp{<prefix>xxx.dll},
7766 where @samp{<prefix>} is set by the @command{ld} option
7767 @samp{--dll-search-prefix=<prefix>}. In the case of cygwin, the standard gcc spec
7768 file includes @samp{--dll-search-prefix=cyg}, so in effect we actually search for
7769 @samp{cygxxx.dll}.
7770
7771 Other win32-based unix environments, such as mingw or pw32, may use other
7772 @samp{<prefix>}es, although at present only cygwin makes use of this feature.  It
7773 was originally intended to help avoid name conflicts among dll's built for the
7774 various win32/un*x environments, so that (for example) two versions of a zlib dll
7775 could coexist on the same machine.
7776
7777 The generic cygwin/mingw path layout uses a @samp{bin} directory for
7778 applications and dll's and a @samp{lib} directory for the import
7779 libraries (using cygwin nomenclature):
7780
7781 @example
7782 bin/
7783         cygxxx.dll
7784 lib/
7785         libxxx.dll.a   (in case of dll's)
7786         libxxx.a       (in case of static archive)
7787 @end example
7788
7789 Linking directly to a dll without using the import library can be
7790 done two ways:
7791
7792 1. Use the dll directly by adding the @samp{bin} path to the link line
7793 @example
7794 gcc -Wl,-verbose  -o a.exe -L../bin/ -lxxx
7795 @end example
7796
7797 However, as the dll's often have version numbers appended to their names
7798 (@samp{cygncurses-5.dll}) this will often fail, unless one specifies
7799 @samp{-L../bin -lncurses-5} to include the version.  Import libs are generally
7800 not versioned, and do not have this difficulty.
7801
7802 2. Create a symbolic link from the dll to a file in the @samp{lib}
7803 directory according to the above mentioned search pattern.  This
7804 should be used to avoid unwanted changes in the tools needed for
7805 making the app/dll.
7806
7807 @example
7808 ln -s bin/cygxxx.dll lib/[cyg|lib|]xxx.dll[.a]
7809 @end example
7810
7811 Then you can link without any make environment changes.
7812
7813 @example
7814 gcc -Wl,-verbose  -o a.exe -L../lib/ -lxxx
7815 @end example
7816
7817 This technique also avoids the version number problems, because the following is
7818 perfectly legal
7819
7820 @example
7821 bin/
7822         cygxxx-5.dll
7823 lib/
7824         libxxx.dll.a -> ../bin/cygxxx-5.dll
7825 @end example
7826
7827 Linking directly to a dll without using an import lib will work
7828 even when auto-import features are exercised, and even when
7829 @samp{--enable-runtime-pseudo-relocs} is used.
7830
7831 Given the improvements in speed and memory usage, one might justifiably
7832 wonder why import libraries are used at all.  There are three reasons:
7833
7834 1. Until recently, the link-directly-to-dll functionality did @emph{not}
7835 work with auto-imported data.
7836
7837 2. Sometimes it is necessary to include pure static objects within the
7838 import library (which otherwise contains only bfd's for indirection
7839 symbols that point to the exports of a dll).  Again, the import lib
7840 for the cygwin kernel makes use of this ability, and it is not
7841 possible to do this without an import lib.
7842
7843 3. Symbol aliases can only be resolved using an import lib.  This is
7844 critical when linking against OS-supplied dll's (eg, the win32 API)
7845 in which symbols are usually exported as undecorated aliases of their
7846 stdcall-decorated assembly names.
7847
7848 So, import libs are not going away.  But the ability to replace
7849 true import libs with a simple symbolic link to (or a copy of)
7850 a dll, in many cases, is a useful addition to the suite of tools
7851 binutils makes available to the win32 developer.  Given the
7852 massive improvements in memory requirements during linking, storage
7853 requirements, and linking speed, we expect that many developers
7854 will soon begin to use this feature whenever possible.
7855
7856 @item symbol aliasing
7857 @table @emph
7858 @item adding additional names
7859 Sometimes, it is useful to export symbols with additional names.
7860 A symbol @samp{foo} will be exported as @samp{foo}, but it can also be
7861 exported as @samp{_foo} by using special directives in the DEF file
7862 when creating the dll.  This will affect also the optional created
7863 import library.  Consider the following DEF file:
7864
7865 @example
7866 LIBRARY "xyz.dll" BASE=0x61000000
7867
7868 EXPORTS
7869 foo
7870 _foo = foo
7871 @end example
7872
7873 The line @samp{_foo = foo} maps the symbol @samp{foo} to @samp{_foo}.
7874
7875 Another method for creating a symbol alias is to create it in the
7876 source code using the "weak" attribute:
7877
7878 @example
7879 void foo () @{ /* Do something.  */; @}
7880 void _foo () __attribute__ ((weak, alias ("foo")));
7881 @end example
7882
7883 See the gcc manual for more information about attributes and weak
7884 symbols.
7885
7886 @item renaming symbols
7887 Sometimes it is useful to rename exports.  For instance, the cygwin
7888 kernel does this regularly.  A symbol @samp{_foo} can be exported as
7889 @samp{foo} but not as @samp{_foo} by using special directives in the
7890 DEF file. (This will also affect the import library, if it is
7891 created).  In the following example:
7892
7893 @example
7894 LIBRARY "xyz.dll" BASE=0x61000000
7895
7896 EXPORTS
7897 _foo = foo
7898 @end example
7899
7900 The line @samp{_foo = foo} maps the exported symbol @samp{foo} to
7901 @samp{_foo}.
7902 @end table
7903
7904 Note: using a DEF file disables the default auto-export behavior,
7905 unless the @samp{--export-all-symbols} command line option is used.
7906 If, however, you are trying to rename symbols, then you should list
7907 @emph{all} desired exports in the DEF file, including the symbols
7908 that are not being renamed, and do @emph{not} use the
7909 @samp{--export-all-symbols} option.  If you list only the
7910 renamed symbols in the DEF file, and use @samp{--export-all-symbols}
7911 to handle the other symbols, then the both the new names @emph{and}
7912 the original names for the renamed symbols will be exported.
7913 In effect, you'd be aliasing those symbols, not renaming them,
7914 which is probably not what you wanted.
7915
7916 @cindex weak externals
7917 @item weak externals
7918 The Windows object format, PE, specifies a form of weak symbols called
7919 weak externals.  When a weak symbol is linked and the symbol is not
7920 defined, the weak symbol becomes an alias for some other symbol.  There
7921 are three variants of weak externals:
7922 @itemize
7923 @item Definition is searched for in objects and libraries, historically
7924 called lazy externals.
7925 @item Definition is searched for only in other objects, not in libraries.
7926 This form is not presently implemented.
7927 @item No search; the symbol is an alias.  This form is not presently
7928 implemented.
7929 @end itemize
7930 As a GNU extension, weak symbols that do not specify an alternate symbol
7931 are supported.  If the symbol is undefined when linking, the symbol
7932 uses a default value.
7933
7934 @cindex aligned common symbols
7935 @item aligned common symbols
7936 As a GNU extension to the PE file format, it is possible to specify the
7937 desired alignment for a common symbol.  This information is conveyed from
7938 the assembler or compiler to the linker by means of GNU-specific commands
7939 carried in the object file's @samp{.drectve} section, which are recognized
7940 by @command{ld} and respected when laying out the common symbols.  Native
7941 tools will be able to process object files employing this GNU extension,
7942 but will fail to respect the alignment instructions, and may issue noisy
7943 warnings about unknown linker directives.
7944
7945 @end table
7946
7947 @ifclear GENERIC
7948 @lowersections
7949 @end ifclear
7950 @end ifset
7951
7952 @ifset XTENSA
7953 @ifclear GENERIC
7954 @raisesections
7955 @end ifclear
7956
7957 @node Xtensa
7958 @section @code{ld} and Xtensa Processors
7959
7960 @cindex Xtensa processors
7961 The default @command{ld} behavior for Xtensa processors is to interpret
7962 @code{SECTIONS} commands so that lists of explicitly named sections in a
7963 specification with a wildcard file will be interleaved when necessary to
7964 keep literal pools within the range of PC-relative load offsets.  For
7965 example, with the command:
7966
7967 @smallexample
7968 SECTIONS
7969 @{
7970   .text : @{
7971     *(.literal .text)
7972   @}
7973 @}
7974 @end smallexample
7975
7976 @noindent
7977 @command{ld} may interleave some of the @code{.literal}
7978 and @code{.text} sections from different object files to ensure that the
7979 literal pools are within the range of PC-relative load offsets.  A valid
7980 interleaving might place the @code{.literal} sections from an initial
7981 group of files followed by the @code{.text} sections of that group of
7982 files.  Then, the @code{.literal} sections from the rest of the files
7983 and the @code{.text} sections from the rest of the files would follow.
7984
7985 @cindex @option{--relax} on Xtensa
7986 @cindex relaxing on Xtensa
7987 Relaxation is enabled by default for the Xtensa version of @command{ld} and
7988 provides two important link-time optimizations.  The first optimization
7989 is to combine identical literal values to reduce code size.  A redundant
7990 literal will be removed and all the @code{L32R} instructions that use it
7991 will be changed to reference an identical literal, as long as the
7992 location of the replacement literal is within the offset range of all
7993 the @code{L32R} instructions.  The second optimization is to remove
7994 unnecessary overhead from assembler-generated ``longcall'' sequences of
7995 @code{L32R}/@code{CALLX@var{n}} when the target functions are within
7996 range of direct @code{CALL@var{n}} instructions.
7997
7998 For each of these cases where an indirect call sequence can be optimized
7999 to a direct call, the linker will change the @code{CALLX@var{n}}
8000 instruction to a @code{CALL@var{n}} instruction, remove the @code{L32R}
8001 instruction, and remove the literal referenced by the @code{L32R}
8002 instruction if it is not used for anything else.  Removing the
8003 @code{L32R} instruction always reduces code size but can potentially
8004 hurt performance by changing the alignment of subsequent branch targets.
8005 By default, the linker will always preserve alignments, either by
8006 switching some instructions between 24-bit encodings and the equivalent
8007 density instructions or by inserting a no-op in place of the @code{L32R}
8008 instruction that was removed.  If code size is more important than
8009 performance, the @option{--size-opt} option can be used to prevent the
8010 linker from widening density instructions or inserting no-ops, except in
8011 a few cases where no-ops are required for correctness.
8012
8013 The following Xtensa-specific command-line options can be used to
8014 control the linker:
8015
8016 @cindex Xtensa options
8017 @table @option
8018 @item --size-opt
8019 When optimizing indirect calls to direct calls, optimize for code size
8020 more than performance.  With this option, the linker will not insert
8021 no-ops or widen density instructions to preserve branch target
8022 alignment.  There may still be some cases where no-ops are required to
8023 preserve the correctness of the code.
8024 @end table
8025
8026 @ifclear GENERIC
8027 @lowersections
8028 @end ifclear
8029 @end ifset
8030
8031 @ifclear SingleFormat
8032 @node BFD
8033 @chapter BFD
8034
8035 @cindex back end
8036 @cindex object file management
8037 @cindex object formats available
8038 @kindex objdump -i
8039 The linker accesses object and archive files using the BFD libraries.
8040 These libraries allow the linker to use the same routines to operate on
8041 object files whatever the object file format.  A different object file
8042 format can be supported simply by creating a new BFD back end and adding
8043 it to the library.  To conserve runtime memory, however, the linker and
8044 associated tools are usually configured to support only a subset of the
8045 object file formats available.  You can use @code{objdump -i}
8046 (@pxref{objdump,,objdump,binutils.info,The GNU Binary Utilities}) to
8047 list all the formats available for your configuration.
8048
8049 @cindex BFD requirements
8050 @cindex requirements for BFD
8051 As with most implementations, BFD is a compromise between
8052 several conflicting requirements. The major factor influencing
8053 BFD design was efficiency: any time used converting between
8054 formats is time which would not have been spent had BFD not
8055 been involved. This is partly offset by abstraction payback; since
8056 BFD simplifies applications and back ends, more time and care
8057 may be spent optimizing algorithms for a greater speed.
8058
8059 One minor artifact of the BFD solution which you should bear in
8060 mind is the potential for information loss.  There are two places where
8061 useful information can be lost using the BFD mechanism: during
8062 conversion and during output. @xref{BFD information loss}.
8063
8064 @menu
8065 * BFD outline::                 How it works: an outline of BFD
8066 @end menu
8067
8068 @node BFD outline
8069 @section How It Works: An Outline of BFD
8070 @cindex opening object files
8071 @include bfdsumm.texi
8072 @end ifclear
8073
8074 @node Reporting Bugs
8075 @chapter Reporting Bugs
8076 @cindex bugs in @command{ld}
8077 @cindex reporting bugs in @command{ld}
8078
8079 Your bug reports play an essential role in making @command{ld} reliable.
8080
8081 Reporting a bug may help you by bringing a solution to your problem, or
8082 it may not.  But in any case the principal function of a bug report is
8083 to help the entire community by making the next version of @command{ld}
8084 work better.  Bug reports are your contribution to the maintenance of
8085 @command{ld}.
8086
8087 In order for a bug report to serve its purpose, you must include the
8088 information that enables us to fix the bug.
8089
8090 @menu
8091 * Bug Criteria::                Have you found a bug?
8092 * Bug Reporting::               How to report bugs
8093 @end menu
8094
8095 @node Bug Criteria
8096 @section Have You Found a Bug?
8097 @cindex bug criteria
8098
8099 If you are not sure whether you have found a bug, here are some guidelines:
8100
8101 @itemize @bullet
8102 @cindex fatal signal
8103 @cindex linker crash
8104 @cindex crash of linker
8105 @item
8106 If the linker gets a fatal signal, for any input whatever, that is a
8107 @command{ld} bug.  Reliable linkers never crash.
8108
8109 @cindex error on valid input
8110 @item
8111 If @command{ld} produces an error message for valid input, that is a bug.
8112
8113 @cindex invalid input
8114 @item
8115 If @command{ld} does not produce an error message for invalid input, that
8116 may be a bug.  In the general case, the linker can not verify that
8117 object files are correct.
8118
8119 @item
8120 If you are an experienced user of linkers, your suggestions for
8121 improvement of @command{ld} are welcome in any case.
8122 @end itemize
8123
8124 @node Bug Reporting
8125 @section How to Report Bugs
8126 @cindex bug reports
8127 @cindex @command{ld} bugs, reporting
8128
8129 A number of companies and individuals offer support for @sc{gnu}
8130 products.  If you obtained @command{ld} from a support organization, we
8131 recommend you contact that organization first.
8132
8133 You can find contact information for many support companies and
8134 individuals in the file @file{etc/SERVICE} in the @sc{gnu} Emacs
8135 distribution.
8136
8137 @ifset BUGURL
8138 Otherwise, send bug reports for @command{ld} to
8139 @value{BUGURL}.
8140 @end ifset
8141
8142 The fundamental principle of reporting bugs usefully is this:
8143 @strong{report all the facts}.  If you are not sure whether to state a
8144 fact or leave it out, state it!
8145
8146 Often people omit facts because they think they know what causes the
8147 problem and assume that some details do not matter.  Thus, you might
8148 assume that the name of a symbol you use in an example does not
8149 matter.  Well, probably it does not, but one cannot be sure.  Perhaps
8150 the bug is a stray memory reference which happens to fetch from the
8151 location where that name is stored in memory; perhaps, if the name
8152 were different, the contents of that location would fool the linker
8153 into doing the right thing despite the bug.  Play it safe and give a
8154 specific, complete example.  That is the easiest thing for you to do,
8155 and the most helpful.
8156
8157 Keep in mind that the purpose of a bug report is to enable us to fix
8158 the bug if it is new to us.  Therefore, always write your bug reports
8159 on the assumption that the bug has not been reported previously.
8160
8161 Sometimes people give a few sketchy facts and ask, ``Does this ring a
8162 bell?''  This cannot help us fix a bug, so it is basically useless.  We
8163 respond by asking for enough details to enable us to investigate.
8164 You might as well expedite matters by sending them to begin with.
8165
8166 To enable us to fix the bug, you should include all these things:
8167
8168 @itemize @bullet
8169 @item
8170 The version of @command{ld}.  @command{ld} announces it if you start it with
8171 the @samp{--version} argument.
8172
8173 Without this, we will not know whether there is any point in looking for
8174 the bug in the current version of @command{ld}.
8175
8176 @item
8177 Any patches you may have applied to the @command{ld} source, including any
8178 patches made to the @code{BFD} library.
8179
8180 @item
8181 The type of machine you are using, and the operating system name and
8182 version number.
8183
8184 @item
8185 What compiler (and its version) was used to compile @command{ld}---e.g.
8186 ``@code{gcc-2.7}''.
8187
8188 @item
8189 The command arguments you gave the linker to link your example and
8190 observe the bug.  To guarantee you will not omit something important,
8191 list them all.  A copy of the Makefile (or the output from make) is
8192 sufficient.
8193
8194 If we were to try to guess the arguments, we would probably guess wrong
8195 and then we might not encounter the bug.
8196
8197 @item
8198 A complete input file, or set of input files, that will reproduce the
8199 bug.  It is generally most helpful to send the actual object files
8200 provided that they are reasonably small.  Say no more than 10K.  For
8201 bigger files you can either make them available by FTP or HTTP or else
8202 state that you are willing to send the object file(s) to whomever
8203 requests them.  (Note - your email will be going to a mailing list, so
8204 we do not want to clog it up with large attachments).  But small
8205 attachments are best.
8206
8207 If the source files were assembled using @code{gas} or compiled using
8208 @code{gcc}, then it may be OK to send the source files rather than the
8209 object files.  In this case, be sure to say exactly what version of
8210 @code{gas} or @code{gcc} was used to produce the object files.  Also say
8211 how @code{gas} or @code{gcc} were configured.
8212
8213 @item
8214 A description of what behavior you observe that you believe is
8215 incorrect.  For example, ``It gets a fatal signal.''
8216
8217 Of course, if the bug is that @command{ld} gets a fatal signal, then we
8218 will certainly notice it.  But if the bug is incorrect output, we might
8219 not notice unless it is glaringly wrong.  You might as well not give us
8220 a chance to make a mistake.
8221
8222 Even if the problem you experience is a fatal signal, you should still
8223 say so explicitly.  Suppose something strange is going on, such as, your
8224 copy of @command{ld} is out of sync, or you have encountered a bug in the
8225 C library on your system.  (This has happened!)  Your copy might crash
8226 and ours would not.  If you told us to expect a crash, then when ours
8227 fails to crash, we would know that the bug was not happening for us.  If
8228 you had not told us to expect a crash, then we would not be able to draw
8229 any conclusion from our observations.
8230
8231 @item
8232 If you wish to suggest changes to the @command{ld} source, send us context
8233 diffs, as generated by @code{diff} with the @samp{-u}, @samp{-c}, or
8234 @samp{-p} option.  Always send diffs from the old file to the new file.
8235 If you even discuss something in the @command{ld} source, refer to it by
8236 context, not by line number.
8237
8238 The line numbers in our development sources will not match those in your
8239 sources.  Your line numbers would convey no useful information to us.
8240 @end itemize
8241
8242 Here are some things that are not necessary:
8243
8244 @itemize @bullet
8245 @item
8246 A description of the envelope of the bug.
8247
8248 Often people who encounter a bug spend a lot of time investigating
8249 which changes to the input file will make the bug go away and which
8250 changes will not affect it.
8251
8252 This is often time consuming and not very useful, because the way we
8253 will find the bug is by running a single example under the debugger
8254 with breakpoints, not by pure deduction from a series of examples.
8255 We recommend that you save your time for something else.
8256
8257 Of course, if you can find a simpler example to report @emph{instead}
8258 of the original one, that is a convenience for us.  Errors in the
8259 output will be easier to spot, running under the debugger will take
8260 less time, and so on.
8261
8262 However, simplification is not vital; if you do not want to do this,
8263 report the bug anyway and send us the entire test case you used.
8264
8265 @item
8266 A patch for the bug.
8267
8268 A patch for the bug does help us if it is a good one.  But do not omit
8269 the necessary information, such as the test case, on the assumption that
8270 a patch is all we need.  We might see problems with your patch and decide
8271 to fix the problem another way, or we might not understand it at all.
8272
8273 Sometimes with a program as complicated as @command{ld} it is very hard to
8274 construct an example that will make the program follow a certain path
8275 through the code.  If you do not send us the example, we will not be
8276 able to construct one, so we will not be able to verify that the bug is
8277 fixed.
8278
8279 And if we cannot understand what bug you are trying to fix, or why your
8280 patch should be an improvement, we will not install it.  A test case will
8281 help us to understand.
8282
8283 @item
8284 A guess about what the bug is or what it depends on.
8285
8286 Such guesses are usually wrong.  Even we cannot guess right about such
8287 things without first using the debugger to find the facts.
8288 @end itemize
8289
8290 @node MRI
8291 @appendix MRI Compatible Script Files
8292 @cindex MRI compatibility
8293 To aid users making the transition to @sc{gnu} @command{ld} from the MRI
8294 linker, @command{ld} can use MRI compatible linker scripts as an
8295 alternative to the more general-purpose linker scripting language
8296 described in @ref{Scripts}.  MRI compatible linker scripts have a much
8297 simpler command set than the scripting language otherwise used with
8298 @command{ld}.  @sc{gnu} @command{ld} supports the most commonly used MRI
8299 linker commands; these commands are described here.
8300
8301 In general, MRI scripts aren't of much use with the @code{a.out} object
8302 file format, since it only has three sections and MRI scripts lack some
8303 features to make use of them.
8304
8305 You can specify a file containing an MRI-compatible script using the
8306 @samp{-c} command-line option.
8307
8308 Each command in an MRI-compatible script occupies its own line; each
8309 command line starts with the keyword that identifies the command (though
8310 blank lines are also allowed for punctuation).  If a line of an
8311 MRI-compatible script begins with an unrecognized keyword, @command{ld}
8312 issues a warning message, but continues processing the script.
8313
8314 Lines beginning with @samp{*} are comments.
8315
8316 You can write these commands using all upper-case letters, or all
8317 lower case; for example, @samp{chip} is the same as @samp{CHIP}.
8318 The following list shows only the upper-case form of each command.
8319
8320 @table @code
8321 @cindex @code{ABSOLUTE} (MRI)
8322 @item ABSOLUTE @var{secname}
8323 @itemx ABSOLUTE @var{secname}, @var{secname}, @dots{} @var{secname}
8324 Normally, @command{ld} includes in the output file all sections from all
8325 the input files.  However, in an MRI-compatible script, you can use the
8326 @code{ABSOLUTE} command to restrict the sections that will be present in
8327 your output program.  If the @code{ABSOLUTE} command is used at all in a
8328 script, then only the sections named explicitly in @code{ABSOLUTE}
8329 commands will appear in the linker output.  You can still use other
8330 input sections (whatever you select on the command line, or using
8331 @code{LOAD}) to resolve addresses in the output file.
8332
8333 @cindex @code{ALIAS} (MRI)
8334 @item ALIAS @var{out-secname}, @var{in-secname}
8335 Use this command to place the data from input section @var{in-secname}
8336 in a section called @var{out-secname} in the linker output file.
8337
8338 @var{in-secname} may be an integer.
8339
8340 @cindex @code{ALIGN} (MRI)
8341 @item ALIGN @var{secname} = @var{expression}
8342 Align the section called @var{secname} to @var{expression}.  The
8343 @var{expression} should be a power of two.
8344
8345 @cindex @code{BASE} (MRI)
8346 @item BASE @var{expression}
8347 Use the value of @var{expression} as the lowest address (other than
8348 absolute addresses) in the output file.
8349
8350 @cindex @code{CHIP} (MRI)
8351 @item CHIP @var{expression}
8352 @itemx CHIP @var{expression}, @var{expression}
8353 This command does nothing; it is accepted only for compatibility.
8354
8355 @cindex @code{END} (MRI)
8356 @item END
8357 This command does nothing whatever; it's only accepted for compatibility.
8358
8359 @cindex @code{FORMAT} (MRI)
8360 @item FORMAT @var{output-format}
8361 Similar to the @code{OUTPUT_FORMAT} command in the more general linker
8362 language, but restricted to one of these output formats:
8363
8364 @enumerate
8365 @item
8366 S-records, if @var{output-format} is @samp{S}
8367
8368 @item
8369 IEEE, if @var{output-format} is @samp{IEEE}
8370
8371 @item
8372 COFF (the @samp{coff-m68k} variant in BFD), if @var{output-format} is
8373 @samp{COFF}
8374 @end enumerate
8375
8376 @cindex @code{LIST} (MRI)
8377 @item LIST @var{anything}@dots{}
8378 Print (to the standard output file) a link map, as produced by the
8379 @command{ld} command-line option @samp{-M}.
8380
8381 The keyword @code{LIST} may be followed by anything on the
8382 same line, with no change in its effect.
8383
8384 @cindex @code{LOAD} (MRI)
8385 @item LOAD @var{filename}
8386 @itemx LOAD @var{filename}, @var{filename}, @dots{} @var{filename}
8387 Include one or more object file @var{filename} in the link; this has the
8388 same effect as specifying @var{filename} directly on the @command{ld}
8389 command line.
8390
8391 @cindex @code{NAME} (MRI)
8392 @item NAME @var{output-name}
8393 @var{output-name} is the name for the program produced by @command{ld}; the
8394 MRI-compatible command @code{NAME} is equivalent to the command-line
8395 option @samp{-o} or the general script language command @code{OUTPUT}.
8396
8397 @cindex @code{ORDER} (MRI)
8398 @item ORDER @var{secname}, @var{secname}, @dots{} @var{secname}
8399 @itemx ORDER @var{secname} @var{secname} @var{secname}
8400 Normally, @command{ld} orders the sections in its output file in the
8401 order in which they first appear in the input files.  In an MRI-compatible
8402 script, you can override this ordering with the @code{ORDER} command.  The
8403 sections you list with @code{ORDER} will appear first in your output
8404 file, in the order specified.
8405
8406 @cindex @code{PUBLIC} (MRI)
8407 @item PUBLIC @var{name}=@var{expression}
8408 @itemx PUBLIC @var{name},@var{expression}
8409 @itemx PUBLIC @var{name} @var{expression}
8410 Supply a value (@var{expression}) for external symbol
8411 @var{name} used in the linker input files.
8412
8413 @cindex @code{SECT} (MRI)
8414 @item SECT @var{secname}, @var{expression}
8415 @itemx SECT @var{secname}=@var{expression}
8416 @itemx SECT @var{secname} @var{expression}
8417 You can use any of these three forms of the @code{SECT} command to
8418 specify the start address (@var{expression}) for section @var{secname}.
8419 If you have more than one @code{SECT} statement for the same
8420 @var{secname}, only the @emph{first} sets the start address.
8421 @end table
8422
8423 @node GNU Free Documentation License
8424 @appendix GNU Free Documentation License
8425 @include fdl.texi
8426
8427 @node LD Index
8428 @unnumbered LD Index
8429
8430 @printindex cp
8431
8432 @tex
8433 % I think something like @@colophon should be in texinfo.  In the
8434 % meantime:
8435 \long\def\colophon{\hbox to0pt{}\vfill
8436 \centerline{The body of this manual is set in}
8437 \centerline{\fontname\tenrm,}
8438 \centerline{with headings in {\bf\fontname\tenbf}}
8439 \centerline{and examples in {\tt\fontname\tentt}.}
8440 \centerline{{\it\fontname\tenit\/} and}
8441 \centerline{{\sl\fontname\tensl\/}}
8442 \centerline{are used for emphasis.}\vfill}
8443 \page\colophon
8444 % Blame: doc@@cygnus.com, 28mar91.
8445 @end tex
8446
8447 @bye