drm/i915: Update to Linux 3.9.11
[dragonfly.git] / sys / dev / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include "i915_drv.h"
29 #include "intel_drv.h"
30 #include <linux/module.h>
31 #include <machine/clock.h>
32
33 #define FORCEWAKE_ACK_TIMEOUT_MS 2
34
35 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
36  * framebuffer contents in-memory, aiming at reducing the required bandwidth
37  * during in-memory transfers and, therefore, reduce the power packet.
38  *
39  * The benefits of FBC are mostly visible with solid backgrounds and
40  * variation-less patterns.
41  *
42  * FBC-related functionality can be enabled by the means of the
43  * i915.i915_enable_fbc parameter
44  */
45
46 static bool intel_crtc_active(struct drm_crtc *crtc)
47 {
48         /* Be paranoid as we can arrive here with only partial
49          * state retrieved from the hardware during setup.
50          */
51         return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
52 }
53
54 static void i8xx_disable_fbc(struct drm_device *dev)
55 {
56         struct drm_i915_private *dev_priv = dev->dev_private;
57         u32 fbc_ctl;
58
59         /* Disable compression */
60         fbc_ctl = I915_READ(FBC_CONTROL);
61         if ((fbc_ctl & FBC_CTL_EN) == 0)
62                 return;
63
64         fbc_ctl &= ~FBC_CTL_EN;
65         I915_WRITE(FBC_CONTROL, fbc_ctl);
66
67         /* Wait for compressing bit to clear */
68         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
69                 DRM_DEBUG_KMS("FBC idle timed out\n");
70                 return;
71         }
72
73         DRM_DEBUG_KMS("disabled FBC\n");
74 }
75
76 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
77 {
78         struct drm_device *dev = crtc->dev;
79         struct drm_i915_private *dev_priv = dev->dev_private;
80         struct drm_framebuffer *fb = crtc->fb;
81         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
82         struct drm_i915_gem_object *obj = intel_fb->obj;
83         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
84         int cfb_pitch;
85         int plane, i;
86         u32 fbc_ctl, fbc_ctl2;
87
88         cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
89         if (fb->pitches[0] < cfb_pitch)
90                 cfb_pitch = fb->pitches[0];
91
92         /* FBC_CTL wants 64B units */
93         cfb_pitch = (cfb_pitch / 64) - 1;
94         plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
95
96         /* Clear old tags */
97         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
98                 I915_WRITE(FBC_TAG + (i * 4), 0);
99
100         /* Set it up... */
101         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
102         fbc_ctl2 |= plane;
103         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
104         I915_WRITE(FBC_FENCE_OFF, crtc->y);
105
106         /* enable it... */
107         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
108         if (IS_I945GM(dev))
109                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
110         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
111         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
112         fbc_ctl |= obj->fence_reg;
113         I915_WRITE(FBC_CONTROL, fbc_ctl);
114
115         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
116                       cfb_pitch, crtc->y, intel_crtc->plane);
117 }
118
119 static bool i8xx_fbc_enabled(struct drm_device *dev)
120 {
121         struct drm_i915_private *dev_priv = dev->dev_private;
122
123         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
124 }
125
126 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
127 {
128         struct drm_device *dev = crtc->dev;
129         struct drm_i915_private *dev_priv = dev->dev_private;
130         struct drm_framebuffer *fb = crtc->fb;
131         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
132         struct drm_i915_gem_object *obj = intel_fb->obj;
133         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
134         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
135         unsigned long stall_watermark = 200;
136         u32 dpfc_ctl;
137
138         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
139         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
140         I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
141
142         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
143                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
144                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
145         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
146
147         /* enable it... */
148         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
149
150         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
151 }
152
153 static void g4x_disable_fbc(struct drm_device *dev)
154 {
155         struct drm_i915_private *dev_priv = dev->dev_private;
156         u32 dpfc_ctl;
157
158         /* Disable compression */
159         dpfc_ctl = I915_READ(DPFC_CONTROL);
160         if (dpfc_ctl & DPFC_CTL_EN) {
161                 dpfc_ctl &= ~DPFC_CTL_EN;
162                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
163
164                 DRM_DEBUG_KMS("disabled FBC\n");
165         }
166 }
167
168 static bool g4x_fbc_enabled(struct drm_device *dev)
169 {
170         struct drm_i915_private *dev_priv = dev->dev_private;
171
172         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
173 }
174
175 static void sandybridge_blit_fbc_update(struct drm_device *dev)
176 {
177         struct drm_i915_private *dev_priv = dev->dev_private;
178         u32 blt_ecoskpd;
179
180         /* Make sure blitter notifies FBC of writes */
181         gen6_gt_force_wake_get(dev_priv);
182         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
183         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
184                 GEN6_BLITTER_LOCK_SHIFT;
185         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
186         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
187         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
188         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
189                          GEN6_BLITTER_LOCK_SHIFT);
190         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
191         POSTING_READ(GEN6_BLITTER_ECOSKPD);
192         gen6_gt_force_wake_put(dev_priv);
193 }
194
195 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
196 {
197         struct drm_device *dev = crtc->dev;
198         struct drm_i915_private *dev_priv = dev->dev_private;
199         struct drm_framebuffer *fb = crtc->fb;
200         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
201         struct drm_i915_gem_object *obj = intel_fb->obj;
202         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
203         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
204         unsigned long stall_watermark = 200;
205         u32 dpfc_ctl;
206
207         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
208         dpfc_ctl &= DPFC_RESERVED;
209         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
210         /* Set persistent mode for front-buffer rendering, ala X. */
211         dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
212         dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
213         I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
214
215         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
216                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
217                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
218         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
219         I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
220         /* enable it... */
221         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
222
223         if (IS_GEN6(dev)) {
224                 I915_WRITE(SNB_DPFC_CTL_SA,
225                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
226                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
227                 sandybridge_blit_fbc_update(dev);
228         }
229
230         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
231 }
232
233 static void ironlake_disable_fbc(struct drm_device *dev)
234 {
235         struct drm_i915_private *dev_priv = dev->dev_private;
236         u32 dpfc_ctl;
237
238         /* Disable compression */
239         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
240         if (dpfc_ctl & DPFC_CTL_EN) {
241                 dpfc_ctl &= ~DPFC_CTL_EN;
242                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
243
244                 DRM_DEBUG_KMS("disabled FBC\n");
245         }
246 }
247
248 static bool ironlake_fbc_enabled(struct drm_device *dev)
249 {
250         struct drm_i915_private *dev_priv = dev->dev_private;
251
252         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
253 }
254
255 bool intel_fbc_enabled(struct drm_device *dev)
256 {
257         struct drm_i915_private *dev_priv = dev->dev_private;
258
259         if (!dev_priv->display.fbc_enabled)
260                 return false;
261
262         return dev_priv->display.fbc_enabled(dev);
263 }
264
265 static void intel_fbc_work_fn(struct work_struct *__work)
266 {
267         struct intel_fbc_work *work =
268                 container_of(to_delayed_work(__work),
269                              struct intel_fbc_work, work);
270         struct drm_device *dev = work->crtc->dev;
271         struct drm_i915_private *dev_priv = dev->dev_private;
272
273         mutex_lock(&dev->struct_mutex);
274         if (work == dev_priv->fbc_work) {
275                 /* Double check that we haven't switched fb without cancelling
276                  * the prior work.
277                  */
278                 if (work->crtc->fb == work->fb) {
279                         dev_priv->display.enable_fbc(work->crtc,
280                                                      work->interval);
281
282                         dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
283                         dev_priv->cfb_fb = work->crtc->fb->base.id;
284                         dev_priv->cfb_y = work->crtc->y;
285                 }
286
287                 dev_priv->fbc_work = NULL;
288         }
289         mutex_unlock(&dev->struct_mutex);
290
291         kfree(work, M_DRM);
292 }
293
294 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
295 {
296         if (dev_priv->fbc_work == NULL)
297                 return;
298
299         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
300
301         /* Synchronisation is provided by struct_mutex and checking of
302          * dev_priv->fbc_work, so we can perform the cancellation
303          * entirely asynchronously.
304          */
305         if (cancel_delayed_work(&dev_priv->fbc_work->work))
306                 /* tasklet was killed before being run, clean up */
307                 kfree(dev_priv->fbc_work, M_DRM);
308
309         /* Mark the work as no longer wanted so that if it does
310          * wake-up (because the work was already running and waiting
311          * for our mutex), it will discover that is no longer
312          * necessary to run.
313          */
314         dev_priv->fbc_work = NULL;
315 }
316
317 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
318 {
319         struct intel_fbc_work *work;
320         struct drm_device *dev = crtc->dev;
321         struct drm_i915_private *dev_priv = dev->dev_private;
322
323         if (!dev_priv->display.enable_fbc)
324                 return;
325
326         intel_cancel_fbc_work(dev_priv);
327
328         work = kmalloc(sizeof(*work), M_DRM, M_WAITOK | M_ZERO);
329         if (work == NULL) {
330                 dev_priv->display.enable_fbc(crtc, interval);
331                 return;
332         }
333
334         work->crtc = crtc;
335         work->fb = crtc->fb;
336         work->interval = interval;
337         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
338
339         dev_priv->fbc_work = work;
340
341         DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
342
343         /* Delay the actual enabling to let pageflipping cease and the
344          * display to settle before starting the compression. Note that
345          * this delay also serves a second purpose: it allows for a
346          * vblank to pass after disabling the FBC before we attempt
347          * to modify the control registers.
348          *
349          * A more complicated solution would involve tracking vblanks
350          * following the termination of the page-flipping sequence
351          * and indeed performing the enable as a co-routine and not
352          * waiting synchronously upon the vblank.
353          */
354         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
355 }
356
357 void intel_disable_fbc(struct drm_device *dev)
358 {
359         struct drm_i915_private *dev_priv = dev->dev_private;
360
361         intel_cancel_fbc_work(dev_priv);
362
363         if (!dev_priv->display.disable_fbc)
364                 return;
365
366         dev_priv->display.disable_fbc(dev);
367         dev_priv->cfb_plane = -1;
368 }
369
370 /**
371  * intel_update_fbc - enable/disable FBC as needed
372  * @dev: the drm_device
373  *
374  * Set up the framebuffer compression hardware at mode set time.  We
375  * enable it if possible:
376  *   - plane A only (on pre-965)
377  *   - no pixel mulitply/line duplication
378  *   - no alpha buffer discard
379  *   - no dual wide
380  *   - framebuffer <= 2048 in width, 1536 in height
381  *
382  * We can't assume that any compression will take place (worst case),
383  * so the compressed buffer has to be the same size as the uncompressed
384  * one.  It also must reside (along with the line length buffer) in
385  * stolen memory.
386  *
387  * We need to enable/disable FBC on a global basis.
388  */
389 void intel_update_fbc(struct drm_device *dev)
390 {
391         struct drm_i915_private *dev_priv = dev->dev_private;
392         struct drm_crtc *crtc = NULL, *tmp_crtc;
393         struct intel_crtc *intel_crtc;
394         struct drm_framebuffer *fb;
395         struct intel_framebuffer *intel_fb;
396         struct drm_i915_gem_object *obj;
397         int enable_fbc;
398
399         if (!i915_powersave)
400                 return;
401
402         if (!I915_HAS_FBC(dev))
403                 return;
404
405         /*
406          * If FBC is already on, we just have to verify that we can
407          * keep it that way...
408          * Need to disable if:
409          *   - more than one pipe is active
410          *   - changing FBC params (stride, fence, mode)
411          *   - new fb is too large to fit in compressed buffer
412          *   - going to an unsupported config (interlace, pixel multiply, etc.)
413          */
414         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
415                 if (intel_crtc_active(tmp_crtc) &&
416                     !to_intel_crtc(tmp_crtc)->primary_disabled) {
417                         if (crtc) {
418                                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
419                                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
420                                 goto out_disable;
421                         }
422                         crtc = tmp_crtc;
423                 }
424         }
425
426         if (!crtc || crtc->fb == NULL) {
427                 DRM_DEBUG_KMS("no output, disabling\n");
428                 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
429                 goto out_disable;
430         }
431
432         intel_crtc = to_intel_crtc(crtc);
433         fb = crtc->fb;
434         intel_fb = to_intel_framebuffer(fb);
435         obj = intel_fb->obj;
436
437         enable_fbc = i915_enable_fbc;
438         if (enable_fbc < 0) {
439                 DRM_DEBUG_KMS("fbc set to per-chip default\n");
440                 enable_fbc = 1;
441                 if (INTEL_INFO(dev)->gen <= 6)
442                         enable_fbc = 0;
443         }
444         if (!enable_fbc) {
445                 DRM_DEBUG_KMS("fbc disabled per module param\n");
446                 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
447                 goto out_disable;
448         }
449         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
450             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
451                 DRM_DEBUG_KMS("mode incompatible with compression, "
452                               "disabling\n");
453                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
454                 goto out_disable;
455         }
456         if ((crtc->mode.hdisplay > 2048) ||
457             (crtc->mode.vdisplay > 1536)) {
458                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
459                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
460                 goto out_disable;
461         }
462         if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
463                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
464                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
465                 goto out_disable;
466         }
467
468         /* The use of a CPU fence is mandatory in order to detect writes
469          * by the CPU to the scanout and trigger updates to the FBC.
470          */
471         if (obj->tiling_mode != I915_TILING_X ||
472             obj->fence_reg == I915_FENCE_REG_NONE) {
473                 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
474                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
475                 goto out_disable;
476         }
477
478 #ifdef DDB
479         /* If the kernel debugger is active, always disable compression */
480         if (db_active)
481                 goto out_disable;
482 #endif
483
484         if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
485                 DRM_INFO("not enough stolen space for compressed buffer (need %zd bytes), disabling\n", intel_fb->obj->base.size);
486                 DRM_INFO("hint: you may be able to increase stolen memory size in the BIOS to avoid this\n");
487                 DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
488                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
489                 goto out_disable;
490         }
491
492         /* If the scanout has not changed, don't modify the FBC settings.
493          * Note that we make the fundamental assumption that the fb->obj
494          * cannot be unpinned (and have its GTT offset and fence revoked)
495          * without first being decoupled from the scanout and FBC disabled.
496          */
497         if (dev_priv->cfb_plane == intel_crtc->plane &&
498             dev_priv->cfb_fb == fb->base.id &&
499             dev_priv->cfb_y == crtc->y)
500                 return;
501
502         if (intel_fbc_enabled(dev)) {
503                 /* We update FBC along two paths, after changing fb/crtc
504                  * configuration (modeswitching) and after page-flipping
505                  * finishes. For the latter, we know that not only did
506                  * we disable the FBC at the start of the page-flip
507                  * sequence, but also more than one vblank has passed.
508                  *
509                  * For the former case of modeswitching, it is possible
510                  * to switch between two FBC valid configurations
511                  * instantaneously so we do need to disable the FBC
512                  * before we can modify its control registers. We also
513                  * have to wait for the next vblank for that to take
514                  * effect. However, since we delay enabling FBC we can
515                  * assume that a vblank has passed since disabling and
516                  * that we can safely alter the registers in the deferred
517                  * callback.
518                  *
519                  * In the scenario that we go from a valid to invalid
520                  * and then back to valid FBC configuration we have
521                  * no strict enforcement that a vblank occurred since
522                  * disabling the FBC. However, along all current pipe
523                  * disabling paths we do need to wait for a vblank at
524                  * some point. And we wait before enabling FBC anyway.
525                  */
526                 DRM_DEBUG_KMS("disabling active FBC for update\n");
527                 intel_disable_fbc(dev);
528         }
529
530         intel_enable_fbc(crtc, 500);
531         return;
532
533 out_disable:
534         /* Multiple disables should be harmless */
535         if (intel_fbc_enabled(dev)) {
536                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
537                 intel_disable_fbc(dev);
538         }
539         i915_gem_stolen_cleanup_compression(dev);
540 }
541
542 static void i915_pineview_get_mem_freq(struct drm_device *dev)
543 {
544         drm_i915_private_t *dev_priv = dev->dev_private;
545         u32 tmp;
546
547         tmp = I915_READ(CLKCFG);
548
549         switch (tmp & CLKCFG_FSB_MASK) {
550         case CLKCFG_FSB_533:
551                 dev_priv->fsb_freq = 533; /* 133*4 */
552                 break;
553         case CLKCFG_FSB_800:
554                 dev_priv->fsb_freq = 800; /* 200*4 */
555                 break;
556         case CLKCFG_FSB_667:
557                 dev_priv->fsb_freq =  667; /* 167*4 */
558                 break;
559         case CLKCFG_FSB_400:
560                 dev_priv->fsb_freq = 400; /* 100*4 */
561                 break;
562         }
563
564         switch (tmp & CLKCFG_MEM_MASK) {
565         case CLKCFG_MEM_533:
566                 dev_priv->mem_freq = 533;
567                 break;
568         case CLKCFG_MEM_667:
569                 dev_priv->mem_freq = 667;
570                 break;
571         case CLKCFG_MEM_800:
572                 dev_priv->mem_freq = 800;
573                 break;
574         }
575
576         /* detect pineview DDR3 setting */
577         tmp = I915_READ(CSHRDDR3CTL);
578         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
579 }
580
581 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
582 {
583         drm_i915_private_t *dev_priv = dev->dev_private;
584         u16 ddrpll, csipll;
585
586         ddrpll = I915_READ16(DDRMPLL1);
587         csipll = I915_READ16(CSIPLL0);
588
589         switch (ddrpll & 0xff) {
590         case 0xc:
591                 dev_priv->mem_freq = 800;
592                 break;
593         case 0x10:
594                 dev_priv->mem_freq = 1066;
595                 break;
596         case 0x14:
597                 dev_priv->mem_freq = 1333;
598                 break;
599         case 0x18:
600                 dev_priv->mem_freq = 1600;
601                 break;
602         default:
603                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
604                                  ddrpll & 0xff);
605                 dev_priv->mem_freq = 0;
606                 break;
607         }
608
609         dev_priv->ips.r_t = dev_priv->mem_freq;
610
611         switch (csipll & 0x3ff) {
612         case 0x00c:
613                 dev_priv->fsb_freq = 3200;
614                 break;
615         case 0x00e:
616                 dev_priv->fsb_freq = 3733;
617                 break;
618         case 0x010:
619                 dev_priv->fsb_freq = 4266;
620                 break;
621         case 0x012:
622                 dev_priv->fsb_freq = 4800;
623                 break;
624         case 0x014:
625                 dev_priv->fsb_freq = 5333;
626                 break;
627         case 0x016:
628                 dev_priv->fsb_freq = 5866;
629                 break;
630         case 0x018:
631                 dev_priv->fsb_freq = 6400;
632                 break;
633         default:
634                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
635                                  csipll & 0x3ff);
636                 dev_priv->fsb_freq = 0;
637                 break;
638         }
639
640         if (dev_priv->fsb_freq == 3200) {
641                 dev_priv->ips.c_m = 0;
642         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
643                 dev_priv->ips.c_m = 1;
644         } else {
645                 dev_priv->ips.c_m = 2;
646         }
647 }
648
649 static const struct cxsr_latency cxsr_latency_table[] = {
650         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
651         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
652         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
653         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
654         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
655
656         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
657         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
658         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
659         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
660         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
661
662         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
663         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
664         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
665         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
666         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
667
668         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
669         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
670         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
671         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
672         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
673
674         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
675         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
676         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
677         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
678         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
679
680         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
681         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
682         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
683         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
684         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
685 };
686
687 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
688                                                          int is_ddr3,
689                                                          int fsb,
690                                                          int mem)
691 {
692         const struct cxsr_latency *latency;
693         int i;
694
695         if (fsb == 0 || mem == 0)
696                 return NULL;
697
698         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
699                 latency = &cxsr_latency_table[i];
700                 if (is_desktop == latency->is_desktop &&
701                     is_ddr3 == latency->is_ddr3 &&
702                     fsb == latency->fsb_freq && mem == latency->mem_freq)
703                         return latency;
704         }
705
706         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
707
708         return NULL;
709 }
710
711 static void pineview_disable_cxsr(struct drm_device *dev)
712 {
713         struct drm_i915_private *dev_priv = dev->dev_private;
714
715         /* deactivate cxsr */
716         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
717 }
718
719 /*
720  * Latency for FIFO fetches is dependent on several factors:
721  *   - memory configuration (speed, channels)
722  *   - chipset
723  *   - current MCH state
724  * It can be fairly high in some situations, so here we assume a fairly
725  * pessimal value.  It's a tradeoff between extra memory fetches (if we
726  * set this value too high, the FIFO will fetch frequently to stay full)
727  * and power consumption (set it too low to save power and we might see
728  * FIFO underruns and display "flicker").
729  *
730  * A value of 5us seems to be a good balance; safe for very low end
731  * platforms but not overly aggressive on lower latency configs.
732  */
733 static const int latency_ns = 5000;
734
735 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
736 {
737         struct drm_i915_private *dev_priv = dev->dev_private;
738         uint32_t dsparb = I915_READ(DSPARB);
739         int size;
740
741         size = dsparb & 0x7f;
742         if (plane)
743                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
744
745         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
746                       plane ? "B" : "A", size);
747
748         return size;
749 }
750
751 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
752 {
753         struct drm_i915_private *dev_priv = dev->dev_private;
754         uint32_t dsparb = I915_READ(DSPARB);
755         int size;
756
757         size = dsparb & 0x1ff;
758         if (plane)
759                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
760         size >>= 1; /* Convert to cachelines */
761
762         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
763                       plane ? "B" : "A", size);
764
765         return size;
766 }
767
768 static int i845_get_fifo_size(struct drm_device *dev, int plane)
769 {
770         struct drm_i915_private *dev_priv = dev->dev_private;
771         uint32_t dsparb = I915_READ(DSPARB);
772         int size;
773
774         size = dsparb & 0x7f;
775         size >>= 2; /* Convert to cachelines */
776
777         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
778                       plane ? "B" : "A",
779                       size);
780
781         return size;
782 }
783
784 static int i830_get_fifo_size(struct drm_device *dev, int plane)
785 {
786         struct drm_i915_private *dev_priv = dev->dev_private;
787         uint32_t dsparb = I915_READ(DSPARB);
788         int size;
789
790         size = dsparb & 0x7f;
791         size >>= 1; /* Convert to cachelines */
792
793         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
794                       plane ? "B" : "A", size);
795
796         return size;
797 }
798
799 /* Pineview has different values for various configs */
800 static const struct intel_watermark_params pineview_display_wm = {
801         PINEVIEW_DISPLAY_FIFO,
802         PINEVIEW_MAX_WM,
803         PINEVIEW_DFT_WM,
804         PINEVIEW_GUARD_WM,
805         PINEVIEW_FIFO_LINE_SIZE
806 };
807 static const struct intel_watermark_params pineview_display_hplloff_wm = {
808         PINEVIEW_DISPLAY_FIFO,
809         PINEVIEW_MAX_WM,
810         PINEVIEW_DFT_HPLLOFF_WM,
811         PINEVIEW_GUARD_WM,
812         PINEVIEW_FIFO_LINE_SIZE
813 };
814 static const struct intel_watermark_params pineview_cursor_wm = {
815         PINEVIEW_CURSOR_FIFO,
816         PINEVIEW_CURSOR_MAX_WM,
817         PINEVIEW_CURSOR_DFT_WM,
818         PINEVIEW_CURSOR_GUARD_WM,
819         PINEVIEW_FIFO_LINE_SIZE,
820 };
821 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
822         PINEVIEW_CURSOR_FIFO,
823         PINEVIEW_CURSOR_MAX_WM,
824         PINEVIEW_CURSOR_DFT_WM,
825         PINEVIEW_CURSOR_GUARD_WM,
826         PINEVIEW_FIFO_LINE_SIZE
827 };
828 static const struct intel_watermark_params g4x_wm_info = {
829         G4X_FIFO_SIZE,
830         G4X_MAX_WM,
831         G4X_MAX_WM,
832         2,
833         G4X_FIFO_LINE_SIZE,
834 };
835 static const struct intel_watermark_params g4x_cursor_wm_info = {
836         I965_CURSOR_FIFO,
837         I965_CURSOR_MAX_WM,
838         I965_CURSOR_DFT_WM,
839         2,
840         G4X_FIFO_LINE_SIZE,
841 };
842 static const struct intel_watermark_params valleyview_wm_info = {
843         VALLEYVIEW_FIFO_SIZE,
844         VALLEYVIEW_MAX_WM,
845         VALLEYVIEW_MAX_WM,
846         2,
847         G4X_FIFO_LINE_SIZE,
848 };
849 static const struct intel_watermark_params valleyview_cursor_wm_info = {
850         I965_CURSOR_FIFO,
851         VALLEYVIEW_CURSOR_MAX_WM,
852         I965_CURSOR_DFT_WM,
853         2,
854         G4X_FIFO_LINE_SIZE,
855 };
856 static const struct intel_watermark_params i965_cursor_wm_info = {
857         I965_CURSOR_FIFO,
858         I965_CURSOR_MAX_WM,
859         I965_CURSOR_DFT_WM,
860         2,
861         I915_FIFO_LINE_SIZE,
862 };
863 static const struct intel_watermark_params i945_wm_info = {
864         I945_FIFO_SIZE,
865         I915_MAX_WM,
866         1,
867         2,
868         I915_FIFO_LINE_SIZE
869 };
870 static const struct intel_watermark_params i915_wm_info = {
871         I915_FIFO_SIZE,
872         I915_MAX_WM,
873         1,
874         2,
875         I915_FIFO_LINE_SIZE
876 };
877 static const struct intel_watermark_params i855_wm_info = {
878         I855GM_FIFO_SIZE,
879         I915_MAX_WM,
880         1,
881         2,
882         I830_FIFO_LINE_SIZE
883 };
884 static const struct intel_watermark_params i830_wm_info = {
885         I830_FIFO_SIZE,
886         I915_MAX_WM,
887         1,
888         2,
889         I830_FIFO_LINE_SIZE
890 };
891
892 static const struct intel_watermark_params ironlake_display_wm_info = {
893         ILK_DISPLAY_FIFO,
894         ILK_DISPLAY_MAXWM,
895         ILK_DISPLAY_DFTWM,
896         2,
897         ILK_FIFO_LINE_SIZE
898 };
899 static const struct intel_watermark_params ironlake_cursor_wm_info = {
900         ILK_CURSOR_FIFO,
901         ILK_CURSOR_MAXWM,
902         ILK_CURSOR_DFTWM,
903         2,
904         ILK_FIFO_LINE_SIZE
905 };
906 static const struct intel_watermark_params ironlake_display_srwm_info = {
907         ILK_DISPLAY_SR_FIFO,
908         ILK_DISPLAY_MAX_SRWM,
909         ILK_DISPLAY_DFT_SRWM,
910         2,
911         ILK_FIFO_LINE_SIZE
912 };
913 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
914         ILK_CURSOR_SR_FIFO,
915         ILK_CURSOR_MAX_SRWM,
916         ILK_CURSOR_DFT_SRWM,
917         2,
918         ILK_FIFO_LINE_SIZE
919 };
920
921 static const struct intel_watermark_params sandybridge_display_wm_info = {
922         SNB_DISPLAY_FIFO,
923         SNB_DISPLAY_MAXWM,
924         SNB_DISPLAY_DFTWM,
925         2,
926         SNB_FIFO_LINE_SIZE
927 };
928 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
929         SNB_CURSOR_FIFO,
930         SNB_CURSOR_MAXWM,
931         SNB_CURSOR_DFTWM,
932         2,
933         SNB_FIFO_LINE_SIZE
934 };
935 static const struct intel_watermark_params sandybridge_display_srwm_info = {
936         SNB_DISPLAY_SR_FIFO,
937         SNB_DISPLAY_MAX_SRWM,
938         SNB_DISPLAY_DFT_SRWM,
939         2,
940         SNB_FIFO_LINE_SIZE
941 };
942 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
943         SNB_CURSOR_SR_FIFO,
944         SNB_CURSOR_MAX_SRWM,
945         SNB_CURSOR_DFT_SRWM,
946         2,
947         SNB_FIFO_LINE_SIZE
948 };
949
950
951 /**
952  * intel_calculate_wm - calculate watermark level
953  * @clock_in_khz: pixel clock
954  * @wm: chip FIFO params
955  * @pixel_size: display pixel size
956  * @latency_ns: memory latency for the platform
957  *
958  * Calculate the watermark level (the level at which the display plane will
959  * start fetching from memory again).  Each chip has a different display
960  * FIFO size and allocation, so the caller needs to figure that out and pass
961  * in the correct intel_watermark_params structure.
962  *
963  * As the pixel clock runs, the FIFO will be drained at a rate that depends
964  * on the pixel size.  When it reaches the watermark level, it'll start
965  * fetching FIFO line sized based chunks from memory until the FIFO fills
966  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
967  * will occur, and a display engine hang could result.
968  */
969 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
970                                         const struct intel_watermark_params *wm,
971                                         int fifo_size,
972                                         int pixel_size,
973                                         unsigned long latency_ns)
974 {
975         long entries_required, wm_size;
976
977         /*
978          * Note: we need to make sure we don't overflow for various clock &
979          * latency values.
980          * clocks go from a few thousand to several hundred thousand.
981          * latency is usually a few thousand
982          */
983         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
984                 1000;
985         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
986
987         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
988
989         wm_size = fifo_size - (entries_required + wm->guard_size);
990
991         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
992
993         /* Don't promote wm_size to unsigned... */
994         if (wm_size > (long)wm->max_wm)
995                 wm_size = wm->max_wm;
996         if (wm_size <= 0)
997                 wm_size = wm->default_wm;
998         return wm_size;
999 }
1000
1001 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1002 {
1003         struct drm_crtc *crtc, *enabled = NULL;
1004
1005         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1006                 if (intel_crtc_active(crtc)) {
1007                         if (enabled)
1008                                 return NULL;
1009                         enabled = crtc;
1010                 }
1011         }
1012
1013         return enabled;
1014 }
1015
1016 static void pineview_update_wm(struct drm_device *dev)
1017 {
1018         struct drm_i915_private *dev_priv = dev->dev_private;
1019         struct drm_crtc *crtc;
1020         const struct cxsr_latency *latency;
1021         u32 reg;
1022         unsigned long wm;
1023
1024         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1025                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1026         if (!latency) {
1027                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1028                 pineview_disable_cxsr(dev);
1029                 return;
1030         }
1031
1032         crtc = single_enabled_crtc(dev);
1033         if (crtc) {
1034                 int clock = crtc->mode.clock;
1035                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1036
1037                 /* Display SR */
1038                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1039                                         pineview_display_wm.fifo_size,
1040                                         pixel_size, latency->display_sr);
1041                 reg = I915_READ(DSPFW1);
1042                 reg &= ~DSPFW_SR_MASK;
1043                 reg |= wm << DSPFW_SR_SHIFT;
1044                 I915_WRITE(DSPFW1, reg);
1045                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1046
1047                 /* cursor SR */
1048                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1049                                         pineview_display_wm.fifo_size,
1050                                         pixel_size, latency->cursor_sr);
1051                 reg = I915_READ(DSPFW3);
1052                 reg &= ~DSPFW_CURSOR_SR_MASK;
1053                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1054                 I915_WRITE(DSPFW3, reg);
1055
1056                 /* Display HPLL off SR */
1057                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1058                                         pineview_display_hplloff_wm.fifo_size,
1059                                         pixel_size, latency->display_hpll_disable);
1060                 reg = I915_READ(DSPFW3);
1061                 reg &= ~DSPFW_HPLL_SR_MASK;
1062                 reg |= wm & DSPFW_HPLL_SR_MASK;
1063                 I915_WRITE(DSPFW3, reg);
1064
1065                 /* cursor HPLL off SR */
1066                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1067                                         pineview_display_hplloff_wm.fifo_size,
1068                                         pixel_size, latency->cursor_hpll_disable);
1069                 reg = I915_READ(DSPFW3);
1070                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1071                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1072                 I915_WRITE(DSPFW3, reg);
1073                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1074
1075                 /* activate cxsr */
1076                 I915_WRITE(DSPFW3,
1077                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1078                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1079         } else {
1080                 pineview_disable_cxsr(dev);
1081                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1082         }
1083 }
1084
1085 static bool g4x_compute_wm0(struct drm_device *dev,
1086                             int plane,
1087                             const struct intel_watermark_params *display,
1088                             int display_latency_ns,
1089                             const struct intel_watermark_params *cursor,
1090                             int cursor_latency_ns,
1091                             int *plane_wm,
1092                             int *cursor_wm)
1093 {
1094         struct drm_crtc *crtc;
1095         int htotal, hdisplay, clock, pixel_size;
1096         int line_time_us, line_count;
1097         int entries, tlb_miss;
1098
1099         crtc = intel_get_crtc_for_plane(dev, plane);
1100         if (!intel_crtc_active(crtc)) {
1101                 *cursor_wm = cursor->guard_size;
1102                 *plane_wm = display->guard_size;
1103                 return false;
1104         }
1105
1106         htotal = crtc->mode.htotal;
1107         hdisplay = crtc->mode.hdisplay;
1108         clock = crtc->mode.clock;
1109         pixel_size = crtc->fb->bits_per_pixel / 8;
1110
1111         /* Use the small buffer method to calculate plane watermark */
1112         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1113         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1114         if (tlb_miss > 0)
1115                 entries += tlb_miss;
1116         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1117         *plane_wm = entries + display->guard_size;
1118         if (*plane_wm > (int)display->max_wm)
1119                 *plane_wm = display->max_wm;
1120
1121         /* Use the large buffer method to calculate cursor watermark */
1122         line_time_us = ((htotal * 1000) / clock);
1123         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1124         entries = line_count * 64 * pixel_size;
1125         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1126         if (tlb_miss > 0)
1127                 entries += tlb_miss;
1128         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1129         *cursor_wm = entries + cursor->guard_size;
1130         if (*cursor_wm > (int)cursor->max_wm)
1131                 *cursor_wm = (int)cursor->max_wm;
1132
1133         return true;
1134 }
1135
1136 /*
1137  * Check the wm result.
1138  *
1139  * If any calculated watermark values is larger than the maximum value that
1140  * can be programmed into the associated watermark register, that watermark
1141  * must be disabled.
1142  */
1143 static bool g4x_check_srwm(struct drm_device *dev,
1144                            int display_wm, int cursor_wm,
1145                            const struct intel_watermark_params *display,
1146                            const struct intel_watermark_params *cursor)
1147 {
1148         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1149                       display_wm, cursor_wm);
1150
1151         if (display_wm > display->max_wm) {
1152                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1153                               display_wm, display->max_wm);
1154                 return false;
1155         }
1156
1157         if (cursor_wm > cursor->max_wm) {
1158                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1159                               cursor_wm, cursor->max_wm);
1160                 return false;
1161         }
1162
1163         if (!(display_wm || cursor_wm)) {
1164                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1165                 return false;
1166         }
1167
1168         return true;
1169 }
1170
1171 static bool g4x_compute_srwm(struct drm_device *dev,
1172                              int plane,
1173                              int latency_ns,
1174                              const struct intel_watermark_params *display,
1175                              const struct intel_watermark_params *cursor,
1176                              int *display_wm, int *cursor_wm)
1177 {
1178         struct drm_crtc *crtc;
1179         int hdisplay, htotal, pixel_size, clock;
1180         unsigned long line_time_us;
1181         int line_count, line_size;
1182         int small, large;
1183         int entries;
1184
1185         if (!latency_ns) {
1186                 *display_wm = *cursor_wm = 0;
1187                 return false;
1188         }
1189
1190         crtc = intel_get_crtc_for_plane(dev, plane);
1191         hdisplay = crtc->mode.hdisplay;
1192         htotal = crtc->mode.htotal;
1193         clock = crtc->mode.clock;
1194         pixel_size = crtc->fb->bits_per_pixel / 8;
1195
1196         line_time_us = (htotal * 1000) / clock;
1197         line_count = (latency_ns / line_time_us + 1000) / 1000;
1198         line_size = hdisplay * pixel_size;
1199
1200         /* Use the minimum of the small and large buffer method for primary */
1201         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1202         large = line_count * line_size;
1203
1204         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1205         *display_wm = entries + display->guard_size;
1206
1207         /* calculate the self-refresh watermark for display cursor */
1208         entries = line_count * pixel_size * 64;
1209         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1210         *cursor_wm = entries + cursor->guard_size;
1211
1212         return g4x_check_srwm(dev,
1213                               *display_wm, *cursor_wm,
1214                               display, cursor);
1215 }
1216
1217 static bool vlv_compute_drain_latency(struct drm_device *dev,
1218                                      int plane,
1219                                      int *plane_prec_mult,
1220                                      int *plane_dl,
1221                                      int *cursor_prec_mult,
1222                                      int *cursor_dl)
1223 {
1224         struct drm_crtc *crtc;
1225         int clock, pixel_size;
1226         int entries;
1227
1228         crtc = intel_get_crtc_for_plane(dev, plane);
1229         if (!intel_crtc_active(crtc))
1230                 return false;
1231
1232         clock = crtc->mode.clock;       /* VESA DOT Clock */
1233         pixel_size = crtc->fb->bits_per_pixel / 8;      /* BPP */
1234
1235         entries = (clock / 1000) * pixel_size;
1236         *plane_prec_mult = (entries > 256) ?
1237                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1238         *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1239                                                      pixel_size);
1240
1241         entries = (clock / 1000) * 4;   /* BPP is always 4 for cursor */
1242         *cursor_prec_mult = (entries > 256) ?
1243                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1244         *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1245
1246         return true;
1247 }
1248
1249 /*
1250  * Update drain latency registers of memory arbiter
1251  *
1252  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1253  * to be programmed. Each plane has a drain latency multiplier and a drain
1254  * latency value.
1255  */
1256
1257 static void vlv_update_drain_latency(struct drm_device *dev)
1258 {
1259         struct drm_i915_private *dev_priv = dev->dev_private;
1260         int planea_prec, planea_dl, planeb_prec, planeb_dl;
1261         int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1262         int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1263                                                         either 16 or 32 */
1264
1265         /* For plane A, Cursor A */
1266         if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1267                                       &cursor_prec_mult, &cursora_dl)) {
1268                 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1269                         DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1270                 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1271                         DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1272
1273                 I915_WRITE(VLV_DDL1, cursora_prec |
1274                                 (cursora_dl << DDL_CURSORA_SHIFT) |
1275                                 planea_prec | planea_dl);
1276         }
1277
1278         /* For plane B, Cursor B */
1279         if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1280                                       &cursor_prec_mult, &cursorb_dl)) {
1281                 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1282                         DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1283                 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1284                         DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1285
1286                 I915_WRITE(VLV_DDL2, cursorb_prec |
1287                                 (cursorb_dl << DDL_CURSORB_SHIFT) |
1288                                 planeb_prec | planeb_dl);
1289         }
1290 }
1291
1292 #define single_plane_enabled(mask) is_power_of_2(mask)
1293
1294 static void valleyview_update_wm(struct drm_device *dev)
1295 {
1296         static const int sr_latency_ns = 12000;
1297         struct drm_i915_private *dev_priv = dev->dev_private;
1298         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1299         int plane_sr, cursor_sr;
1300         int ignore_plane_sr, ignore_cursor_sr;
1301         unsigned int enabled = 0;
1302
1303         vlv_update_drain_latency(dev);
1304
1305         if (g4x_compute_wm0(dev, 0,
1306                             &valleyview_wm_info, latency_ns,
1307                             &valleyview_cursor_wm_info, latency_ns,
1308                             &planea_wm, &cursora_wm))
1309                 enabled |= 1;
1310
1311         if (g4x_compute_wm0(dev, 1,
1312                             &valleyview_wm_info, latency_ns,
1313                             &valleyview_cursor_wm_info, latency_ns,
1314                             &planeb_wm, &cursorb_wm))
1315                 enabled |= 2;
1316
1317         if (single_plane_enabled(enabled) &&
1318             g4x_compute_srwm(dev, ffs(enabled) - 1,
1319                              sr_latency_ns,
1320                              &valleyview_wm_info,
1321                              &valleyview_cursor_wm_info,
1322                              &plane_sr, &ignore_cursor_sr) &&
1323             g4x_compute_srwm(dev, ffs(enabled) - 1,
1324                              2*sr_latency_ns,
1325                              &valleyview_wm_info,
1326                              &valleyview_cursor_wm_info,
1327                              &ignore_plane_sr, &cursor_sr)) {
1328                 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1329         } else {
1330                 I915_WRITE(FW_BLC_SELF_VLV,
1331                            I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1332                 plane_sr = cursor_sr = 0;
1333         }
1334
1335         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1336                       planea_wm, cursora_wm,
1337                       planeb_wm, cursorb_wm,
1338                       plane_sr, cursor_sr);
1339
1340         I915_WRITE(DSPFW1,
1341                    (plane_sr << DSPFW_SR_SHIFT) |
1342                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1343                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1344                    planea_wm);
1345         I915_WRITE(DSPFW2,
1346                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1347                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1348         I915_WRITE(DSPFW3,
1349                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1350                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1351 }
1352
1353 static void g4x_update_wm(struct drm_device *dev)
1354 {
1355         static const int sr_latency_ns = 12000;
1356         struct drm_i915_private *dev_priv = dev->dev_private;
1357         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1358         int plane_sr, cursor_sr;
1359         unsigned int enabled = 0;
1360
1361         if (g4x_compute_wm0(dev, 0,
1362                             &g4x_wm_info, latency_ns,
1363                             &g4x_cursor_wm_info, latency_ns,
1364                             &planea_wm, &cursora_wm))
1365                 enabled |= 1;
1366
1367         if (g4x_compute_wm0(dev, 1,
1368                             &g4x_wm_info, latency_ns,
1369                             &g4x_cursor_wm_info, latency_ns,
1370                             &planeb_wm, &cursorb_wm))
1371                 enabled |= 2;
1372
1373         if (single_plane_enabled(enabled) &&
1374             g4x_compute_srwm(dev, ffs(enabled) - 1,
1375                              sr_latency_ns,
1376                              &g4x_wm_info,
1377                              &g4x_cursor_wm_info,
1378                              &plane_sr, &cursor_sr)) {
1379                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1380         } else {
1381                 I915_WRITE(FW_BLC_SELF,
1382                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1383                 plane_sr = cursor_sr = 0;
1384         }
1385
1386         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1387                       planea_wm, cursora_wm,
1388                       planeb_wm, cursorb_wm,
1389                       plane_sr, cursor_sr);
1390
1391         I915_WRITE(DSPFW1,
1392                    (plane_sr << DSPFW_SR_SHIFT) |
1393                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1394                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1395                    planea_wm);
1396         I915_WRITE(DSPFW2,
1397                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1398                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1399         /* HPLL off in SR has some issues on G4x... disable it */
1400         I915_WRITE(DSPFW3,
1401                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1402                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1403 }
1404
1405 static void i965_update_wm(struct drm_device *dev)
1406 {
1407         struct drm_i915_private *dev_priv = dev->dev_private;
1408         struct drm_crtc *crtc;
1409         int srwm = 1;
1410         int cursor_sr = 16;
1411
1412         /* Calc sr entries for one plane configs */
1413         crtc = single_enabled_crtc(dev);
1414         if (crtc) {
1415                 /* self-refresh has much higher latency */
1416                 static const int sr_latency_ns = 12000;
1417                 int clock = crtc->mode.clock;
1418                 int htotal = crtc->mode.htotal;
1419                 int hdisplay = crtc->mode.hdisplay;
1420                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1421                 unsigned long line_time_us;
1422                 int entries;
1423
1424                 line_time_us = ((htotal * 1000) / clock);
1425
1426                 /* Use ns/us then divide to preserve precision */
1427                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1428                         pixel_size * hdisplay;
1429                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1430                 srwm = I965_FIFO_SIZE - entries;
1431                 if (srwm < 0)
1432                         srwm = 1;
1433                 srwm &= 0x1ff;
1434                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1435                               entries, srwm);
1436
1437                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1438                         pixel_size * 64;
1439                 entries = DIV_ROUND_UP(entries,
1440                                           i965_cursor_wm_info.cacheline_size);
1441                 cursor_sr = i965_cursor_wm_info.fifo_size -
1442                         (entries + i965_cursor_wm_info.guard_size);
1443
1444                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1445                         cursor_sr = i965_cursor_wm_info.max_wm;
1446
1447                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1448                               "cursor %d\n", srwm, cursor_sr);
1449
1450                 if (IS_CRESTLINE(dev))
1451                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1452         } else {
1453                 /* Turn off self refresh if both pipes are enabled */
1454                 if (IS_CRESTLINE(dev))
1455                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1456                                    & ~FW_BLC_SELF_EN);
1457         }
1458
1459         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1460                       srwm);
1461
1462         /* 965 has limitations... */
1463         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1464                    (8 << 16) | (8 << 8) | (8 << 0));
1465         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1466         /* update cursor SR watermark */
1467         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1468 }
1469
1470 static void i9xx_update_wm(struct drm_device *dev)
1471 {
1472         struct drm_i915_private *dev_priv = dev->dev_private;
1473         const struct intel_watermark_params *wm_info;
1474         uint32_t fwater_lo;
1475         uint32_t fwater_hi;
1476         int cwm, srwm = 1;
1477         int fifo_size;
1478         int planea_wm, planeb_wm;
1479         struct drm_crtc *crtc, *enabled = NULL;
1480
1481         if (IS_I945GM(dev))
1482                 wm_info = &i945_wm_info;
1483         else if (!IS_GEN2(dev))
1484                 wm_info = &i915_wm_info;
1485         else
1486                 wm_info = &i855_wm_info;
1487
1488         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1489         crtc = intel_get_crtc_for_plane(dev, 0);
1490         if (intel_crtc_active(crtc)) {
1491                 int cpp = crtc->fb->bits_per_pixel / 8;
1492                 if (IS_GEN2(dev))
1493                         cpp = 4;
1494
1495                 planea_wm = intel_calculate_wm(crtc->mode.clock,
1496                                                wm_info, fifo_size, cpp,
1497                                                latency_ns);
1498                 enabled = crtc;
1499         } else
1500                 planea_wm = fifo_size - wm_info->guard_size;
1501
1502         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1503         crtc = intel_get_crtc_for_plane(dev, 1);
1504         if (intel_crtc_active(crtc)) {
1505                 int cpp = crtc->fb->bits_per_pixel / 8;
1506                 if (IS_GEN2(dev))
1507                         cpp = 4;
1508
1509                 planeb_wm = intel_calculate_wm(crtc->mode.clock,
1510                                                wm_info, fifo_size, cpp,
1511                                                latency_ns);
1512                 if (enabled == NULL)
1513                         enabled = crtc;
1514                 else
1515                         enabled = NULL;
1516         } else
1517                 planeb_wm = fifo_size - wm_info->guard_size;
1518
1519         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1520
1521         /*
1522          * Overlay gets an aggressive default since video jitter is bad.
1523          */
1524         cwm = 2;
1525
1526         /* Play safe and disable self-refresh before adjusting watermarks. */
1527         if (IS_I945G(dev) || IS_I945GM(dev))
1528                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1529         else if (IS_I915GM(dev))
1530                 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1531
1532         /* Calc sr entries for one plane configs */
1533         if (HAS_FW_BLC(dev) && enabled) {
1534                 /* self-refresh has much higher latency */
1535                 static const int sr_latency_ns = 6000;
1536                 int clock = enabled->mode.clock;
1537                 int htotal = enabled->mode.htotal;
1538                 int hdisplay = enabled->mode.hdisplay;
1539                 int pixel_size = enabled->fb->bits_per_pixel / 8;
1540                 unsigned long line_time_us;
1541                 int entries;
1542
1543                 line_time_us = (htotal * 1000) / clock;
1544
1545                 /* Use ns/us then divide to preserve precision */
1546                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1547                         pixel_size * hdisplay;
1548                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1549                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1550                 srwm = wm_info->fifo_size - entries;
1551                 if (srwm < 0)
1552                         srwm = 1;
1553
1554                 if (IS_I945G(dev) || IS_I945GM(dev))
1555                         I915_WRITE(FW_BLC_SELF,
1556                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1557                 else if (IS_I915GM(dev))
1558                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1559         }
1560
1561         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1562                       planea_wm, planeb_wm, cwm, srwm);
1563
1564         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1565         fwater_hi = (cwm & 0x1f);
1566
1567         /* Set request length to 8 cachelines per fetch */
1568         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1569         fwater_hi = fwater_hi | (1 << 8);
1570
1571         I915_WRITE(FW_BLC, fwater_lo);
1572         I915_WRITE(FW_BLC2, fwater_hi);
1573
1574         if (HAS_FW_BLC(dev)) {
1575                 if (enabled) {
1576                         if (IS_I945G(dev) || IS_I945GM(dev))
1577                                 I915_WRITE(FW_BLC_SELF,
1578                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1579                         else if (IS_I915GM(dev))
1580                                 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1581                         DRM_DEBUG_KMS("memory self refresh enabled\n");
1582                 } else
1583                         DRM_DEBUG_KMS("memory self refresh disabled\n");
1584         }
1585 }
1586
1587 static void i830_update_wm(struct drm_device *dev)
1588 {
1589         struct drm_i915_private *dev_priv = dev->dev_private;
1590         struct drm_crtc *crtc;
1591         uint32_t fwater_lo;
1592         int planea_wm;
1593
1594         crtc = single_enabled_crtc(dev);
1595         if (crtc == NULL)
1596                 return;
1597
1598         planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1599                                        dev_priv->display.get_fifo_size(dev, 0),
1600                                        4, latency_ns);
1601         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1602         fwater_lo |= (3<<8) | planea_wm;
1603
1604         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1605
1606         I915_WRITE(FW_BLC, fwater_lo);
1607 }
1608
1609 #define ILK_LP0_PLANE_LATENCY           700
1610 #define ILK_LP0_CURSOR_LATENCY          1300
1611
1612 /*
1613  * Check the wm result.
1614  *
1615  * If any calculated watermark values is larger than the maximum value that
1616  * can be programmed into the associated watermark register, that watermark
1617  * must be disabled.
1618  */
1619 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1620                                 int fbc_wm, int display_wm, int cursor_wm,
1621                                 const struct intel_watermark_params *display,
1622                                 const struct intel_watermark_params *cursor)
1623 {
1624         struct drm_i915_private *dev_priv = dev->dev_private;
1625
1626         DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1627                       " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1628
1629         if (fbc_wm > SNB_FBC_MAX_SRWM) {
1630                 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1631                               fbc_wm, SNB_FBC_MAX_SRWM, level);
1632
1633                 /* fbc has it's own way to disable FBC WM */
1634                 I915_WRITE(DISP_ARB_CTL,
1635                            I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1636                 return false;
1637         }
1638
1639         if (display_wm > display->max_wm) {
1640                 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1641                               display_wm, SNB_DISPLAY_MAX_SRWM, level);
1642                 return false;
1643         }
1644
1645         if (cursor_wm > cursor->max_wm) {
1646                 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1647                               cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1648                 return false;
1649         }
1650
1651         if (!(fbc_wm || display_wm || cursor_wm)) {
1652                 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1653                 return false;
1654         }
1655
1656         return true;
1657 }
1658
1659 /*
1660  * Compute watermark values of WM[1-3],
1661  */
1662 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1663                                   int latency_ns,
1664                                   const struct intel_watermark_params *display,
1665                                   const struct intel_watermark_params *cursor,
1666                                   int *fbc_wm, int *display_wm, int *cursor_wm)
1667 {
1668         struct drm_crtc *crtc;
1669         unsigned long line_time_us;
1670         int hdisplay, htotal, pixel_size, clock;
1671         int line_count, line_size;
1672         int small, large;
1673         int entries;
1674
1675         if (!latency_ns) {
1676                 *fbc_wm = *display_wm = *cursor_wm = 0;
1677                 return false;
1678         }
1679
1680         crtc = intel_get_crtc_for_plane(dev, plane);
1681         hdisplay = crtc->mode.hdisplay;
1682         htotal = crtc->mode.htotal;
1683         clock = crtc->mode.clock;
1684         pixel_size = crtc->fb->bits_per_pixel / 8;
1685
1686         line_time_us = (htotal * 1000) / clock;
1687         line_count = (latency_ns / line_time_us + 1000) / 1000;
1688         line_size = hdisplay * pixel_size;
1689
1690         /* Use the minimum of the small and large buffer method for primary */
1691         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1692         large = line_count * line_size;
1693
1694         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1695         *display_wm = entries + display->guard_size;
1696
1697         /*
1698          * Spec says:
1699          * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1700          */
1701         *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1702
1703         /* calculate the self-refresh watermark for display cursor */
1704         entries = line_count * pixel_size * 64;
1705         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1706         *cursor_wm = entries + cursor->guard_size;
1707
1708         return ironlake_check_srwm(dev, level,
1709                                    *fbc_wm, *display_wm, *cursor_wm,
1710                                    display, cursor);
1711 }
1712
1713 static void ironlake_update_wm(struct drm_device *dev)
1714 {
1715         struct drm_i915_private *dev_priv = dev->dev_private;
1716         int fbc_wm, plane_wm, cursor_wm;
1717         unsigned int enabled;
1718
1719         enabled = 0;
1720         if (g4x_compute_wm0(dev, 0,
1721                             &ironlake_display_wm_info,
1722                             ILK_LP0_PLANE_LATENCY,
1723                             &ironlake_cursor_wm_info,
1724                             ILK_LP0_CURSOR_LATENCY,
1725                             &plane_wm, &cursor_wm)) {
1726                 I915_WRITE(WM0_PIPEA_ILK,
1727                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1728                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1729                               " plane %d, " "cursor: %d\n",
1730                               plane_wm, cursor_wm);
1731                 enabled |= 1;
1732         }
1733
1734         if (g4x_compute_wm0(dev, 1,
1735                             &ironlake_display_wm_info,
1736                             ILK_LP0_PLANE_LATENCY,
1737                             &ironlake_cursor_wm_info,
1738                             ILK_LP0_CURSOR_LATENCY,
1739                             &plane_wm, &cursor_wm)) {
1740                 I915_WRITE(WM0_PIPEB_ILK,
1741                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1742                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1743                               " plane %d, cursor: %d\n",
1744                               plane_wm, cursor_wm);
1745                 enabled |= 2;
1746         }
1747
1748         /*
1749          * Calculate and update the self-refresh watermark only when one
1750          * display plane is used.
1751          */
1752         I915_WRITE(WM3_LP_ILK, 0);
1753         I915_WRITE(WM2_LP_ILK, 0);
1754         I915_WRITE(WM1_LP_ILK, 0);
1755
1756         if (!single_plane_enabled(enabled))
1757                 return;
1758         enabled = ffs(enabled) - 1;
1759
1760         /* WM1 */
1761         if (!ironlake_compute_srwm(dev, 1, enabled,
1762                                    ILK_READ_WM1_LATENCY() * 500,
1763                                    &ironlake_display_srwm_info,
1764                                    &ironlake_cursor_srwm_info,
1765                                    &fbc_wm, &plane_wm, &cursor_wm))
1766                 return;
1767
1768         I915_WRITE(WM1_LP_ILK,
1769                    WM1_LP_SR_EN |
1770                    (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1771                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1772                    (plane_wm << WM1_LP_SR_SHIFT) |
1773                    cursor_wm);
1774
1775         /* WM2 */
1776         if (!ironlake_compute_srwm(dev, 2, enabled,
1777                                    ILK_READ_WM2_LATENCY() * 500,
1778                                    &ironlake_display_srwm_info,
1779                                    &ironlake_cursor_srwm_info,
1780                                    &fbc_wm, &plane_wm, &cursor_wm))
1781                 return;
1782
1783         I915_WRITE(WM2_LP_ILK,
1784                    WM2_LP_EN |
1785                    (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1786                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1787                    (plane_wm << WM1_LP_SR_SHIFT) |
1788                    cursor_wm);
1789
1790         /*
1791          * WM3 is unsupported on ILK, probably because we don't have latency
1792          * data for that power state
1793          */
1794 }
1795
1796 static void sandybridge_update_wm(struct drm_device *dev)
1797 {
1798         struct drm_i915_private *dev_priv = dev->dev_private;
1799         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
1800         u32 val;
1801         int fbc_wm, plane_wm, cursor_wm;
1802         unsigned int enabled;
1803
1804         enabled = 0;
1805         if (g4x_compute_wm0(dev, 0,
1806                             &sandybridge_display_wm_info, latency,
1807                             &sandybridge_cursor_wm_info, latency,
1808                             &plane_wm, &cursor_wm)) {
1809                 val = I915_READ(WM0_PIPEA_ILK);
1810                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1811                 I915_WRITE(WM0_PIPEA_ILK, val |
1812                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1813                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1814                               " plane %d, " "cursor: %d\n",
1815                               plane_wm, cursor_wm);
1816                 enabled |= 1;
1817         }
1818
1819         if (g4x_compute_wm0(dev, 1,
1820                             &sandybridge_display_wm_info, latency,
1821                             &sandybridge_cursor_wm_info, latency,
1822                             &plane_wm, &cursor_wm)) {
1823                 val = I915_READ(WM0_PIPEB_ILK);
1824                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1825                 I915_WRITE(WM0_PIPEB_ILK, val |
1826                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1827                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1828                               " plane %d, cursor: %d\n",
1829                               plane_wm, cursor_wm);
1830                 enabled |= 2;
1831         }
1832
1833         /*
1834          * Calculate and update the self-refresh watermark only when one
1835          * display plane is used.
1836          *
1837          * SNB support 3 levels of watermark.
1838          *
1839          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1840          * and disabled in the descending order
1841          *
1842          */
1843         I915_WRITE(WM3_LP_ILK, 0);
1844         I915_WRITE(WM2_LP_ILK, 0);
1845         I915_WRITE(WM1_LP_ILK, 0);
1846
1847         if (!single_plane_enabled(enabled) ||
1848             dev_priv->sprite_scaling_enabled)
1849                 return;
1850         enabled = ffs(enabled) - 1;
1851
1852         /* WM1 */
1853         if (!ironlake_compute_srwm(dev, 1, enabled,
1854                                    SNB_READ_WM1_LATENCY() * 500,
1855                                    &sandybridge_display_srwm_info,
1856                                    &sandybridge_cursor_srwm_info,
1857                                    &fbc_wm, &plane_wm, &cursor_wm))
1858                 return;
1859
1860         I915_WRITE(WM1_LP_ILK,
1861                    WM1_LP_SR_EN |
1862                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1863                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1864                    (plane_wm << WM1_LP_SR_SHIFT) |
1865                    cursor_wm);
1866
1867         /* WM2 */
1868         if (!ironlake_compute_srwm(dev, 2, enabled,
1869                                    SNB_READ_WM2_LATENCY() * 500,
1870                                    &sandybridge_display_srwm_info,
1871                                    &sandybridge_cursor_srwm_info,
1872                                    &fbc_wm, &plane_wm, &cursor_wm))
1873                 return;
1874
1875         I915_WRITE(WM2_LP_ILK,
1876                    WM2_LP_EN |
1877                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1878                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1879                    (plane_wm << WM1_LP_SR_SHIFT) |
1880                    cursor_wm);
1881
1882         /* WM3 */
1883         if (!ironlake_compute_srwm(dev, 3, enabled,
1884                                    SNB_READ_WM3_LATENCY() * 500,
1885                                    &sandybridge_display_srwm_info,
1886                                    &sandybridge_cursor_srwm_info,
1887                                    &fbc_wm, &plane_wm, &cursor_wm))
1888                 return;
1889
1890         I915_WRITE(WM3_LP_ILK,
1891                    WM3_LP_EN |
1892                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1893                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1894                    (plane_wm << WM1_LP_SR_SHIFT) |
1895                    cursor_wm);
1896 }
1897
1898 static void ivybridge_update_wm(struct drm_device *dev)
1899 {
1900         struct drm_i915_private *dev_priv = dev->dev_private;
1901         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
1902         u32 val;
1903         int fbc_wm, plane_wm, cursor_wm;
1904         int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
1905         unsigned int enabled;
1906
1907         enabled = 0;
1908         if (g4x_compute_wm0(dev, 0,
1909                             &sandybridge_display_wm_info, latency,
1910                             &sandybridge_cursor_wm_info, latency,
1911                             &plane_wm, &cursor_wm)) {
1912                 val = I915_READ(WM0_PIPEA_ILK);
1913                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1914                 I915_WRITE(WM0_PIPEA_ILK, val |
1915                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1916                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1917                               " plane %d, " "cursor: %d\n",
1918                               plane_wm, cursor_wm);
1919                 enabled |= 1;
1920         }
1921
1922         if (g4x_compute_wm0(dev, 1,
1923                             &sandybridge_display_wm_info, latency,
1924                             &sandybridge_cursor_wm_info, latency,
1925                             &plane_wm, &cursor_wm)) {
1926                 val = I915_READ(WM0_PIPEB_ILK);
1927                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1928                 I915_WRITE(WM0_PIPEB_ILK, val |
1929                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1930                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1931                               " plane %d, cursor: %d\n",
1932                               plane_wm, cursor_wm);
1933                 enabled |= 2;
1934         }
1935
1936         if (g4x_compute_wm0(dev, 2,
1937                             &sandybridge_display_wm_info, latency,
1938                             &sandybridge_cursor_wm_info, latency,
1939                             &plane_wm, &cursor_wm)) {
1940                 val = I915_READ(WM0_PIPEC_IVB);
1941                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1942                 I915_WRITE(WM0_PIPEC_IVB, val |
1943                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1944                 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
1945                               " plane %d, cursor: %d\n",
1946                               plane_wm, cursor_wm);
1947                 enabled |= 3;
1948         }
1949
1950         /*
1951          * Calculate and update the self-refresh watermark only when one
1952          * display plane is used.
1953          *
1954          * SNB support 3 levels of watermark.
1955          *
1956          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1957          * and disabled in the descending order
1958          *
1959          */
1960         I915_WRITE(WM3_LP_ILK, 0);
1961         I915_WRITE(WM2_LP_ILK, 0);
1962         I915_WRITE(WM1_LP_ILK, 0);
1963
1964         if (!single_plane_enabled(enabled) ||
1965             dev_priv->sprite_scaling_enabled)
1966                 return;
1967         enabled = ffs(enabled) - 1;
1968
1969         /* WM1 */
1970         if (!ironlake_compute_srwm(dev, 1, enabled,
1971                                    SNB_READ_WM1_LATENCY() * 500,
1972                                    &sandybridge_display_srwm_info,
1973                                    &sandybridge_cursor_srwm_info,
1974                                    &fbc_wm, &plane_wm, &cursor_wm))
1975                 return;
1976
1977         I915_WRITE(WM1_LP_ILK,
1978                    WM1_LP_SR_EN |
1979                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1980                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1981                    (plane_wm << WM1_LP_SR_SHIFT) |
1982                    cursor_wm);
1983
1984         /* WM2 */
1985         if (!ironlake_compute_srwm(dev, 2, enabled,
1986                                    SNB_READ_WM2_LATENCY() * 500,
1987                                    &sandybridge_display_srwm_info,
1988                                    &sandybridge_cursor_srwm_info,
1989                                    &fbc_wm, &plane_wm, &cursor_wm))
1990                 return;
1991
1992         I915_WRITE(WM2_LP_ILK,
1993                    WM2_LP_EN |
1994                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1995                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1996                    (plane_wm << WM1_LP_SR_SHIFT) |
1997                    cursor_wm);
1998
1999         /* WM3, note we have to correct the cursor latency */
2000         if (!ironlake_compute_srwm(dev, 3, enabled,
2001                                    SNB_READ_WM3_LATENCY() * 500,
2002                                    &sandybridge_display_srwm_info,
2003                                    &sandybridge_cursor_srwm_info,
2004                                    &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
2005             !ironlake_compute_srwm(dev, 3, enabled,
2006                                    2 * SNB_READ_WM3_LATENCY() * 500,
2007                                    &sandybridge_display_srwm_info,
2008                                    &sandybridge_cursor_srwm_info,
2009                                    &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2010                 return;
2011
2012         I915_WRITE(WM3_LP_ILK,
2013                    WM3_LP_EN |
2014                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2015                    (fbc_wm << WM1_LP_FBC_SHIFT) |
2016                    (plane_wm << WM1_LP_SR_SHIFT) |
2017                    cursor_wm);
2018 }
2019
2020 static void
2021 haswell_update_linetime_wm(struct drm_device *dev, int pipe,
2022                                  struct drm_display_mode *mode)
2023 {
2024         struct drm_i915_private *dev_priv = dev->dev_private;
2025         u32 temp;
2026
2027         temp = I915_READ(PIPE_WM_LINETIME(pipe));
2028         temp &= ~PIPE_WM_LINETIME_MASK;
2029
2030         /* The WM are computed with base on how long it takes to fill a single
2031          * row at the given clock rate, multiplied by 8.
2032          * */
2033         temp |= PIPE_WM_LINETIME_TIME(
2034                 ((mode->crtc_hdisplay * 1000) / mode->clock) * 8);
2035
2036         /* IPS watermarks are only used by pipe A, and are ignored by
2037          * pipes B and C.  They are calculated similarly to the common
2038          * linetime values, except that we are using CD clock frequency
2039          * in MHz instead of pixel rate for the division.
2040          *
2041          * This is a placeholder for the IPS watermark calculation code.
2042          */
2043
2044         I915_WRITE(PIPE_WM_LINETIME(pipe), temp);
2045 }
2046
2047 static bool
2048 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2049                               uint32_t sprite_width, int pixel_size,
2050                               const struct intel_watermark_params *display,
2051                               int display_latency_ns, int *sprite_wm)
2052 {
2053         struct drm_crtc *crtc;
2054         int clock;
2055         int entries, tlb_miss;
2056
2057         crtc = intel_get_crtc_for_plane(dev, plane);
2058         if (!intel_crtc_active(crtc)) {
2059                 *sprite_wm = display->guard_size;
2060                 return false;
2061         }
2062
2063         clock = crtc->mode.clock;
2064
2065         /* Use the small buffer method to calculate the sprite watermark */
2066         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
2067         tlb_miss = display->fifo_size*display->cacheline_size -
2068                 sprite_width * 8;
2069         if (tlb_miss > 0)
2070                 entries += tlb_miss;
2071         entries = DIV_ROUND_UP(entries, display->cacheline_size);
2072         *sprite_wm = entries + display->guard_size;
2073         if (*sprite_wm > (int)display->max_wm)
2074                 *sprite_wm = display->max_wm;
2075
2076         return true;
2077 }
2078
2079 static bool
2080 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
2081                                 uint32_t sprite_width, int pixel_size,
2082                                 const struct intel_watermark_params *display,
2083                                 int latency_ns, int *sprite_wm)
2084 {
2085         struct drm_crtc *crtc;
2086         unsigned long line_time_us;
2087         int clock;
2088         int line_count, line_size;
2089         int small, large;
2090         int entries;
2091
2092         if (!latency_ns) {
2093                 *sprite_wm = 0;
2094                 return false;
2095         }
2096
2097         crtc = intel_get_crtc_for_plane(dev, plane);
2098         clock = crtc->mode.clock;
2099         if (!clock) {
2100                 *sprite_wm = 0;
2101                 return false;
2102         }
2103
2104         line_time_us = (sprite_width * 1000) / clock;
2105         if (!line_time_us) {
2106                 *sprite_wm = 0;
2107                 return false;
2108         }
2109
2110         line_count = (latency_ns / line_time_us + 1000) / 1000;
2111         line_size = sprite_width * pixel_size;
2112
2113         /* Use the minimum of the small and large buffer method for primary */
2114         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
2115         large = line_count * line_size;
2116
2117         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
2118         *sprite_wm = entries + display->guard_size;
2119
2120         return *sprite_wm > 0x3ff ? false : true;
2121 }
2122
2123 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
2124                                          uint32_t sprite_width, int pixel_size)
2125 {
2126         struct drm_i915_private *dev_priv = dev->dev_private;
2127         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
2128         u32 val;
2129         int sprite_wm, reg;
2130         int ret;
2131
2132         switch (pipe) {
2133         case 0:
2134                 reg = WM0_PIPEA_ILK;
2135                 break;
2136         case 1:
2137                 reg = WM0_PIPEB_ILK;
2138                 break;
2139         case 2:
2140                 reg = WM0_PIPEC_IVB;
2141                 break;
2142         default:
2143                 return; /* bad pipe */
2144         }
2145
2146         ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2147                                             &sandybridge_display_wm_info,
2148                                             latency, &sprite_wm);
2149         if (!ret) {
2150                 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
2151                               pipe);
2152                 return;
2153         }
2154
2155         val = I915_READ(reg);
2156         val &= ~WM0_PIPE_SPRITE_MASK;
2157         I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2158         DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
2159
2160
2161         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2162                                               pixel_size,
2163                                               &sandybridge_display_srwm_info,
2164                                               SNB_READ_WM1_LATENCY() * 500,
2165                                               &sprite_wm);
2166         if (!ret) {
2167                 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
2168                               pipe);
2169                 return;
2170         }
2171         I915_WRITE(WM1S_LP_ILK, sprite_wm);
2172
2173         /* Only IVB has two more LP watermarks for sprite */
2174         if (!IS_IVYBRIDGE(dev))
2175                 return;
2176
2177         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2178                                               pixel_size,
2179                                               &sandybridge_display_srwm_info,
2180                                               SNB_READ_WM2_LATENCY() * 500,
2181                                               &sprite_wm);
2182         if (!ret) {
2183                 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
2184                               pipe);
2185                 return;
2186         }
2187         I915_WRITE(WM2S_LP_IVB, sprite_wm);
2188
2189         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2190                                               pixel_size,
2191                                               &sandybridge_display_srwm_info,
2192                                               SNB_READ_WM3_LATENCY() * 500,
2193                                               &sprite_wm);
2194         if (!ret) {
2195                 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
2196                               pipe);
2197                 return;
2198         }
2199         I915_WRITE(WM3S_LP_IVB, sprite_wm);
2200 }
2201
2202 /**
2203  * intel_update_watermarks - update FIFO watermark values based on current modes
2204  *
2205  * Calculate watermark values for the various WM regs based on current mode
2206  * and plane configuration.
2207  *
2208  * There are several cases to deal with here:
2209  *   - normal (i.e. non-self-refresh)
2210  *   - self-refresh (SR) mode
2211  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2212  *   - lines are small relative to FIFO size (buffer can hold more than 2
2213  *     lines), so need to account for TLB latency
2214  *
2215  *   The normal calculation is:
2216  *     watermark = dotclock * bytes per pixel * latency
2217  *   where latency is platform & configuration dependent (we assume pessimal
2218  *   values here).
2219  *
2220  *   The SR calculation is:
2221  *     watermark = (trunc(latency/line time)+1) * surface width *
2222  *       bytes per pixel
2223  *   where
2224  *     line time = htotal / dotclock
2225  *     surface width = hdisplay for normal plane and 64 for cursor
2226  *   and latency is assumed to be high, as above.
2227  *
2228  * The final value programmed to the register should always be rounded up,
2229  * and include an extra 2 entries to account for clock crossings.
2230  *
2231  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2232  * to set the non-SR watermarks to 8.
2233  */
2234 void intel_update_watermarks(struct drm_device *dev)
2235 {
2236         struct drm_i915_private *dev_priv = dev->dev_private;
2237
2238         if (dev_priv->display.update_wm)
2239                 dev_priv->display.update_wm(dev);
2240 }
2241
2242 void intel_update_linetime_watermarks(struct drm_device *dev,
2243                 int pipe, struct drm_display_mode *mode)
2244 {
2245         struct drm_i915_private *dev_priv = dev->dev_private;
2246
2247         if (dev_priv->display.update_linetime_wm)
2248                 dev_priv->display.update_linetime_wm(dev, pipe, mode);
2249 }
2250
2251 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2252                                     uint32_t sprite_width, int pixel_size)
2253 {
2254         struct drm_i915_private *dev_priv = dev->dev_private;
2255
2256         if (dev_priv->display.update_sprite_wm)
2257                 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2258                                                    pixel_size);
2259 }
2260
2261 static struct drm_i915_gem_object *
2262 intel_alloc_context_page(struct drm_device *dev)
2263 {
2264         struct drm_i915_gem_object *ctx;
2265         int ret;
2266
2267         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2268
2269         ctx = i915_gem_alloc_object(dev, 4096);
2270         if (!ctx) {
2271                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2272                 return NULL;
2273         }
2274
2275         ret = i915_gem_object_pin(ctx, 4096, true, false);
2276         if (ret) {
2277                 DRM_ERROR("failed to pin power context: %d\n", ret);
2278                 goto err_unref;
2279         }
2280
2281         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2282         if (ret) {
2283                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2284                 goto err_unpin;
2285         }
2286
2287         return ctx;
2288
2289 err_unpin:
2290         i915_gem_object_unpin(ctx);
2291 err_unref:
2292         drm_gem_object_unreference(&ctx->base);
2293         return NULL;
2294 }
2295
2296 /**
2297  * Lock protecting IPS related data structures
2298  */
2299 struct lock mchdev_lock;
2300 LOCK_SYSINIT(mchdev, &mchdev_lock, "mchdev", LK_CANRECURSE);
2301
2302 /* Global for IPS driver to get at the current i915 device. Protected by
2303  * mchdev_lock. */
2304 static struct drm_i915_private *i915_mch_dev;
2305
2306 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2307 {
2308         struct drm_i915_private *dev_priv = dev->dev_private;
2309         u16 rgvswctl;
2310
2311         rgvswctl = I915_READ16(MEMSWCTL);
2312         if (rgvswctl & MEMCTL_CMD_STS) {
2313                 DRM_DEBUG("gpu busy, RCS change rejected\n");
2314                 return false; /* still busy with another command */
2315         }
2316
2317         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2318                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2319         I915_WRITE16(MEMSWCTL, rgvswctl);
2320         POSTING_READ16(MEMSWCTL);
2321
2322         rgvswctl |= MEMCTL_CMD_STS;
2323         I915_WRITE16(MEMSWCTL, rgvswctl);
2324
2325         return true;
2326 }
2327
2328 static void ironlake_enable_drps(struct drm_device *dev)
2329 {
2330         struct drm_i915_private *dev_priv = dev->dev_private;
2331         u32 rgvmodectl = I915_READ(MEMMODECTL);
2332         u8 fmax, fmin, fstart, vstart;
2333
2334         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
2335
2336         /* Enable temp reporting */
2337         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2338         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2339
2340         /* 100ms RC evaluation intervals */
2341         I915_WRITE(RCUPEI, 100000);
2342         I915_WRITE(RCDNEI, 100000);
2343
2344         /* Set max/min thresholds to 90ms and 80ms respectively */
2345         I915_WRITE(RCBMAXAVG, 90000);
2346         I915_WRITE(RCBMINAVG, 80000);
2347
2348         I915_WRITE(MEMIHYST, 1);
2349
2350         /* Set up min, max, and cur for interrupt handling */
2351         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2352         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2353         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2354                 MEMMODE_FSTART_SHIFT;
2355
2356         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2357                 PXVFREQ_PX_SHIFT;
2358
2359         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2360         dev_priv->ips.fstart = fstart;
2361
2362         dev_priv->ips.max_delay = fstart;
2363         dev_priv->ips.min_delay = fmin;
2364         dev_priv->ips.cur_delay = fstart;
2365
2366         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2367                          fmax, fmin, fstart);
2368
2369         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2370
2371         /*
2372          * Interrupts will be enabled in ironlake_irq_postinstall
2373          */
2374
2375         I915_WRITE(VIDSTART, vstart);
2376         POSTING_READ(VIDSTART);
2377
2378         rgvmodectl |= MEMMODE_SWMODE_EN;
2379         I915_WRITE(MEMMODECTL, rgvmodectl);
2380
2381         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2382                 DRM_ERROR("stuck trying to change perf mode\n");
2383         mdelay(1);
2384
2385         ironlake_set_drps(dev, fstart);
2386
2387         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2388                 I915_READ(0x112e0);
2389         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2390         dev_priv->ips.last_count2 = I915_READ(0x112f4);
2391         getrawmonotonic(&dev_priv->ips.last_time2);
2392
2393         lockmgr(&mchdev_lock, LK_RELEASE);
2394 }
2395
2396 static void ironlake_disable_drps(struct drm_device *dev)
2397 {
2398         struct drm_i915_private *dev_priv = dev->dev_private;
2399         u16 rgvswctl;
2400
2401         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
2402
2403         rgvswctl = I915_READ16(MEMSWCTL);
2404
2405         /* Ack interrupts, disable EFC interrupt */
2406         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2407         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2408         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2409         I915_WRITE(DEIIR, DE_PCU_EVENT);
2410         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2411
2412         /* Go back to the starting frequency */
2413         ironlake_set_drps(dev, dev_priv->ips.fstart);
2414         mdelay(1);
2415         rgvswctl |= MEMCTL_CMD_STS;
2416         I915_WRITE(MEMSWCTL, rgvswctl);
2417         mdelay(1);
2418
2419         lockmgr(&mchdev_lock, LK_RELEASE);
2420 }
2421
2422 /* There's a funny hw issue where the hw returns all 0 when reading from
2423  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2424  * ourselves, instead of doing a rmw cycle (which might result in us clearing
2425  * all limits and the gpu stuck at whatever frequency it is at atm).
2426  */
2427 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
2428 {
2429         u32 limits;
2430
2431         limits = 0;
2432
2433         if (*val >= dev_priv->rps.max_delay)
2434                 *val = dev_priv->rps.max_delay;
2435         limits |= dev_priv->rps.max_delay << 24;
2436
2437         /* Only set the down limit when we've reached the lowest level to avoid
2438          * getting more interrupts, otherwise leave this clear. This prevents a
2439          * race in the hw when coming out of rc6: There's a tiny window where
2440          * the hw runs at the minimal clock before selecting the desired
2441          * frequency, if the down threshold expires in that window we will not
2442          * receive a down interrupt. */
2443         if (*val <= dev_priv->rps.min_delay) {
2444                 *val = dev_priv->rps.min_delay;
2445                 limits |= dev_priv->rps.min_delay << 16;
2446         }
2447
2448         return limits;
2449 }
2450
2451 void gen6_set_rps(struct drm_device *dev, u8 val)
2452 {
2453         struct drm_i915_private *dev_priv = dev->dev_private;
2454         u32 limits = gen6_rps_limits(dev_priv, &val);
2455
2456         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2457         WARN_ON(val > dev_priv->rps.max_delay);
2458         WARN_ON(val < dev_priv->rps.min_delay);
2459
2460         if (val == dev_priv->rps.cur_delay)
2461                 return;
2462
2463         I915_WRITE(GEN6_RPNSWREQ,
2464                    GEN6_FREQUENCY(val) |
2465                    GEN6_OFFSET(0) |
2466                    GEN6_AGGRESSIVE_TURBO);
2467
2468         /* Make sure we continue to get interrupts
2469          * until we hit the minimum or maximum frequencies.
2470          */
2471         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
2472
2473         POSTING_READ(GEN6_RPNSWREQ);
2474
2475         dev_priv->rps.cur_delay = val;
2476
2477         trace_intel_gpu_freq_change(val * 50);
2478 }
2479
2480 static void gen6_disable_rps(struct drm_device *dev)
2481 {
2482         struct drm_i915_private *dev_priv = dev->dev_private;
2483
2484         I915_WRITE(GEN6_RC_CONTROL, 0);
2485         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
2486         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
2487         I915_WRITE(GEN6_PMIER, 0);
2488         /* Complete PM interrupt masking here doesn't race with the rps work
2489          * item again unmasking PM interrupts because that is using a different
2490          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
2491          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
2492
2493         spin_lock(&dev_priv->rps.lock);
2494         dev_priv->rps.pm_iir = 0;
2495         spin_unlock(&dev_priv->rps.lock);
2496
2497         I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2498 }
2499
2500 int intel_enable_rc6(const struct drm_device *dev)
2501 {
2502         /* Respect the kernel parameter if it is set */
2503         if (i915_enable_rc6 >= 0)
2504                 return i915_enable_rc6;
2505
2506         /* Disable RC6 on Ironlake */
2507         if (INTEL_INFO(dev)->gen == 5)
2508                 return 0;
2509
2510         if (IS_HASWELL(dev)) {
2511                 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
2512                 return INTEL_RC6_ENABLE;
2513         }
2514
2515         /* snb/ivb have more than one rc6 state. */
2516         if (INTEL_INFO(dev)->gen == 6) {
2517                 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
2518                 return INTEL_RC6_ENABLE;
2519         }
2520
2521         DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
2522         return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
2523 }
2524
2525 static void gen6_enable_rps(struct drm_device *dev)
2526 {
2527         struct drm_i915_private *dev_priv = dev->dev_private;
2528         struct intel_ring_buffer *ring;
2529         u32 rp_state_cap;
2530         u32 gt_perf_status;
2531         u32 rc6vids, pcu_mbox, rc6_mask = 0;
2532         u32 gtfifodbg;
2533         int rc6_mode;
2534         int i, ret;
2535
2536         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2537
2538         /* Here begins a magic sequence of register writes to enable
2539          * auto-downclocking.
2540          *
2541          * Perhaps there might be some value in exposing these to
2542          * userspace...
2543          */
2544         I915_WRITE(GEN6_RC_STATE, 0);
2545
2546         /* Clear the DBG now so we don't confuse earlier errors */
2547         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
2548                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
2549                 I915_WRITE(GTFIFODBG, gtfifodbg);
2550         }
2551
2552         gen6_gt_force_wake_get(dev_priv);
2553
2554         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
2555         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
2556
2557         /* In units of 100MHz */
2558         dev_priv->rps.max_delay = rp_state_cap & 0xff;
2559         dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
2560         dev_priv->rps.cur_delay = 0;
2561
2562         /* disable the counters and set deterministic thresholds */
2563         I915_WRITE(GEN6_RC_CONTROL, 0);
2564
2565         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
2566         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
2567         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
2568         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
2569         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
2570
2571         for_each_ring(ring, dev_priv, i)
2572                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
2573
2574         I915_WRITE(GEN6_RC_SLEEP, 0);
2575         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
2576         I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
2577         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
2578         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
2579
2580         /* Check if we are enabling RC6 */
2581         rc6_mode = intel_enable_rc6(dev_priv->dev);
2582         if (rc6_mode & INTEL_RC6_ENABLE)
2583                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
2584
2585         /* We don't use those on Haswell */
2586         if (!IS_HASWELL(dev)) {
2587                 if (rc6_mode & INTEL_RC6p_ENABLE)
2588                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
2589
2590                 if (rc6_mode & INTEL_RC6pp_ENABLE)
2591                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
2592         }
2593
2594         DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
2595                         (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
2596                         (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
2597                         (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
2598
2599         I915_WRITE(GEN6_RC_CONTROL,
2600                    rc6_mask |
2601                    GEN6_RC_CTL_EI_MODE(1) |
2602                    GEN6_RC_CTL_HW_ENABLE);
2603
2604         I915_WRITE(GEN6_RPNSWREQ,
2605                    GEN6_FREQUENCY(10) |
2606                    GEN6_OFFSET(0) |
2607                    GEN6_AGGRESSIVE_TURBO);
2608         I915_WRITE(GEN6_RC_VIDEO_FREQ,
2609                    GEN6_FREQUENCY(12));
2610
2611         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
2612         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
2613                    dev_priv->rps.max_delay << 24 |
2614                    dev_priv->rps.min_delay << 16);
2615
2616         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
2617         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
2618         I915_WRITE(GEN6_RP_UP_EI, 66000);
2619         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
2620
2621         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2622         I915_WRITE(GEN6_RP_CONTROL,
2623                    GEN6_RP_MEDIA_TURBO |
2624                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
2625                    GEN6_RP_MEDIA_IS_GFX |
2626                    GEN6_RP_ENABLE |
2627                    GEN6_RP_UP_BUSY_AVG |
2628                    (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
2629
2630         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
2631         if (!ret) {
2632                 pcu_mbox = 0;
2633                 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
2634                 if (ret && pcu_mbox & (1<<31)) { /* OC supported */
2635                         dev_priv->rps.max_delay = pcu_mbox & 0xff;
2636                         DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
2637                 }
2638         } else {
2639                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
2640         }
2641
2642         gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
2643
2644         /* requires MSI enabled */
2645         I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
2646         spin_lock(&dev_priv->rps.lock);
2647         WARN_ON(dev_priv->rps.pm_iir != 0);
2648         I915_WRITE(GEN6_PMIMR, 0);
2649         spin_unlock(&dev_priv->rps.lock);
2650         /* enable all PM interrupts */
2651         I915_WRITE(GEN6_PMINTRMSK, 0);
2652
2653         rc6vids = 0;
2654         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
2655         if (IS_GEN6(dev) && ret) {
2656                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
2657         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
2658                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
2659                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
2660                 rc6vids &= 0xffff00;
2661                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
2662                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
2663                 if (ret)
2664                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
2665         }
2666
2667         gen6_gt_force_wake_put(dev_priv);
2668 }
2669
2670 static void gen6_update_ring_freq(struct drm_device *dev)
2671 {
2672         struct drm_i915_private *dev_priv = dev->dev_private;
2673         int min_freq = 15;
2674         int gpu_freq;
2675         unsigned int ia_freq, max_ia_freq;
2676         int scaling_factor = 180;
2677
2678         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2679
2680 #if 0
2681         max_ia_freq = cpufreq_quick_get_max(0);
2682         /*
2683          * Default to measured freq if none found, PCU will ensure we don't go
2684          * over
2685          */
2686         if (!max_ia_freq)
2687                 max_ia_freq = tsc_khz;
2688 #else
2689         max_ia_freq = tsc_frequency / 1000;
2690 #endif
2691
2692         /* Convert from kHz to MHz */
2693         max_ia_freq /= 1000;
2694
2695         /*
2696          * For each potential GPU frequency, load a ring frequency we'd like
2697          * to use for memory access.  We do this by specifying the IA frequency
2698          * the PCU should use as a reference to determine the ring frequency.
2699          */
2700         for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
2701              gpu_freq--) {
2702                 int diff = dev_priv->rps.max_delay - gpu_freq;
2703
2704                 /*
2705                  * For GPU frequencies less than 750MHz, just use the lowest
2706                  * ring freq.
2707                  */
2708                 if (gpu_freq < min_freq)
2709                         ia_freq = 800;
2710                 else
2711                         ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
2712                 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
2713                 ia_freq <<= GEN6_PCODE_FREQ_IA_RATIO_SHIFT;
2714
2715                 sandybridge_pcode_write(dev_priv,
2716                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
2717                                         ia_freq | gpu_freq);
2718         }
2719 }
2720
2721 void ironlake_teardown_rc6(struct drm_device *dev)
2722 {
2723         struct drm_i915_private *dev_priv = dev->dev_private;
2724
2725         if (dev_priv->ips.renderctx) {
2726                 i915_gem_object_unpin(dev_priv->ips.renderctx);
2727                 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
2728                 dev_priv->ips.renderctx = NULL;
2729         }
2730
2731         if (dev_priv->ips.pwrctx) {
2732                 i915_gem_object_unpin(dev_priv->ips.pwrctx);
2733                 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
2734                 dev_priv->ips.pwrctx = NULL;
2735         }
2736 }
2737
2738 static void ironlake_disable_rc6(struct drm_device *dev)
2739 {
2740         struct drm_i915_private *dev_priv = dev->dev_private;
2741
2742         if (I915_READ(PWRCTXA)) {
2743                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
2744                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
2745                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
2746                          50);
2747
2748                 I915_WRITE(PWRCTXA, 0);
2749                 POSTING_READ(PWRCTXA);
2750
2751                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2752                 POSTING_READ(RSTDBYCTL);
2753         }
2754 }
2755
2756 static int ironlake_setup_rc6(struct drm_device *dev)
2757 {
2758         struct drm_i915_private *dev_priv = dev->dev_private;
2759
2760         if (dev_priv->ips.renderctx == NULL)
2761                 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
2762         if (!dev_priv->ips.renderctx)
2763                 return -ENOMEM;
2764
2765         if (dev_priv->ips.pwrctx == NULL)
2766                 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
2767         if (!dev_priv->ips.pwrctx) {
2768                 ironlake_teardown_rc6(dev);
2769                 return -ENOMEM;
2770         }
2771
2772         return 0;
2773 }
2774
2775 static void ironlake_enable_rc6(struct drm_device *dev)
2776 {
2777         struct drm_i915_private *dev_priv = dev->dev_private;
2778         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
2779         bool was_interruptible;
2780         int ret;
2781
2782         /* rc6 disabled by default due to repeated reports of hanging during
2783          * boot and resume.
2784          */
2785         if (!intel_enable_rc6(dev))
2786                 return;
2787
2788         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2789
2790         ret = ironlake_setup_rc6(dev);
2791         if (ret)
2792                 return;
2793
2794         was_interruptible = dev_priv->mm.interruptible;
2795         dev_priv->mm.interruptible = false;
2796
2797         /*
2798          * GPU can automatically power down the render unit if given a page
2799          * to save state.
2800          */
2801         ret = intel_ring_begin(ring, 6);
2802         if (ret) {
2803                 ironlake_teardown_rc6(dev);
2804                 dev_priv->mm.interruptible = was_interruptible;
2805                 return;
2806         }
2807
2808         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
2809         intel_ring_emit(ring, MI_SET_CONTEXT);
2810         intel_ring_emit(ring, dev_priv->ips.renderctx->gtt_offset |
2811                         MI_MM_SPACE_GTT |
2812                         MI_SAVE_EXT_STATE_EN |
2813                         MI_RESTORE_EXT_STATE_EN |
2814                         MI_RESTORE_INHIBIT);
2815         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
2816         intel_ring_emit(ring, MI_NOOP);
2817         intel_ring_emit(ring, MI_FLUSH);
2818         intel_ring_advance(ring);
2819
2820         /*
2821          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
2822          * does an implicit flush, combined with MI_FLUSH above, it should be
2823          * safe to assume that renderctx is valid
2824          */
2825         ret = intel_ring_idle(ring);
2826         dev_priv->mm.interruptible = was_interruptible;
2827         if (ret) {
2828                 DRM_ERROR("failed to enable ironlake power power savings\n");
2829                 ironlake_teardown_rc6(dev);
2830                 return;
2831         }
2832
2833         I915_WRITE(PWRCTXA, dev_priv->ips.pwrctx->gtt_offset | PWRCTX_EN);
2834         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2835 }
2836
2837 static unsigned long intel_pxfreq(u32 vidfreq)
2838 {
2839         unsigned long freq;
2840         int div = (vidfreq & 0x3f0000) >> 16;
2841         int post = (vidfreq & 0x3000) >> 12;
2842         int pre = (vidfreq & 0x7);
2843
2844         if (!pre)
2845                 return 0;
2846
2847         freq = ((div * 133333) / ((1<<post) * pre));
2848
2849         return freq;
2850 }
2851
2852 static const struct cparams {
2853         u16 i;
2854         u16 t;
2855         u16 m;
2856         u16 c;
2857 } cparams[] = {
2858         { 1, 1333, 301, 28664 },
2859         { 1, 1066, 294, 24460 },
2860         { 1, 800, 294, 25192 },
2861         { 0, 1333, 276, 27605 },
2862         { 0, 1066, 276, 27605 },
2863         { 0, 800, 231, 23784 },
2864 };
2865
2866 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
2867 {
2868         u64 total_count, diff, ret;
2869         u32 count1, count2, count3, m = 0, c = 0;
2870         unsigned long now = jiffies_to_msecs(jiffies), diff1;
2871         int i;
2872
2873         diff1 = now - dev_priv->ips.last_time1;
2874
2875         /* Prevent division-by-zero if we are asking too fast.
2876          * Also, we don't get interesting results if we are polling
2877          * faster than once in 10ms, so just return the saved value
2878          * in such cases.
2879          */
2880         if (diff1 <= 10)
2881                 return dev_priv->ips.chipset_power;
2882
2883         count1 = I915_READ(DMIEC);
2884         count2 = I915_READ(DDREC);
2885         count3 = I915_READ(CSIEC);
2886
2887         total_count = count1 + count2 + count3;
2888
2889         /* FIXME: handle per-counter overflow */
2890         if (total_count < dev_priv->ips.last_count1) {
2891                 diff = ~0UL - dev_priv->ips.last_count1;
2892                 diff += total_count;
2893         } else {
2894                 diff = total_count - dev_priv->ips.last_count1;
2895         }
2896
2897         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
2898                 if (cparams[i].i == dev_priv->ips.c_m &&
2899                     cparams[i].t == dev_priv->ips.r_t) {
2900                         m = cparams[i].m;
2901                         c = cparams[i].c;
2902                         break;
2903                 }
2904         }
2905
2906         diff = div_u64(diff, diff1);
2907         ret = ((m * diff) + c);
2908         ret = div_u64(ret, 10);
2909
2910         dev_priv->ips.last_count1 = total_count;
2911         dev_priv->ips.last_time1 = now;
2912
2913         dev_priv->ips.chipset_power = ret;
2914
2915         return ret;
2916 }
2917
2918 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
2919 {
2920         unsigned long val;
2921
2922         if (dev_priv->info->gen != 5)
2923                 return 0;
2924
2925         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
2926
2927         val = __i915_chipset_val(dev_priv);
2928
2929         lockmgr(&mchdev_lock, LK_RELEASE);
2930
2931         return val;
2932 }
2933
2934 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
2935 {
2936         unsigned long m, x, b;
2937         u32 tsfs;
2938
2939         tsfs = I915_READ(TSFS);
2940
2941         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
2942         x = I915_READ8(TR1);
2943
2944         b = tsfs & TSFS_INTR_MASK;
2945
2946         return ((m * x) / 127) - b;
2947 }
2948
2949 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
2950 {
2951         static const struct v_table {
2952                 u16 vd; /* in .1 mil */
2953                 u16 vm; /* in .1 mil */
2954         } v_table[] = {
2955                 { 0, 0, },
2956                 { 375, 0, },
2957                 { 500, 0, },
2958                 { 625, 0, },
2959                 { 750, 0, },
2960                 { 875, 0, },
2961                 { 1000, 0, },
2962                 { 1125, 0, },
2963                 { 4125, 3000, },
2964                 { 4125, 3000, },
2965                 { 4125, 3000, },
2966                 { 4125, 3000, },
2967                 { 4125, 3000, },
2968                 { 4125, 3000, },
2969                 { 4125, 3000, },
2970                 { 4125, 3000, },
2971                 { 4125, 3000, },
2972                 { 4125, 3000, },
2973                 { 4125, 3000, },
2974                 { 4125, 3000, },
2975                 { 4125, 3000, },
2976                 { 4125, 3000, },
2977                 { 4125, 3000, },
2978                 { 4125, 3000, },
2979                 { 4125, 3000, },
2980                 { 4125, 3000, },
2981                 { 4125, 3000, },
2982                 { 4125, 3000, },
2983                 { 4125, 3000, },
2984                 { 4125, 3000, },
2985                 { 4125, 3000, },
2986                 { 4125, 3000, },
2987                 { 4250, 3125, },
2988                 { 4375, 3250, },
2989                 { 4500, 3375, },
2990                 { 4625, 3500, },
2991                 { 4750, 3625, },
2992                 { 4875, 3750, },
2993                 { 5000, 3875, },
2994                 { 5125, 4000, },
2995                 { 5250, 4125, },
2996                 { 5375, 4250, },
2997                 { 5500, 4375, },
2998                 { 5625, 4500, },
2999                 { 5750, 4625, },
3000                 { 5875, 4750, },
3001                 { 6000, 4875, },
3002                 { 6125, 5000, },
3003                 { 6250, 5125, },
3004                 { 6375, 5250, },
3005                 { 6500, 5375, },
3006                 { 6625, 5500, },
3007                 { 6750, 5625, },
3008                 { 6875, 5750, },
3009                 { 7000, 5875, },
3010                 { 7125, 6000, },
3011                 { 7250, 6125, },
3012                 { 7375, 6250, },
3013                 { 7500, 6375, },
3014                 { 7625, 6500, },
3015                 { 7750, 6625, },
3016                 { 7875, 6750, },
3017                 { 8000, 6875, },
3018                 { 8125, 7000, },
3019                 { 8250, 7125, },
3020                 { 8375, 7250, },
3021                 { 8500, 7375, },
3022                 { 8625, 7500, },
3023                 { 8750, 7625, },
3024                 { 8875, 7750, },
3025                 { 9000, 7875, },
3026                 { 9125, 8000, },
3027                 { 9250, 8125, },
3028                 { 9375, 8250, },
3029                 { 9500, 8375, },
3030                 { 9625, 8500, },
3031                 { 9750, 8625, },
3032                 { 9875, 8750, },
3033                 { 10000, 8875, },
3034                 { 10125, 9000, },
3035                 { 10250, 9125, },
3036                 { 10375, 9250, },
3037                 { 10500, 9375, },
3038                 { 10625, 9500, },
3039                 { 10750, 9625, },
3040                 { 10875, 9750, },
3041                 { 11000, 9875, },
3042                 { 11125, 10000, },
3043                 { 11250, 10125, },
3044                 { 11375, 10250, },
3045                 { 11500, 10375, },
3046                 { 11625, 10500, },
3047                 { 11750, 10625, },
3048                 { 11875, 10750, },
3049                 { 12000, 10875, },
3050                 { 12125, 11000, },
3051                 { 12250, 11125, },
3052                 { 12375, 11250, },
3053                 { 12500, 11375, },
3054                 { 12625, 11500, },
3055                 { 12750, 11625, },
3056                 { 12875, 11750, },
3057                 { 13000, 11875, },
3058                 { 13125, 12000, },
3059                 { 13250, 12125, },
3060                 { 13375, 12250, },
3061                 { 13500, 12375, },
3062                 { 13625, 12500, },
3063                 { 13750, 12625, },
3064                 { 13875, 12750, },
3065                 { 14000, 12875, },
3066                 { 14125, 13000, },
3067                 { 14250, 13125, },
3068                 { 14375, 13250, },
3069                 { 14500, 13375, },
3070                 { 14625, 13500, },
3071                 { 14750, 13625, },
3072                 { 14875, 13750, },
3073                 { 15000, 13875, },
3074                 { 15125, 14000, },
3075                 { 15250, 14125, },
3076                 { 15375, 14250, },
3077                 { 15500, 14375, },
3078                 { 15625, 14500, },
3079                 { 15750, 14625, },
3080                 { 15875, 14750, },
3081                 { 16000, 14875, },
3082                 { 16125, 15000, },
3083         };
3084         if (dev_priv->info->is_mobile)
3085                 return v_table[pxvid].vm;
3086         else
3087                 return v_table[pxvid].vd;
3088 }
3089
3090 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
3091 {
3092         struct timespec now, diff1;
3093         u64 diff;
3094         unsigned long diffms;
3095         u32 count;
3096
3097         getrawmonotonic(&now);
3098         diff1 = timespec_sub(now, dev_priv->ips.last_time2);
3099
3100         /* Don't divide by 0 */
3101         diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
3102         if (!diffms)
3103                 return;
3104
3105         count = I915_READ(GFXEC);
3106
3107         if (count < dev_priv->ips.last_count2) {
3108                 diff = ~0UL - dev_priv->ips.last_count2;
3109                 diff += count;
3110         } else {
3111                 diff = count - dev_priv->ips.last_count2;
3112         }
3113
3114         dev_priv->ips.last_count2 = count;
3115         dev_priv->ips.last_time2 = now;
3116
3117         /* More magic constants... */
3118         diff = diff * 1181;
3119         diff = div_u64(diff, diffms * 10);
3120         dev_priv->ips.gfx_power = diff;
3121 }
3122
3123 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
3124 {
3125         if (dev_priv->info->gen != 5)
3126                 return;
3127
3128         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3129
3130         __i915_update_gfx_val(dev_priv);
3131
3132         lockmgr(&mchdev_lock, LK_RELEASE);
3133 }
3134
3135 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
3136 {
3137         unsigned long t, corr, state1, corr2, state2;
3138         u32 pxvid, ext_v;
3139
3140         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
3141         pxvid = (pxvid >> 24) & 0x7f;
3142         ext_v = pvid_to_extvid(dev_priv, pxvid);
3143
3144         state1 = ext_v;
3145
3146         t = i915_mch_val(dev_priv);
3147
3148         /* Revel in the empirically derived constants */
3149
3150         /* Correction factor in 1/100000 units */
3151         if (t > 80)
3152                 corr = ((t * 2349) + 135940);
3153         else if (t >= 50)
3154                 corr = ((t * 964) + 29317);
3155         else /* < 50 */
3156                 corr = ((t * 301) + 1004);
3157
3158         corr = corr * ((150142 * state1) / 10000 - 78642);
3159         corr /= 100000;
3160         corr2 = (corr * dev_priv->ips.corr);
3161
3162         state2 = (corr2 * state1) / 10000;
3163         state2 /= 100; /* convert to mW */
3164
3165         __i915_update_gfx_val(dev_priv);
3166
3167         return dev_priv->ips.gfx_power + state2;
3168 }
3169
3170 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
3171 {
3172         unsigned long val;
3173
3174         if (dev_priv->info->gen != 5)
3175                 return 0;
3176
3177         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3178
3179         val = __i915_gfx_val(dev_priv);
3180
3181         lockmgr(&mchdev_lock, LK_RELEASE);
3182
3183         return val;
3184 }
3185
3186 /**
3187  * i915_read_mch_val - return value for IPS use
3188  *
3189  * Calculate and return a value for the IPS driver to use when deciding whether
3190  * we have thermal and power headroom to increase CPU or GPU power budget.
3191  */
3192 unsigned long i915_read_mch_val(void)
3193 {
3194         struct drm_i915_private *dev_priv;
3195         unsigned long chipset_val, graphics_val, ret = 0;
3196
3197         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3198         if (!i915_mch_dev)
3199                 goto out_unlock;
3200         dev_priv = i915_mch_dev;
3201
3202         chipset_val = __i915_chipset_val(dev_priv);
3203         graphics_val = __i915_gfx_val(dev_priv);
3204
3205         ret = chipset_val + graphics_val;
3206
3207 out_unlock:
3208         lockmgr(&mchdev_lock, LK_RELEASE);
3209
3210         return ret;
3211 }
3212
3213 /**
3214  * i915_gpu_raise - raise GPU frequency limit
3215  *
3216  * Raise the limit; IPS indicates we have thermal headroom.
3217  */
3218 bool i915_gpu_raise(void)
3219 {
3220         struct drm_i915_private *dev_priv;
3221         bool ret = true;
3222
3223         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3224         if (!i915_mch_dev) {
3225                 ret = false;
3226                 goto out_unlock;
3227         }
3228         dev_priv = i915_mch_dev;
3229
3230         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
3231                 dev_priv->ips.max_delay--;
3232
3233 out_unlock:
3234         lockmgr(&mchdev_lock, LK_RELEASE);
3235
3236         return ret;
3237 }
3238
3239 /**
3240  * i915_gpu_lower - lower GPU frequency limit
3241  *
3242  * IPS indicates we're close to a thermal limit, so throttle back the GPU
3243  * frequency maximum.
3244  */
3245 bool i915_gpu_lower(void)
3246 {
3247         struct drm_i915_private *dev_priv;
3248         bool ret = true;
3249
3250         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3251         if (!i915_mch_dev) {
3252                 ret = false;
3253                 goto out_unlock;
3254         }
3255         dev_priv = i915_mch_dev;
3256
3257         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
3258                 dev_priv->ips.max_delay++;
3259
3260 out_unlock:
3261         lockmgr(&mchdev_lock, LK_RELEASE);
3262
3263         return ret;
3264 }
3265
3266 /**
3267  * i915_gpu_busy - indicate GPU business to IPS
3268  *
3269  * Tell the IPS driver whether or not the GPU is busy.
3270  */
3271 bool i915_gpu_busy(void)
3272 {
3273         struct drm_i915_private *dev_priv;
3274         struct intel_ring_buffer *ring;
3275         bool ret = false;
3276         int i;
3277
3278         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3279         if (!i915_mch_dev)
3280                 goto out_unlock;
3281         dev_priv = i915_mch_dev;
3282
3283         for_each_ring(ring, dev_priv, i)
3284                 ret |= !list_empty(&ring->request_list);
3285
3286 out_unlock:
3287         lockmgr(&mchdev_lock, LK_RELEASE);
3288
3289         return ret;
3290 }
3291
3292 /**
3293  * i915_gpu_turbo_disable - disable graphics turbo
3294  *
3295  * Disable graphics turbo by resetting the max frequency and setting the
3296  * current frequency to the default.
3297  */
3298 bool i915_gpu_turbo_disable(void)
3299 {
3300         struct drm_i915_private *dev_priv;
3301         bool ret = true;
3302
3303         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3304         if (!i915_mch_dev) {
3305                 ret = false;
3306                 goto out_unlock;
3307         }
3308         dev_priv = i915_mch_dev;
3309
3310         dev_priv->ips.max_delay = dev_priv->ips.fstart;
3311
3312         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
3313                 ret = false;
3314
3315 out_unlock:
3316         lockmgr(&mchdev_lock, LK_RELEASE);
3317
3318         return ret;
3319 }
3320
3321 #if 0
3322 /**
3323  * Tells the intel_ips driver that the i915 driver is now loaded, if
3324  * IPS got loaded first.
3325  *
3326  * This awkward dance is so that neither module has to depend on the
3327  * other in order for IPS to do the appropriate communication of
3328  * GPU turbo limits to i915.
3329  */
3330 static void
3331 ips_ping_for_i915_load(void)
3332 {
3333         void (*link)(void);
3334
3335         link = symbol_get(ips_link_to_i915_driver);
3336         if (link) {
3337                 link();
3338                 symbol_put(ips_link_to_i915_driver);
3339         }
3340 }
3341 #endif
3342
3343 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
3344 {
3345         /* We only register the i915 ips part with intel-ips once everything is
3346          * set up, to avoid intel-ips sneaking in and reading bogus values. */
3347         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3348         i915_mch_dev = dev_priv;
3349         lockmgr(&mchdev_lock, LK_RELEASE);
3350 }
3351
3352 void intel_gpu_ips_teardown(void)
3353 {
3354         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3355         i915_mch_dev = NULL;
3356         lockmgr(&mchdev_lock, LK_RELEASE);
3357 }
3358 static void intel_init_emon(struct drm_device *dev)
3359 {
3360         struct drm_i915_private *dev_priv = dev->dev_private;
3361         u32 lcfuse;
3362         u8 pxw[16];
3363         int i;
3364
3365         /* Disable to program */
3366         I915_WRITE(ECR, 0);
3367         POSTING_READ(ECR);
3368
3369         /* Program energy weights for various events */
3370         I915_WRITE(SDEW, 0x15040d00);
3371         I915_WRITE(CSIEW0, 0x007f0000);
3372         I915_WRITE(CSIEW1, 0x1e220004);
3373         I915_WRITE(CSIEW2, 0x04000004);
3374
3375         for (i = 0; i < 5; i++)
3376                 I915_WRITE(PEW + (i * 4), 0);
3377         for (i = 0; i < 3; i++)
3378                 I915_WRITE(DEW + (i * 4), 0);
3379
3380         /* Program P-state weights to account for frequency power adjustment */
3381         for (i = 0; i < 16; i++) {
3382                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
3383                 unsigned long freq = intel_pxfreq(pxvidfreq);
3384                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
3385                         PXVFREQ_PX_SHIFT;
3386                 unsigned long val;
3387
3388                 val = vid * vid;
3389                 val *= (freq / 1000);
3390                 val *= 255;
3391                 val /= (127*127*900);
3392                 if (val > 0xff)
3393                         DRM_ERROR("bad pxval: %ld\n", val);
3394                 pxw[i] = val;
3395         }
3396         /* Render standby states get 0 weight */
3397         pxw[14] = 0;
3398         pxw[15] = 0;
3399
3400         for (i = 0; i < 4; i++) {
3401                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
3402                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
3403                 I915_WRITE(PXW + (i * 4), val);
3404         }
3405
3406         /* Adjust magic regs to magic values (more experimental results) */
3407         I915_WRITE(OGW0, 0);
3408         I915_WRITE(OGW1, 0);
3409         I915_WRITE(EG0, 0x00007f00);
3410         I915_WRITE(EG1, 0x0000000e);
3411         I915_WRITE(EG2, 0x000e0000);
3412         I915_WRITE(EG3, 0x68000300);
3413         I915_WRITE(EG4, 0x42000000);
3414         I915_WRITE(EG5, 0x00140031);
3415         I915_WRITE(EG6, 0);
3416         I915_WRITE(EG7, 0);
3417
3418         for (i = 0; i < 8; i++)
3419                 I915_WRITE(PXWL + (i * 4), 0);
3420
3421         /* Enable PMON + select events */
3422         I915_WRITE(ECR, 0x80000019);
3423
3424         lcfuse = I915_READ(LCFUSE02);
3425
3426         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
3427 }
3428
3429 void intel_disable_gt_powersave(struct drm_device *dev)
3430 {
3431         struct drm_i915_private *dev_priv = dev->dev_private;
3432
3433         if (IS_IRONLAKE_M(dev)) {
3434                 ironlake_disable_drps(dev);
3435                 ironlake_disable_rc6(dev);
3436         } else if (INTEL_INFO(dev)->gen >= 6 && !IS_VALLEYVIEW(dev)) {
3437                 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
3438                 mutex_lock(&dev_priv->rps.hw_lock);
3439                 gen6_disable_rps(dev);
3440                 mutex_unlock(&dev_priv->rps.hw_lock);
3441         }
3442 }
3443
3444 static void intel_gen6_powersave_work(struct work_struct *work)
3445 {
3446         struct drm_i915_private *dev_priv =
3447                 container_of(work, struct drm_i915_private,
3448                              rps.delayed_resume_work.work);
3449         struct drm_device *dev = dev_priv->dev;
3450
3451         mutex_lock(&dev_priv->rps.hw_lock);
3452         gen6_enable_rps(dev);
3453         gen6_update_ring_freq(dev);
3454         mutex_unlock(&dev_priv->rps.hw_lock);
3455 }
3456
3457 void intel_enable_gt_powersave(struct drm_device *dev)
3458 {
3459         struct drm_i915_private *dev_priv = dev->dev_private;
3460
3461         if (IS_IRONLAKE_M(dev)) {
3462                 ironlake_enable_drps(dev);
3463                 ironlake_enable_rc6(dev);
3464                 intel_init_emon(dev);
3465         } else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
3466                 /*
3467                  * PCU communication is slow and this doesn't need to be
3468                  * done at any specific time, so do this out of our fast path
3469                  * to make resume and init faster.
3470                  */
3471                 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
3472                                       round_jiffies_up_relative(HZ));
3473         }
3474 }
3475
3476 static void ibx_init_clock_gating(struct drm_device *dev)
3477 {
3478         struct drm_i915_private *dev_priv = dev->dev_private;
3479
3480         /*
3481          * On Ibex Peak and Cougar Point, we need to disable clock
3482          * gating for the panel power sequencer or it will fail to
3483          * start up when no ports are active.
3484          */
3485         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3486 }
3487
3488 static void ironlake_init_clock_gating(struct drm_device *dev)
3489 {
3490         struct drm_i915_private *dev_priv = dev->dev_private;
3491         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3492
3493         /* Required for FBC */
3494         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
3495                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
3496                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
3497
3498         I915_WRITE(PCH_3DCGDIS0,
3499                    MARIUNIT_CLOCK_GATE_DISABLE |
3500                    SVSMUNIT_CLOCK_GATE_DISABLE);
3501         I915_WRITE(PCH_3DCGDIS1,
3502                    VFMUNIT_CLOCK_GATE_DISABLE);
3503
3504         /*
3505          * According to the spec the following bits should be set in
3506          * order to enable memory self-refresh
3507          * The bit 22/21 of 0x42004
3508          * The bit 5 of 0x42020
3509          * The bit 15 of 0x45000
3510          */
3511         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3512                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
3513                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
3514         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
3515         I915_WRITE(DISP_ARB_CTL,
3516                    (I915_READ(DISP_ARB_CTL) |
3517                     DISP_FBC_WM_DIS));
3518         I915_WRITE(WM3_LP_ILK, 0);
3519         I915_WRITE(WM2_LP_ILK, 0);
3520         I915_WRITE(WM1_LP_ILK, 0);
3521
3522         /*
3523          * Based on the document from hardware guys the following bits
3524          * should be set unconditionally in order to enable FBC.
3525          * The bit 22 of 0x42000
3526          * The bit 22 of 0x42004
3527          * The bit 7,8,9 of 0x42020.
3528          */
3529         if (IS_IRONLAKE_M(dev)) {
3530                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
3531                            I915_READ(ILK_DISPLAY_CHICKEN1) |
3532                            ILK_FBCQ_DIS);
3533                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3534                            I915_READ(ILK_DISPLAY_CHICKEN2) |
3535                            ILK_DPARB_GATE);
3536         }
3537
3538         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3539
3540         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3541                    I915_READ(ILK_DISPLAY_CHICKEN2) |
3542                    ILK_ELPIN_409_SELECT);
3543         I915_WRITE(_3D_CHICKEN2,
3544                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
3545                    _3D_CHICKEN2_WM_READ_PIPELINED);
3546
3547         /* WaDisableRenderCachePipelinedFlush */
3548         I915_WRITE(CACHE_MODE_0,
3549                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
3550
3551         ibx_init_clock_gating(dev);
3552 }
3553
3554 static void cpt_init_clock_gating(struct drm_device *dev)
3555 {
3556         struct drm_i915_private *dev_priv = dev->dev_private;
3557         int pipe;
3558         uint32_t val;
3559
3560         /*
3561          * On Ibex Peak and Cougar Point, we need to disable clock
3562          * gating for the panel power sequencer or it will fail to
3563          * start up when no ports are active.
3564          */
3565         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3566         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
3567                    DPLS_EDP_PPS_FIX_DIS);
3568         /* The below fixes the weird display corruption, a few pixels shifted
3569          * downward, on (only) LVDS of some HP laptops with IVY.
3570          */
3571         for_each_pipe(pipe) {
3572                 val = TRANS_CHICKEN2_TIMING_OVERRIDE;
3573                 if (dev_priv->fdi_rx_polarity_inverted)
3574                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
3575                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
3576         }
3577         /* WADP0ClockGatingDisable */
3578         for_each_pipe(pipe) {
3579                 I915_WRITE(TRANS_CHICKEN1(pipe),
3580                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
3581         }
3582 }
3583
3584 static void gen6_check_mch_setup(struct drm_device *dev)
3585 {
3586         struct drm_i915_private *dev_priv = dev->dev_private;
3587         uint32_t tmp;
3588
3589         tmp = I915_READ(MCH_SSKPD);
3590         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
3591                 DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
3592                 DRM_INFO("This can cause pipe underruns and display issues.\n");
3593                 DRM_INFO("Please upgrade your BIOS to fix this.\n");
3594         }
3595 }
3596
3597 static void gen6_init_clock_gating(struct drm_device *dev)
3598 {
3599         struct drm_i915_private *dev_priv = dev->dev_private;
3600         int pipe;
3601         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3602
3603         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3604
3605         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3606                    I915_READ(ILK_DISPLAY_CHICKEN2) |
3607                    ILK_ELPIN_409_SELECT);
3608
3609         /* WaDisableHiZPlanesWhenMSAAEnabled */
3610         I915_WRITE(_3D_CHICKEN,
3611                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
3612
3613         /* WaSetupGtModeTdRowDispatch */
3614         if (IS_SNB_GT1(dev))
3615                 I915_WRITE(GEN6_GT_MODE,
3616                            _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
3617
3618         I915_WRITE(WM3_LP_ILK, 0);
3619         I915_WRITE(WM2_LP_ILK, 0);
3620         I915_WRITE(WM1_LP_ILK, 0);
3621
3622         I915_WRITE(CACHE_MODE_0,
3623                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
3624
3625         I915_WRITE(GEN6_UCGCTL1,
3626                    I915_READ(GEN6_UCGCTL1) |
3627                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
3628                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
3629
3630         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3631          * gating disable must be set.  Failure to set it results in
3632          * flickering pixels due to Z write ordering failures after
3633          * some amount of runtime in the Mesa "fire" demo, and Unigine
3634          * Sanctuary and Tropics, and apparently anything else with
3635          * alpha test or pixel discard.
3636          *
3637          * According to the spec, bit 11 (RCCUNIT) must also be set,
3638          * but we didn't debug actual testcases to find it out.
3639          *
3640          * Also apply WaDisableVDSUnitClockGating and
3641          * WaDisableRCPBUnitClockGating.
3642          */
3643         I915_WRITE(GEN6_UCGCTL2,
3644                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3645                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3646                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3647
3648         /* Bspec says we need to always set all mask bits. */
3649         I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
3650                    _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
3651
3652         /*
3653          * According to the spec the following bits should be
3654          * set in order to enable memory self-refresh and fbc:
3655          * The bit21 and bit22 of 0x42000
3656          * The bit21 and bit22 of 0x42004
3657          * The bit5 and bit7 of 0x42020
3658          * The bit14 of 0x70180
3659          * The bit14 of 0x71180
3660          */
3661         I915_WRITE(ILK_DISPLAY_CHICKEN1,
3662                    I915_READ(ILK_DISPLAY_CHICKEN1) |
3663                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
3664         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3665                    I915_READ(ILK_DISPLAY_CHICKEN2) |
3666                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
3667         I915_WRITE(ILK_DSPCLK_GATE_D,
3668                    I915_READ(ILK_DSPCLK_GATE_D) |
3669                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
3670                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
3671
3672         /* WaMbcDriverBootEnable */
3673         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3674                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
3675
3676         for_each_pipe(pipe) {
3677                 I915_WRITE(DSPCNTR(pipe),
3678                            I915_READ(DSPCNTR(pipe)) |
3679                            DISPPLANE_TRICKLE_FEED_DISABLE);
3680                 intel_flush_display_plane(dev_priv, pipe);
3681         }
3682
3683         /* The default value should be 0x200 according to docs, but the two
3684          * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
3685         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
3686         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
3687
3688         cpt_init_clock_gating(dev);
3689
3690         gen6_check_mch_setup(dev);
3691 }
3692
3693 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
3694 {
3695         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
3696
3697         reg &= ~GEN7_FF_SCHED_MASK;
3698         reg |= GEN7_FF_TS_SCHED_HW;
3699         reg |= GEN7_FF_VS_SCHED_HW;
3700         reg |= GEN7_FF_DS_SCHED_HW;
3701
3702         /* WaVSRefCountFullforceMissDisable */
3703         if (IS_HASWELL(dev_priv->dev))
3704                 reg &= ~GEN7_FF_VS_REF_CNT_FFME;
3705
3706         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
3707 }
3708
3709 static void lpt_init_clock_gating(struct drm_device *dev)
3710 {
3711         struct drm_i915_private *dev_priv = dev->dev_private;
3712
3713         /*
3714          * TODO: this bit should only be enabled when really needed, then
3715          * disabled when not needed anymore in order to save power.
3716          */
3717         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
3718                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
3719                            I915_READ(SOUTH_DSPCLK_GATE_D) |
3720                            PCH_LP_PARTITION_LEVEL_DISABLE);
3721 }
3722
3723 static void haswell_init_clock_gating(struct drm_device *dev)
3724 {
3725         struct drm_i915_private *dev_priv = dev->dev_private;
3726         int pipe;
3727
3728         I915_WRITE(WM3_LP_ILK, 0);
3729         I915_WRITE(WM2_LP_ILK, 0);
3730         I915_WRITE(WM1_LP_ILK, 0);
3731
3732         /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3733          * This implements the WaDisableRCZUnitClockGating workaround.
3734          */
3735         I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3736
3737         /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3738         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3739                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3740
3741         /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3742         I915_WRITE(GEN7_L3CNTLREG1,
3743                         GEN7_WA_FOR_GEN7_L3_CONTROL);
3744         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3745                         GEN7_WA_L3_CHICKEN_MODE);
3746
3747         /* This is required by WaCatErrorRejectionIssue */
3748         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3749                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3750                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3751
3752         for_each_pipe(pipe) {
3753                 I915_WRITE(DSPCNTR(pipe),
3754                            I915_READ(DSPCNTR(pipe)) |
3755                            DISPPLANE_TRICKLE_FEED_DISABLE);
3756                 intel_flush_display_plane(dev_priv, pipe);
3757         }
3758
3759         gen7_setup_fixed_func_scheduler(dev_priv);
3760
3761         /* WaDisable4x2SubspanOptimization */
3762         I915_WRITE(CACHE_MODE_1,
3763                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3764
3765         /* WaMbcDriverBootEnable */
3766         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3767                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
3768
3769         /* XXX: This is a workaround for early silicon revisions and should be
3770          * removed later.
3771          */
3772         I915_WRITE(WM_DBG,
3773                         I915_READ(WM_DBG) |
3774                         WM_DBG_DISALLOW_MULTIPLE_LP |
3775                         WM_DBG_DISALLOW_SPRITE |
3776                         WM_DBG_DISALLOW_MAXFIFO);
3777
3778         lpt_init_clock_gating(dev);
3779 }
3780
3781 static void ivybridge_init_clock_gating(struct drm_device *dev)
3782 {
3783         struct drm_i915_private *dev_priv = dev->dev_private;
3784         int pipe;
3785         uint32_t snpcr;
3786
3787         I915_WRITE(WM3_LP_ILK, 0);
3788         I915_WRITE(WM2_LP_ILK, 0);
3789         I915_WRITE(WM1_LP_ILK, 0);
3790
3791         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3792
3793         /* WaDisableEarlyCull */
3794         I915_WRITE(_3D_CHICKEN3,
3795                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
3796
3797         /* WaDisableBackToBackFlipFix */
3798         I915_WRITE(IVB_CHICKEN3,
3799                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3800                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
3801
3802         /* WaDisablePSDDualDispatchEnable */
3803         if (IS_IVB_GT1(dev))
3804                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3805                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3806         else
3807                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
3808                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3809
3810         /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3811         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3812                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3813
3814         /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3815         I915_WRITE(GEN7_L3CNTLREG1,
3816                         GEN7_WA_FOR_GEN7_L3_CONTROL);
3817         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3818                    GEN7_WA_L3_CHICKEN_MODE);
3819         if (IS_IVB_GT1(dev))
3820                 I915_WRITE(GEN7_ROW_CHICKEN2,
3821                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3822         else
3823                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
3824                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3825
3826
3827         /* WaForceL3Serialization */
3828         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3829                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3830
3831         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3832          * gating disable must be set.  Failure to set it results in
3833          * flickering pixels due to Z write ordering failures after
3834          * some amount of runtime in the Mesa "fire" demo, and Unigine
3835          * Sanctuary and Tropics, and apparently anything else with
3836          * alpha test or pixel discard.
3837          *
3838          * According to the spec, bit 11 (RCCUNIT) must also be set,
3839          * but we didn't debug actual testcases to find it out.
3840          *
3841          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3842          * This implements the WaDisableRCZUnitClockGating workaround.
3843          */
3844         I915_WRITE(GEN6_UCGCTL2,
3845                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3846                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3847
3848         /* This is required by WaCatErrorRejectionIssue */
3849         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3850                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3851                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3852
3853         for_each_pipe(pipe) {
3854                 I915_WRITE(DSPCNTR(pipe),
3855                            I915_READ(DSPCNTR(pipe)) |
3856                            DISPPLANE_TRICKLE_FEED_DISABLE);
3857                 intel_flush_display_plane(dev_priv, pipe);
3858         }
3859
3860         /* WaMbcDriverBootEnable */
3861         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3862                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
3863
3864         gen7_setup_fixed_func_scheduler(dev_priv);
3865
3866         /* WaDisable4x2SubspanOptimization */
3867         I915_WRITE(CACHE_MODE_1,
3868                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3869
3870         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3871         snpcr &= ~GEN6_MBC_SNPCR_MASK;
3872         snpcr |= GEN6_MBC_SNPCR_MED;
3873         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3874
3875         cpt_init_clock_gating(dev);
3876
3877         gen6_check_mch_setup(dev);
3878 }
3879
3880 static void valleyview_init_clock_gating(struct drm_device *dev)
3881 {
3882         struct drm_i915_private *dev_priv = dev->dev_private;
3883         int pipe;
3884
3885         I915_WRITE(WM3_LP_ILK, 0);
3886         I915_WRITE(WM2_LP_ILK, 0);
3887         I915_WRITE(WM1_LP_ILK, 0);
3888
3889         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3890
3891         /* WaDisableEarlyCull */
3892         I915_WRITE(_3D_CHICKEN3,
3893                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
3894
3895         /* WaDisableBackToBackFlipFix */
3896         I915_WRITE(IVB_CHICKEN3,
3897                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3898                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
3899
3900         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3901                    _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3902
3903         /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3904         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3905                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3906
3907         /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3908         I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
3909         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
3910
3911         /* WaForceL3Serialization */
3912         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3913                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3914
3915         /* WaDisableDopClockGating */
3916         I915_WRITE(GEN7_ROW_CHICKEN2,
3917                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3918
3919         /* WaForceL3Serialization */
3920         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3921                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3922
3923         /* This is required by WaCatErrorRejectionIssue */
3924         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3925                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3926                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3927
3928         /* WaMbcDriverBootEnable */
3929         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3930                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
3931
3932
3933         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3934          * gating disable must be set.  Failure to set it results in
3935          * flickering pixels due to Z write ordering failures after
3936          * some amount of runtime in the Mesa "fire" demo, and Unigine
3937          * Sanctuary and Tropics, and apparently anything else with
3938          * alpha test or pixel discard.
3939          *
3940          * According to the spec, bit 11 (RCCUNIT) must also be set,
3941          * but we didn't debug actual testcases to find it out.
3942          *
3943          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3944          * This implements the WaDisableRCZUnitClockGating workaround.
3945          *
3946          * Also apply WaDisableVDSUnitClockGating and
3947          * WaDisableRCPBUnitClockGating.
3948          */
3949         I915_WRITE(GEN6_UCGCTL2,
3950                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3951                    GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
3952                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3953                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3954                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3955
3956         I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
3957
3958         for_each_pipe(pipe) {
3959                 I915_WRITE(DSPCNTR(pipe),
3960                            I915_READ(DSPCNTR(pipe)) |
3961                            DISPPLANE_TRICKLE_FEED_DISABLE);
3962                 intel_flush_display_plane(dev_priv, pipe);
3963         }
3964
3965         I915_WRITE(CACHE_MODE_1,
3966                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3967
3968         /*
3969          * On ValleyView, the GUnit needs to signal the GT
3970          * when flip and other events complete.  So enable
3971          * all the GUnit->GT interrupts here
3972          */
3973         I915_WRITE(VLV_DPFLIPSTAT, PIPEB_LINE_COMPARE_INT_EN |
3974                    PIPEB_HLINE_INT_EN | PIPEB_VBLANK_INT_EN |
3975                    SPRITED_FLIPDONE_INT_EN | SPRITEC_FLIPDONE_INT_EN |
3976                    PLANEB_FLIPDONE_INT_EN | PIPEA_LINE_COMPARE_INT_EN |
3977                    PIPEA_HLINE_INT_EN | PIPEA_VBLANK_INT_EN |
3978                    SPRITEB_FLIPDONE_INT_EN | SPRITEA_FLIPDONE_INT_EN |
3979                    PLANEA_FLIPDONE_INT_EN);
3980
3981         /*
3982          * WaDisableVLVClockGating_VBIIssue
3983          * Disable clock gating on th GCFG unit to prevent a delay
3984          * in the reporting of vblank events.
3985          */
3986         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
3987 }
3988
3989 static void g4x_init_clock_gating(struct drm_device *dev)
3990 {
3991         struct drm_i915_private *dev_priv = dev->dev_private;
3992         uint32_t dspclk_gate;
3993
3994         I915_WRITE(RENCLK_GATE_D1, 0);
3995         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
3996                    GS_UNIT_CLOCK_GATE_DISABLE |
3997                    CL_UNIT_CLOCK_GATE_DISABLE);
3998         I915_WRITE(RAMCLK_GATE_D, 0);
3999         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
4000                 OVRUNIT_CLOCK_GATE_DISABLE |
4001                 OVCUNIT_CLOCK_GATE_DISABLE;
4002         if (IS_GM45(dev))
4003                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4004         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4005
4006         /* WaDisableRenderCachePipelinedFlush */
4007         I915_WRITE(CACHE_MODE_0,
4008                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
4009 }
4010
4011 static void crestline_init_clock_gating(struct drm_device *dev)
4012 {
4013         struct drm_i915_private *dev_priv = dev->dev_private;
4014
4015         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4016         I915_WRITE(RENCLK_GATE_D2, 0);
4017         I915_WRITE(DSPCLK_GATE_D, 0);
4018         I915_WRITE(RAMCLK_GATE_D, 0);
4019         I915_WRITE16(DEUC, 0);
4020 }
4021
4022 static void broadwater_init_clock_gating(struct drm_device *dev)
4023 {
4024         struct drm_i915_private *dev_priv = dev->dev_private;
4025
4026         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4027                    I965_RCC_CLOCK_GATE_DISABLE |
4028                    I965_RCPB_CLOCK_GATE_DISABLE |
4029                    I965_ISC_CLOCK_GATE_DISABLE |
4030                    I965_FBC_CLOCK_GATE_DISABLE);
4031         I915_WRITE(RENCLK_GATE_D2, 0);
4032 }
4033
4034 static void gen3_init_clock_gating(struct drm_device *dev)
4035 {
4036         struct drm_i915_private *dev_priv = dev->dev_private;
4037         u32 dstate = I915_READ(D_STATE);
4038
4039         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4040                 DSTATE_DOT_CLOCK_GATING;
4041         I915_WRITE(D_STATE, dstate);
4042
4043         if (IS_PINEVIEW(dev))
4044                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
4045
4046         /* IIR "flip pending" means done if this bit is set */
4047         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
4048 }
4049
4050 static void i85x_init_clock_gating(struct drm_device *dev)
4051 {
4052         struct drm_i915_private *dev_priv = dev->dev_private;
4053
4054         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4055 }
4056
4057 static void i830_init_clock_gating(struct drm_device *dev)
4058 {
4059         struct drm_i915_private *dev_priv = dev->dev_private;
4060
4061         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4062 }
4063
4064 void intel_init_clock_gating(struct drm_device *dev)
4065 {
4066         struct drm_i915_private *dev_priv = dev->dev_private;
4067
4068         dev_priv->display.init_clock_gating(dev);
4069 }
4070
4071 void intel_set_power_well(struct drm_device *dev, bool enable)
4072 {
4073         struct drm_i915_private *dev_priv = dev->dev_private;
4074         bool is_enabled, enable_requested;
4075         uint32_t tmp;
4076
4077         if (!IS_HASWELL(dev))
4078                 return;
4079
4080         if (!i915_disable_power_well && !enable)
4081                 return;
4082
4083         tmp = I915_READ(HSW_PWR_WELL_DRIVER);
4084         is_enabled = tmp & HSW_PWR_WELL_STATE;
4085         enable_requested = tmp & HSW_PWR_WELL_ENABLE;
4086
4087         if (enable) {
4088                 if (!enable_requested)
4089                         I915_WRITE(HSW_PWR_WELL_DRIVER, HSW_PWR_WELL_ENABLE);
4090
4091                 if (!is_enabled) {
4092                         DRM_DEBUG_KMS("Enabling power well\n");
4093                         if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
4094                                       HSW_PWR_WELL_STATE), 20))
4095                                 DRM_ERROR("Timeout enabling power well\n");
4096                 }
4097         } else {
4098                 if (enable_requested) {
4099                         I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
4100                         DRM_DEBUG_KMS("Requesting to disable the power well\n");
4101                 }
4102         }
4103 }
4104
4105 /*
4106  * Starting with Haswell, we have a "Power Down Well" that can be turned off
4107  * when not needed anymore. We have 4 registers that can request the power well
4108  * to be enabled, and it will only be disabled if none of the registers is
4109  * requesting it to be enabled.
4110  */
4111 void intel_init_power_well(struct drm_device *dev)
4112 {
4113         struct drm_i915_private *dev_priv = dev->dev_private;
4114
4115         if (!IS_HASWELL(dev))
4116                 return;
4117
4118         /* For now, we need the power well to be always enabled. */
4119         intel_set_power_well(dev, true);
4120
4121         /* We're taking over the BIOS, so clear any requests made by it since
4122          * the driver is in charge now. */
4123         if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE)
4124                 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
4125 }
4126
4127 /* Set up chip specific power management-related functions */
4128 void intel_init_pm(struct drm_device *dev)
4129 {
4130         struct drm_i915_private *dev_priv = dev->dev_private;
4131
4132         if (I915_HAS_FBC(dev)) {
4133                 if (HAS_PCH_SPLIT(dev)) {
4134                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
4135                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
4136                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
4137                 } else if (IS_GM45(dev)) {
4138                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
4139                         dev_priv->display.enable_fbc = g4x_enable_fbc;
4140                         dev_priv->display.disable_fbc = g4x_disable_fbc;
4141                 } else if (IS_CRESTLINE(dev)) {
4142                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
4143                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
4144                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
4145                 }
4146                 /* 855GM needs testing */
4147         }
4148
4149         /* For cxsr */
4150         if (IS_PINEVIEW(dev))
4151                 i915_pineview_get_mem_freq(dev);
4152         else if (IS_GEN5(dev))
4153                 i915_ironlake_get_mem_freq(dev);
4154
4155         /* For FIFO watermark updates */
4156         if (HAS_PCH_SPLIT(dev)) {
4157                 if (IS_GEN5(dev)) {
4158                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
4159                                 dev_priv->display.update_wm = ironlake_update_wm;
4160                         else {
4161                                 DRM_DEBUG_KMS("Failed to get proper latency. "
4162                                               "Disable CxSR\n");
4163                                 dev_priv->display.update_wm = NULL;
4164                         }
4165                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
4166                 } else if (IS_GEN6(dev)) {
4167                         if (SNB_READ_WM0_LATENCY()) {
4168                                 dev_priv->display.update_wm = sandybridge_update_wm;
4169                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4170                         } else {
4171                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
4172                                               "Disable CxSR\n");
4173                                 dev_priv->display.update_wm = NULL;
4174                         }
4175                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
4176                 } else if (IS_IVYBRIDGE(dev)) {
4177                         /* FIXME: detect B0+ stepping and use auto training */
4178                         if (SNB_READ_WM0_LATENCY()) {
4179                                 dev_priv->display.update_wm = ivybridge_update_wm;
4180                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4181                         } else {
4182                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
4183                                               "Disable CxSR\n");
4184                                 dev_priv->display.update_wm = NULL;
4185                         }
4186                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
4187                 } else if (IS_HASWELL(dev)) {
4188                         if (SNB_READ_WM0_LATENCY()) {
4189                                 dev_priv->display.update_wm = sandybridge_update_wm;
4190                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4191                                 dev_priv->display.update_linetime_wm = haswell_update_linetime_wm;
4192                         } else {
4193                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
4194                                               "Disable CxSR\n");
4195                                 dev_priv->display.update_wm = NULL;
4196                         }
4197                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
4198                 } else
4199                         dev_priv->display.update_wm = NULL;
4200         } else if (IS_VALLEYVIEW(dev)) {
4201                 dev_priv->display.update_wm = valleyview_update_wm;
4202                 dev_priv->display.init_clock_gating =
4203                         valleyview_init_clock_gating;
4204         } else if (IS_PINEVIEW(dev)) {
4205                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
4206                                             dev_priv->is_ddr3,
4207                                             dev_priv->fsb_freq,
4208                                             dev_priv->mem_freq)) {
4209                         DRM_INFO("failed to find known CxSR latency "
4210                                  "(found ddr%s fsb freq %d, mem freq %d), "
4211                                  "disabling CxSR\n",
4212                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
4213                                  dev_priv->fsb_freq, dev_priv->mem_freq);
4214                         /* Disable CxSR and never update its watermark again */
4215                         pineview_disable_cxsr(dev);
4216                         dev_priv->display.update_wm = NULL;
4217                 } else
4218                         dev_priv->display.update_wm = pineview_update_wm;
4219                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4220         } else if (IS_G4X(dev)) {
4221                 dev_priv->display.update_wm = g4x_update_wm;
4222                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
4223         } else if (IS_GEN4(dev)) {
4224                 dev_priv->display.update_wm = i965_update_wm;
4225                 if (IS_CRESTLINE(dev))
4226                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
4227                 else if (IS_BROADWATER(dev))
4228                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
4229         } else if (IS_GEN3(dev)) {
4230                 dev_priv->display.update_wm = i9xx_update_wm;
4231                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
4232                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4233         } else if (IS_I865G(dev)) {
4234                 dev_priv->display.update_wm = i830_update_wm;
4235                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4236                 dev_priv->display.get_fifo_size = i830_get_fifo_size;
4237         } else if (IS_I85X(dev)) {
4238                 dev_priv->display.update_wm = i9xx_update_wm;
4239                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
4240                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4241         } else {
4242                 dev_priv->display.update_wm = i830_update_wm;
4243                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
4244                 if (IS_845G(dev))
4245                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
4246                 else
4247                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
4248         }
4249 }
4250
4251 static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
4252 {
4253         u32 gt_thread_status_mask;
4254
4255         if (IS_HASWELL(dev_priv->dev))
4256                 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
4257         else
4258                 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
4259
4260         /* w/a for a sporadic read returning 0 by waiting for the GT
4261          * thread to wake up.
4262          */
4263         if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
4264                 DRM_ERROR("GT thread status wait timed out\n");
4265 }
4266
4267 static void __gen6_gt_force_wake_reset(struct drm_i915_private *dev_priv)
4268 {
4269         I915_WRITE_NOTRACE(FORCEWAKE, 0);
4270         POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4271 }
4272
4273 static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4274 {
4275         u32 forcewake_ack;
4276
4277         if (IS_HASWELL(dev_priv->dev))
4278                 forcewake_ack = FORCEWAKE_ACK_HSW;
4279         else
4280                 forcewake_ack = FORCEWAKE_ACK;
4281
4282         if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0,
4283                             FORCEWAKE_ACK_TIMEOUT_MS))
4284                 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4285
4286         I915_WRITE_NOTRACE(FORCEWAKE, FORCEWAKE_KERNEL);
4287         POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4288
4289         if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1),
4290                             FORCEWAKE_ACK_TIMEOUT_MS))
4291                 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4292
4293         __gen6_gt_wait_for_thread_c0(dev_priv);
4294 }
4295
4296 static void __gen6_gt_force_wake_mt_reset(struct drm_i915_private *dev_priv)
4297 {
4298         I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(0xffff));
4299         /* something from same cacheline, but !FORCEWAKE_MT */
4300         POSTING_READ(ECOBUS);
4301 }
4302
4303 static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
4304 {
4305         u32 forcewake_ack;
4306
4307         if (IS_HASWELL(dev_priv->dev))
4308                 forcewake_ack = FORCEWAKE_ACK_HSW;
4309         else
4310                 forcewake_ack = FORCEWAKE_MT_ACK;
4311
4312         if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0,
4313                             FORCEWAKE_ACK_TIMEOUT_MS))
4314                 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4315
4316         I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4317         /* something from same cacheline, but !FORCEWAKE_MT */
4318         POSTING_READ(ECOBUS);
4319
4320         if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1),
4321                             FORCEWAKE_ACK_TIMEOUT_MS))
4322                 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4323
4324         __gen6_gt_wait_for_thread_c0(dev_priv);
4325 }
4326
4327 /*
4328  * Generally this is called implicitly by the register read function. However,
4329  * if some sequence requires the GT to not power down then this function should
4330  * be called at the beginning of the sequence followed by a call to
4331  * gen6_gt_force_wake_put() at the end of the sequence.
4332  */
4333 void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4334 {
4335
4336         lockmgr(&dev_priv->gt_lock, LK_EXCLUSIVE);
4337         if (dev_priv->forcewake_count++ == 0)
4338                 dev_priv->gt.force_wake_get(dev_priv);
4339         lockmgr(&dev_priv->gt_lock, LK_RELEASE);
4340 }
4341
4342 void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
4343 {
4344         u32 gtfifodbg;
4345         gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
4346         if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
4347              "MMIO read or write has been dropped %x\n", gtfifodbg))
4348                 I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
4349 }
4350
4351 static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4352 {
4353         I915_WRITE_NOTRACE(FORCEWAKE, 0);
4354         /* something from same cacheline, but !FORCEWAKE */
4355         POSTING_READ(ECOBUS);
4356         gen6_gt_check_fifodbg(dev_priv);
4357 }
4358
4359 static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
4360 {
4361         I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4362         /* something from same cacheline, but !FORCEWAKE_MT */
4363         POSTING_READ(ECOBUS);
4364         gen6_gt_check_fifodbg(dev_priv);
4365 }
4366
4367 /*
4368  * see gen6_gt_force_wake_get()
4369  */
4370 void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4371 {
4372         lockmgr(&dev_priv->gt_lock, LK_EXCLUSIVE);
4373         if (--dev_priv->forcewake_count == 0)
4374                 dev_priv->gt.force_wake_put(dev_priv);
4375         lockmgr(&dev_priv->gt_lock, LK_RELEASE);
4376 }
4377
4378 int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
4379 {
4380         int ret = 0;
4381
4382         if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
4383                 int loop = 500;
4384                 u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4385                 while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
4386                         udelay(10);
4387                         fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4388                 }
4389                 if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES))
4390                         ++ret;
4391                 dev_priv->gt_fifo_count = fifo;
4392         }
4393         dev_priv->gt_fifo_count--;
4394
4395         return ret;
4396 }
4397
4398 static void vlv_force_wake_reset(struct drm_i915_private *dev_priv)
4399 {
4400         I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(0xffff));
4401         /* something from same cacheline, but !FORCEWAKE_VLV */
4402         POSTING_READ(FORCEWAKE_ACK_VLV);
4403 }
4404
4405 static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
4406 {
4407         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1) == 0,
4408                             FORCEWAKE_ACK_TIMEOUT_MS))
4409                 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4410
4411         I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4412
4413         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1),
4414                             FORCEWAKE_ACK_TIMEOUT_MS))
4415                 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4416
4417         __gen6_gt_wait_for_thread_c0(dev_priv);
4418 }
4419
4420 static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
4421 {
4422         I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4423         /* something from same cacheline, but !FORCEWAKE_VLV */
4424         POSTING_READ(FORCEWAKE_ACK_VLV);
4425         gen6_gt_check_fifodbg(dev_priv);
4426 }
4427
4428 void intel_gt_reset(struct drm_device *dev)
4429 {
4430         struct drm_i915_private *dev_priv = dev->dev_private;
4431
4432         if (IS_VALLEYVIEW(dev)) {
4433                 vlv_force_wake_reset(dev_priv);
4434         } else if (INTEL_INFO(dev)->gen >= 6) {
4435                 __gen6_gt_force_wake_reset(dev_priv);
4436                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4437                         __gen6_gt_force_wake_mt_reset(dev_priv);
4438         }
4439 }
4440
4441 void intel_gt_init(struct drm_device *dev)
4442 {
4443         struct drm_i915_private *dev_priv = dev->dev_private;
4444
4445         lockinit(&dev_priv->gt_lock, "915gt", 0, LK_CANRECURSE);
4446
4447         intel_gt_reset(dev);
4448
4449         if (IS_VALLEYVIEW(dev)) {
4450                 dev_priv->gt.force_wake_get = vlv_force_wake_get;
4451                 dev_priv->gt.force_wake_put = vlv_force_wake_put;
4452         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
4453                 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_mt_get;
4454                 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_mt_put;
4455         } else if (IS_GEN6(dev)) {
4456                 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
4457                 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
4458         }
4459         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
4460                           intel_gen6_powersave_work);
4461 }
4462
4463 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
4464 {
4465         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4466
4467         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4468                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
4469                 return -EAGAIN;
4470         }
4471
4472         I915_WRITE(GEN6_PCODE_DATA, *val);
4473         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4474
4475         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4476                      500)) {
4477                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
4478                 return -ETIMEDOUT;
4479         }
4480
4481         *val = I915_READ(GEN6_PCODE_DATA);
4482         I915_WRITE(GEN6_PCODE_DATA, 0);
4483
4484         return 0;
4485 }
4486
4487 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
4488 {
4489         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4490
4491         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4492                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
4493                 return -EAGAIN;
4494         }
4495
4496         I915_WRITE(GEN6_PCODE_DATA, val);
4497         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4498
4499         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4500                      500)) {
4501                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
4502                 return -ETIMEDOUT;
4503         }
4504
4505         I915_WRITE(GEN6_PCODE_DATA, 0);
4506
4507         return 0;
4508 }