Merge branch 'vendor/LESS'
[dragonfly.git] / sys / vm / vm_object.c
1 /*
2  * Copyright (c) 1991, 1993, 2013
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_object.c   8.5 (Berkeley) 3/22/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  *
60  * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
61  */
62
63 /*
64  *      Virtual memory object module.
65  */
66
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/proc.h>           /* for curproc, pageproc */
70 #include <sys/thread.h>
71 #include <sys/vnode.h>
72 #include <sys/vmmeter.h>
73 #include <sys/mman.h>
74 #include <sys/mount.h>
75 #include <sys/kernel.h>
76 #include <sys/sysctl.h>
77 #include <sys/refcount.h>
78
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <vm/pmap.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_object.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_pageout.h>
86 #include <vm/vm_pager.h>
87 #include <vm/swap_pager.h>
88 #include <vm/vm_kern.h>
89 #include <vm/vm_extern.h>
90 #include <vm/vm_zone.h>
91
92 #include <vm/vm_page2.h>
93
94 #include <machine/specialreg.h>
95
96 #define EASY_SCAN_FACTOR        8
97
98 static void     vm_object_qcollapse(vm_object_t object,
99                                     vm_object_t backing_object);
100 static void     vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
101                                              int pagerflags);
102 static void     vm_object_lock_init(vm_object_t);
103
104
105 /*
106  *      Virtual memory objects maintain the actual data
107  *      associated with allocated virtual memory.  A given
108  *      page of memory exists within exactly one object.
109  *
110  *      An object is only deallocated when all "references"
111  *      are given up.  Only one "reference" to a given
112  *      region of an object should be writeable.
113  *
114  *      Associated with each object is a list of all resident
115  *      memory pages belonging to that object; this list is
116  *      maintained by the "vm_page" module, and locked by the object's
117  *      lock.
118  *
119  *      Each object also records a "pager" routine which is
120  *      used to retrieve (and store) pages to the proper backing
121  *      storage.  In addition, objects may be backed by other
122  *      objects from which they were virtual-copied.
123  *
124  *      The only items within the object structure which are
125  *      modified after time of creation are:
126  *              reference count         locked by object's lock
127  *              pager routine           locked by object's lock
128  *
129  */
130
131 struct vm_object kernel_object;
132
133 static long vm_object_count;
134
135 static long object_collapses;
136 static long object_bypasses;
137 static vm_zone_t obj_zone;
138 static struct vm_zone obj_zone_store;
139 #define VM_OBJECTS_INIT 256
140 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
141
142 struct object_q vm_object_lists[VMOBJ_HSIZE];
143 struct lwkt_token vmobj_tokens[VMOBJ_HSIZE];
144
145 #if defined(DEBUG_LOCKS)
146
147 #define vm_object_vndeallocate(obj, vpp)        \
148                 debugvm_object_vndeallocate(obj, vpp, __FILE__, __LINE__)
149
150 /*
151  * Debug helper to track hold/drop/ref/deallocate calls.
152  */
153 static void
154 debugvm_object_add(vm_object_t obj, char *file, int line, int addrem)
155 {
156         int i;
157
158         i = atomic_fetchadd_int(&obj->debug_index, 1);
159         i = i & (VMOBJ_DEBUG_ARRAY_SIZE - 1);
160         ksnprintf(obj->debug_hold_thrs[i],
161                   sizeof(obj->debug_hold_thrs[i]),
162                   "%c%d:(%d):%s",
163                   (addrem == -1 ? '-' : (addrem == 1 ? '+' : '=')),
164                   (curthread->td_proc ? curthread->td_proc->p_pid : -1),
165                   obj->ref_count,
166                   curthread->td_comm);
167         obj->debug_hold_file[i] = file;
168         obj->debug_hold_line[i] = line;
169 #if 0
170         /* Uncomment for debugging obj refs/derefs in reproducable cases */
171         if (strcmp(curthread->td_comm, "sshd") == 0) {
172                 kprintf("%d %p refs=%d ar=%d file: %s/%d\n",
173                         (curthread->td_proc ? curthread->td_proc->p_pid : -1),
174                         obj, obj->ref_count, addrem, file, line);
175         }
176 #endif
177 }
178
179 #endif
180
181 /*
182  * Misc low level routines
183  */
184 static void
185 vm_object_lock_init(vm_object_t obj)
186 {
187 #if defined(DEBUG_LOCKS)
188         int i;
189
190         obj->debug_index = 0;
191         for (i = 0; i < VMOBJ_DEBUG_ARRAY_SIZE; i++) {
192                 obj->debug_hold_thrs[i][0] = 0;
193                 obj->debug_hold_file[i] = NULL;
194                 obj->debug_hold_line[i] = 0;
195         }
196 #endif
197 }
198
199 void
200 vm_object_lock_swap(void)
201 {
202         lwkt_token_swap();
203 }
204
205 void
206 vm_object_lock(vm_object_t obj)
207 {
208         lwkt_gettoken(&obj->token);
209 }
210
211 /*
212  * Returns TRUE on sucesss
213  */
214 static int
215 vm_object_lock_try(vm_object_t obj)
216 {
217         return(lwkt_trytoken(&obj->token));
218 }
219
220 void
221 vm_object_lock_shared(vm_object_t obj)
222 {
223         lwkt_gettoken_shared(&obj->token);
224 }
225
226 void
227 vm_object_unlock(vm_object_t obj)
228 {
229         lwkt_reltoken(&obj->token);
230 }
231
232 void
233 vm_object_upgrade(vm_object_t obj)
234 {
235         lwkt_reltoken(&obj->token);
236         lwkt_gettoken(&obj->token);
237 }
238
239 void
240 vm_object_downgrade(vm_object_t obj)
241 {
242         lwkt_reltoken(&obj->token);
243         lwkt_gettoken_shared(&obj->token);
244 }
245
246 static __inline void
247 vm_object_assert_held(vm_object_t obj)
248 {
249         ASSERT_LWKT_TOKEN_HELD(&obj->token);
250 }
251
252 static __inline int
253 vm_quickcolor(void)
254 {
255         globaldata_t gd = mycpu;
256         int pg_color;
257
258         pg_color = (int)(intptr_t)gd->gd_curthread >> 10;
259         pg_color += gd->gd_quick_color;
260         gd->gd_quick_color += PQ_PRIME2;
261
262         return pg_color;
263 }
264
265 void
266 VMOBJDEBUG(vm_object_hold)(vm_object_t obj VMOBJDBARGS)
267 {
268         KKASSERT(obj != NULL);
269
270         /*
271          * Object must be held (object allocation is stable due to callers
272          * context, typically already holding the token on a parent object)
273          * prior to potentially blocking on the lock, otherwise the object
274          * can get ripped away from us.
275          */
276         refcount_acquire(&obj->hold_count);
277         vm_object_lock(obj);
278
279 #if defined(DEBUG_LOCKS)
280         debugvm_object_add(obj, file, line, 1);
281 #endif
282 }
283
284 int
285 VMOBJDEBUG(vm_object_hold_try)(vm_object_t obj VMOBJDBARGS)
286 {
287         KKASSERT(obj != NULL);
288
289         /*
290          * Object must be held (object allocation is stable due to callers
291          * context, typically already holding the token on a parent object)
292          * prior to potentially blocking on the lock, otherwise the object
293          * can get ripped away from us.
294          */
295         refcount_acquire(&obj->hold_count);
296         if (vm_object_lock_try(obj) == 0) {
297                 if (refcount_release(&obj->hold_count)) {
298                         if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD))
299                                 zfree(obj_zone, obj);
300                 }
301                 return(0);
302         }
303
304 #if defined(DEBUG_LOCKS)
305         debugvm_object_add(obj, file, line, 1);
306 #endif
307         return(1);
308 }
309
310 void
311 VMOBJDEBUG(vm_object_hold_shared)(vm_object_t obj VMOBJDBARGS)
312 {
313         KKASSERT(obj != NULL);
314
315         /*
316          * Object must be held (object allocation is stable due to callers
317          * context, typically already holding the token on a parent object)
318          * prior to potentially blocking on the lock, otherwise the object
319          * can get ripped away from us.
320          */
321         refcount_acquire(&obj->hold_count);
322         vm_object_lock_shared(obj);
323
324 #if defined(DEBUG_LOCKS)
325         debugvm_object_add(obj, file, line, 1);
326 #endif
327 }
328
329 /*
330  * Drop the token and hold_count on the object.
331  *
332  * WARNING! Token might be shared.
333  */
334 void
335 VMOBJDEBUG(vm_object_drop)(vm_object_t obj VMOBJDBARGS)
336 {
337         if (obj == NULL)
338                 return;
339
340         /*
341          * No new holders should be possible once we drop hold_count 1->0 as
342          * there is no longer any way to reference the object.
343          */
344         KKASSERT(obj->hold_count > 0);
345         if (refcount_release(&obj->hold_count)) {
346 #if defined(DEBUG_LOCKS)
347                 debugvm_object_add(obj, file, line, -1);
348 #endif
349
350                 if (obj->ref_count == 0 && (obj->flags & OBJ_DEAD)) {
351                         vm_object_unlock(obj);
352                         zfree(obj_zone, obj);
353                 } else {
354                         vm_object_unlock(obj);
355                 }
356         } else {
357 #if defined(DEBUG_LOCKS)
358                 debugvm_object_add(obj, file, line, -1);
359 #endif
360                 vm_object_unlock(obj);
361         }
362 }
363
364 /*
365  * Initialize a freshly allocated object, returning a held object.
366  *
367  * Used only by vm_object_allocate() and zinitna().
368  *
369  * No requirements.
370  */
371 void
372 _vm_object_allocate(objtype_t type, vm_pindex_t size, vm_object_t object)
373 {
374         int n;
375
376         RB_INIT(&object->rb_memq);
377         LIST_INIT(&object->shadow_head);
378         lwkt_token_init(&object->token, "vmobj");
379
380         object->type = type;
381         object->size = size;
382         object->ref_count = 1;
383         object->memattr = VM_MEMATTR_DEFAULT;
384         object->hold_count = 0;
385         object->flags = 0;
386         if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
387                 vm_object_set_flag(object, OBJ_ONEMAPPING);
388         object->paging_in_progress = 0;
389         object->resident_page_count = 0;
390         object->agg_pv_list_count = 0;
391         object->shadow_count = 0;
392         /* cpu localization twist */
393         object->pg_color = vm_quickcolor();
394         object->handle = NULL;
395         object->backing_object = NULL;
396         object->backing_object_offset = (vm_ooffset_t)0;
397
398         object->generation++;
399         object->swblock_count = 0;
400         RB_INIT(&object->swblock_root);
401         vm_object_lock_init(object);
402         pmap_object_init(object);
403
404         vm_object_hold(object);
405
406         n = VMOBJ_HASH(object);
407         atomic_add_long(&vm_object_count, 1);
408         lwkt_gettoken(&vmobj_tokens[n]);
409         TAILQ_INSERT_TAIL(&vm_object_lists[n], object, object_list);
410         lwkt_reltoken(&vmobj_tokens[n]);
411 }
412
413 /*
414  * Initialize the VM objects module.
415  *
416  * Called from the low level boot code only.
417  */
418 void
419 vm_object_init(void)
420 {
421         int i;
422
423         for (i = 0; i < VMOBJ_HSIZE; ++i) {
424                 TAILQ_INIT(&vm_object_lists[i]);
425                 lwkt_token_init(&vmobj_tokens[i], "vmobjlst");
426         }
427         
428         _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
429                             &kernel_object);
430         vm_object_drop(&kernel_object);
431
432         obj_zone = &obj_zone_store;
433         zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
434                 vm_objects_init, VM_OBJECTS_INIT);
435 }
436
437 void
438 vm_object_init2(void)
439 {
440         zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
441 }
442
443 /*
444  * Allocate and return a new object of the specified type and size.
445  *
446  * No requirements.
447  */
448 vm_object_t
449 vm_object_allocate(objtype_t type, vm_pindex_t size)
450 {
451         vm_object_t result;
452
453         result = (vm_object_t) zalloc(obj_zone);
454
455         _vm_object_allocate(type, size, result);
456         vm_object_drop(result);
457
458         return (result);
459 }
460
461 /*
462  * This version returns a held object, allowing further atomic initialization
463  * of the object.
464  */
465 vm_object_t
466 vm_object_allocate_hold(objtype_t type, vm_pindex_t size)
467 {
468         vm_object_t result;
469
470         result = (vm_object_t) zalloc(obj_zone);
471
472         _vm_object_allocate(type, size, result);
473
474         return (result);
475 }
476
477 /*
478  * Add an additional reference to a vm_object.  The object must already be
479  * held.  The original non-lock version is no longer supported.  The object
480  * must NOT be chain locked by anyone at the time the reference is added.
481  *
482  * Referencing a chain-locked object can blow up the fairly sensitive
483  * ref_count and shadow_count tests in the deallocator.  Most callers
484  * will call vm_object_chain_wait() prior to calling
485  * vm_object_reference_locked() to avoid the case.
486  *
487  * The object must be held, but may be held shared if desired (hence why
488  * we use an atomic op).
489  */
490 void
491 VMOBJDEBUG(vm_object_reference_locked)(vm_object_t object VMOBJDBARGS)
492 {
493         KKASSERT(object != NULL);
494         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
495         KKASSERT((object->chainlk & (CHAINLK_EXCL | CHAINLK_MASK)) == 0);
496         atomic_add_int(&object->ref_count, 1);
497         if (object->type == OBJT_VNODE) {
498                 vref(object->handle);
499                 /* XXX what if the vnode is being destroyed? */
500         }
501 #if defined(DEBUG_LOCKS)
502         debugvm_object_add(object, file, line, 1);
503 #endif
504 }
505
506 /*
507  * This version is only allowed for vnode objects.
508  */
509 void
510 VMOBJDEBUG(vm_object_reference_quick)(vm_object_t object VMOBJDBARGS)
511 {
512         KKASSERT(object->type == OBJT_VNODE);
513         atomic_add_int(&object->ref_count, 1);
514         vref(object->handle);
515 #if defined(DEBUG_LOCKS)
516         debugvm_object_add(object, file, line, 1);
517 #endif
518 }
519
520 /*
521  * Object OBJ_CHAINLOCK lock handling.
522  *
523  * The caller can chain-lock backing objects recursively and then
524  * use vm_object_chain_release_all() to undo the whole chain.
525  *
526  * Chain locks are used to prevent collapses and are only applicable
527  * to OBJT_DEFAULT and OBJT_SWAP objects.  Chain locking operations
528  * on other object types are ignored.  This is also important because
529  * it allows e.g. the vnode underlying a memory mapping to take concurrent
530  * faults.
531  *
532  * The object must usually be held on entry, though intermediate
533  * objects need not be held on release.  The object must be held exclusively,
534  * NOT shared.  Note that the prefault path checks the shared state and
535  * avoids using the chain functions.
536  */
537 void
538 vm_object_chain_wait(vm_object_t object, int shared)
539 {
540         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
541         for (;;) {
542                 uint32_t chainlk = object->chainlk;
543
544                 cpu_ccfence();
545                 if (shared) {
546                         if (chainlk & (CHAINLK_EXCL | CHAINLK_EXCLREQ)) {
547                                 tsleep_interlock(object, 0);
548                                 if (atomic_cmpset_int(&object->chainlk,
549                                                       chainlk,
550                                                       chainlk | CHAINLK_WAIT)) {
551                                         tsleep(object, PINTERLOCKED,
552                                                "objchns", 0);
553                                 }
554                                 /* retry */
555                         } else {
556                                 break;
557                         }
558                         /* retry */
559                 } else {
560                         if (chainlk & (CHAINLK_MASK | CHAINLK_EXCL)) {
561                                 tsleep_interlock(object, 0);
562                                 if (atomic_cmpset_int(&object->chainlk,
563                                                       chainlk,
564                                                       chainlk | CHAINLK_WAIT))
565                                 {
566                                         tsleep(object, PINTERLOCKED,
567                                                "objchnx", 0);
568                                 }
569                                 /* retry */
570                         } else {
571                                 if (atomic_cmpset_int(&object->chainlk,
572                                                       chainlk,
573                                                       chainlk & ~CHAINLK_WAIT))
574                                 {
575                                         if (chainlk & CHAINLK_WAIT)
576                                                 wakeup(object);
577                                         break;
578                                 }
579                                 /* retry */
580                         }
581                 }
582                 /* retry */
583         }
584 }
585
586 void
587 vm_object_chain_acquire(vm_object_t object, int shared)
588 {
589         if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP)
590                 return;
591         if (vm_shared_fault == 0)
592                 shared = 0;
593
594         for (;;) {
595                 uint32_t chainlk = object->chainlk;
596
597                 cpu_ccfence();
598                 if (shared) {
599                         if (chainlk & (CHAINLK_EXCL | CHAINLK_EXCLREQ)) {
600                                 tsleep_interlock(object, 0);
601                                 if (atomic_cmpset_int(&object->chainlk,
602                                                       chainlk,
603                                                       chainlk | CHAINLK_WAIT)) {
604                                         tsleep(object, PINTERLOCKED,
605                                                "objchns", 0);
606                                 }
607                                 /* retry */
608                         } else if (atomic_cmpset_int(&object->chainlk,
609                                               chainlk, chainlk + 1)) {
610                                 break;
611                         }
612                         /* retry */
613                 } else {
614                         if (chainlk & (CHAINLK_MASK | CHAINLK_EXCL)) {
615                                 tsleep_interlock(object, 0);
616                                 if (atomic_cmpset_int(&object->chainlk,
617                                                       chainlk,
618                                                       chainlk |
619                                                        CHAINLK_WAIT |
620                                                        CHAINLK_EXCLREQ)) {
621                                         tsleep(object, PINTERLOCKED,
622                                                "objchnx", 0);
623                                 }
624                                 /* retry */
625                         } else {
626                                 if (atomic_cmpset_int(&object->chainlk,
627                                                       chainlk,
628                                                       (chainlk | CHAINLK_EXCL) &
629                                                       ~(CHAINLK_EXCLREQ |
630                                                         CHAINLK_WAIT))) {
631                                         if (chainlk & CHAINLK_WAIT)
632                                                 wakeup(object);
633                                         break;
634                                 }
635                                 /* retry */
636                         }
637                 }
638                 /* retry */
639         }
640 }
641
642 void
643 vm_object_chain_release(vm_object_t object)
644 {
645         /*ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));*/
646         if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP)
647                 return;
648         KKASSERT(object->chainlk & (CHAINLK_MASK | CHAINLK_EXCL));
649         for (;;) {
650                 uint32_t chainlk = object->chainlk;
651
652                 cpu_ccfence();
653                 if (chainlk & CHAINLK_MASK) {
654                         if ((chainlk & CHAINLK_MASK) == 1 &&
655                             atomic_cmpset_int(&object->chainlk,
656                                               chainlk,
657                                               (chainlk - 1) & ~CHAINLK_WAIT)) {
658                                 if (chainlk & CHAINLK_WAIT)
659                                         wakeup(object);
660                                 break;
661                         }
662                         if ((chainlk & CHAINLK_MASK) > 1 &&
663                             atomic_cmpset_int(&object->chainlk,
664                                               chainlk, chainlk - 1)) {
665                                 break;
666                         }
667                         /* retry */
668                 } else {
669                         KKASSERT(chainlk & CHAINLK_EXCL);
670                         if (atomic_cmpset_int(&object->chainlk,
671                                               chainlk,
672                                               chainlk & ~(CHAINLK_EXCL |
673                                                           CHAINLK_WAIT))) {
674                                 if (chainlk & CHAINLK_WAIT)
675                                         wakeup(object);
676                                 break;
677                         }
678                 }
679         }
680 }
681
682 /*
683  * Release the chain from first_object through and including stopobj.
684  * The caller is typically holding the first and last object locked
685  * (shared or exclusive) to prevent destruction races.
686  *
687  * We release stopobj first as an optimization as this object is most
688  * likely to be shared across multiple processes.
689  */
690 void
691 vm_object_chain_release_all(vm_object_t first_object, vm_object_t stopobj)
692 {
693         vm_object_t backing_object;
694         vm_object_t object;
695
696         vm_object_chain_release(stopobj);
697         object = first_object;
698
699         while (object != stopobj) {
700                 KKASSERT(object);
701                 backing_object = object->backing_object;
702                 vm_object_chain_release(object);
703                 object = backing_object;
704         }
705 }
706
707 /*
708  * Dereference an object and its underlying vnode.  The object may be
709  * held shared.  On return the object will remain held.
710  *
711  * This function may return a vnode in *vpp which the caller must release
712  * after the caller drops its own lock.  If vpp is NULL, we assume that
713  * the caller was holding an exclusive lock on the object and we vrele()
714  * the vp ourselves.
715  */
716 static void
717 VMOBJDEBUG(vm_object_vndeallocate)(vm_object_t object, struct vnode **vpp
718                                    VMOBJDBARGS)
719 {
720         struct vnode *vp = (struct vnode *) object->handle;
721
722         KASSERT(object->type == OBJT_VNODE,
723             ("vm_object_vndeallocate: not a vnode object"));
724         KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
725         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
726 #ifdef INVARIANTS
727         if (object->ref_count == 0) {
728                 vprint("vm_object_vndeallocate", vp);
729                 panic("vm_object_vndeallocate: bad object reference count");
730         }
731 #endif
732         for (;;) {
733                 int count = object->ref_count;
734                 cpu_ccfence();
735                 if (count == 1) {
736                         vm_object_upgrade(object);
737                         if (atomic_cmpset_int(&object->ref_count, count, 0)) {
738                                 vclrflags(vp, VTEXT);
739                                 break;
740                         }
741                 } else {
742                         if (atomic_cmpset_int(&object->ref_count,
743                                               count, count - 1)) {
744                                 break;
745                         }
746                 }
747                 /* retry */
748         }
749 #if defined(DEBUG_LOCKS)
750         debugvm_object_add(object, file, line, -1);
751 #endif
752
753         /*
754          * vrele or return the vp to vrele.  We can only safely vrele(vp)
755          * if the object was locked exclusively.  But there are two races
756          * here.
757          *
758          * We had to upgrade the object above to safely clear VTEXT
759          * but the alternative path where the shared lock is retained
760          * can STILL race to 0 in other paths and cause our own vrele()
761          * to terminate the vnode.  We can't allow that if the VM object
762          * is still locked shared.
763          */
764         if (vpp)
765                 *vpp = vp;
766         else
767                 vrele(vp);
768 }
769
770 /*
771  * Release a reference to the specified object, gained either through a
772  * vm_object_allocate or a vm_object_reference call.  When all references
773  * are gone, storage associated with this object may be relinquished.
774  *
775  * The caller does not have to hold the object locked but must have control
776  * over the reference in question in order to guarantee that the object
777  * does not get ripped out from under us.
778  *
779  * XXX Currently all deallocations require an exclusive lock.
780  */
781 void
782 VMOBJDEBUG(vm_object_deallocate)(vm_object_t object VMOBJDBARGS)
783 {
784         struct vnode *vp;
785         int count;
786
787         if (object == NULL)
788                 return;
789
790         for (;;) {
791                 count = object->ref_count;
792                 cpu_ccfence();
793
794                 /*
795                  * If decrementing the count enters into special handling
796                  * territory (0, 1, or 2) we have to do it the hard way.
797                  * Fortunate though, objects with only a few refs like this
798                  * are not likely to be heavily contended anyway.
799                  *
800                  * For vnode objects we only care about 1->0 transitions.
801                  */
802                 if (count <= 3 || (object->type == OBJT_VNODE && count <= 1)) {
803 #if defined(DEBUG_LOCKS)
804                         debugvm_object_add(object, file, line, 0);
805 #endif
806                         vm_object_hold(object);
807                         vm_object_deallocate_locked(object);
808                         vm_object_drop(object);
809                         break;
810                 }
811
812                 /*
813                  * Try to decrement ref_count without acquiring a hold on
814                  * the object.  This is particularly important for the exec*()
815                  * and exit*() code paths because the program binary may
816                  * have a great deal of sharing and an exclusive lock will
817                  * crowbar performance in those circumstances.
818                  */
819                 if (object->type == OBJT_VNODE) {
820                         vp = (struct vnode *)object->handle;
821                         if (atomic_cmpset_int(&object->ref_count,
822                                               count, count - 1)) {
823 #if defined(DEBUG_LOCKS)
824                                 debugvm_object_add(object, file, line, -1);
825 #endif
826
827                                 vrele(vp);
828                                 break;
829                         }
830                         /* retry */
831                 } else {
832                         if (atomic_cmpset_int(&object->ref_count,
833                                               count, count - 1)) {
834 #if defined(DEBUG_LOCKS)
835                                 debugvm_object_add(object, file, line, -1);
836 #endif
837                                 break;
838                         }
839                         /* retry */
840                 }
841                 /* retry */
842         }
843 }
844
845 void
846 VMOBJDEBUG(vm_object_deallocate_locked)(vm_object_t object VMOBJDBARGS)
847 {
848         struct vm_object_dealloc_list *dlist = NULL;
849         struct vm_object_dealloc_list *dtmp;
850         vm_object_t temp;
851         int must_drop = 0;
852
853         /*
854          * We may chain deallocate object, but additional objects may
855          * collect on the dlist which also have to be deallocated.  We
856          * must avoid a recursion, vm_object chains can get deep.
857          */
858
859 again:
860         while (object != NULL) {
861                 /*
862                  * vnode case, caller either locked the object exclusively
863                  * or this is a recursion with must_drop != 0 and the vnode
864                  * object will be locked shared.
865                  *
866                  * If locked shared we have to drop the object before we can
867                  * call vrele() or risk a shared/exclusive livelock.
868                  */
869                 if (object->type == OBJT_VNODE) {
870                         ASSERT_LWKT_TOKEN_HELD(&object->token);
871                         if (must_drop) {
872                                 struct vnode *tmp_vp;
873
874                                 vm_object_vndeallocate(object, &tmp_vp);
875                                 vm_object_drop(object);
876                                 must_drop = 0;
877                                 object = NULL;
878                                 vrele(tmp_vp);
879                         } else {
880                                 vm_object_vndeallocate(object, NULL);
881                         }
882                         break;
883                 }
884                 ASSERT_LWKT_TOKEN_HELD_EXCL(&object->token);
885
886                 /*
887                  * Normal case (object is locked exclusively)
888                  */
889                 if (object->ref_count == 0) {
890                         panic("vm_object_deallocate: object deallocated "
891                               "too many times: %d", object->type);
892                 }
893                 if (object->ref_count > 2) {
894                         atomic_add_int(&object->ref_count, -1);
895 #if defined(DEBUG_LOCKS)
896                         debugvm_object_add(object, file, line, -1);
897 #endif
898                         break;
899                 }
900
901                 /*
902                  * Here on ref_count of one or two, which are special cases for
903                  * objects.
904                  *
905                  * Nominal ref_count > 1 case if the second ref is not from
906                  * a shadow.
907                  *
908                  * (ONEMAPPING only applies to DEFAULT AND SWAP objects)
909                  */
910                 if (object->ref_count == 2 && object->shadow_count == 0) {
911                         if (object->type == OBJT_DEFAULT ||
912                             object->type == OBJT_SWAP) {
913                                 vm_object_set_flag(object, OBJ_ONEMAPPING);
914                         }
915                         atomic_add_int(&object->ref_count, -1);
916 #if defined(DEBUG_LOCKS)
917                         debugvm_object_add(object, file, line, -1);
918 #endif
919                         break;
920                 }
921
922                 /*
923                  * If the second ref is from a shadow we chain along it
924                  * upwards if object's handle is exhausted.
925                  *
926                  * We have to decrement object->ref_count before potentially
927                  * collapsing the first shadow object or the collapse code
928                  * will not be able to handle the degenerate case to remove
929                  * object.  However, if we do it too early the object can
930                  * get ripped out from under us.
931                  */
932                 if (object->ref_count == 2 && object->shadow_count == 1 &&
933                     object->handle == NULL && (object->type == OBJT_DEFAULT ||
934                                                object->type == OBJT_SWAP)) {
935                         temp = LIST_FIRST(&object->shadow_head);
936                         KKASSERT(temp != NULL);
937                         vm_object_hold(temp);
938
939                         /*
940                          * Wait for any paging to complete so the collapse
941                          * doesn't (or isn't likely to) qcollapse.  pip
942                          * waiting must occur before we acquire the
943                          * chainlock.
944                          */
945                         while (
946                                 temp->paging_in_progress ||
947                                 object->paging_in_progress
948                         ) {
949                                 vm_object_pip_wait(temp, "objde1");
950                                 vm_object_pip_wait(object, "objde2");
951                         }
952
953                         /*
954                          * If the parent is locked we have to give up, as
955                          * otherwise we would be acquiring locks in the
956                          * wrong order and potentially deadlock.
957                          */
958                         if (temp->chainlk & (CHAINLK_EXCL | CHAINLK_MASK)) {
959                                 vm_object_drop(temp);
960                                 goto skip;
961                         }
962                         vm_object_chain_acquire(temp, 0);
963
964                         /*
965                          * Recheck/retry after the hold and the paging
966                          * wait, both of which can block us.
967                          */
968                         if (object->ref_count != 2 ||
969                             object->shadow_count != 1 ||
970                             object->handle ||
971                             LIST_FIRST(&object->shadow_head) != temp ||
972                             (object->type != OBJT_DEFAULT &&
973                              object->type != OBJT_SWAP)) {
974                                 vm_object_chain_release(temp);
975                                 vm_object_drop(temp);
976                                 continue;
977                         }
978
979                         /*
980                          * We can safely drop object's ref_count now.
981                          */
982                         KKASSERT(object->ref_count == 2);
983                         atomic_add_int(&object->ref_count, -1);
984 #if defined(DEBUG_LOCKS)
985                         debugvm_object_add(object, file, line, -1);
986 #endif
987
988                         /*
989                          * If our single parent is not collapseable just
990                          * decrement ref_count (2->1) and stop.
991                          */
992                         if (temp->handle || (temp->type != OBJT_DEFAULT &&
993                                              temp->type != OBJT_SWAP)) {
994                                 vm_object_chain_release(temp);
995                                 vm_object_drop(temp);
996                                 break;
997                         }
998
999                         /*
1000                          * At this point we have already dropped object's
1001                          * ref_count so it is possible for a race to
1002                          * deallocate obj out from under us.  Any collapse
1003                          * will re-check the situation.  We must not block
1004                          * until we are able to collapse.
1005                          *
1006                          * Bump temp's ref_count to avoid an unwanted
1007                          * degenerate recursion (can't call
1008                          * vm_object_reference_locked() because it asserts
1009                          * that CHAINLOCK is not set).
1010                          */
1011                         atomic_add_int(&temp->ref_count, 1);
1012                         KKASSERT(temp->ref_count > 1);
1013
1014                         /*
1015                          * Collapse temp, then deallocate the extra ref
1016                          * formally.
1017                          */
1018                         vm_object_collapse(temp, &dlist);
1019                         vm_object_chain_release(temp);
1020                         if (must_drop) {
1021                                 vm_object_lock_swap();
1022                                 vm_object_drop(object);
1023                         }
1024                         object = temp;
1025                         must_drop = 1;
1026                         continue;
1027                 }
1028
1029                 /*
1030                  * Drop the ref and handle termination on the 1->0 transition.
1031                  * We may have blocked above so we have to recheck.
1032                  */
1033 skip:
1034                 KKASSERT(object->ref_count != 0);
1035                 if (object->ref_count >= 2) {
1036                         atomic_add_int(&object->ref_count, -1);
1037 #if defined(DEBUG_LOCKS)
1038                         debugvm_object_add(object, file, line, -1);
1039 #endif
1040                         break;
1041                 }
1042                 KKASSERT(object->ref_count == 1);
1043
1044                 /*
1045                  * 1->0 transition.  Chain through the backing_object.
1046                  * Maintain the ref until we've located the backing object,
1047                  * then re-check.
1048                  */
1049                 while ((temp = object->backing_object) != NULL) {
1050                         if (temp->type == OBJT_VNODE)
1051                                 vm_object_hold_shared(temp);
1052                         else
1053                                 vm_object_hold(temp);
1054                         if (temp == object->backing_object)
1055                                 break;
1056                         vm_object_drop(temp);
1057                 }
1058
1059                 /*
1060                  * 1->0 transition verified, retry if ref_count is no longer
1061                  * 1.  Otherwise disconnect the backing_object (temp) and
1062                  * clean up.
1063                  */
1064                 if (object->ref_count != 1) {
1065                         vm_object_drop(temp);
1066                         continue;
1067                 }
1068
1069                 /*
1070                  * It shouldn't be possible for the object to be chain locked
1071                  * if we're removing the last ref on it.
1072                  *
1073                  * Removing object from temp's shadow list requires dropping
1074                  * temp, which we will do on loop.
1075                  *
1076                  * NOTE! vnodes do not use the shadow list, but still have
1077                  *       the backing_object reference.
1078                  */
1079                 KKASSERT((object->chainlk & (CHAINLK_EXCL|CHAINLK_MASK)) == 0);
1080
1081                 if (temp) {
1082                         if (object->flags & OBJ_ONSHADOW) {
1083                                 LIST_REMOVE(object, shadow_list);
1084                                 temp->shadow_count--;
1085                                 temp->generation++;
1086                                 vm_object_clear_flag(object, OBJ_ONSHADOW);
1087                         }
1088                         object->backing_object = NULL;
1089                 }
1090
1091                 atomic_add_int(&object->ref_count, -1);
1092                 if ((object->flags & OBJ_DEAD) == 0)
1093                         vm_object_terminate(object);
1094                 if (must_drop && temp)
1095                         vm_object_lock_swap();
1096                 if (must_drop)
1097                         vm_object_drop(object);
1098                 object = temp;
1099                 must_drop = 1;
1100         }
1101
1102         if (must_drop && object)
1103                 vm_object_drop(object);
1104
1105         /*
1106          * Additional tail recursion on dlist.  Avoid a recursion.  Objects
1107          * on the dlist have a hold count but are not locked.
1108          */
1109         if ((dtmp = dlist) != NULL) {
1110                 dlist = dtmp->next;
1111                 object = dtmp->object;
1112                 kfree(dtmp, M_TEMP);
1113
1114                 vm_object_lock(object); /* already held, add lock */
1115                 must_drop = 1;          /* and we're responsible for it */
1116                 goto again;
1117         }
1118 }
1119
1120 /*
1121  * Destroy the specified object, freeing up related resources.
1122  *
1123  * The object must have zero references.
1124  *
1125  * The object must held.  The caller is responsible for dropping the object
1126  * after terminate returns.  Terminate does NOT drop the object.
1127  */
1128 static int vm_object_terminate_callback(vm_page_t p, void *data);
1129
1130 void
1131 vm_object_terminate(vm_object_t object)
1132 {
1133         struct rb_vm_page_scan_info info;
1134         int n;
1135
1136         /*
1137          * Make sure no one uses us.  Once we set OBJ_DEAD we should be
1138          * able to safely block.
1139          */
1140         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1141         KKASSERT((object->flags & OBJ_DEAD) == 0);
1142         vm_object_set_flag(object, OBJ_DEAD);
1143
1144         /*
1145          * Wait for the pageout daemon to be done with the object
1146          */
1147         vm_object_pip_wait(object, "objtrm1");
1148
1149         KASSERT(!object->paging_in_progress,
1150                 ("vm_object_terminate: pageout in progress"));
1151
1152         /*
1153          * Clean and free the pages, as appropriate. All references to the
1154          * object are gone, so we don't need to lock it.
1155          */
1156         if (object->type == OBJT_VNODE) {
1157                 struct vnode *vp;
1158
1159                 /*
1160                  * Clean pages and flush buffers.
1161                  *
1162                  * NOTE!  TMPFS buffer flushes do not typically flush the
1163                  *        actual page to swap as this would be highly
1164                  *        inefficient, and normal filesystems usually wrap
1165                  *        page flushes with buffer cache buffers.
1166                  *
1167                  *        To deal with this we have to call vinvalbuf() both
1168                  *        before and after the vm_object_page_clean().
1169                  */
1170                 vp = (struct vnode *) object->handle;
1171                 vinvalbuf(vp, V_SAVE, 0, 0);
1172                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
1173                 vinvalbuf(vp, V_SAVE, 0, 0);
1174         }
1175
1176         /*
1177          * Wait for any I/O to complete, after which there had better not
1178          * be any references left on the object.
1179          */
1180         vm_object_pip_wait(object, "objtrm2");
1181
1182         if (object->ref_count != 0) {
1183                 panic("vm_object_terminate: object with references, "
1184                       "ref_count=%d", object->ref_count);
1185         }
1186
1187         /*
1188          * Cleanup any shared pmaps associated with this object.
1189          */
1190         pmap_object_free(object);
1191
1192         /*
1193          * Now free any remaining pages. For internal objects, this also
1194          * removes them from paging queues. Don't free wired pages, just
1195          * remove them from the object. 
1196          */
1197         info.count = 0;
1198         info.object = object;
1199         vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1200                                 vm_object_terminate_callback, &info);
1201
1202         /*
1203          * Let the pager know object is dead.
1204          */
1205         vm_pager_deallocate(object);
1206
1207         /*
1208          * Wait for the object hold count to hit 1, clean out pages as
1209          * we go.  vmobj_token interlocks any race conditions that might
1210          * pick the object up from the vm_object_list after we have cleared
1211          * rb_memq.
1212          */
1213         for (;;) {
1214                 if (RB_ROOT(&object->rb_memq) == NULL)
1215                         break;
1216                 kprintf("vm_object_terminate: Warning, object %p "
1217                         "still has %d pages\n",
1218                         object, object->resident_page_count);
1219                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
1220                                         vm_object_terminate_callback, &info);
1221         }
1222
1223         /*
1224          * There had better not be any pages left
1225          */
1226         KKASSERT(object->resident_page_count == 0);
1227
1228         /*
1229          * Remove the object from the global object list.
1230          */
1231         n = VMOBJ_HASH(object);
1232         lwkt_gettoken(&vmobj_tokens[n]);
1233         TAILQ_REMOVE(&vm_object_lists[n], object, object_list);
1234         lwkt_reltoken(&vmobj_tokens[n]);
1235         atomic_add_long(&vm_object_count, -1);
1236
1237         if (object->ref_count != 0) {
1238                 panic("vm_object_terminate2: object with references, "
1239                       "ref_count=%d", object->ref_count);
1240         }
1241
1242         /*
1243          * NOTE: The object hold_count is at least 1, so we cannot zfree()
1244          *       the object here.  See vm_object_drop().
1245          */
1246 }
1247
1248 /*
1249  * The caller must hold the object.
1250  */
1251 static int
1252 vm_object_terminate_callback(vm_page_t p, void *data)
1253 {
1254         struct rb_vm_page_scan_info *info = data;
1255         vm_object_t object;
1256
1257         if ((++info->count & 63) == 0)
1258                 lwkt_user_yield();
1259         object = p->object;
1260         if (object != info->object) {
1261                 kprintf("vm_object_terminate_callback: obj/pg race %p/%p\n",
1262                         info->object, p);
1263                 return(0);
1264         }
1265         vm_page_busy_wait(p, TRUE, "vmpgtrm");
1266         if (object != p->object) {
1267                 kprintf("vm_object_terminate: Warning: Encountered "
1268                         "busied page %p on queue %d\n", p, p->queue);
1269                 vm_page_wakeup(p);
1270         } else if (p->wire_count == 0) {
1271                 /*
1272                  * NOTE: p->dirty and PG_NEED_COMMIT are ignored.
1273                  */
1274                 vm_page_free(p);
1275                 mycpu->gd_cnt.v_pfree++;
1276         } else {
1277                 if (p->queue != PQ_NONE)
1278                         kprintf("vm_object_terminate: Warning: Encountered "
1279                                 "wired page %p on queue %d\n", p, p->queue);
1280                 vm_page_remove(p);
1281                 vm_page_wakeup(p);
1282         }
1283         return(0);
1284 }
1285
1286 /*
1287  * Clean all dirty pages in the specified range of object.  Leaves page
1288  * on whatever queue it is currently on.   If NOSYNC is set then do not
1289  * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
1290  * leaving the object dirty.
1291  *
1292  * When stuffing pages asynchronously, allow clustering.  XXX we need a
1293  * synchronous clustering mode implementation.
1294  *
1295  * Odd semantics: if start == end, we clean everything.
1296  *
1297  * The object must be locked? XXX
1298  */
1299 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
1300 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
1301
1302 void
1303 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1304                      int flags)
1305 {
1306         struct rb_vm_page_scan_info info;
1307         struct vnode *vp;
1308         int wholescan;
1309         int pagerflags;
1310         int generation;
1311
1312         vm_object_hold(object);
1313         if (object->type != OBJT_VNODE ||
1314             (object->flags & OBJ_MIGHTBEDIRTY) == 0) {
1315                 vm_object_drop(object);
1316                 return;
1317         }
1318
1319         pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ? 
1320                         VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
1321         pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
1322
1323         vp = object->handle;
1324
1325         /*
1326          * Interlock other major object operations.  This allows us to 
1327          * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
1328          */
1329         vm_object_set_flag(object, OBJ_CLEANING);
1330
1331         /*
1332          * Handle 'entire object' case
1333          */
1334         info.start_pindex = start;
1335         if (end == 0) {
1336                 info.end_pindex = object->size - 1;
1337         } else {
1338                 info.end_pindex = end - 1;
1339         }
1340         wholescan = (start == 0 && info.end_pindex == object->size - 1);
1341         info.limit = flags;
1342         info.pagerflags = pagerflags;
1343         info.object = object;
1344         info.count = 0;
1345
1346         /*
1347          * If cleaning the entire object do a pass to mark the pages read-only.
1348          * If everything worked out ok, clear OBJ_WRITEABLE and
1349          * OBJ_MIGHTBEDIRTY.
1350          */
1351         if (wholescan) {
1352                 info.error = 0;
1353                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1354                                         vm_object_page_clean_pass1, &info);
1355                 if (info.error == 0) {
1356                         vm_object_clear_flag(object,
1357                                              OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1358                         if (object->type == OBJT_VNODE &&
1359                             (vp = (struct vnode *)object->handle) != NULL) {
1360                                 /*
1361                                  * Use new-style interface to clear VISDIRTY
1362                                  * because the vnode is not necessarily removed
1363                                  * from the syncer list(s) as often as it was
1364                                  * under the old interface, which can leave
1365                                  * the vnode on the syncer list after reclaim.
1366                                  */
1367                                 vclrobjdirty(vp);
1368                         }
1369                 }
1370         }
1371
1372         /*
1373          * Do a pass to clean all the dirty pages we find.
1374          */
1375         do {
1376                 info.error = 0;
1377                 generation = object->generation;
1378                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1379                                         vm_object_page_clean_pass2, &info);
1380         } while (info.error || generation != object->generation);
1381
1382         vm_object_clear_flag(object, OBJ_CLEANING);
1383         vm_object_drop(object);
1384 }
1385
1386 /*
1387  * The caller must hold the object.
1388  */
1389 static 
1390 int
1391 vm_object_page_clean_pass1(struct vm_page *p, void *data)
1392 {
1393         struct rb_vm_page_scan_info *info = data;
1394
1395         if ((++info->count & 63) == 0)
1396                 lwkt_user_yield();
1397         if (p->object != info->object ||
1398             p->pindex < info->start_pindex ||
1399             p->pindex > info->end_pindex) {
1400                 kprintf("vm_object_page_clean_pass1: obj/pg race %p/%p\n",
1401                         info->object, p);
1402                 return(0);
1403         }
1404         vm_page_flag_set(p, PG_CLEANCHK);
1405         if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1406                 info->error = 1;
1407         } else if (vm_page_busy_try(p, FALSE) == 0) {
1408                 if (p->object == info->object)
1409                         vm_page_protect(p, VM_PROT_READ);
1410                 vm_page_wakeup(p);
1411         } else {
1412                 info->error = 1;
1413         }
1414         return(0);
1415 }
1416
1417 /*
1418  * The caller must hold the object
1419  */
1420 static 
1421 int
1422 vm_object_page_clean_pass2(struct vm_page *p, void *data)
1423 {
1424         struct rb_vm_page_scan_info *info = data;
1425         int generation;
1426
1427         if (p->object != info->object ||
1428             p->pindex < info->start_pindex ||
1429             p->pindex > info->end_pindex) {
1430                 kprintf("vm_object_page_clean_pass2: obj/pg race %p/%p\n",
1431                         info->object, p);
1432                 return(0);
1433         }
1434
1435         /*
1436          * Do not mess with pages that were inserted after we started
1437          * the cleaning pass.
1438          */
1439         if ((p->flags & PG_CLEANCHK) == 0)
1440                 goto done;
1441
1442         generation = info->object->generation;
1443         vm_page_busy_wait(p, TRUE, "vpcwai");
1444
1445         if (p->object != info->object ||
1446             p->pindex < info->start_pindex ||
1447             p->pindex > info->end_pindex ||
1448             info->object->generation != generation) {
1449                 info->error = 1;
1450                 vm_page_wakeup(p);
1451                 goto done;
1452         }
1453
1454         /*
1455          * Before wasting time traversing the pmaps, check for trivial
1456          * cases where the page cannot be dirty.
1457          */
1458         if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
1459                 KKASSERT((p->dirty & p->valid) == 0 &&
1460                          (p->flags & PG_NEED_COMMIT) == 0);
1461                 vm_page_wakeup(p);
1462                 goto done;
1463         }
1464
1465         /*
1466          * Check whether the page is dirty or not.  The page has been set
1467          * to be read-only so the check will not race a user dirtying the
1468          * page.
1469          */
1470         vm_page_test_dirty(p);
1471         if ((p->dirty & p->valid) == 0 && (p->flags & PG_NEED_COMMIT) == 0) {
1472                 vm_page_flag_clear(p, PG_CLEANCHK);
1473                 vm_page_wakeup(p);
1474                 goto done;
1475         }
1476
1477         /*
1478          * If we have been asked to skip nosync pages and this is a
1479          * nosync page, skip it.  Note that the object flags were
1480          * not cleared in this case (because pass1 will have returned an
1481          * error), so we do not have to set them.
1482          */
1483         if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
1484                 vm_page_flag_clear(p, PG_CLEANCHK);
1485                 vm_page_wakeup(p);
1486                 goto done;
1487         }
1488
1489         /*
1490          * Flush as many pages as we can.  PG_CLEANCHK will be cleared on
1491          * the pages that get successfully flushed.  Set info->error if
1492          * we raced an object modification.
1493          */
1494         vm_object_page_collect_flush(info->object, p, info->pagerflags);
1495         /* vm_wait_nominal(); this can deadlock the system in syncer/pageout */
1496 done:
1497         if ((++info->count & 63) == 0)
1498                 lwkt_user_yield();
1499
1500         return(0);
1501 }
1502
1503 /*
1504  * Collect the specified page and nearby pages and flush them out.
1505  * The number of pages flushed is returned.  The passed page is busied
1506  * by the caller and we are responsible for its disposition.
1507  *
1508  * The caller must hold the object.
1509  */
1510 static void
1511 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
1512 {
1513         int error;
1514         int is;
1515         int ib;
1516         int i;
1517         int page_base;
1518         vm_pindex_t pi;
1519         vm_page_t ma[BLIST_MAX_ALLOC];
1520
1521         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1522
1523         pi = p->pindex;
1524         page_base = pi % BLIST_MAX_ALLOC;
1525         ma[page_base] = p;
1526         ib = page_base - 1;
1527         is = page_base + 1;
1528
1529         while (ib >= 0) {
1530                 vm_page_t tp;
1531
1532                 tp = vm_page_lookup_busy_try(object, pi - page_base + ib,
1533                                              TRUE, &error);
1534                 if (error)
1535                         break;
1536                 if (tp == NULL)
1537                         break;
1538                 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1539                     (tp->flags & PG_CLEANCHK) == 0) {
1540                         vm_page_wakeup(tp);
1541                         break;
1542                 }
1543                 if ((tp->queue - tp->pc) == PQ_CACHE) {
1544                         vm_page_flag_clear(tp, PG_CLEANCHK);
1545                         vm_page_wakeup(tp);
1546                         break;
1547                 }
1548                 vm_page_test_dirty(tp);
1549                 if ((tp->dirty & tp->valid) == 0 &&
1550                     (tp->flags & PG_NEED_COMMIT) == 0) {
1551                         vm_page_flag_clear(tp, PG_CLEANCHK);
1552                         vm_page_wakeup(tp);
1553                         break;
1554                 }
1555                 ma[ib] = tp;
1556                 --ib;
1557         }
1558         ++ib;   /* fixup */
1559
1560         while (is < BLIST_MAX_ALLOC &&
1561                pi - page_base + is < object->size) {
1562                 vm_page_t tp;
1563
1564                 tp = vm_page_lookup_busy_try(object, pi - page_base + is,
1565                                              TRUE, &error);
1566                 if (error)
1567                         break;
1568                 if (tp == NULL)
1569                         break;
1570                 if ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
1571                     (tp->flags & PG_CLEANCHK) == 0) {
1572                         vm_page_wakeup(tp);
1573                         break;
1574                 }
1575                 if ((tp->queue - tp->pc) == PQ_CACHE) {
1576                         vm_page_flag_clear(tp, PG_CLEANCHK);
1577                         vm_page_wakeup(tp);
1578                         break;
1579                 }
1580                 vm_page_test_dirty(tp);
1581                 if ((tp->dirty & tp->valid) == 0 &&
1582                     (tp->flags & PG_NEED_COMMIT) == 0) {
1583                         vm_page_flag_clear(tp, PG_CLEANCHK);
1584                         vm_page_wakeup(tp);
1585                         break;
1586                 }
1587                 ma[is] = tp;
1588                 ++is;
1589         }
1590
1591         /*
1592          * All pages in the ma[] array are busied now
1593          */
1594         for (i = ib; i < is; ++i) {
1595                 vm_page_flag_clear(ma[i], PG_CLEANCHK);
1596                 vm_page_hold(ma[i]);    /* XXX need this any more? */
1597         }
1598         vm_pageout_flush(&ma[ib], is - ib, pagerflags);
1599         for (i = ib; i < is; ++i)       /* XXX need this any more? */
1600                 vm_page_unhold(ma[i]);
1601 }
1602
1603 /*
1604  * Same as vm_object_pmap_copy, except range checking really
1605  * works, and is meant for small sections of an object.
1606  *
1607  * This code protects resident pages by making them read-only
1608  * and is typically called on a fork or split when a page
1609  * is converted to copy-on-write.  
1610  *
1611  * NOTE: If the page is already at VM_PROT_NONE, calling
1612  * vm_page_protect will have no effect.
1613  */
1614 void
1615 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1616 {
1617         vm_pindex_t idx;
1618         vm_page_t p;
1619
1620         if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
1621                 return;
1622
1623         vm_object_hold(object);
1624         for (idx = start; idx < end; idx++) {
1625                 p = vm_page_lookup(object, idx);
1626                 if (p == NULL)
1627                         continue;
1628                 vm_page_protect(p, VM_PROT_READ);
1629         }
1630         vm_object_drop(object);
1631 }
1632
1633 /*
1634  * Removes all physical pages in the specified object range from all
1635  * physical maps.
1636  *
1637  * The object must *not* be locked.
1638  */
1639
1640 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
1641
1642 void
1643 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
1644 {
1645         struct rb_vm_page_scan_info info;
1646
1647         if (object == NULL)
1648                 return;
1649         info.start_pindex = start;
1650         info.end_pindex = end - 1;
1651         info.count = 0;
1652         info.object = object;
1653
1654         vm_object_hold(object);
1655         vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1656                                 vm_object_pmap_remove_callback, &info);
1657         if (start == 0 && end == object->size)
1658                 vm_object_clear_flag(object, OBJ_WRITEABLE);
1659         vm_object_drop(object);
1660 }
1661
1662 /*
1663  * The caller must hold the object
1664  */
1665 static int
1666 vm_object_pmap_remove_callback(vm_page_t p, void *data)
1667 {
1668         struct rb_vm_page_scan_info *info = data;
1669
1670         if ((++info->count & 63) == 0)
1671                 lwkt_user_yield();
1672
1673         if (info->object != p->object ||
1674             p->pindex < info->start_pindex ||
1675             p->pindex > info->end_pindex) {
1676                 kprintf("vm_object_pmap_remove_callback: obj/pg race %p/%p\n",
1677                         info->object, p);
1678                 return(0);
1679         }
1680
1681         vm_page_protect(p, VM_PROT_NONE);
1682
1683         return(0);
1684 }
1685
1686 /*
1687  * Implements the madvise function at the object/page level.
1688  *
1689  * MADV_WILLNEED        (any object)
1690  *
1691  *      Activate the specified pages if they are resident.
1692  *
1693  * MADV_DONTNEED        (any object)
1694  *
1695  *      Deactivate the specified pages if they are resident.
1696  *
1697  * MADV_FREE    (OBJT_DEFAULT/OBJT_SWAP objects, OBJ_ONEMAPPING only)
1698  *
1699  *      Deactivate and clean the specified pages if they are
1700  *      resident.  This permits the process to reuse the pages
1701  *      without faulting or the kernel to reclaim the pages
1702  *      without I/O.
1703  *
1704  * No requirements.
1705  */
1706 void
1707 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
1708 {
1709         vm_pindex_t end, tpindex;
1710         vm_object_t tobject;
1711         vm_object_t xobj;
1712         vm_page_t m;
1713         int error;
1714
1715         if (object == NULL)
1716                 return;
1717
1718         end = pindex + count;
1719
1720         vm_object_hold(object);
1721         tobject = object;
1722
1723         /*
1724          * Locate and adjust resident pages
1725          */
1726         for (; pindex < end; pindex += 1) {
1727 relookup:
1728                 if (tobject != object)
1729                         vm_object_drop(tobject);
1730                 tobject = object;
1731                 tpindex = pindex;
1732 shadowlookup:
1733                 /*
1734                  * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
1735                  * and those pages must be OBJ_ONEMAPPING.
1736                  */
1737                 if (advise == MADV_FREE) {
1738                         if ((tobject->type != OBJT_DEFAULT &&
1739                              tobject->type != OBJT_SWAP) ||
1740                             (tobject->flags & OBJ_ONEMAPPING) == 0) {
1741                                 continue;
1742                         }
1743                 }
1744
1745                 m = vm_page_lookup_busy_try(tobject, tpindex, TRUE, &error);
1746
1747                 if (error) {
1748                         vm_page_sleep_busy(m, TRUE, "madvpo");
1749                         goto relookup;
1750                 }
1751                 if (m == NULL) {
1752                         /*
1753                          * There may be swap even if there is no backing page
1754                          */
1755                         if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
1756                                 swap_pager_freespace(tobject, tpindex, 1);
1757
1758                         /*
1759                          * next object
1760                          */
1761                         while ((xobj = tobject->backing_object) != NULL) {
1762                                 KKASSERT(xobj != object);
1763                                 vm_object_hold(xobj);
1764                                 if (xobj == tobject->backing_object)
1765                                         break;
1766                                 vm_object_drop(xobj);
1767                         }
1768                         if (xobj == NULL)
1769                                 continue;
1770                         tpindex += OFF_TO_IDX(tobject->backing_object_offset);
1771                         if (tobject != object) {
1772                                 vm_object_lock_swap();
1773                                 vm_object_drop(tobject);
1774                         }
1775                         tobject = xobj;
1776                         goto shadowlookup;
1777                 }
1778
1779                 /*
1780                  * If the page is not in a normal active state, we skip it.
1781                  * If the page is not managed there are no page queues to
1782                  * mess with.  Things can break if we mess with pages in
1783                  * any of the below states.
1784                  */
1785                 if (m->wire_count ||
1786                     (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
1787                     m->valid != VM_PAGE_BITS_ALL
1788                 ) {
1789                         vm_page_wakeup(m);
1790                         continue;
1791                 }
1792
1793                 /*
1794                  * Theoretically once a page is known not to be busy, an
1795                  * interrupt cannot come along and rip it out from under us.
1796                  */
1797
1798                 if (advise == MADV_WILLNEED) {
1799                         vm_page_activate(m);
1800                 } else if (advise == MADV_DONTNEED) {
1801                         vm_page_dontneed(m);
1802                 } else if (advise == MADV_FREE) {
1803                         /*
1804                          * Mark the page clean.  This will allow the page
1805                          * to be freed up by the system.  However, such pages
1806                          * are often reused quickly by malloc()/free()
1807                          * so we do not do anything that would cause
1808                          * a page fault if we can help it.
1809                          *
1810                          * Specifically, we do not try to actually free
1811                          * the page now nor do we try to put it in the
1812                          * cache (which would cause a page fault on reuse).
1813                          *
1814                          * But we do make the page is freeable as we
1815                          * can without actually taking the step of unmapping
1816                          * it.
1817                          */
1818                         pmap_clear_modify(m);
1819                         m->dirty = 0;
1820                         m->act_count = 0;
1821                         vm_page_dontneed(m);
1822                         if (tobject->type == OBJT_SWAP)
1823                                 swap_pager_freespace(tobject, tpindex, 1);
1824                 }
1825                 vm_page_wakeup(m);
1826         }       
1827         if (tobject != object)
1828                 vm_object_drop(tobject);
1829         vm_object_drop(object);
1830 }
1831
1832 /*
1833  * Create a new object which is backed by the specified existing object
1834  * range.  Replace the pointer and offset that was pointing at the existing
1835  * object with the pointer/offset for the new object.
1836  *
1837  * If addref is non-zero the returned object is given an additional reference.
1838  * This mechanic exists to avoid the situation where refs might be 1 and
1839  * race against a collapse when the caller intends to bump it.  So the
1840  * caller cannot add the ref after the fact.  Used when the caller is
1841  * duplicating a vm_map_entry.
1842  *
1843  * No other requirements.
1844  */
1845 void
1846 vm_object_shadow(vm_object_t *objectp, vm_ooffset_t *offset, vm_size_t length,
1847                  int addref)
1848 {
1849         vm_object_t source;
1850         vm_object_t result;
1851         int useshadowlist;
1852
1853         source = *objectp;
1854
1855         /*
1856          * Don't create the new object if the old object isn't shared.
1857          * We have to chain wait before adding the reference to avoid
1858          * racing a collapse or deallocation.
1859          *
1860          * Clear OBJ_ONEMAPPING flag when shadowing.
1861          *
1862          * The caller owns a ref on source via *objectp which we are going
1863          * to replace.  This ref is inherited by the backing_object assignment.
1864          * from nobject and does not need to be incremented here.
1865          *
1866          * However, we add a temporary extra reference to the original source
1867          * prior to holding nobject in case we block, to avoid races where
1868          * someone else might believe that the source can be collapsed.
1869          */
1870         useshadowlist = 0;
1871         if (source) {
1872                 if (source->type != OBJT_VNODE) {
1873                         useshadowlist = 1;
1874                         vm_object_hold(source);
1875                         vm_object_chain_wait(source, 0);
1876                         if (source->ref_count == 1 &&
1877                             source->handle == NULL &&
1878                             (source->type == OBJT_DEFAULT ||
1879                              source->type == OBJT_SWAP)) {
1880                                 if (addref) {
1881                                         vm_object_reference_locked(source);
1882                                         vm_object_clear_flag(source,
1883                                                              OBJ_ONEMAPPING);
1884                                 }
1885                                 vm_object_drop(source);
1886                                 return;
1887                         }
1888                         vm_object_reference_locked(source);
1889                         vm_object_clear_flag(source, OBJ_ONEMAPPING);
1890                 } else {
1891                         vm_object_reference_quick(source);
1892                         vm_object_clear_flag(source, OBJ_ONEMAPPING);
1893                 }
1894         }
1895
1896         /*
1897          * Allocate a new object with the given length.  The new object
1898          * is returned referenced but we may have to add another one.
1899          * If we are adding a second reference we must clear OBJ_ONEMAPPING.
1900          * (typically because the caller is about to clone a vm_map_entry).
1901          *
1902          * The source object currently has an extra reference to prevent
1903          * collapses into it while we mess with its shadow list, which
1904          * we will remove later in this routine.
1905          *
1906          * The target object may require a second reference if asked for one
1907          * by the caller.
1908          */
1909         result = vm_object_allocate(OBJT_DEFAULT, length);
1910         if (result == NULL)
1911                 panic("vm_object_shadow: no object for shadowing");
1912         vm_object_hold(result);
1913         if (addref) {
1914                 vm_object_reference_locked(result);
1915                 vm_object_clear_flag(result, OBJ_ONEMAPPING);
1916         }
1917
1918         /*
1919          * The new object shadows the source object.  Chain wait before
1920          * adjusting shadow_count or the shadow list to avoid races.
1921          *
1922          * Try to optimize the result object's page color when shadowing
1923          * in order to maintain page coloring consistency in the combined 
1924          * shadowed object.
1925          *
1926          * The backing_object reference to source requires adding a ref to
1927          * source.  We simply inherit the ref from the original *objectp
1928          * (which we are replacing) so no additional refs need to be added.
1929          * (we must still clean up the extra ref we had to prevent collapse
1930          * races).
1931          *
1932          * SHADOWING IS NOT APPLICABLE TO OBJT_VNODE OBJECTS
1933          */
1934         KKASSERT(result->backing_object == NULL);
1935         result->backing_object = source;
1936         if (source) {
1937                 if (useshadowlist) {
1938                         vm_object_chain_wait(source, 0);
1939                         LIST_INSERT_HEAD(&source->shadow_head,
1940                                          result, shadow_list);
1941                         source->shadow_count++;
1942                         source->generation++;
1943                         vm_object_set_flag(result, OBJ_ONSHADOW);
1944                 }
1945                 /* cpu localization twist */
1946                 result->pg_color = vm_quickcolor();
1947         }
1948
1949         /*
1950          * Adjust the return storage.  Drop the ref on source before
1951          * returning.
1952          */
1953         result->backing_object_offset = *offset;
1954         vm_object_drop(result);
1955         *offset = 0;
1956         if (source) {
1957                 if (useshadowlist) {
1958                         vm_object_deallocate_locked(source);
1959                         vm_object_drop(source);
1960                 } else {
1961                         vm_object_deallocate(source);
1962                 }
1963         }
1964
1965         /*
1966          * Return the new things
1967          */
1968         *objectp = result;
1969 }
1970
1971 #define OBSC_TEST_ALL_SHADOWED  0x0001
1972 #define OBSC_COLLAPSE_NOWAIT    0x0002
1973 #define OBSC_COLLAPSE_WAIT      0x0004
1974
1975 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1976
1977 /*
1978  * The caller must hold the object.
1979  */
1980 static __inline int
1981 vm_object_backing_scan(vm_object_t object, vm_object_t backing_object, int op)
1982 {
1983         struct rb_vm_page_scan_info info;
1984         int n;
1985
1986         vm_object_assert_held(object);
1987         vm_object_assert_held(backing_object);
1988
1989         KKASSERT(backing_object == object->backing_object);
1990         info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1991
1992         /*
1993          * Initial conditions
1994          */
1995         if (op & OBSC_TEST_ALL_SHADOWED) {
1996                 /*
1997                  * We do not want to have to test for the existence of
1998                  * swap pages in the backing object.  XXX but with the
1999                  * new swapper this would be pretty easy to do.
2000                  *
2001                  * XXX what about anonymous MAP_SHARED memory that hasn't
2002                  * been ZFOD faulted yet?  If we do not test for this, the
2003                  * shadow test may succeed! XXX
2004                  */
2005                 if (backing_object->type != OBJT_DEFAULT)
2006                         return(0);
2007         }
2008         if (op & OBSC_COLLAPSE_WAIT) {
2009                 KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
2010                 vm_object_set_flag(backing_object, OBJ_DEAD);
2011
2012                 n = VMOBJ_HASH(backing_object);
2013                 lwkt_gettoken(&vmobj_tokens[n]);
2014                 TAILQ_REMOVE(&vm_object_lists[n], backing_object, object_list);
2015                 lwkt_reltoken(&vmobj_tokens[n]);
2016                 atomic_add_long(&vm_object_count, -1);
2017         }
2018
2019         /*
2020          * Our scan.   We have to retry if a negative error code is returned,
2021          * otherwise 0 or 1 will be returned in info.error.  0 Indicates that
2022          * the scan had to be stopped because the parent does not completely
2023          * shadow the child.
2024          */
2025         info.object = object;
2026         info.backing_object = backing_object;
2027         info.limit = op;
2028         do {
2029                 info.error = 1;
2030                 vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
2031                                         vm_object_backing_scan_callback,
2032                                         &info);
2033         } while (info.error < 0);
2034
2035         return(info.error);
2036 }
2037
2038 /*
2039  * The caller must hold the object.
2040  */
2041 static int
2042 vm_object_backing_scan_callback(vm_page_t p, void *data)
2043 {
2044         struct rb_vm_page_scan_info *info = data;
2045         vm_object_t backing_object;
2046         vm_object_t object;
2047         vm_pindex_t pindex;
2048         vm_pindex_t new_pindex;
2049         vm_pindex_t backing_offset_index;
2050         int op;
2051
2052         pindex = p->pindex;
2053         new_pindex = pindex - info->backing_offset_index;
2054         op = info->limit;
2055         object = info->object;
2056         backing_object = info->backing_object;
2057         backing_offset_index = info->backing_offset_index;
2058
2059         if (op & OBSC_TEST_ALL_SHADOWED) {
2060                 vm_page_t pp;
2061
2062                 /*
2063                  * Ignore pages outside the parent object's range
2064                  * and outside the parent object's mapping of the 
2065                  * backing object.
2066                  *
2067                  * note that we do not busy the backing object's
2068                  * page.
2069                  */
2070                 if (pindex < backing_offset_index ||
2071                     new_pindex >= object->size
2072                 ) {
2073                         return(0);
2074                 }
2075
2076                 /*
2077                  * See if the parent has the page or if the parent's
2078                  * object pager has the page.  If the parent has the
2079                  * page but the page is not valid, the parent's
2080                  * object pager must have the page.
2081                  *
2082                  * If this fails, the parent does not completely shadow
2083                  * the object and we might as well give up now.
2084                  */
2085                 pp = vm_page_lookup(object, new_pindex);
2086                 if ((pp == NULL || pp->valid == 0) &&
2087                     !vm_pager_has_page(object, new_pindex)
2088                 ) {
2089                         info->error = 0;        /* problemo */
2090                         return(-1);             /* stop the scan */
2091                 }
2092         }
2093
2094         /*
2095          * Check for busy page.  Note that we may have lost (p) when we
2096          * possibly blocked above.
2097          */
2098         if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
2099                 vm_page_t pp;
2100
2101                 if (vm_page_busy_try(p, TRUE)) {
2102                         if (op & OBSC_COLLAPSE_NOWAIT) {
2103                                 return(0);
2104                         } else {
2105                                 /*
2106                                  * If we slept, anything could have
2107                                  * happened.   Ask that the scan be restarted.
2108                                  *
2109                                  * Since the object is marked dead, the
2110                                  * backing offset should not have changed.  
2111                                  */
2112                                 vm_page_sleep_busy(p, TRUE, "vmocol");
2113                                 info->error = -1;
2114                                 return(-1);
2115                         }
2116                 }
2117
2118                 /*
2119                  * If (p) is no longer valid restart the scan.
2120                  */
2121                 if (p->object != backing_object || p->pindex != pindex) {
2122                         kprintf("vm_object_backing_scan: Warning: page "
2123                                 "%p ripped out from under us\n", p);
2124                         vm_page_wakeup(p);
2125                         info->error = -1;
2126                         return(-1);
2127                 }
2128
2129                 if (op & OBSC_COLLAPSE_NOWAIT) {
2130                         if (p->valid == 0 ||
2131                             p->wire_count ||
2132                             (p->flags & PG_NEED_COMMIT)) {
2133                                 vm_page_wakeup(p);
2134                                 return(0);
2135                         }
2136                 } else {
2137                         /* XXX what if p->valid == 0 , hold_count, etc? */
2138                 }
2139
2140                 KASSERT(
2141                     p->object == backing_object,
2142                     ("vm_object_qcollapse(): object mismatch")
2143                 );
2144
2145                 /*
2146                  * Destroy any associated swap
2147                  */
2148                 if (backing_object->type == OBJT_SWAP)
2149                         swap_pager_freespace(backing_object, p->pindex, 1);
2150
2151                 if (
2152                     p->pindex < backing_offset_index ||
2153                     new_pindex >= object->size
2154                 ) {
2155                         /*
2156                          * Page is out of the parent object's range, we 
2157                          * can simply destroy it. 
2158                          */
2159                         vm_page_protect(p, VM_PROT_NONE);
2160                         vm_page_free(p);
2161                         return(0);
2162                 }
2163
2164                 pp = vm_page_lookup(object, new_pindex);
2165                 if (pp != NULL || vm_pager_has_page(object, new_pindex)) {
2166                         /*
2167                          * page already exists in parent OR swap exists
2168                          * for this location in the parent.  Destroy 
2169                          * the original page from the backing object.
2170                          *
2171                          * Leave the parent's page alone
2172                          */
2173                         vm_page_protect(p, VM_PROT_NONE);
2174                         vm_page_free(p);
2175                         return(0);
2176                 }
2177
2178                 /*
2179                  * Page does not exist in parent, rename the
2180                  * page from the backing object to the main object. 
2181                  *
2182                  * If the page was mapped to a process, it can remain 
2183                  * mapped through the rename.
2184                  */
2185                 if ((p->queue - p->pc) == PQ_CACHE)
2186                         vm_page_deactivate(p);
2187
2188                 vm_page_rename(p, object, new_pindex);
2189                 vm_page_wakeup(p);
2190                 /* page automatically made dirty by rename */
2191         }
2192         return(0);
2193 }
2194
2195 /*
2196  * This version of collapse allows the operation to occur earlier and
2197  * when paging_in_progress is true for an object...  This is not a complete
2198  * operation, but should plug 99.9% of the rest of the leaks.
2199  *
2200  * The caller must hold the object and backing_object and both must be
2201  * chainlocked.
2202  *
2203  * (only called from vm_object_collapse)
2204  */
2205 static void
2206 vm_object_qcollapse(vm_object_t object, vm_object_t backing_object)
2207 {
2208         if (backing_object->ref_count == 1) {
2209                 atomic_add_int(&backing_object->ref_count, 2);
2210 #if defined(DEBUG_LOCKS)
2211                 debugvm_object_add(backing_object, "qcollapse", 1, 2);
2212 #endif
2213                 vm_object_backing_scan(object, backing_object,
2214                                        OBSC_COLLAPSE_NOWAIT);
2215                 atomic_add_int(&backing_object->ref_count, -2);
2216 #if defined(DEBUG_LOCKS)
2217                 debugvm_object_add(backing_object, "qcollapse", 2, -2);
2218 #endif
2219         }
2220 }
2221
2222 /*
2223  * Collapse an object with the object backing it.  Pages in the backing
2224  * object are moved into the parent, and the backing object is deallocated.
2225  * Any conflict is resolved in favor of the parent's existing pages.
2226  *
2227  * object must be held and chain-locked on call.
2228  *
2229  * The caller must have an extra ref on object to prevent a race from
2230  * destroying it during the collapse.
2231  */
2232 void
2233 vm_object_collapse(vm_object_t object, struct vm_object_dealloc_list **dlistp)
2234 {
2235         struct vm_object_dealloc_list *dlist = NULL;
2236         vm_object_t backing_object;
2237
2238         /*
2239          * Only one thread is attempting a collapse at any given moment.
2240          * There are few restrictions for (object) that callers of this
2241          * function check so reentrancy is likely.
2242          */
2243         KKASSERT(object != NULL);
2244         vm_object_assert_held(object);
2245         KKASSERT(object->chainlk & (CHAINLK_MASK | CHAINLK_EXCL));
2246
2247         for (;;) {
2248                 vm_object_t bbobj;
2249                 int dodealloc;
2250
2251                 /*
2252                  * We can only collapse a DEFAULT/SWAP object with a
2253                  * DEFAULT/SWAP object.
2254                  */
2255                 if (object->type != OBJT_DEFAULT && object->type != OBJT_SWAP) {
2256                         backing_object = NULL;
2257                         break;
2258                 }
2259
2260                 backing_object = object->backing_object;
2261                 if (backing_object == NULL)
2262                         break;
2263                 if (backing_object->type != OBJT_DEFAULT &&
2264                     backing_object->type != OBJT_SWAP) {
2265                         backing_object = NULL;
2266                         break;
2267                 }
2268
2269                 /*
2270                  * Hold the backing_object and check for races
2271                  */
2272                 vm_object_hold(backing_object);
2273                 if (backing_object != object->backing_object ||
2274                     (backing_object->type != OBJT_DEFAULT &&
2275                      backing_object->type != OBJT_SWAP)) {
2276                         vm_object_drop(backing_object);
2277                         continue;
2278                 }
2279
2280                 /*
2281                  * Chain-lock the backing object too because if we
2282                  * successfully merge its pages into the top object we
2283                  * will collapse backing_object->backing_object as the
2284                  * new backing_object.  Re-check that it is still our
2285                  * backing object.
2286                  */
2287                 vm_object_chain_acquire(backing_object, 0);
2288                 if (backing_object != object->backing_object) {
2289                         vm_object_chain_release(backing_object);
2290                         vm_object_drop(backing_object);
2291                         continue;
2292                 }
2293
2294                 /*
2295                  * we check the backing object first, because it is most likely
2296                  * not collapsable.
2297                  */
2298                 if (backing_object->handle != NULL ||
2299                     (backing_object->type != OBJT_DEFAULT &&
2300                      backing_object->type != OBJT_SWAP) ||
2301                     (backing_object->flags & OBJ_DEAD) ||
2302                     object->handle != NULL ||
2303                     (object->type != OBJT_DEFAULT &&
2304                      object->type != OBJT_SWAP) ||
2305                     (object->flags & OBJ_DEAD)) {
2306                         break;
2307                 }
2308
2309                 /*
2310                  * If paging is in progress we can't do a normal collapse.
2311                  */
2312                 if (
2313                     object->paging_in_progress != 0 ||
2314                     backing_object->paging_in_progress != 0
2315                 ) {
2316                         vm_object_qcollapse(object, backing_object);
2317                         break;
2318                 }
2319
2320                 /*
2321                  * We know that we can either collapse the backing object (if
2322                  * the parent is the only reference to it) or (perhaps) have
2323                  * the parent bypass the object if the parent happens to shadow
2324                  * all the resident pages in the entire backing object.
2325                  *
2326                  * This is ignoring pager-backed pages such as swap pages.
2327                  * vm_object_backing_scan fails the shadowing test in this
2328                  * case.
2329                  */
2330                 if (backing_object->ref_count == 1) {
2331                         /*
2332                          * If there is exactly one reference to the backing
2333                          * object, we can collapse it into the parent.  
2334                          */
2335                         KKASSERT(object->backing_object == backing_object);
2336                         vm_object_backing_scan(object, backing_object,
2337                                                OBSC_COLLAPSE_WAIT);
2338
2339                         /*
2340                          * Move the pager from backing_object to object.
2341                          */
2342                         if (backing_object->type == OBJT_SWAP) {
2343                                 vm_object_pip_add(backing_object, 1);
2344
2345                                 /*
2346                                  * scrap the paging_offset junk and do a 
2347                                  * discrete copy.  This also removes major 
2348                                  * assumptions about how the swap-pager 
2349                                  * works from where it doesn't belong.  The
2350                                  * new swapper is able to optimize the
2351                                  * destroy-source case.
2352                                  */
2353                                 vm_object_pip_add(object, 1);
2354                                 swap_pager_copy(backing_object, object,
2355                                     OFF_TO_IDX(object->backing_object_offset),
2356                                     TRUE);
2357                                 vm_object_pip_wakeup(object);
2358                                 vm_object_pip_wakeup(backing_object);
2359                         }
2360
2361                         /*
2362                          * Object now shadows whatever backing_object did.
2363                          * Remove object from backing_object's shadow_list.
2364                          *
2365                          * Removing object from backing_objects shadow list
2366                          * requires releasing object, which we will do below.
2367                          */
2368                         KKASSERT(object->backing_object == backing_object);
2369                         if (object->flags & OBJ_ONSHADOW) {
2370                                 LIST_REMOVE(object, shadow_list);
2371                                 backing_object->shadow_count--;
2372                                 backing_object->generation++;
2373                                 vm_object_clear_flag(object, OBJ_ONSHADOW);
2374                         }
2375
2376                         /*
2377                          * backing_object->backing_object moves from within
2378                          * backing_object to within object.
2379                          *
2380                          * OBJT_VNODE bbobj's should have empty shadow lists.
2381                          */
2382                         while ((bbobj = backing_object->backing_object) != NULL) {
2383                                 if (bbobj->type == OBJT_VNODE)
2384                                         vm_object_hold_shared(bbobj);
2385                                 else
2386                                         vm_object_hold(bbobj);
2387                                 if (bbobj == backing_object->backing_object)
2388                                         break;
2389                                 vm_object_drop(bbobj);
2390                         }
2391
2392                         /*
2393                          * We are removing backing_object from bbobj's
2394                          * shadow list and adding object to bbobj's shadow
2395                          * list, so the ref_count on bbobj is unchanged.
2396                          */
2397                         if (bbobj) {
2398                                 if (backing_object->flags & OBJ_ONSHADOW) {
2399                                         /* not locked exclusively if vnode */
2400                                         KKASSERT(bbobj->type != OBJT_VNODE);
2401                                         LIST_REMOVE(backing_object,
2402                                                     shadow_list);
2403                                         bbobj->shadow_count--;
2404                                         bbobj->generation++;
2405                                         vm_object_clear_flag(backing_object,
2406                                                              OBJ_ONSHADOW);
2407                                 }
2408                                 backing_object->backing_object = NULL;
2409                         }
2410                         object->backing_object = bbobj;
2411                         if (bbobj) {
2412                                 if (bbobj->type != OBJT_VNODE) {
2413                                         LIST_INSERT_HEAD(&bbobj->shadow_head,
2414                                                          object, shadow_list);
2415                                         bbobj->shadow_count++;
2416                                         bbobj->generation++;
2417                                         vm_object_set_flag(object,
2418                                                            OBJ_ONSHADOW);
2419                                 }
2420                         }
2421
2422                         object->backing_object_offset +=
2423                                 backing_object->backing_object_offset;
2424
2425                         vm_object_drop(bbobj);
2426
2427                         /*
2428                          * Discard the old backing_object.  Nothing should be
2429                          * able to ref it, other than a vm_map_split(),
2430                          * and vm_map_split() will stall on our chain lock.
2431                          * And we control the parent so it shouldn't be
2432                          * possible for it to go away either.
2433                          *
2434                          * Since the backing object has no pages, no pager
2435                          * left, and no object references within it, all
2436                          * that is necessary is to dispose of it.
2437                          */
2438                         KASSERT(backing_object->ref_count == 1,
2439                                 ("backing_object %p was somehow "
2440                                  "re-referenced during collapse!",
2441                                  backing_object));
2442                         KASSERT(RB_EMPTY(&backing_object->rb_memq),
2443                                 ("backing_object %p somehow has left "
2444                                  "over pages during collapse!",
2445                                  backing_object));
2446
2447                         /*
2448                          * The object can be destroyed.
2449                          *
2450                          * XXX just fall through and dodealloc instead
2451                          *     of forcing destruction?
2452                          */
2453                         atomic_add_int(&backing_object->ref_count, -1);
2454 #if defined(DEBUG_LOCKS)
2455                         debugvm_object_add(backing_object, "collapse", 1, -1);
2456 #endif
2457                         if ((backing_object->flags & OBJ_DEAD) == 0)
2458                                 vm_object_terminate(backing_object);
2459                         object_collapses++;
2460                         dodealloc = 0;
2461                 } else {
2462                         /*
2463                          * If we do not entirely shadow the backing object,
2464                          * there is nothing we can do so we give up.
2465                          */
2466                         if (vm_object_backing_scan(object, backing_object,
2467                                                 OBSC_TEST_ALL_SHADOWED) == 0) {
2468                                 break;
2469                         }
2470
2471                         /*
2472                          * bbobj is backing_object->backing_object.  Since
2473                          * object completely shadows backing_object we can
2474                          * bypass it and become backed by bbobj instead.
2475                          *
2476                          * The shadow list for vnode backing objects is not
2477                          * used and a shared hold is allowed.
2478                          */
2479                         while ((bbobj = backing_object->backing_object) != NULL) {
2480                                 if (bbobj->type == OBJT_VNODE)
2481                                         vm_object_hold_shared(bbobj);
2482                                 else
2483                                         vm_object_hold(bbobj);
2484                                 if (bbobj == backing_object->backing_object)
2485                                         break;
2486                                 vm_object_drop(bbobj);
2487                         }
2488
2489                         /*
2490                          * Make object shadow bbobj instead of backing_object.
2491                          * Remove object from backing_object's shadow list.
2492                          *
2493                          * Deallocating backing_object will not remove
2494                          * it, since its reference count is at least 2.
2495                          *
2496                          * Removing object from backing_object's shadow
2497                          * list requires releasing a ref, which we do
2498                          * below by setting dodealloc to 1.
2499                          */
2500                         KKASSERT(object->backing_object == backing_object);
2501                         if (object->flags & OBJ_ONSHADOW) {
2502                                 LIST_REMOVE(object, shadow_list);
2503                                 backing_object->shadow_count--;
2504                                 backing_object->generation++;
2505                                 vm_object_clear_flag(object, OBJ_ONSHADOW);
2506                         }
2507
2508                         /*
2509                          * Add a ref to bbobj, bbobj now shadows object.
2510                          *
2511                          * NOTE: backing_object->backing_object still points
2512                          *       to bbobj.  That relationship remains intact
2513                          *       because backing_object has > 1 ref, so
2514                          *       someone else is pointing to it (hence why
2515                          *       we can't collapse it into object and can
2516                          *       only handle the all-shadowed bypass case).
2517                          */
2518                         if (bbobj) {
2519                                 if (bbobj->type != OBJT_VNODE) {
2520                                         vm_object_chain_wait(bbobj, 0);
2521                                         vm_object_reference_locked(bbobj);
2522                                         LIST_INSERT_HEAD(&bbobj->shadow_head,
2523                                                          object, shadow_list);
2524                                         bbobj->shadow_count++;
2525                                         bbobj->generation++;
2526                                         vm_object_set_flag(object,
2527                                                            OBJ_ONSHADOW);
2528                                 } else {
2529                                         vm_object_reference_quick(bbobj);
2530                                 }
2531                                 object->backing_object_offset +=
2532                                         backing_object->backing_object_offset;
2533                                 object->backing_object = bbobj;
2534                                 vm_object_drop(bbobj);
2535                         } else {
2536                                 object->backing_object = NULL;
2537                         }
2538
2539                         /*
2540                          * Drop the reference count on backing_object.  To
2541                          * handle ref_count races properly we can't assume
2542                          * that the ref_count is still at least 2 so we
2543                          * have to actually call vm_object_deallocate()
2544                          * (after clearing the chainlock).
2545                          */
2546                         object_bypasses++;
2547                         dodealloc = 1;
2548                 }
2549
2550                 /*
2551                  * Ok, we want to loop on the new object->bbobj association,
2552                  * possibly collapsing it further.  However if dodealloc is
2553                  * non-zero we have to deallocate the backing_object which
2554                  * itself can potentially undergo a collapse, creating a
2555                  * recursion depth issue with the LWKT token subsystem.
2556                  *
2557                  * In the case where we must deallocate the backing_object
2558                  * it is possible now that the backing_object has a single
2559                  * shadow count on some other object (not represented here
2560                  * as yet), since it no longer shadows us.  Thus when we
2561                  * call vm_object_deallocate() it may attempt to collapse
2562                  * itself into its remaining parent.
2563                  */
2564                 if (dodealloc) {
2565                         struct vm_object_dealloc_list *dtmp;
2566
2567                         vm_object_chain_release(backing_object);
2568                         vm_object_unlock(backing_object);
2569                         /* backing_object remains held */
2570
2571                         /*
2572                          * Auto-deallocation list for caller convenience.
2573                          */
2574                         if (dlistp == NULL)
2575                                 dlistp = &dlist;
2576
2577                         dtmp = kmalloc(sizeof(*dtmp), M_TEMP, M_WAITOK);
2578                         dtmp->object = backing_object;
2579                         dtmp->next = *dlistp;
2580                         *dlistp = dtmp;
2581                 } else {
2582                         vm_object_chain_release(backing_object);
2583                         vm_object_drop(backing_object);
2584                 }
2585                 /* backing_object = NULL; not needed */
2586                 /* loop */
2587         }
2588
2589         /*
2590          * Clean up any left over backing_object
2591          */
2592         if (backing_object) {
2593                 vm_object_chain_release(backing_object);
2594                 vm_object_drop(backing_object);
2595         }
2596
2597         /*
2598          * Clean up any auto-deallocation list.  This is a convenience
2599          * for top-level callers so they don't have to pass &dlist.
2600          * Do not clean up any caller-passed dlistp, the caller will
2601          * do that.
2602          */
2603         if (dlist)
2604                 vm_object_deallocate_list(&dlist);
2605
2606 }
2607
2608 /*
2609  * vm_object_collapse() may collect additional objects in need of
2610  * deallocation.  This routine deallocates these objects.  The
2611  * deallocation itself can trigger additional collapses (which the
2612  * deallocate function takes care of).  This procedure is used to
2613  * reduce procedural recursion since these vm_object shadow chains
2614  * can become quite long.
2615  */
2616 void
2617 vm_object_deallocate_list(struct vm_object_dealloc_list **dlistp)
2618 {
2619         struct vm_object_dealloc_list *dlist;
2620
2621         while ((dlist = *dlistp) != NULL) {
2622                 *dlistp = dlist->next;
2623                 vm_object_lock(dlist->object);
2624                 vm_object_deallocate_locked(dlist->object);
2625                 vm_object_drop(dlist->object);
2626                 kfree(dlist, M_TEMP);
2627         }
2628 }
2629
2630 /*
2631  * Removes all physical pages in the specified object range from the
2632  * object's list of pages.
2633  *
2634  * No requirements.
2635  */
2636 static int vm_object_page_remove_callback(vm_page_t p, void *data);
2637
2638 void
2639 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
2640                       boolean_t clean_only)
2641 {
2642         struct rb_vm_page_scan_info info;
2643         int all;
2644
2645         /*
2646          * Degenerate cases and assertions
2647          */
2648         vm_object_hold(object);
2649         if (object == NULL ||
2650             (object->resident_page_count == 0 && object->swblock_count == 0)) {
2651                 vm_object_drop(object);
2652                 return;
2653         }
2654         KASSERT(object->type != OBJT_PHYS, 
2655                 ("attempt to remove pages from a physical object"));
2656
2657         /*
2658          * Indicate that paging is occuring on the object
2659          */
2660         vm_object_pip_add(object, 1);
2661
2662         /*
2663          * Figure out the actual removal range and whether we are removing
2664          * the entire contents of the object or not.  If removing the entire
2665          * contents, be sure to get all pages, even those that might be 
2666          * beyond the end of the object.
2667          */
2668         info.object = object;
2669         info.start_pindex = start;
2670         if (end == 0)
2671                 info.end_pindex = (vm_pindex_t)-1;
2672         else
2673                 info.end_pindex = end - 1;
2674         info.limit = clean_only;
2675         all = (start == 0 && info.end_pindex >= object->size - 1);
2676
2677         /*
2678          * Loop until we are sure we have gotten them all.
2679          */
2680         do {
2681                 info.error = 0;
2682                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
2683                                         vm_object_page_remove_callback, &info);
2684         } while (info.error);
2685
2686         /*
2687          * Remove any related swap if throwing away pages, or for
2688          * non-swap objects (the swap is a clean copy in that case).
2689          */
2690         if (object->type != OBJT_SWAP || clean_only == FALSE) {
2691                 if (all)
2692                         swap_pager_freespace_all(object);
2693                 else
2694                         swap_pager_freespace(object, info.start_pindex,
2695                              info.end_pindex - info.start_pindex + 1);
2696         }
2697
2698         /*
2699          * Cleanup
2700          */
2701         vm_object_pip_wakeup(object);
2702         vm_object_drop(object);
2703 }
2704
2705 /*
2706  * The caller must hold the object
2707  */
2708 static int
2709 vm_object_page_remove_callback(vm_page_t p, void *data)
2710 {
2711         struct rb_vm_page_scan_info *info = data;
2712
2713         if ((++info->count & 63) == 0)
2714                 lwkt_user_yield();
2715
2716         if (info->object != p->object ||
2717             p->pindex < info->start_pindex ||
2718             p->pindex > info->end_pindex) {
2719                 kprintf("vm_object_page_remove_callbackA: obj/pg race %p/%p\n",
2720                         info->object, p);
2721                 return(0);
2722         }
2723         if (vm_page_busy_try(p, TRUE)) {
2724                 vm_page_sleep_busy(p, TRUE, "vmopar");
2725                 info->error = 1;
2726                 return(0);
2727         }
2728         if (info->object != p->object) {
2729                 /* this should never happen */
2730                 kprintf("vm_object_page_remove_callbackB: obj/pg race %p/%p\n",
2731                         info->object, p);
2732                 vm_page_wakeup(p);
2733                 return(0);
2734         }
2735
2736         /*
2737          * Wired pages cannot be destroyed, but they can be invalidated
2738          * and we do so if clean_only (limit) is not set.
2739          *
2740          * WARNING!  The page may be wired due to being part of a buffer
2741          *           cache buffer, and the buffer might be marked B_CACHE.
2742          *           This is fine as part of a truncation but VFSs must be
2743          *           sure to fix the buffer up when re-extending the file.
2744          *
2745          * NOTE!     PG_NEED_COMMIT is ignored.
2746          */
2747         if (p->wire_count != 0) {
2748                 vm_page_protect(p, VM_PROT_NONE);
2749                 if (info->limit == 0)
2750                         p->valid = 0;
2751                 vm_page_wakeup(p);
2752                 return(0);
2753         }
2754
2755         /*
2756          * limit is our clean_only flag.  If set and the page is dirty or
2757          * requires a commit, do not free it.  If set and the page is being
2758          * held by someone, do not free it.
2759          */
2760         if (info->limit && p->valid) {
2761                 vm_page_test_dirty(p);
2762                 if ((p->valid & p->dirty) || (p->flags & PG_NEED_COMMIT)) {
2763                         vm_page_wakeup(p);
2764                         return(0);
2765                 }
2766         }
2767
2768         /*
2769          * Destroy the page
2770          */
2771         vm_page_protect(p, VM_PROT_NONE);
2772         vm_page_free(p);
2773
2774         return(0);
2775 }
2776
2777 /*
2778  * Coalesces two objects backing up adjoining regions of memory into a
2779  * single object.
2780  *
2781  * returns TRUE if objects were combined.
2782  *
2783  * NOTE: Only works at the moment if the second object is NULL -
2784  *       if it's not, which object do we lock first?
2785  *
2786  * Parameters:
2787  *      prev_object     First object to coalesce
2788  *      prev_offset     Offset into prev_object
2789  *      next_object     Second object into coalesce
2790  *      next_offset     Offset into next_object
2791  *
2792  *      prev_size       Size of reference to prev_object
2793  *      next_size       Size of reference to next_object
2794  *
2795  * The caller does not need to hold (prev_object) but must have a stable
2796  * pointer to it (typically by holding the vm_map locked).
2797  */
2798 boolean_t
2799 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
2800                    vm_size_t prev_size, vm_size_t next_size)
2801 {
2802         vm_pindex_t next_pindex;
2803
2804         if (prev_object == NULL)
2805                 return (TRUE);
2806
2807         vm_object_hold(prev_object);
2808
2809         if (prev_object->type != OBJT_DEFAULT &&
2810             prev_object->type != OBJT_SWAP) {
2811                 vm_object_drop(prev_object);
2812                 return (FALSE);
2813         }
2814
2815         /*
2816          * Try to collapse the object first
2817          */
2818         vm_object_chain_acquire(prev_object, 0);
2819         vm_object_collapse(prev_object, NULL);
2820
2821         /*
2822          * Can't coalesce if: . more than one reference . paged out . shadows
2823          * another object . has a copy elsewhere (any of which mean that the
2824          * pages not mapped to prev_entry may be in use anyway)
2825          */
2826
2827         if (prev_object->backing_object != NULL) {
2828                 vm_object_chain_release(prev_object);
2829                 vm_object_drop(prev_object);
2830                 return (FALSE);
2831         }
2832
2833         prev_size >>= PAGE_SHIFT;
2834         next_size >>= PAGE_SHIFT;
2835         next_pindex = prev_pindex + prev_size;
2836
2837         if ((prev_object->ref_count > 1) &&
2838             (prev_object->size != next_pindex)) {
2839                 vm_object_chain_release(prev_object);
2840                 vm_object_drop(prev_object);
2841                 return (FALSE);
2842         }
2843
2844         /*
2845          * Remove any pages that may still be in the object from a previous
2846          * deallocation.
2847          */
2848         if (next_pindex < prev_object->size) {
2849                 vm_object_page_remove(prev_object,
2850                                       next_pindex,
2851                                       next_pindex + next_size, FALSE);
2852                 if (prev_object->type == OBJT_SWAP)
2853                         swap_pager_freespace(prev_object,
2854                                              next_pindex, next_size);
2855         }
2856
2857         /*
2858          * Extend the object if necessary.
2859          */
2860         if (next_pindex + next_size > prev_object->size)
2861                 prev_object->size = next_pindex + next_size;
2862
2863         vm_object_chain_release(prev_object);
2864         vm_object_drop(prev_object);
2865         return (TRUE);
2866 }
2867
2868 /*
2869  * Make the object writable and flag is being possibly dirty.
2870  *
2871  * The object might not be held (or might be held but held shared),
2872  * the related vnode is probably not held either.  Object and vnode are
2873  * stable by virtue of the vm_page busied by the caller preventing
2874  * destruction.
2875  *
2876  * If the related mount is flagged MNTK_THR_SYNC we need to call
2877  * vsetobjdirty().  Filesystems using this option usually shortcut
2878  * synchronization by only scanning the syncer list.
2879  */
2880 void
2881 vm_object_set_writeable_dirty(vm_object_t object)
2882 {
2883         struct vnode *vp;
2884
2885         /*vm_object_assert_held(object);*/
2886         /*
2887          * Avoid contention in vm fault path by checking the state before
2888          * issuing an atomic op on it.
2889          */
2890         if ((object->flags & (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) !=
2891             (OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY)) {
2892                 vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
2893         }
2894         if (object->type == OBJT_VNODE &&
2895             (vp = (struct vnode *)object->handle) != NULL) {
2896                 if ((vp->v_flag & VOBJDIRTY) == 0) {
2897                         if (vp->v_mount &&
2898                             (vp->v_mount->mnt_kern_flag & MNTK_THR_SYNC)) {
2899                                 /*
2900                                  * New style THR_SYNC places vnodes on the
2901                                  * syncer list more deterministically.
2902                                  */
2903                                 vsetobjdirty(vp);
2904                         } else {
2905                                 /*
2906                                  * Old style scan would not necessarily place
2907                                  * a vnode on the syncer list when possibly
2908                                  * modified via mmap.
2909                                  */
2910                                 vsetflags(vp, VOBJDIRTY);
2911                         }
2912                 }
2913         }
2914 }
2915
2916 #include "opt_ddb.h"
2917 #ifdef DDB
2918 #include <sys/kernel.h>
2919
2920 #include <sys/cons.h>
2921
2922 #include <ddb/ddb.h>
2923
2924 static int      _vm_object_in_map (vm_map_t map, vm_object_t object,
2925                                        vm_map_entry_t entry);
2926 static int      vm_object_in_map (vm_object_t object);
2927
2928 /*
2929  * The caller must hold the object.
2930  */
2931 static int
2932 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
2933 {
2934         vm_map_t tmpm;
2935         vm_map_entry_t tmpe;
2936         vm_object_t obj, nobj;
2937         int entcount;
2938
2939         if (map == 0)
2940                 return 0;
2941         if (entry == 0) {
2942                 tmpe = map->header.next;
2943                 entcount = map->nentries;
2944                 while (entcount-- && (tmpe != &map->header)) {
2945                         if( _vm_object_in_map(map, object, tmpe)) {
2946                                 return 1;
2947                         }
2948                         tmpe = tmpe->next;
2949                 }
2950                 return (0);
2951         }
2952         switch(entry->maptype) {
2953         case VM_MAPTYPE_SUBMAP:
2954                 tmpm = entry->object.sub_map;
2955                 tmpe = tmpm->header.next;
2956                 entcount = tmpm->nentries;
2957                 while (entcount-- && tmpe != &tmpm->header) {
2958                         if( _vm_object_in_map(tmpm, object, tmpe)) {
2959                                 return 1;
2960                         }
2961                         tmpe = tmpe->next;
2962                 }
2963                 break;
2964         case VM_MAPTYPE_NORMAL:
2965         case VM_MAPTYPE_VPAGETABLE:
2966                 obj = entry->object.vm_object;
2967                 while (obj) {
2968                         if (obj == object) {
2969                                 if (obj != entry->object.vm_object)
2970                                         vm_object_drop(obj);
2971                                 return 1;
2972                         }
2973                         while ((nobj = obj->backing_object) != NULL) {
2974                                 vm_object_hold(nobj);
2975                                 if (nobj == obj->backing_object)
2976                                         break;
2977                                 vm_object_drop(nobj);
2978                         }
2979                         if (obj != entry->object.vm_object) {
2980                                 if (nobj)
2981                                         vm_object_lock_swap();
2982                                 vm_object_drop(obj);
2983                         }
2984                         obj = nobj;
2985                 }
2986                 break;
2987         default:
2988                 break;
2989         }
2990         return 0;
2991 }
2992
2993 static int vm_object_in_map_callback(struct proc *p, void *data);
2994
2995 struct vm_object_in_map_info {
2996         vm_object_t object;
2997         int rv;
2998 };
2999
3000 /*
3001  * Debugging only
3002  */
3003 static int
3004 vm_object_in_map(vm_object_t object)
3005 {
3006         struct vm_object_in_map_info info;
3007
3008         info.rv = 0;
3009         info.object = object;
3010
3011         allproc_scan(vm_object_in_map_callback, &info);
3012         if (info.rv)
3013                 return 1;
3014         if( _vm_object_in_map(&kernel_map, object, 0))
3015                 return 1;
3016         if( _vm_object_in_map(&pager_map, object, 0))
3017                 return 1;
3018         if( _vm_object_in_map(&buffer_map, object, 0))
3019                 return 1;
3020         return 0;
3021 }
3022
3023 /*
3024  * Debugging only
3025  */
3026 static int
3027 vm_object_in_map_callback(struct proc *p, void *data)
3028 {
3029         struct vm_object_in_map_info *info = data;
3030
3031         if (p->p_vmspace) {
3032                 if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
3033                         info->rv = 1;
3034                         return -1;
3035                 }
3036         }
3037         return (0);
3038 }
3039
3040 DB_SHOW_COMMAND(vmochk, vm_object_check)
3041 {
3042         vm_object_t object;
3043         int n;
3044
3045         /*
3046          * make sure that internal objs are in a map somewhere
3047          * and none have zero ref counts.
3048          */
3049         for (n = 0; n < VMOBJ_HSIZE; ++n) {
3050                 for (object = TAILQ_FIRST(&vm_object_lists[n]);
3051                                 object != NULL;
3052                                 object = TAILQ_NEXT(object, object_list)) {
3053                         if (object->type == OBJT_MARKER)
3054                                 continue;
3055                         if (object->handle != NULL ||
3056                             (object->type != OBJT_DEFAULT &&
3057                              object->type != OBJT_SWAP)) {
3058                                 continue;
3059                         }
3060                         if (object->ref_count == 0) {
3061                                 db_printf("vmochk: internal obj has "
3062                                           "zero ref count: %ld\n",
3063                                           (long)object->size);
3064                         }
3065                         if (vm_object_in_map(object))
3066                                 continue;
3067                         db_printf("vmochk: internal obj is not in a map: "
3068                                   "ref: %d, size: %lu: 0x%lx, "
3069                                   "backing_object: %p\n",
3070                                   object->ref_count, (u_long)object->size,
3071                                   (u_long)object->size,
3072                                   (void *)object->backing_object);
3073                 }
3074         }
3075 }
3076
3077 /*
3078  * Debugging only
3079  */
3080 DB_SHOW_COMMAND(object, vm_object_print_static)
3081 {
3082         /* XXX convert args. */
3083         vm_object_t object = (vm_object_t)addr;
3084         boolean_t full = have_addr;
3085
3086         vm_page_t p;
3087
3088         /* XXX count is an (unused) arg.  Avoid shadowing it. */
3089 #define count   was_count
3090
3091         int count;
3092
3093         if (object == NULL)
3094                 return;
3095
3096         db_iprintf(
3097             "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
3098             object, (int)object->type, (u_long)object->size,
3099             object->resident_page_count, object->ref_count, object->flags);
3100         /*
3101          * XXX no %qd in kernel.  Truncate object->backing_object_offset.
3102          */
3103         db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
3104             object->shadow_count, 
3105             object->backing_object ? object->backing_object->ref_count : 0,
3106             object->backing_object, (long)object->backing_object_offset);
3107
3108         if (!full)
3109                 return;
3110
3111         db_indent += 2;
3112         count = 0;
3113         RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
3114                 if (count == 0)
3115                         db_iprintf("memory:=");
3116                 else if (count == 6) {
3117                         db_printf("\n");
3118                         db_iprintf(" ...");
3119                         count = 0;
3120                 } else
3121                         db_printf(",");
3122                 count++;
3123
3124                 db_printf("(off=0x%lx,page=0x%lx)",
3125                     (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
3126         }
3127         if (count != 0)
3128                 db_printf("\n");
3129         db_indent -= 2;
3130 }
3131
3132 /* XXX. */
3133 #undef count
3134
3135 /*
3136  * XXX need this non-static entry for calling from vm_map_print.
3137  *
3138  * Debugging only
3139  */
3140 void
3141 vm_object_print(/* db_expr_t */ long addr,
3142                 boolean_t have_addr,
3143                 /* db_expr_t */ long count,
3144                 char *modif)
3145 {
3146         vm_object_print_static(addr, have_addr, count, modif);
3147 }
3148
3149 /*
3150  * Debugging only
3151  */
3152 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
3153 {
3154         vm_object_t object;
3155         int nl = 0;
3156         int c;
3157         int n;
3158
3159         for (n = 0; n < VMOBJ_HSIZE; ++n) {
3160                 for (object = TAILQ_FIRST(&vm_object_lists[n]);
3161                                 object != NULL;
3162                                 object = TAILQ_NEXT(object, object_list)) {
3163                         vm_pindex_t idx, fidx;
3164                         vm_pindex_t osize;
3165                         vm_paddr_t pa = -1, padiff;
3166                         int rcount;
3167                         vm_page_t m;
3168
3169                         if (object->type == OBJT_MARKER)
3170                                 continue;
3171                         db_printf("new object: %p\n", (void *)object);
3172                         if ( nl > 18) {
3173                                 c = cngetc();
3174                                 if (c != ' ')
3175                                         return;
3176                                 nl = 0;
3177                         }
3178                         nl++;
3179                         rcount = 0;
3180                         fidx = 0;
3181                         osize = object->size;
3182                         if (osize > 128)
3183                                 osize = 128;
3184                         for (idx = 0; idx < osize; idx++) {
3185                                 m = vm_page_lookup(object, idx);
3186                                 if (m == NULL) {
3187                                         if (rcount) {
3188                                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
3189                                                         (long)fidx, rcount, (long)pa);
3190                                                 if ( nl > 18) {
3191                                                         c = cngetc();
3192                                                         if (c != ' ')
3193                                                                 return;
3194                                                         nl = 0;
3195                                                 }
3196                                                 nl++;
3197                                                 rcount = 0;
3198                                         }
3199                                         continue;
3200                                 }
3201
3202                                 if (rcount &&
3203                                         (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
3204                                         ++rcount;
3205                                         continue;
3206                                 }
3207                                 if (rcount) {
3208                                         padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
3209                                         padiff >>= PAGE_SHIFT;
3210                                         padiff &= PQ_L2_MASK;
3211                                         if (padiff == 0) {
3212                                                 pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
3213                                                 ++rcount;
3214                                                 continue;
3215                                         }
3216                                         db_printf(" index(%ld)run(%d)pa(0x%lx)",
3217                                                 (long)fidx, rcount, (long)pa);
3218                                         db_printf("pd(%ld)\n", (long)padiff);
3219                                         if ( nl > 18) {
3220                                                 c = cngetc();
3221                                                 if (c != ' ')
3222                                                         return;
3223                                                 nl = 0;
3224                                         }
3225                                         nl++;
3226                                 }
3227                                 fidx = idx;
3228                                 pa = VM_PAGE_TO_PHYS(m);
3229                                 rcount = 1;
3230                         }
3231                         if (rcount) {
3232                                 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
3233                                         (long)fidx, rcount, (long)pa);
3234                                 if ( nl > 18) {
3235                                         c = cngetc();
3236                                         if (c != ' ')
3237                                                 return;
3238                                         nl = 0;
3239                                 }
3240                                 nl++;
3241                         }
3242                 }
3243         }
3244 }
3245 #endif /* DDB */