drm/i915: properly reenable gen8 pipe IRQs
[dragonfly.git] / sys / dev / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include "i915_drv.h"
29 #include "intel_drv.h"
30 #include <linux/module.h>
31 #include <machine/clock.h>
32 #include <drm/i915_powerwell.h>
33
34 /**
35  * RC6 is a special power stage which allows the GPU to enter an very
36  * low-voltage mode when idle, using down to 0V while at this stage.  This
37  * stage is entered automatically when the GPU is idle when RC6 support is
38  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
39  *
40  * There are different RC6 modes available in Intel GPU, which differentiate
41  * among each other with the latency required to enter and leave RC6 and
42  * voltage consumed by the GPU in different states.
43  *
44  * The combination of the following flags define which states GPU is allowed
45  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
46  * RC6pp is deepest RC6. Their support by hardware varies according to the
47  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
48  * which brings the most power savings; deeper states save more power, but
49  * require higher latency to switch to and wake up.
50  */
51 #define INTEL_RC6_ENABLE                        (1<<0)
52 #define INTEL_RC6p_ENABLE                       (1<<1)
53 #define INTEL_RC6pp_ENABLE                      (1<<2)
54
55 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
56  * framebuffer contents in-memory, aiming at reducing the required bandwidth
57  * during in-memory transfers and, therefore, reduce the power packet.
58  *
59  * The benefits of FBC are mostly visible with solid backgrounds and
60  * variation-less patterns.
61  *
62  * FBC-related functionality can be enabled by the means of the
63  * i915.i915_enable_fbc parameter
64  */
65
66 static void i8xx_disable_fbc(struct drm_device *dev)
67 {
68         struct drm_i915_private *dev_priv = dev->dev_private;
69         u32 fbc_ctl;
70
71         /* Disable compression */
72         fbc_ctl = I915_READ(FBC_CONTROL);
73         if ((fbc_ctl & FBC_CTL_EN) == 0)
74                 return;
75
76         fbc_ctl &= ~FBC_CTL_EN;
77         I915_WRITE(FBC_CONTROL, fbc_ctl);
78
79         /* Wait for compressing bit to clear */
80         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
81                 DRM_DEBUG_KMS("FBC idle timed out\n");
82                 return;
83         }
84
85         DRM_DEBUG_KMS("disabled FBC\n");
86 }
87
88 static void i8xx_enable_fbc(struct drm_crtc *crtc)
89 {
90         struct drm_device *dev = crtc->dev;
91         struct drm_i915_private *dev_priv = dev->dev_private;
92         struct drm_framebuffer *fb = crtc->primary->fb;
93         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
94         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
95         int cfb_pitch;
96         int i;
97         u32 fbc_ctl;
98
99         cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
100         if (fb->pitches[0] < cfb_pitch)
101                 cfb_pitch = fb->pitches[0];
102
103         /* FBC_CTL wants 32B or 64B units */
104         if (IS_GEN2(dev))
105                 cfb_pitch = (cfb_pitch / 32) - 1;
106         else
107                 cfb_pitch = (cfb_pitch / 64) - 1;
108
109         /* Clear old tags */
110         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
111                 I915_WRITE(FBC_TAG + (i * 4), 0);
112
113         if (IS_GEN4(dev)) {
114                 u32 fbc_ctl2;
115
116                 /* Set it up... */
117                 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
118                 fbc_ctl2 |= FBC_CTL_PLANE(intel_crtc->plane);
119                 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
120                 I915_WRITE(FBC_FENCE_OFF, crtc->y);
121         }
122
123         /* enable it... */
124         fbc_ctl = I915_READ(FBC_CONTROL);
125         fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
126         fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
127         if (IS_I945GM(dev))
128                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
129         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
130         fbc_ctl |= obj->fence_reg;
131         I915_WRITE(FBC_CONTROL, fbc_ctl);
132
133         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c\n",
134                       cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
135 }
136
137 static bool i8xx_fbc_enabled(struct drm_device *dev)
138 {
139         struct drm_i915_private *dev_priv = dev->dev_private;
140
141         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
142 }
143
144 static void g4x_enable_fbc(struct drm_crtc *crtc)
145 {
146         struct drm_device *dev = crtc->dev;
147         struct drm_i915_private *dev_priv = dev->dev_private;
148         struct drm_framebuffer *fb = crtc->primary->fb;
149         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
150         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
151         u32 dpfc_ctl;
152
153         dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane) | DPFC_SR_EN;
154         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
155                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
156         else
157                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
158         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
159
160         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
161
162         /* enable it... */
163         I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
164
165         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
166 }
167
168 static void g4x_disable_fbc(struct drm_device *dev)
169 {
170         struct drm_i915_private *dev_priv = dev->dev_private;
171         u32 dpfc_ctl;
172
173         /* Disable compression */
174         dpfc_ctl = I915_READ(DPFC_CONTROL);
175         if (dpfc_ctl & DPFC_CTL_EN) {
176                 dpfc_ctl &= ~DPFC_CTL_EN;
177                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
178
179                 DRM_DEBUG_KMS("disabled FBC\n");
180         }
181 }
182
183 static bool g4x_fbc_enabled(struct drm_device *dev)
184 {
185         struct drm_i915_private *dev_priv = dev->dev_private;
186
187         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
188 }
189
190 static void sandybridge_blit_fbc_update(struct drm_device *dev)
191 {
192         struct drm_i915_private *dev_priv = dev->dev_private;
193         u32 blt_ecoskpd;
194
195         /* Make sure blitter notifies FBC of writes */
196
197         /* Blitter is part of Media powerwell on VLV. No impact of
198          * his param in other platforms for now */
199         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_MEDIA);
200
201         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
202         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
203                 GEN6_BLITTER_LOCK_SHIFT;
204         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
205         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
206         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
207         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
208                          GEN6_BLITTER_LOCK_SHIFT);
209         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
210         POSTING_READ(GEN6_BLITTER_ECOSKPD);
211
212         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_MEDIA);
213 }
214
215 static void ironlake_enable_fbc(struct drm_crtc *crtc)
216 {
217         struct drm_device *dev = crtc->dev;
218         struct drm_i915_private *dev_priv = dev->dev_private;
219         struct drm_framebuffer *fb = crtc->primary->fb;
220         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
221         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
222         u32 dpfc_ctl;
223
224         dpfc_ctl = DPFC_CTL_PLANE(intel_crtc->plane);
225         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
226                 dev_priv->fbc.threshold++;
227
228         switch (dev_priv->fbc.threshold) {
229         case 4:
230         case 3:
231                 dpfc_ctl |= DPFC_CTL_LIMIT_4X;
232                 break;
233         case 2:
234                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
235                 break;
236         case 1:
237                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
238                 break;
239         }
240         dpfc_ctl |= DPFC_CTL_FENCE_EN;
241         if (IS_GEN5(dev))
242                 dpfc_ctl |= obj->fence_reg;
243
244         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
245         I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
246         /* enable it... */
247         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
248
249         if (IS_GEN6(dev)) {
250                 I915_WRITE(SNB_DPFC_CTL_SA,
251                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
252                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
253                 sandybridge_blit_fbc_update(dev);
254         }
255
256         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
257 }
258
259 static void ironlake_disable_fbc(struct drm_device *dev)
260 {
261         struct drm_i915_private *dev_priv = dev->dev_private;
262         u32 dpfc_ctl;
263
264         /* Disable compression */
265         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
266         if (dpfc_ctl & DPFC_CTL_EN) {
267                 dpfc_ctl &= ~DPFC_CTL_EN;
268                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
269
270                 DRM_DEBUG_KMS("disabled FBC\n");
271         }
272 }
273
274 static bool ironlake_fbc_enabled(struct drm_device *dev)
275 {
276         struct drm_i915_private *dev_priv = dev->dev_private;
277
278         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
279 }
280
281 static void gen7_enable_fbc(struct drm_crtc *crtc)
282 {
283         struct drm_device *dev = crtc->dev;
284         struct drm_i915_private *dev_priv = dev->dev_private;
285         struct drm_framebuffer *fb = crtc->primary->fb;
286         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
287         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
288         u32 dpfc_ctl;
289
290         dpfc_ctl = IVB_DPFC_CTL_PLANE(intel_crtc->plane);
291         if (drm_format_plane_cpp(fb->pixel_format, 0) == 2)
292                 dev_priv->fbc.threshold++;
293
294         switch (dev_priv->fbc.threshold) {
295         case 4:
296         case 3:
297                 dpfc_ctl |= DPFC_CTL_LIMIT_4X;
298                 break;
299         case 2:
300                 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
301                 break;
302         case 1:
303                 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
304                 break;
305         }
306
307         dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
308
309         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
310
311         if (IS_IVYBRIDGE(dev)) {
312                 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
313                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
314                            I915_READ(ILK_DISPLAY_CHICKEN1) |
315                            ILK_FBCQ_DIS);
316         } else {
317                 /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
318                 I915_WRITE(CHICKEN_PIPESL_1(intel_crtc->pipe),
319                            I915_READ(CHICKEN_PIPESL_1(intel_crtc->pipe)) |
320                            HSW_FBCQ_DIS);
321         }
322
323         I915_WRITE(SNB_DPFC_CTL_SA,
324                    SNB_CPU_FENCE_ENABLE | obj->fence_reg);
325         I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
326
327         sandybridge_blit_fbc_update(dev);
328
329         DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
330 }
331
332 bool intel_fbc_enabled(struct drm_device *dev)
333 {
334         struct drm_i915_private *dev_priv = dev->dev_private;
335
336         if (!dev_priv->display.fbc_enabled)
337                 return false;
338
339         return dev_priv->display.fbc_enabled(dev);
340 }
341
342 static void intel_fbc_work_fn(struct work_struct *__work)
343 {
344         struct intel_fbc_work *work =
345                 container_of(to_delayed_work(__work),
346                              struct intel_fbc_work, work);
347         struct drm_device *dev = work->crtc->dev;
348         struct drm_i915_private *dev_priv = dev->dev_private;
349
350         mutex_lock(&dev->struct_mutex);
351         if (work == dev_priv->fbc.fbc_work) {
352                 /* Double check that we haven't switched fb without cancelling
353                  * the prior work.
354                  */
355                 if (work->crtc->primary->fb == work->fb) {
356                         dev_priv->display.enable_fbc(work->crtc);
357
358                         dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
359                         dev_priv->fbc.fb_id = work->crtc->primary->fb->base.id;
360                         dev_priv->fbc.y = work->crtc->y;
361                 }
362
363                 dev_priv->fbc.fbc_work = NULL;
364         }
365         mutex_unlock(&dev->struct_mutex);
366
367         kfree(work);
368 }
369
370 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
371 {
372         if (dev_priv->fbc.fbc_work == NULL)
373                 return;
374
375         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
376
377         /* Synchronisation is provided by struct_mutex and checking of
378          * dev_priv->fbc.fbc_work, so we can perform the cancellation
379          * entirely asynchronously.
380          */
381         if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
382                 /* tasklet was killed before being run, clean up */
383                 kfree(dev_priv->fbc.fbc_work);
384
385         /* Mark the work as no longer wanted so that if it does
386          * wake-up (because the work was already running and waiting
387          * for our mutex), it will discover that is no longer
388          * necessary to run.
389          */
390         dev_priv->fbc.fbc_work = NULL;
391 }
392
393 static void intel_enable_fbc(struct drm_crtc *crtc)
394 {
395         struct intel_fbc_work *work;
396         struct drm_device *dev = crtc->dev;
397         struct drm_i915_private *dev_priv = dev->dev_private;
398
399         if (!dev_priv->display.enable_fbc)
400                 return;
401
402         intel_cancel_fbc_work(dev_priv);
403
404         work = kzalloc(sizeof(*work), GFP_KERNEL);
405         if (work == NULL) {
406                 DRM_ERROR("Failed to allocate FBC work structure\n");
407                 dev_priv->display.enable_fbc(crtc);
408                 return;
409         }
410
411         work->crtc = crtc;
412         work->fb = crtc->primary->fb;
413         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
414
415         dev_priv->fbc.fbc_work = work;
416
417         /* Delay the actual enabling to let pageflipping cease and the
418          * display to settle before starting the compression. Note that
419          * this delay also serves a second purpose: it allows for a
420          * vblank to pass after disabling the FBC before we attempt
421          * to modify the control registers.
422          *
423          * A more complicated solution would involve tracking vblanks
424          * following the termination of the page-flipping sequence
425          * and indeed performing the enable as a co-routine and not
426          * waiting synchronously upon the vblank.
427          *
428          * WaFbcWaitForVBlankBeforeEnable:ilk,snb
429          */
430         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
431 }
432
433 void intel_disable_fbc(struct drm_device *dev)
434 {
435         struct drm_i915_private *dev_priv = dev->dev_private;
436
437         intel_cancel_fbc_work(dev_priv);
438
439         if (!dev_priv->display.disable_fbc)
440                 return;
441
442         dev_priv->display.disable_fbc(dev);
443         dev_priv->fbc.plane = -1;
444 }
445
446 static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
447                               enum no_fbc_reason reason)
448 {
449         if (dev_priv->fbc.no_fbc_reason == reason)
450                 return false;
451
452         dev_priv->fbc.no_fbc_reason = reason;
453         return true;
454 }
455
456 /**
457  * intel_update_fbc - enable/disable FBC as needed
458  * @dev: the drm_device
459  *
460  * Set up the framebuffer compression hardware at mode set time.  We
461  * enable it if possible:
462  *   - plane A only (on pre-965)
463  *   - no pixel mulitply/line duplication
464  *   - no alpha buffer discard
465  *   - no dual wide
466  *   - framebuffer <= max_hdisplay in width, max_vdisplay in height
467  *
468  * We can't assume that any compression will take place (worst case),
469  * so the compressed buffer has to be the same size as the uncompressed
470  * one.  It also must reside (along with the line length buffer) in
471  * stolen memory.
472  *
473  * We need to enable/disable FBC on a global basis.
474  */
475 void intel_update_fbc(struct drm_device *dev)
476 {
477         struct drm_i915_private *dev_priv = dev->dev_private;
478         struct drm_crtc *crtc = NULL, *tmp_crtc;
479         struct intel_crtc *intel_crtc;
480         struct drm_framebuffer *fb;
481         struct drm_i915_gem_object *obj;
482         const struct drm_display_mode *adjusted_mode;
483         unsigned int max_width, max_height;
484
485         if (!HAS_FBC(dev)) {
486                 set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
487                 return;
488         }
489
490         if (!i915.powersave) {
491                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
492                         DRM_DEBUG_KMS("fbc disabled per module param\n");
493                 return;
494         }
495
496         /*
497          * If FBC is already on, we just have to verify that we can
498          * keep it that way...
499          * Need to disable if:
500          *   - more than one pipe is active
501          *   - changing FBC params (stride, fence, mode)
502          *   - new fb is too large to fit in compressed buffer
503          *   - going to an unsupported config (interlace, pixel multiply, etc.)
504          */
505         for_each_crtc(dev, tmp_crtc) {
506                 if (intel_crtc_active(tmp_crtc) &&
507                     to_intel_crtc(tmp_crtc)->primary_enabled) {
508                         if (crtc) {
509                                 if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
510                                         DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
511                                 goto out_disable;
512                         }
513                         crtc = tmp_crtc;
514                 }
515         }
516
517         if (!crtc || crtc->primary->fb == NULL) {
518                 if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
519                         DRM_DEBUG_KMS("no output, disabling\n");
520                 goto out_disable;
521         }
522
523         intel_crtc = to_intel_crtc(crtc);
524         fb = crtc->primary->fb;
525         obj = intel_fb_obj(fb);
526         adjusted_mode = &intel_crtc->config.adjusted_mode;
527
528         if (i915.enable_fbc < 0) {
529                 if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
530                         DRM_DEBUG_KMS("disabled per chip default\n");
531                 goto out_disable;
532         }
533         if (!i915.enable_fbc) {
534                 if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
535                         DRM_DEBUG_KMS("fbc disabled per module param\n");
536                 goto out_disable;
537         }
538         if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
539             (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
540                 if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
541                         DRM_DEBUG_KMS("mode incompatible with compression, "
542                                       "disabling\n");
543                 goto out_disable;
544         }
545
546         if (INTEL_INFO(dev)->gen >= 8 || IS_HASWELL(dev)) {
547                 max_width = 4096;
548                 max_height = 4096;
549         } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
550                 max_width = 4096;
551                 max_height = 2048;
552         } else {
553                 max_width = 2048;
554                 max_height = 1536;
555         }
556         if (intel_crtc->config.pipe_src_w > max_width ||
557             intel_crtc->config.pipe_src_h > max_height) {
558                 if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
559                         DRM_DEBUG_KMS("mode too large for compression, disabling\n");
560                 goto out_disable;
561         }
562         if ((INTEL_INFO(dev)->gen < 4 || HAS_DDI(dev)) &&
563             intel_crtc->plane != PLANE_A) {
564                 if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
565                         DRM_DEBUG_KMS("plane not A, disabling compression\n");
566                 goto out_disable;
567         }
568
569         /* The use of a CPU fence is mandatory in order to detect writes
570          * by the CPU to the scanout and trigger updates to the FBC.
571          */
572         if (obj->tiling_mode != I915_TILING_X ||
573             obj->fence_reg == I915_FENCE_REG_NONE) {
574                 if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
575                         DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
576                 goto out_disable;
577         }
578
579         /* If the kernel debugger is active, always disable compression */
580 #ifdef DDB
581         if (in_dbg_master())
582                 goto out_disable;
583 #endif
584
585         if (i915_gem_stolen_setup_compression(dev, obj->base.size,
586                                               drm_format_plane_cpp(fb->pixel_format, 0))) {
587                 if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
588                         DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
589                 goto out_disable;
590         }
591
592         /* If the scanout has not changed, don't modify the FBC settings.
593          * Note that we make the fundamental assumption that the fb->obj
594          * cannot be unpinned (and have its GTT offset and fence revoked)
595          * without first being decoupled from the scanout and FBC disabled.
596          */
597         if (dev_priv->fbc.plane == intel_crtc->plane &&
598             dev_priv->fbc.fb_id == fb->base.id &&
599             dev_priv->fbc.y == crtc->y)
600                 return;
601
602         if (intel_fbc_enabled(dev)) {
603                 /* We update FBC along two paths, after changing fb/crtc
604                  * configuration (modeswitching) and after page-flipping
605                  * finishes. For the latter, we know that not only did
606                  * we disable the FBC at the start of the page-flip
607                  * sequence, but also more than one vblank has passed.
608                  *
609                  * For the former case of modeswitching, it is possible
610                  * to switch between two FBC valid configurations
611                  * instantaneously so we do need to disable the FBC
612                  * before we can modify its control registers. We also
613                  * have to wait for the next vblank for that to take
614                  * effect. However, since we delay enabling FBC we can
615                  * assume that a vblank has passed since disabling and
616                  * that we can safely alter the registers in the deferred
617                  * callback.
618                  *
619                  * In the scenario that we go from a valid to invalid
620                  * and then back to valid FBC configuration we have
621                  * no strict enforcement that a vblank occurred since
622                  * disabling the FBC. However, along all current pipe
623                  * disabling paths we do need to wait for a vblank at
624                  * some point. And we wait before enabling FBC anyway.
625                  */
626                 DRM_DEBUG_KMS("disabling active FBC for update\n");
627                 intel_disable_fbc(dev);
628         }
629
630         intel_enable_fbc(crtc);
631         dev_priv->fbc.no_fbc_reason = FBC_OK;
632         return;
633
634 out_disable:
635         /* Multiple disables should be harmless */
636         if (intel_fbc_enabled(dev)) {
637                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
638                 intel_disable_fbc(dev);
639         }
640         i915_gem_stolen_cleanup_compression(dev);
641 }
642
643 static void i915_pineview_get_mem_freq(struct drm_device *dev)
644 {
645         struct drm_i915_private *dev_priv = dev->dev_private;
646         u32 tmp;
647
648         tmp = I915_READ(CLKCFG);
649
650         switch (tmp & CLKCFG_FSB_MASK) {
651         case CLKCFG_FSB_533:
652                 dev_priv->fsb_freq = 533; /* 133*4 */
653                 break;
654         case CLKCFG_FSB_800:
655                 dev_priv->fsb_freq = 800; /* 200*4 */
656                 break;
657         case CLKCFG_FSB_667:
658                 dev_priv->fsb_freq =  667; /* 167*4 */
659                 break;
660         case CLKCFG_FSB_400:
661                 dev_priv->fsb_freq = 400; /* 100*4 */
662                 break;
663         }
664
665         switch (tmp & CLKCFG_MEM_MASK) {
666         case CLKCFG_MEM_533:
667                 dev_priv->mem_freq = 533;
668                 break;
669         case CLKCFG_MEM_667:
670                 dev_priv->mem_freq = 667;
671                 break;
672         case CLKCFG_MEM_800:
673                 dev_priv->mem_freq = 800;
674                 break;
675         }
676
677         /* detect pineview DDR3 setting */
678         tmp = I915_READ(CSHRDDR3CTL);
679         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
680 }
681
682 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
683 {
684         struct drm_i915_private *dev_priv = dev->dev_private;
685         u16 ddrpll, csipll;
686
687         ddrpll = I915_READ16(DDRMPLL1);
688         csipll = I915_READ16(CSIPLL0);
689
690         switch (ddrpll & 0xff) {
691         case 0xc:
692                 dev_priv->mem_freq = 800;
693                 break;
694         case 0x10:
695                 dev_priv->mem_freq = 1066;
696                 break;
697         case 0x14:
698                 dev_priv->mem_freq = 1333;
699                 break;
700         case 0x18:
701                 dev_priv->mem_freq = 1600;
702                 break;
703         default:
704                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
705                                  ddrpll & 0xff);
706                 dev_priv->mem_freq = 0;
707                 break;
708         }
709
710         dev_priv->ips.r_t = dev_priv->mem_freq;
711
712         switch (csipll & 0x3ff) {
713         case 0x00c:
714                 dev_priv->fsb_freq = 3200;
715                 break;
716         case 0x00e:
717                 dev_priv->fsb_freq = 3733;
718                 break;
719         case 0x010:
720                 dev_priv->fsb_freq = 4266;
721                 break;
722         case 0x012:
723                 dev_priv->fsb_freq = 4800;
724                 break;
725         case 0x014:
726                 dev_priv->fsb_freq = 5333;
727                 break;
728         case 0x016:
729                 dev_priv->fsb_freq = 5866;
730                 break;
731         case 0x018:
732                 dev_priv->fsb_freq = 6400;
733                 break;
734         default:
735                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
736                                  csipll & 0x3ff);
737                 dev_priv->fsb_freq = 0;
738                 break;
739         }
740
741         if (dev_priv->fsb_freq == 3200) {
742                 dev_priv->ips.c_m = 0;
743         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
744                 dev_priv->ips.c_m = 1;
745         } else {
746                 dev_priv->ips.c_m = 2;
747         }
748 }
749
750 static const struct cxsr_latency cxsr_latency_table[] = {
751         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
752         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
753         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
754         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
755         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
756
757         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
758         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
759         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
760         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
761         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
762
763         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
764         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
765         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
766         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
767         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
768
769         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
770         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
771         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
772         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
773         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
774
775         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
776         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
777         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
778         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
779         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
780
781         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
782         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
783         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
784         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
785         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
786 };
787
788 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
789                                                          int is_ddr3,
790                                                          int fsb,
791                                                          int mem)
792 {
793         const struct cxsr_latency *latency;
794         int i;
795
796         if (fsb == 0 || mem == 0)
797                 return NULL;
798
799         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
800                 latency = &cxsr_latency_table[i];
801                 if (is_desktop == latency->is_desktop &&
802                     is_ddr3 == latency->is_ddr3 &&
803                     fsb == latency->fsb_freq && mem == latency->mem_freq)
804                         return latency;
805         }
806
807         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
808
809         return NULL;
810 }
811
812 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
813 {
814         struct drm_device *dev = dev_priv->dev;
815         u32 val;
816
817         if (IS_VALLEYVIEW(dev)) {
818                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
819         } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
820                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
821         } else if (IS_PINEVIEW(dev)) {
822                 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
823                 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
824                 I915_WRITE(DSPFW3, val);
825         } else if (IS_I945G(dev) || IS_I945GM(dev)) {
826                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
827                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
828                 I915_WRITE(FW_BLC_SELF, val);
829         } else if (IS_I915GM(dev)) {
830                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
831                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
832                 I915_WRITE(INSTPM, val);
833         } else {
834                 return;
835         }
836
837         DRM_DEBUG_KMS("memory self-refresh is %s\n",
838                       enable ? "enabled" : "disabled");
839 }
840
841 /*
842  * Latency for FIFO fetches is dependent on several factors:
843  *   - memory configuration (speed, channels)
844  *   - chipset
845  *   - current MCH state
846  * It can be fairly high in some situations, so here we assume a fairly
847  * pessimal value.  It's a tradeoff between extra memory fetches (if we
848  * set this value too high, the FIFO will fetch frequently to stay full)
849  * and power consumption (set it too low to save power and we might see
850  * FIFO underruns and display "flicker").
851  *
852  * A value of 5us seems to be a good balance; safe for very low end
853  * platforms but not overly aggressive on lower latency configs.
854  */
855 static const int latency_ns = 5000;
856
857 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
858 {
859         struct drm_i915_private *dev_priv = dev->dev_private;
860         uint32_t dsparb = I915_READ(DSPARB);
861         int size;
862
863         size = dsparb & 0x7f;
864         if (plane)
865                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
866
867         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
868                       plane ? "B" : "A", size);
869
870         return size;
871 }
872
873 static int i830_get_fifo_size(struct drm_device *dev, int plane)
874 {
875         struct drm_i915_private *dev_priv = dev->dev_private;
876         uint32_t dsparb = I915_READ(DSPARB);
877         int size;
878
879         size = dsparb & 0x1ff;
880         if (plane)
881                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
882         size >>= 1; /* Convert to cachelines */
883
884         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
885                       plane ? "B" : "A", size);
886
887         return size;
888 }
889
890 static int i845_get_fifo_size(struct drm_device *dev, int plane)
891 {
892         struct drm_i915_private *dev_priv = dev->dev_private;
893         uint32_t dsparb = I915_READ(DSPARB);
894         int size;
895
896         size = dsparb & 0x7f;
897         size >>= 2; /* Convert to cachelines */
898
899         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
900                       plane ? "B" : "A",
901                       size);
902
903         return size;
904 }
905
906 /* Pineview has different values for various configs */
907 static const struct intel_watermark_params pineview_display_wm = {
908         .fifo_size = PINEVIEW_DISPLAY_FIFO,
909         .max_wm = PINEVIEW_MAX_WM,
910         .default_wm = PINEVIEW_DFT_WM,
911         .guard_size = PINEVIEW_GUARD_WM,
912         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
913 };
914 static const struct intel_watermark_params pineview_display_hplloff_wm = {
915         .fifo_size = PINEVIEW_DISPLAY_FIFO,
916         .max_wm = PINEVIEW_MAX_WM,
917         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
918         .guard_size = PINEVIEW_GUARD_WM,
919         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
920 };
921 static const struct intel_watermark_params pineview_cursor_wm = {
922         .fifo_size = PINEVIEW_CURSOR_FIFO,
923         .max_wm = PINEVIEW_CURSOR_MAX_WM,
924         .default_wm = PINEVIEW_CURSOR_DFT_WM,
925         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
926         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
927 };
928 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
929         .fifo_size = PINEVIEW_CURSOR_FIFO,
930         .max_wm = PINEVIEW_CURSOR_MAX_WM,
931         .default_wm = PINEVIEW_CURSOR_DFT_WM,
932         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
933         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
934 };
935 static const struct intel_watermark_params g4x_wm_info = {
936         .fifo_size = G4X_FIFO_SIZE,
937         .max_wm = G4X_MAX_WM,
938         .default_wm = G4X_MAX_WM,
939         .guard_size = 2,
940         .cacheline_size = G4X_FIFO_LINE_SIZE,
941 };
942 static const struct intel_watermark_params g4x_cursor_wm_info = {
943         .fifo_size = I965_CURSOR_FIFO,
944         .max_wm = I965_CURSOR_MAX_WM,
945         .default_wm = I965_CURSOR_DFT_WM,
946         .guard_size = 2,
947         .cacheline_size = G4X_FIFO_LINE_SIZE,
948 };
949 static const struct intel_watermark_params valleyview_wm_info = {
950         .fifo_size = VALLEYVIEW_FIFO_SIZE,
951         .max_wm = VALLEYVIEW_MAX_WM,
952         .default_wm = VALLEYVIEW_MAX_WM,
953         .guard_size = 2,
954         .cacheline_size = G4X_FIFO_LINE_SIZE,
955 };
956 static const struct intel_watermark_params valleyview_cursor_wm_info = {
957         .fifo_size = I965_CURSOR_FIFO,
958         .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
959         .default_wm = I965_CURSOR_DFT_WM,
960         .guard_size = 2,
961         .cacheline_size = G4X_FIFO_LINE_SIZE,
962 };
963 static const struct intel_watermark_params i965_cursor_wm_info = {
964         .fifo_size = I965_CURSOR_FIFO,
965         .max_wm = I965_CURSOR_MAX_WM,
966         .default_wm = I965_CURSOR_DFT_WM,
967         .guard_size = 2,
968         .cacheline_size = I915_FIFO_LINE_SIZE,
969 };
970 static const struct intel_watermark_params i945_wm_info = {
971         .fifo_size = I945_FIFO_SIZE,
972         .max_wm = I915_MAX_WM,
973         .default_wm = 1,
974         .guard_size = 2,
975         .cacheline_size = I915_FIFO_LINE_SIZE,
976 };
977 static const struct intel_watermark_params i915_wm_info = {
978         .fifo_size = I915_FIFO_SIZE,
979         .max_wm = I915_MAX_WM,
980         .default_wm = 1,
981         .guard_size = 2,
982         .cacheline_size = I915_FIFO_LINE_SIZE,
983 };
984 static const struct intel_watermark_params i830_wm_info = {
985         .fifo_size = I855GM_FIFO_SIZE,
986         .max_wm = I915_MAX_WM,
987         .default_wm = 1,
988         .guard_size = 2,
989         .cacheline_size = I830_FIFO_LINE_SIZE,
990 };
991 static const struct intel_watermark_params i845_wm_info = {
992         .fifo_size = I830_FIFO_SIZE,
993         .max_wm = I915_MAX_WM,
994         .default_wm = 1,
995         .guard_size = 2,
996         .cacheline_size = I830_FIFO_LINE_SIZE,
997 };
998
999 /**
1000  * intel_calculate_wm - calculate watermark level
1001  * @clock_in_khz: pixel clock
1002  * @wm: chip FIFO params
1003  * @pixel_size: display pixel size
1004  * @latency_ns: memory latency for the platform
1005  *
1006  * Calculate the watermark level (the level at which the display plane will
1007  * start fetching from memory again).  Each chip has a different display
1008  * FIFO size and allocation, so the caller needs to figure that out and pass
1009  * in the correct intel_watermark_params structure.
1010  *
1011  * As the pixel clock runs, the FIFO will be drained at a rate that depends
1012  * on the pixel size.  When it reaches the watermark level, it'll start
1013  * fetching FIFO line sized based chunks from memory until the FIFO fills
1014  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
1015  * will occur, and a display engine hang could result.
1016  */
1017 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
1018                                         const struct intel_watermark_params *wm,
1019                                         int fifo_size,
1020                                         int pixel_size,
1021                                         unsigned long latency_ns)
1022 {
1023         long entries_required, wm_size;
1024
1025         /*
1026          * Note: we need to make sure we don't overflow for various clock &
1027          * latency values.
1028          * clocks go from a few thousand to several hundred thousand.
1029          * latency is usually a few thousand
1030          */
1031         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1032                 1000;
1033         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
1034
1035         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
1036
1037         wm_size = fifo_size - (entries_required + wm->guard_size);
1038
1039         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
1040
1041         /* Don't promote wm_size to unsigned... */
1042         if (wm_size > (long)wm->max_wm)
1043                 wm_size = wm->max_wm;
1044         if (wm_size <= 0)
1045                 wm_size = wm->default_wm;
1046         return wm_size;
1047 }
1048
1049 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1050 {
1051         struct drm_crtc *crtc, *enabled = NULL;
1052
1053         for_each_crtc(dev, crtc) {
1054                 if (intel_crtc_active(crtc)) {
1055                         if (enabled)
1056                                 return NULL;
1057                         enabled = crtc;
1058                 }
1059         }
1060
1061         return enabled;
1062 }
1063
1064 static void pineview_update_wm(struct drm_crtc *unused_crtc)
1065 {
1066         struct drm_device *dev = unused_crtc->dev;
1067         struct drm_i915_private *dev_priv = dev->dev_private;
1068         struct drm_crtc *crtc;
1069         const struct cxsr_latency *latency;
1070         u32 reg;
1071         unsigned long wm;
1072
1073         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1074                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1075         if (!latency) {
1076                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1077                 intel_set_memory_cxsr(dev_priv, false);
1078                 return;
1079         }
1080
1081         crtc = single_enabled_crtc(dev);
1082         if (crtc) {
1083                 const struct drm_display_mode *adjusted_mode;
1084                 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1085                 int clock;
1086
1087                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1088                 clock = adjusted_mode->crtc_clock;
1089
1090                 /* Display SR */
1091                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1092                                         pineview_display_wm.fifo_size,
1093                                         pixel_size, latency->display_sr);
1094                 reg = I915_READ(DSPFW1);
1095                 reg &= ~DSPFW_SR_MASK;
1096                 reg |= wm << DSPFW_SR_SHIFT;
1097                 I915_WRITE(DSPFW1, reg);
1098                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1099
1100                 /* cursor SR */
1101                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1102                                         pineview_display_wm.fifo_size,
1103                                         pixel_size, latency->cursor_sr);
1104                 reg = I915_READ(DSPFW3);
1105                 reg &= ~DSPFW_CURSOR_SR_MASK;
1106                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1107                 I915_WRITE(DSPFW3, reg);
1108
1109                 /* Display HPLL off SR */
1110                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1111                                         pineview_display_hplloff_wm.fifo_size,
1112                                         pixel_size, latency->display_hpll_disable);
1113                 reg = I915_READ(DSPFW3);
1114                 reg &= ~DSPFW_HPLL_SR_MASK;
1115                 reg |= wm & DSPFW_HPLL_SR_MASK;
1116                 I915_WRITE(DSPFW3, reg);
1117
1118                 /* cursor HPLL off SR */
1119                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1120                                         pineview_display_hplloff_wm.fifo_size,
1121                                         pixel_size, latency->cursor_hpll_disable);
1122                 reg = I915_READ(DSPFW3);
1123                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1124                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1125                 I915_WRITE(DSPFW3, reg);
1126                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1127
1128                 intel_set_memory_cxsr(dev_priv, true);
1129         } else {
1130                 intel_set_memory_cxsr(dev_priv, false);
1131         }
1132 }
1133
1134 static bool g4x_compute_wm0(struct drm_device *dev,
1135                             int plane,
1136                             const struct intel_watermark_params *display,
1137                             int display_latency_ns,
1138                             const struct intel_watermark_params *cursor,
1139                             int cursor_latency_ns,
1140                             int *plane_wm,
1141                             int *cursor_wm)
1142 {
1143         struct drm_crtc *crtc;
1144         const struct drm_display_mode *adjusted_mode;
1145         int htotal, hdisplay, clock, pixel_size;
1146         int line_time_us, line_count;
1147         int entries, tlb_miss;
1148
1149         crtc = intel_get_crtc_for_plane(dev, plane);
1150         if (!intel_crtc_active(crtc)) {
1151                 *cursor_wm = cursor->guard_size;
1152                 *plane_wm = display->guard_size;
1153                 return false;
1154         }
1155
1156         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1157         clock = adjusted_mode->crtc_clock;
1158         htotal = adjusted_mode->crtc_htotal;
1159         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1160         pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1161
1162         /* Use the small buffer method to calculate plane watermark */
1163         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1164         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1165         if (tlb_miss > 0)
1166                 entries += tlb_miss;
1167         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1168         *plane_wm = entries + display->guard_size;
1169         if (*plane_wm > (int)display->max_wm)
1170                 *plane_wm = display->max_wm;
1171
1172         /* Use the large buffer method to calculate cursor watermark */
1173         line_time_us = max(htotal * 1000 / clock, 1);
1174         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1175         entries = line_count * to_intel_crtc(crtc)->cursor_width * pixel_size;
1176         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1177         if (tlb_miss > 0)
1178                 entries += tlb_miss;
1179         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1180         *cursor_wm = entries + cursor->guard_size;
1181         if (*cursor_wm > (int)cursor->max_wm)
1182                 *cursor_wm = (int)cursor->max_wm;
1183
1184         return true;
1185 }
1186
1187 /*
1188  * Check the wm result.
1189  *
1190  * If any calculated watermark values is larger than the maximum value that
1191  * can be programmed into the associated watermark register, that watermark
1192  * must be disabled.
1193  */
1194 static bool g4x_check_srwm(struct drm_device *dev,
1195                            int display_wm, int cursor_wm,
1196                            const struct intel_watermark_params *display,
1197                            const struct intel_watermark_params *cursor)
1198 {
1199         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1200                       display_wm, cursor_wm);
1201
1202         if (display_wm > display->max_wm) {
1203                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1204                               display_wm, display->max_wm);
1205                 return false;
1206         }
1207
1208         if (cursor_wm > cursor->max_wm) {
1209                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1210                               cursor_wm, cursor->max_wm);
1211                 return false;
1212         }
1213
1214         if (!(display_wm || cursor_wm)) {
1215                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1216                 return false;
1217         }
1218
1219         return true;
1220 }
1221
1222 static bool g4x_compute_srwm(struct drm_device *dev,
1223                              int plane,
1224                              int latency_ns,
1225                              const struct intel_watermark_params *display,
1226                              const struct intel_watermark_params *cursor,
1227                              int *display_wm, int *cursor_wm)
1228 {
1229         struct drm_crtc *crtc;
1230         const struct drm_display_mode *adjusted_mode;
1231         int hdisplay, htotal, pixel_size, clock;
1232         unsigned long line_time_us;
1233         int line_count, line_size;
1234         int small, large;
1235         int entries;
1236
1237         if (!latency_ns) {
1238                 *display_wm = *cursor_wm = 0;
1239                 return false;
1240         }
1241
1242         crtc = intel_get_crtc_for_plane(dev, plane);
1243         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1244         clock = adjusted_mode->crtc_clock;
1245         htotal = adjusted_mode->crtc_htotal;
1246         hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1247         pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1248
1249         line_time_us = max(htotal * 1000 / clock, 1);
1250         line_count = (latency_ns / line_time_us + 1000) / 1000;
1251         line_size = hdisplay * pixel_size;
1252
1253         /* Use the minimum of the small and large buffer method for primary */
1254         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1255         large = line_count * line_size;
1256
1257         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1258         *display_wm = entries + display->guard_size;
1259
1260         /* calculate the self-refresh watermark for display cursor */
1261         entries = line_count * pixel_size * to_intel_crtc(crtc)->cursor_width;
1262         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1263         *cursor_wm = entries + cursor->guard_size;
1264
1265         return g4x_check_srwm(dev,
1266                               *display_wm, *cursor_wm,
1267                               display, cursor);
1268 }
1269
1270 static bool vlv_compute_drain_latency(struct drm_device *dev,
1271                                      int plane,
1272                                      int *plane_prec_mult,
1273                                      int *plane_dl,
1274                                      int *cursor_prec_mult,
1275                                      int *cursor_dl)
1276 {
1277         struct drm_crtc *crtc;
1278         int clock, pixel_size;
1279         int entries;
1280
1281         crtc = intel_get_crtc_for_plane(dev, plane);
1282         if (!intel_crtc_active(crtc))
1283                 return false;
1284
1285         clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
1286         pixel_size = crtc->primary->fb->bits_per_pixel / 8;     /* BPP */
1287
1288         entries = (clock / 1000) * pixel_size;
1289         *plane_prec_mult = (entries > 128) ?
1290                 DRAIN_LATENCY_PRECISION_64 : DRAIN_LATENCY_PRECISION_32;
1291         *plane_dl = (64 * (*plane_prec_mult) * 4) / entries;
1292
1293         entries = (clock / 1000) * 4;   /* BPP is always 4 for cursor */
1294         *cursor_prec_mult = (entries > 128) ?
1295                 DRAIN_LATENCY_PRECISION_64 : DRAIN_LATENCY_PRECISION_32;
1296         *cursor_dl = (64 * (*cursor_prec_mult) * 4) / entries;
1297
1298         return true;
1299 }
1300
1301 /*
1302  * Update drain latency registers of memory arbiter
1303  *
1304  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1305  * to be programmed. Each plane has a drain latency multiplier and a drain
1306  * latency value.
1307  */
1308
1309 static void vlv_update_drain_latency(struct drm_device *dev)
1310 {
1311         struct drm_i915_private *dev_priv = dev->dev_private;
1312         int planea_prec, planea_dl, planeb_prec, planeb_dl;
1313         int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1314         int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1315                                                         either 16 or 32 */
1316
1317         /* For plane A, Cursor A */
1318         if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1319                                       &cursor_prec_mult, &cursora_dl)) {
1320                 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1321                         DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_64;
1322                 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1323                         DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_64;
1324
1325                 I915_WRITE(VLV_DDL1, cursora_prec |
1326                                 (cursora_dl << DDL_CURSORA_SHIFT) |
1327                                 planea_prec | planea_dl);
1328         }
1329
1330         /* For plane B, Cursor B */
1331         if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1332                                       &cursor_prec_mult, &cursorb_dl)) {
1333                 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1334                         DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_64;
1335                 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1336                         DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_64;
1337
1338                 I915_WRITE(VLV_DDL2, cursorb_prec |
1339                                 (cursorb_dl << DDL_CURSORB_SHIFT) |
1340                                 planeb_prec | planeb_dl);
1341         }
1342 }
1343
1344 #define single_plane_enabled(mask) is_power_of_2(mask)
1345
1346 static void valleyview_update_wm(struct drm_crtc *crtc)
1347 {
1348         struct drm_device *dev = crtc->dev;
1349         static const int sr_latency_ns = 12000;
1350         struct drm_i915_private *dev_priv = dev->dev_private;
1351         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1352         int plane_sr, cursor_sr;
1353         int ignore_plane_sr, ignore_cursor_sr;
1354         unsigned int enabled = 0;
1355         bool cxsr_enabled;
1356
1357         vlv_update_drain_latency(dev);
1358
1359         if (g4x_compute_wm0(dev, PIPE_A,
1360                             &valleyview_wm_info, latency_ns,
1361                             &valleyview_cursor_wm_info, latency_ns,
1362                             &planea_wm, &cursora_wm))
1363                 enabled |= 1 << PIPE_A;
1364
1365         if (g4x_compute_wm0(dev, PIPE_B,
1366                             &valleyview_wm_info, latency_ns,
1367                             &valleyview_cursor_wm_info, latency_ns,
1368                             &planeb_wm, &cursorb_wm))
1369                 enabled |= 1 << PIPE_B;
1370
1371         if (single_plane_enabled(enabled) &&
1372             g4x_compute_srwm(dev, ffs(enabled) - 1,
1373                              sr_latency_ns,
1374                              &valleyview_wm_info,
1375                              &valleyview_cursor_wm_info,
1376                              &plane_sr, &ignore_cursor_sr) &&
1377             g4x_compute_srwm(dev, ffs(enabled) - 1,
1378                              2*sr_latency_ns,
1379                              &valleyview_wm_info,
1380                              &valleyview_cursor_wm_info,
1381                              &ignore_plane_sr, &cursor_sr)) {
1382                 cxsr_enabled = true;
1383         } else {
1384                 cxsr_enabled = false;
1385                 intel_set_memory_cxsr(dev_priv, false);
1386                 plane_sr = cursor_sr = 0;
1387         }
1388
1389         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1390                       planea_wm, cursora_wm,
1391                       planeb_wm, cursorb_wm,
1392                       plane_sr, cursor_sr);
1393
1394         I915_WRITE(DSPFW1,
1395                    (plane_sr << DSPFW_SR_SHIFT) |
1396                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1397                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1398                    planea_wm);
1399         I915_WRITE(DSPFW2,
1400                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1401                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1402         I915_WRITE(DSPFW3,
1403                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1404                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1405
1406         if (cxsr_enabled)
1407                 intel_set_memory_cxsr(dev_priv, true);
1408 }
1409
1410 static void g4x_update_wm(struct drm_crtc *crtc)
1411 {
1412         struct drm_device *dev = crtc->dev;
1413         static const int sr_latency_ns = 12000;
1414         struct drm_i915_private *dev_priv = dev->dev_private;
1415         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1416         int plane_sr, cursor_sr;
1417         unsigned int enabled = 0;
1418         bool cxsr_enabled;
1419
1420         if (g4x_compute_wm0(dev, PIPE_A,
1421                             &g4x_wm_info, latency_ns,
1422                             &g4x_cursor_wm_info, latency_ns,
1423                             &planea_wm, &cursora_wm))
1424                 enabled |= 1 << PIPE_A;
1425
1426         if (g4x_compute_wm0(dev, PIPE_B,
1427                             &g4x_wm_info, latency_ns,
1428                             &g4x_cursor_wm_info, latency_ns,
1429                             &planeb_wm, &cursorb_wm))
1430                 enabled |= 1 << PIPE_B;
1431
1432         if (single_plane_enabled(enabled) &&
1433             g4x_compute_srwm(dev, ffs(enabled) - 1,
1434                              sr_latency_ns,
1435                              &g4x_wm_info,
1436                              &g4x_cursor_wm_info,
1437                              &plane_sr, &cursor_sr)) {
1438                 cxsr_enabled = true;
1439         } else {
1440                 cxsr_enabled = false;
1441                 intel_set_memory_cxsr(dev_priv, false);
1442                 plane_sr = cursor_sr = 0;
1443         }
1444
1445         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1446                       planea_wm, cursora_wm,
1447                       planeb_wm, cursorb_wm,
1448                       plane_sr, cursor_sr);
1449
1450         I915_WRITE(DSPFW1,
1451                    (plane_sr << DSPFW_SR_SHIFT) |
1452                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1453                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1454                    planea_wm);
1455         I915_WRITE(DSPFW2,
1456                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1457                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1458         /* HPLL off in SR has some issues on G4x... disable it */
1459         I915_WRITE(DSPFW3,
1460                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1461                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1462
1463         if (cxsr_enabled)
1464                 intel_set_memory_cxsr(dev_priv, true);
1465 }
1466
1467 static void i965_update_wm(struct drm_crtc *unused_crtc)
1468 {
1469         struct drm_device *dev = unused_crtc->dev;
1470         struct drm_i915_private *dev_priv = dev->dev_private;
1471         struct drm_crtc *crtc;
1472         int srwm = 1;
1473         int cursor_sr = 16;
1474         bool cxsr_enabled;
1475
1476         /* Calc sr entries for one plane configs */
1477         crtc = single_enabled_crtc(dev);
1478         if (crtc) {
1479                 /* self-refresh has much higher latency */
1480                 static const int sr_latency_ns = 12000;
1481                 const struct drm_display_mode *adjusted_mode =
1482                         &to_intel_crtc(crtc)->config.adjusted_mode;
1483                 int clock = adjusted_mode->crtc_clock;
1484                 int htotal = adjusted_mode->crtc_htotal;
1485                 int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
1486                 int pixel_size = crtc->primary->fb->bits_per_pixel / 8;
1487                 unsigned long line_time_us;
1488                 int entries;
1489
1490                 line_time_us = max(htotal * 1000 / clock, 1);
1491
1492                 /* Use ns/us then divide to preserve precision */
1493                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1494                         pixel_size * hdisplay;
1495                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1496                 srwm = I965_FIFO_SIZE - entries;
1497                 if (srwm < 0)
1498                         srwm = 1;
1499                 srwm &= 0x1ff;
1500                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1501                               entries, srwm);
1502
1503                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1504                         pixel_size * to_intel_crtc(crtc)->cursor_width;
1505                 entries = DIV_ROUND_UP(entries,
1506                                           i965_cursor_wm_info.cacheline_size);
1507                 cursor_sr = i965_cursor_wm_info.fifo_size -
1508                         (entries + i965_cursor_wm_info.guard_size);
1509
1510                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1511                         cursor_sr = i965_cursor_wm_info.max_wm;
1512
1513                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1514                               "cursor %d\n", srwm, cursor_sr);
1515
1516                 cxsr_enabled = true;
1517         } else {
1518                 cxsr_enabled = false;
1519                 /* Turn off self refresh if both pipes are enabled */
1520                 intel_set_memory_cxsr(dev_priv, false);
1521         }
1522
1523         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1524                       srwm);
1525
1526         /* 965 has limitations... */
1527         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1528                    (8 << 16) | (8 << 8) | (8 << 0));
1529         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1530         /* update cursor SR watermark */
1531         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1532
1533         if (cxsr_enabled)
1534                 intel_set_memory_cxsr(dev_priv, true);
1535 }
1536
1537 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1538 {
1539         struct drm_device *dev = unused_crtc->dev;
1540         struct drm_i915_private *dev_priv = dev->dev_private;
1541         const struct intel_watermark_params *wm_info;
1542         uint32_t fwater_lo;
1543         uint32_t fwater_hi;
1544         int cwm, srwm = 1;
1545         int fifo_size;
1546         int planea_wm, planeb_wm;
1547         struct drm_crtc *crtc, *enabled = NULL;
1548
1549         if (IS_I945GM(dev))
1550                 wm_info = &i945_wm_info;
1551         else if (!IS_GEN2(dev))
1552                 wm_info = &i915_wm_info;
1553         else
1554                 wm_info = &i830_wm_info;
1555
1556         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1557         crtc = intel_get_crtc_for_plane(dev, 0);
1558         if (intel_crtc_active(crtc)) {
1559                 const struct drm_display_mode *adjusted_mode;
1560                 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1561                 if (IS_GEN2(dev))
1562                         cpp = 4;
1563
1564                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1565                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1566                                                wm_info, fifo_size, cpp,
1567                                                latency_ns);
1568                 enabled = crtc;
1569         } else
1570                 planea_wm = fifo_size - wm_info->guard_size;
1571
1572         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1573         crtc = intel_get_crtc_for_plane(dev, 1);
1574         if (intel_crtc_active(crtc)) {
1575                 const struct drm_display_mode *adjusted_mode;
1576                 int cpp = crtc->primary->fb->bits_per_pixel / 8;
1577                 if (IS_GEN2(dev))
1578                         cpp = 4;
1579
1580                 adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1581                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1582                                                wm_info, fifo_size, cpp,
1583                                                latency_ns);
1584                 if (enabled == NULL)
1585                         enabled = crtc;
1586                 else
1587                         enabled = NULL;
1588         } else
1589                 planeb_wm = fifo_size - wm_info->guard_size;
1590
1591         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1592
1593         if (IS_I915GM(dev) && enabled) {
1594                 struct drm_i915_gem_object *obj;
1595
1596                 obj = intel_fb_obj(enabled->primary->fb);
1597
1598                 /* self-refresh seems busted with untiled */
1599                 if (obj->tiling_mode == I915_TILING_NONE)
1600                         enabled = NULL;
1601         }
1602
1603         /*
1604          * Overlay gets an aggressive default since video jitter is bad.
1605          */
1606         cwm = 2;
1607
1608         /* Play safe and disable self-refresh before adjusting watermarks. */
1609         intel_set_memory_cxsr(dev_priv, false);
1610
1611         /* Calc sr entries for one plane configs */
1612         if (HAS_FW_BLC(dev) && enabled) {
1613                 /* self-refresh has much higher latency */
1614                 static const int sr_latency_ns = 6000;
1615                 const struct drm_display_mode *adjusted_mode =
1616                         &to_intel_crtc(enabled)->config.adjusted_mode;
1617                 int clock = adjusted_mode->crtc_clock;
1618                 int htotal = adjusted_mode->crtc_htotal;
1619                 int hdisplay = to_intel_crtc(enabled)->config.pipe_src_w;
1620                 int pixel_size = enabled->primary->fb->bits_per_pixel / 8;
1621                 unsigned long line_time_us;
1622                 int entries;
1623
1624                 line_time_us = max(htotal * 1000 / clock, 1);
1625
1626                 /* Use ns/us then divide to preserve precision */
1627                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1628                         pixel_size * hdisplay;
1629                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1630                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1631                 srwm = wm_info->fifo_size - entries;
1632                 if (srwm < 0)
1633                         srwm = 1;
1634
1635                 if (IS_I945G(dev) || IS_I945GM(dev))
1636                         I915_WRITE(FW_BLC_SELF,
1637                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1638                 else if (IS_I915GM(dev))
1639                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1640         }
1641
1642         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1643                       planea_wm, planeb_wm, cwm, srwm);
1644
1645         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1646         fwater_hi = (cwm & 0x1f);
1647
1648         /* Set request length to 8 cachelines per fetch */
1649         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1650         fwater_hi = fwater_hi | (1 << 8);
1651
1652         I915_WRITE(FW_BLC, fwater_lo);
1653         I915_WRITE(FW_BLC2, fwater_hi);
1654
1655         if (enabled)
1656                 intel_set_memory_cxsr(dev_priv, true);
1657 }
1658
1659 static void i845_update_wm(struct drm_crtc *unused_crtc)
1660 {
1661         struct drm_device *dev = unused_crtc->dev;
1662         struct drm_i915_private *dev_priv = dev->dev_private;
1663         struct drm_crtc *crtc;
1664         const struct drm_display_mode *adjusted_mode;
1665         uint32_t fwater_lo;
1666         int planea_wm;
1667
1668         crtc = single_enabled_crtc(dev);
1669         if (crtc == NULL)
1670                 return;
1671
1672         adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
1673         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1674                                        &i845_wm_info,
1675                                        dev_priv->display.get_fifo_size(dev, 0),
1676                                        4, latency_ns);
1677         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1678         fwater_lo |= (3<<8) | planea_wm;
1679
1680         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1681
1682         I915_WRITE(FW_BLC, fwater_lo);
1683 }
1684
1685 static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1686                                     struct drm_crtc *crtc)
1687 {
1688         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1689         uint32_t pixel_rate;
1690
1691         pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
1692
1693         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1694          * adjust the pixel_rate here. */
1695
1696         if (intel_crtc->config.pch_pfit.enabled) {
1697                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1698                 uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
1699
1700                 pipe_w = intel_crtc->config.pipe_src_w;
1701                 pipe_h = intel_crtc->config.pipe_src_h;
1702                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1703                 pfit_h = pfit_size & 0xFFFF;
1704                 if (pipe_w < pfit_w)
1705                         pipe_w = pfit_w;
1706                 if (pipe_h < pfit_h)
1707                         pipe_h = pfit_h;
1708
1709                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1710                                      pfit_w * pfit_h);
1711         }
1712
1713         return pixel_rate;
1714 }
1715
1716 /* latency must be in 0.1us units. */
1717 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1718                                uint32_t latency)
1719 {
1720         uint64_t ret;
1721
1722         if (WARN(latency == 0, "Latency value missing\n"))
1723                 return UINT_MAX;
1724
1725         ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1726         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1727
1728         return ret;
1729 }
1730
1731 /* latency must be in 0.1us units. */
1732 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1733                                uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1734                                uint32_t latency)
1735 {
1736         uint32_t ret;
1737
1738         if (WARN(latency == 0, "Latency value missing\n"))
1739                 return UINT_MAX;
1740
1741         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1742         ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1743         ret = DIV_ROUND_UP(ret, 64) + 2;
1744         return ret;
1745 }
1746
1747 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1748                            uint8_t bytes_per_pixel)
1749 {
1750         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1751 }
1752
1753 struct ilk_pipe_wm_parameters {
1754         bool active;
1755         uint32_t pipe_htotal;
1756         uint32_t pixel_rate;
1757         struct intel_plane_wm_parameters pri;
1758         struct intel_plane_wm_parameters spr;
1759         struct intel_plane_wm_parameters cur;
1760 };
1761
1762 struct ilk_wm_maximums {
1763         uint16_t pri;
1764         uint16_t spr;
1765         uint16_t cur;
1766         uint16_t fbc;
1767 };
1768
1769 /* used in computing the new watermarks state */
1770 struct intel_wm_config {
1771         unsigned int num_pipes_active;
1772         bool sprites_enabled;
1773         bool sprites_scaled;
1774 };
1775
1776 /*
1777  * For both WM_PIPE and WM_LP.
1778  * mem_value must be in 0.1us units.
1779  */
1780 static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1781                                    uint32_t mem_value,
1782                                    bool is_lp)
1783 {
1784         uint32_t method1, method2;
1785
1786         if (!params->active || !params->pri.enabled)
1787                 return 0;
1788
1789         method1 = ilk_wm_method1(params->pixel_rate,
1790                                  params->pri.bytes_per_pixel,
1791                                  mem_value);
1792
1793         if (!is_lp)
1794                 return method1;
1795
1796         method2 = ilk_wm_method2(params->pixel_rate,
1797                                  params->pipe_htotal,
1798                                  params->pri.horiz_pixels,
1799                                  params->pri.bytes_per_pixel,
1800                                  mem_value);
1801
1802         return min(method1, method2);
1803 }
1804
1805 /*
1806  * For both WM_PIPE and WM_LP.
1807  * mem_value must be in 0.1us units.
1808  */
1809 static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1810                                    uint32_t mem_value)
1811 {
1812         uint32_t method1, method2;
1813
1814         if (!params->active || !params->spr.enabled)
1815                 return 0;
1816
1817         method1 = ilk_wm_method1(params->pixel_rate,
1818                                  params->spr.bytes_per_pixel,
1819                                  mem_value);
1820         method2 = ilk_wm_method2(params->pixel_rate,
1821                                  params->pipe_htotal,
1822                                  params->spr.horiz_pixels,
1823                                  params->spr.bytes_per_pixel,
1824                                  mem_value);
1825         return min(method1, method2);
1826 }
1827
1828 /*
1829  * For both WM_PIPE and WM_LP.
1830  * mem_value must be in 0.1us units.
1831  */
1832 static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1833                                    uint32_t mem_value)
1834 {
1835         if (!params->active || !params->cur.enabled)
1836                 return 0;
1837
1838         return ilk_wm_method2(params->pixel_rate,
1839                               params->pipe_htotal,
1840                               params->cur.horiz_pixels,
1841                               params->cur.bytes_per_pixel,
1842                               mem_value);
1843 }
1844
1845 /* Only for WM_LP. */
1846 static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1847                                    uint32_t pri_val)
1848 {
1849         if (!params->active || !params->pri.enabled)
1850                 return 0;
1851
1852         return ilk_wm_fbc(pri_val,
1853                           params->pri.horiz_pixels,
1854                           params->pri.bytes_per_pixel);
1855 }
1856
1857 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1858 {
1859         if (INTEL_INFO(dev)->gen >= 8)
1860                 return 3072;
1861         else if (INTEL_INFO(dev)->gen >= 7)
1862                 return 768;
1863         else
1864                 return 512;
1865 }
1866
1867 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1868                                          int level, bool is_sprite)
1869 {
1870         if (INTEL_INFO(dev)->gen >= 8)
1871                 /* BDW primary/sprite plane watermarks */
1872                 return level == 0 ? 255 : 2047;
1873         else if (INTEL_INFO(dev)->gen >= 7)
1874                 /* IVB/HSW primary/sprite plane watermarks */
1875                 return level == 0 ? 127 : 1023;
1876         else if (!is_sprite)
1877                 /* ILK/SNB primary plane watermarks */
1878                 return level == 0 ? 127 : 511;
1879         else
1880                 /* ILK/SNB sprite plane watermarks */
1881                 return level == 0 ? 63 : 255;
1882 }
1883
1884 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1885                                           int level)
1886 {
1887         if (INTEL_INFO(dev)->gen >= 7)
1888                 return level == 0 ? 63 : 255;
1889         else
1890                 return level == 0 ? 31 : 63;
1891 }
1892
1893 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1894 {
1895         if (INTEL_INFO(dev)->gen >= 8)
1896                 return 31;
1897         else
1898                 return 15;
1899 }
1900
1901 /* Calculate the maximum primary/sprite plane watermark */
1902 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1903                                      int level,
1904                                      const struct intel_wm_config *config,
1905                                      enum intel_ddb_partitioning ddb_partitioning,
1906                                      bool is_sprite)
1907 {
1908         unsigned int fifo_size = ilk_display_fifo_size(dev);
1909
1910         /* if sprites aren't enabled, sprites get nothing */
1911         if (is_sprite && !config->sprites_enabled)
1912                 return 0;
1913
1914         /* HSW allows LP1+ watermarks even with multiple pipes */
1915         if (level == 0 || config->num_pipes_active > 1) {
1916                 fifo_size /= INTEL_INFO(dev)->num_pipes;
1917
1918                 /*
1919                  * For some reason the non self refresh
1920                  * FIFO size is only half of the self
1921                  * refresh FIFO size on ILK/SNB.
1922                  */
1923                 if (INTEL_INFO(dev)->gen <= 6)
1924                         fifo_size /= 2;
1925         }
1926
1927         if (config->sprites_enabled) {
1928                 /* level 0 is always calculated with 1:1 split */
1929                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1930                         if (is_sprite)
1931                                 fifo_size *= 5;
1932                         fifo_size /= 6;
1933                 } else {
1934                         fifo_size /= 2;
1935                 }
1936         }
1937
1938         /* clamp to max that the registers can hold */
1939         return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1940 }
1941
1942 /* Calculate the maximum cursor plane watermark */
1943 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1944                                       int level,
1945                                       const struct intel_wm_config *config)
1946 {
1947         /* HSW LP1+ watermarks w/ multiple pipes */
1948         if (level > 0 && config->num_pipes_active > 1)
1949                 return 64;
1950
1951         /* otherwise just report max that registers can hold */
1952         return ilk_cursor_wm_reg_max(dev, level);
1953 }
1954
1955 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1956                                     int level,
1957                                     const struct intel_wm_config *config,
1958                                     enum intel_ddb_partitioning ddb_partitioning,
1959                                     struct ilk_wm_maximums *max)
1960 {
1961         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1962         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1963         max->cur = ilk_cursor_wm_max(dev, level, config);
1964         max->fbc = ilk_fbc_wm_reg_max(dev);
1965 }
1966
1967 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1968                                         int level,
1969                                         struct ilk_wm_maximums *max)
1970 {
1971         max->pri = ilk_plane_wm_reg_max(dev, level, false);
1972         max->spr = ilk_plane_wm_reg_max(dev, level, true);
1973         max->cur = ilk_cursor_wm_reg_max(dev, level);
1974         max->fbc = ilk_fbc_wm_reg_max(dev);
1975 }
1976
1977 static bool ilk_validate_wm_level(int level,
1978                                   const struct ilk_wm_maximums *max,
1979                                   struct intel_wm_level *result)
1980 {
1981         bool ret;
1982
1983         /* already determined to be invalid? */
1984         if (!result->enable)
1985                 return false;
1986
1987         result->enable = result->pri_val <= max->pri &&
1988                          result->spr_val <= max->spr &&
1989                          result->cur_val <= max->cur;
1990
1991         ret = result->enable;
1992
1993         /*
1994          * HACK until we can pre-compute everything,
1995          * and thus fail gracefully if LP0 watermarks
1996          * are exceeded...
1997          */
1998         if (level == 0 && !result->enable) {
1999                 if (result->pri_val > max->pri)
2000                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2001                                       level, result->pri_val, max->pri);
2002                 if (result->spr_val > max->spr)
2003                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2004                                       level, result->spr_val, max->spr);
2005                 if (result->cur_val > max->cur)
2006                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2007                                       level, result->cur_val, max->cur);
2008
2009                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2010                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2011                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2012                 result->enable = true;
2013         }
2014
2015         return ret;
2016 }
2017
2018 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2019                                  int level,
2020                                  const struct ilk_pipe_wm_parameters *p,
2021                                  struct intel_wm_level *result)
2022 {
2023         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2024         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2025         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2026
2027         /* WM1+ latency values stored in 0.5us units */
2028         if (level > 0) {
2029                 pri_latency *= 5;
2030                 spr_latency *= 5;
2031                 cur_latency *= 5;
2032         }
2033
2034         result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
2035         result->spr_val = ilk_compute_spr_wm(p, spr_latency);
2036         result->cur_val = ilk_compute_cur_wm(p, cur_latency);
2037         result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
2038         result->enable = true;
2039 }
2040
2041 static uint32_t
2042 hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2043 {
2044         struct drm_i915_private *dev_priv = dev->dev_private;
2045         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2046         struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
2047         u32 linetime, ips_linetime;
2048
2049         if (!intel_crtc_active(crtc))
2050                 return 0;
2051
2052         /* The WM are computed with base on how long it takes to fill a single
2053          * row at the given clock rate, multiplied by 8.
2054          * */
2055         linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2056                                      mode->crtc_clock);
2057         ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
2058                                          intel_ddi_get_cdclk_freq(dev_priv));
2059
2060         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2061                PIPE_WM_LINETIME_TIME(linetime);
2062 }
2063
2064 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
2065 {
2066         struct drm_i915_private *dev_priv = dev->dev_private;
2067
2068         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2069                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2070
2071                 wm[0] = (sskpd >> 56) & 0xFF;
2072                 if (wm[0] == 0)
2073                         wm[0] = sskpd & 0xF;
2074                 wm[1] = (sskpd >> 4) & 0xFF;
2075                 wm[2] = (sskpd >> 12) & 0xFF;
2076                 wm[3] = (sskpd >> 20) & 0x1FF;
2077                 wm[4] = (sskpd >> 32) & 0x1FF;
2078         } else if (INTEL_INFO(dev)->gen >= 6) {
2079                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2080
2081                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2082                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2083                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2084                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2085         } else if (INTEL_INFO(dev)->gen >= 5) {
2086                 uint32_t mltr = I915_READ(MLTR_ILK);
2087
2088                 /* ILK primary LP0 latency is 700 ns */
2089                 wm[0] = 7;
2090                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2091                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2092         }
2093 }
2094
2095 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2096 {
2097         /* ILK sprite LP0 latency is 1300 ns */
2098         if (INTEL_INFO(dev)->gen == 5)
2099                 wm[0] = 13;
2100 }
2101
2102 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2103 {
2104         /* ILK cursor LP0 latency is 1300 ns */
2105         if (INTEL_INFO(dev)->gen == 5)
2106                 wm[0] = 13;
2107
2108         /* WaDoubleCursorLP3Latency:ivb */
2109         if (IS_IVYBRIDGE(dev))
2110                 wm[3] *= 2;
2111 }
2112
2113 int ilk_wm_max_level(const struct drm_device *dev)
2114 {
2115         /* how many WM levels are we expecting */
2116         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2117                 return 4;
2118         else if (INTEL_INFO(dev)->gen >= 6)
2119                 return 3;
2120         else
2121                 return 2;
2122 }
2123
2124 static void intel_print_wm_latency(struct drm_device *dev,
2125                                    const char *name,
2126                                    const uint16_t wm[5])
2127 {
2128         int level, max_level = ilk_wm_max_level(dev);
2129
2130         for (level = 0; level <= max_level; level++) {
2131                 unsigned int latency = wm[level];
2132
2133                 if (latency == 0) {
2134                         DRM_ERROR("%s WM%d latency not provided\n",
2135                                   name, level);
2136                         continue;
2137                 }
2138
2139                 /* WM1+ latency values in 0.5us units */
2140                 if (level > 0)
2141                         latency *= 5;
2142
2143                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2144                               name, level, wm[level],
2145                               latency / 10, latency % 10);
2146         }
2147 }
2148
2149 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2150                                     uint16_t wm[5], uint16_t min)
2151 {
2152         int level, max_level = ilk_wm_max_level(dev_priv->dev);
2153
2154         if (wm[0] >= min)
2155                 return false;
2156
2157         wm[0] = max(wm[0], min);
2158         for (level = 1; level <= max_level; level++)
2159                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2160
2161         return true;
2162 }
2163
2164 static void snb_wm_latency_quirk(struct drm_device *dev)
2165 {
2166         struct drm_i915_private *dev_priv = dev->dev_private;
2167         bool changed;
2168
2169         /*
2170          * The BIOS provided WM memory latency values are often
2171          * inadequate for high resolution displays. Adjust them.
2172          */
2173         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2174                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2175                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2176
2177         if (!changed)
2178                 return;
2179
2180         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2181         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2182         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2183         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2184 }
2185
2186 static void ilk_setup_wm_latency(struct drm_device *dev)
2187 {
2188         struct drm_i915_private *dev_priv = dev->dev_private;
2189
2190         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2191
2192         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2193                sizeof(dev_priv->wm.pri_latency));
2194         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2195                sizeof(dev_priv->wm.pri_latency));
2196
2197         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2198         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2199
2200         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2201         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2202         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2203
2204         if (IS_GEN6(dev))
2205                 snb_wm_latency_quirk(dev);
2206 }
2207
2208 static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2209                                       struct ilk_pipe_wm_parameters *p)
2210 {
2211         struct drm_device *dev = crtc->dev;
2212         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2213         enum i915_pipe pipe = intel_crtc->pipe;
2214         struct drm_plane *plane;
2215
2216         if (!intel_crtc_active(crtc))
2217                 return;
2218
2219         p->active = true;
2220         p->pipe_htotal = intel_crtc->config.adjusted_mode.crtc_htotal;
2221         p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2222         p->pri.bytes_per_pixel = crtc->primary->fb->bits_per_pixel / 8;
2223         p->cur.bytes_per_pixel = 4;
2224         p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
2225         p->cur.horiz_pixels = intel_crtc->cursor_width;
2226         /* TODO: for now, assume primary and cursor planes are always enabled. */
2227         p->pri.enabled = true;
2228         p->cur.enabled = true;
2229
2230         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2231                 struct intel_plane *intel_plane = to_intel_plane(plane);
2232
2233                 if (intel_plane->pipe == pipe) {
2234                         p->spr = intel_plane->wm;
2235                         break;
2236                 }
2237         }
2238 }
2239
2240 static void ilk_compute_wm_config(struct drm_device *dev,
2241                                   struct intel_wm_config *config)
2242 {
2243         struct intel_crtc *intel_crtc;
2244
2245         /* Compute the currently _active_ config */
2246         for_each_intel_crtc(dev, intel_crtc) {
2247                 const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2248
2249                 if (!wm->pipe_enabled)
2250                         continue;
2251
2252                 config->sprites_enabled |= wm->sprites_enabled;
2253                 config->sprites_scaled |= wm->sprites_scaled;
2254                 config->num_pipes_active++;
2255         }
2256 }
2257
2258 /* Compute new watermarks for the pipe */
2259 static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2260                                   const struct ilk_pipe_wm_parameters *params,
2261                                   struct intel_pipe_wm *pipe_wm)
2262 {
2263         struct drm_device *dev = crtc->dev;
2264         const struct drm_i915_private *dev_priv = dev->dev_private;
2265         int level, max_level = ilk_wm_max_level(dev);
2266         /* LP0 watermark maximums depend on this pipe alone */
2267         struct intel_wm_config config = {
2268                 .num_pipes_active = 1,
2269                 .sprites_enabled = params->spr.enabled,
2270                 .sprites_scaled = params->spr.scaled,
2271         };
2272         struct ilk_wm_maximums max;
2273
2274         pipe_wm->pipe_enabled = params->active;
2275         pipe_wm->sprites_enabled = params->spr.enabled;
2276         pipe_wm->sprites_scaled = params->spr.scaled;
2277
2278         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2279         if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2280                 max_level = 1;
2281
2282         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2283         if (params->spr.scaled)
2284                 max_level = 0;
2285
2286         ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2287
2288         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2289                 pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2290
2291         /* LP0 watermarks always use 1/2 DDB partitioning */
2292         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2293
2294         /* At least LP0 must be valid */
2295         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2296                 return false;
2297
2298         ilk_compute_wm_reg_maximums(dev, 1, &max);
2299
2300         for (level = 1; level <= max_level; level++) {
2301                 struct intel_wm_level wm = {};
2302
2303                 ilk_compute_wm_level(dev_priv, level, params, &wm);
2304
2305                 /*
2306                  * Disable any watermark level that exceeds the
2307                  * register maximums since such watermarks are
2308                  * always invalid.
2309                  */
2310                 if (!ilk_validate_wm_level(level, &max, &wm))
2311                         break;
2312
2313                 pipe_wm->wm[level] = wm;
2314         }
2315
2316         return true;
2317 }
2318
2319 /*
2320  * Merge the watermarks from all active pipes for a specific level.
2321  */
2322 static void ilk_merge_wm_level(struct drm_device *dev,
2323                                int level,
2324                                struct intel_wm_level *ret_wm)
2325 {
2326         struct intel_crtc *intel_crtc;
2327
2328         ret_wm->enable = true;
2329
2330         for_each_intel_crtc(dev, intel_crtc) {
2331                 const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2332                 const struct intel_wm_level *wm = &active->wm[level];
2333
2334                 if (!active->pipe_enabled)
2335                         continue;
2336
2337                 /*
2338                  * The watermark values may have been used in the past,
2339                  * so we must maintain them in the registers for some
2340                  * time even if the level is now disabled.
2341                  */
2342                 if (!wm->enable)
2343                         ret_wm->enable = false;
2344
2345                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2346                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2347                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2348                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2349         }
2350 }
2351
2352 /*
2353  * Merge all low power watermarks for all active pipes.
2354  */
2355 static void ilk_wm_merge(struct drm_device *dev,
2356                          const struct intel_wm_config *config,
2357                          const struct ilk_wm_maximums *max,
2358                          struct intel_pipe_wm *merged)
2359 {
2360         int level, max_level = ilk_wm_max_level(dev);
2361         int last_enabled_level = max_level;
2362
2363         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2364         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2365             config->num_pipes_active > 1)
2366                 return;
2367
2368         /* ILK: FBC WM must be disabled always */
2369         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2370
2371         /* merge each WM1+ level */
2372         for (level = 1; level <= max_level; level++) {
2373                 struct intel_wm_level *wm = &merged->wm[level];
2374
2375                 ilk_merge_wm_level(dev, level, wm);
2376
2377                 if (level > last_enabled_level)
2378                         wm->enable = false;
2379                 else if (!ilk_validate_wm_level(level, max, wm))
2380                         /* make sure all following levels get disabled */
2381                         last_enabled_level = level - 1;
2382
2383                 /*
2384                  * The spec says it is preferred to disable
2385                  * FBC WMs instead of disabling a WM level.
2386                  */
2387                 if (wm->fbc_val > max->fbc) {
2388                         if (wm->enable)
2389                                 merged->fbc_wm_enabled = false;
2390                         wm->fbc_val = 0;
2391                 }
2392         }
2393
2394         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2395         /*
2396          * FIXME this is racy. FBC might get enabled later.
2397          * What we should check here is whether FBC can be
2398          * enabled sometime later.
2399          */
2400         if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2401                 for (level = 2; level <= max_level; level++) {
2402                         struct intel_wm_level *wm = &merged->wm[level];
2403
2404                         wm->enable = false;
2405                 }
2406         }
2407 }
2408
2409 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2410 {
2411         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2412         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2413 }
2414
2415 /* The value we need to program into the WM_LPx latency field */
2416 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2417 {
2418         struct drm_i915_private *dev_priv = dev->dev_private;
2419
2420         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2421                 return 2 * level;
2422         else
2423                 return dev_priv->wm.pri_latency[level];
2424 }
2425
2426 static void ilk_compute_wm_results(struct drm_device *dev,
2427                                    const struct intel_pipe_wm *merged,
2428                                    enum intel_ddb_partitioning partitioning,
2429                                    struct ilk_wm_values *results)
2430 {
2431         struct intel_crtc *intel_crtc;
2432         int level, wm_lp;
2433
2434         results->enable_fbc_wm = merged->fbc_wm_enabled;
2435         results->partitioning = partitioning;
2436
2437         /* LP1+ register values */
2438         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2439                 const struct intel_wm_level *r;
2440
2441                 level = ilk_wm_lp_to_level(wm_lp, merged);
2442
2443                 r = &merged->wm[level];
2444
2445                 /*
2446                  * Maintain the watermark values even if the level is
2447                  * disabled. Doing otherwise could cause underruns.
2448                  */
2449                 results->wm_lp[wm_lp - 1] =
2450                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2451                         (r->pri_val << WM1_LP_SR_SHIFT) |
2452                         r->cur_val;
2453
2454                 if (r->enable)
2455                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2456
2457                 if (INTEL_INFO(dev)->gen >= 8)
2458                         results->wm_lp[wm_lp - 1] |=
2459                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2460                 else
2461                         results->wm_lp[wm_lp - 1] |=
2462                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2463
2464                 /*
2465                  * Always set WM1S_LP_EN when spr_val != 0, even if the
2466                  * level is disabled. Doing otherwise could cause underruns.
2467                  */
2468                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2469                         WARN_ON(wm_lp != 1);
2470                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2471                 } else
2472                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2473         }
2474
2475         /* LP0 register values */
2476         for_each_intel_crtc(dev, intel_crtc) {
2477                 enum i915_pipe pipe = intel_crtc->pipe;
2478                 const struct intel_wm_level *r =
2479                         &intel_crtc->wm.active.wm[0];
2480
2481                 if (WARN_ON(!r->enable))
2482                         continue;
2483
2484                 results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2485
2486                 results->wm_pipe[pipe] =
2487                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2488                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2489                         r->cur_val;
2490         }
2491 }
2492
2493 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2494  * case both are at the same level. Prefer r1 in case they're the same. */
2495 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2496                                                   struct intel_pipe_wm *r1,
2497                                                   struct intel_pipe_wm *r2)
2498 {
2499         int level, max_level = ilk_wm_max_level(dev);
2500         int level1 = 0, level2 = 0;
2501
2502         for (level = 1; level <= max_level; level++) {
2503                 if (r1->wm[level].enable)
2504                         level1 = level;
2505                 if (r2->wm[level].enable)
2506                         level2 = level;
2507         }
2508
2509         if (level1 == level2) {
2510                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2511                         return r2;
2512                 else
2513                         return r1;
2514         } else if (level1 > level2) {
2515                 return r1;
2516         } else {
2517                 return r2;
2518         }
2519 }
2520
2521 /* dirty bits used to track which watermarks need changes */
2522 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2523 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2524 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2525 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2526 #define WM_DIRTY_FBC (1 << 24)
2527 #define WM_DIRTY_DDB (1 << 25)
2528
2529 static unsigned int ilk_compute_wm_dirty(struct drm_device *dev,
2530                                          const struct ilk_wm_values *old,
2531                                          const struct ilk_wm_values *new)
2532 {
2533         unsigned int dirty = 0;
2534         enum i915_pipe pipe;
2535         int wm_lp;
2536
2537         for_each_pipe(pipe) {
2538                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2539                         dirty |= WM_DIRTY_LINETIME(pipe);
2540                         /* Must disable LP1+ watermarks too */
2541                         dirty |= WM_DIRTY_LP_ALL;
2542                 }
2543
2544                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2545                         dirty |= WM_DIRTY_PIPE(pipe);
2546                         /* Must disable LP1+ watermarks too */
2547                         dirty |= WM_DIRTY_LP_ALL;
2548                 }
2549         }
2550
2551         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2552                 dirty |= WM_DIRTY_FBC;
2553                 /* Must disable LP1+ watermarks too */
2554                 dirty |= WM_DIRTY_LP_ALL;
2555         }
2556
2557         if (old->partitioning != new->partitioning) {
2558                 dirty |= WM_DIRTY_DDB;
2559                 /* Must disable LP1+ watermarks too */
2560                 dirty |= WM_DIRTY_LP_ALL;
2561         }
2562
2563         /* LP1+ watermarks already deemed dirty, no need to continue */
2564         if (dirty & WM_DIRTY_LP_ALL)
2565                 return dirty;
2566
2567         /* Find the lowest numbered LP1+ watermark in need of an update... */
2568         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2569                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2570                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2571                         break;
2572         }
2573
2574         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2575         for (; wm_lp <= 3; wm_lp++)
2576                 dirty |= WM_DIRTY_LP(wm_lp);
2577
2578         return dirty;
2579 }
2580
2581 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2582                                unsigned int dirty)
2583 {
2584         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2585         bool changed = false;
2586
2587         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2588                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2589                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2590                 changed = true;
2591         }
2592         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2593                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2594                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2595                 changed = true;
2596         }
2597         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2598                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2599                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2600                 changed = true;
2601         }
2602
2603         /*
2604          * Don't touch WM1S_LP_EN here.
2605          * Doing so could cause underruns.
2606          */
2607
2608         return changed;
2609 }
2610
2611 /*
2612  * The spec says we shouldn't write when we don't need, because every write
2613  * causes WMs to be re-evaluated, expending some power.
2614  */
2615 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2616                                 struct ilk_wm_values *results)
2617 {
2618         struct drm_device *dev = dev_priv->dev;
2619         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2620         unsigned int dirty;
2621         uint32_t val;
2622
2623         dirty = ilk_compute_wm_dirty(dev, previous, results);
2624         if (!dirty)
2625                 return;
2626
2627         _ilk_disable_lp_wm(dev_priv, dirty);
2628
2629         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2630                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2631         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2632                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2633         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2634                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2635
2636         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2637                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2638         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2639                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2640         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2641                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2642
2643         if (dirty & WM_DIRTY_DDB) {
2644                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2645                         val = I915_READ(WM_MISC);
2646                         if (results->partitioning == INTEL_DDB_PART_1_2)
2647                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2648                         else
2649                                 val |= WM_MISC_DATA_PARTITION_5_6;
2650                         I915_WRITE(WM_MISC, val);
2651                 } else {
2652                         val = I915_READ(DISP_ARB_CTL2);
2653                         if (results->partitioning == INTEL_DDB_PART_1_2)
2654                                 val &= ~DISP_DATA_PARTITION_5_6;
2655                         else
2656                                 val |= DISP_DATA_PARTITION_5_6;
2657                         I915_WRITE(DISP_ARB_CTL2, val);
2658                 }
2659         }
2660
2661         if (dirty & WM_DIRTY_FBC) {
2662                 val = I915_READ(DISP_ARB_CTL);
2663                 if (results->enable_fbc_wm)
2664                         val &= ~DISP_FBC_WM_DIS;
2665                 else
2666                         val |= DISP_FBC_WM_DIS;
2667                 I915_WRITE(DISP_ARB_CTL, val);
2668         }
2669
2670         if (dirty & WM_DIRTY_LP(1) &&
2671             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2672                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2673
2674         if (INTEL_INFO(dev)->gen >= 7) {
2675                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2676                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2677                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2678                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2679         }
2680
2681         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2682                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2683         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2684                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2685         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2686                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2687
2688         dev_priv->wm.hw = *results;
2689 }
2690
2691 static bool ilk_disable_lp_wm(struct drm_device *dev)
2692 {
2693         struct drm_i915_private *dev_priv = dev->dev_private;
2694
2695         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2696 }
2697
2698 static void ilk_update_wm(struct drm_crtc *crtc)
2699 {
2700         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2701         struct drm_device *dev = crtc->dev;
2702         struct drm_i915_private *dev_priv = dev->dev_private;
2703         struct ilk_wm_maximums max;
2704         struct ilk_pipe_wm_parameters params = {};
2705         struct ilk_wm_values results = {};
2706         enum intel_ddb_partitioning partitioning;
2707         struct intel_pipe_wm pipe_wm = {};
2708         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
2709         struct intel_wm_config config = {};
2710
2711         ilk_compute_wm_parameters(crtc, &params);
2712
2713         intel_compute_pipe_wm(crtc, &params, &pipe_wm);
2714
2715         if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
2716                 return;
2717
2718         intel_crtc->wm.active = pipe_wm;
2719
2720         ilk_compute_wm_config(dev, &config);
2721
2722         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
2723         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
2724
2725         /* 5/6 split only in single pipe config on IVB+ */
2726         if (INTEL_INFO(dev)->gen >= 7 &&
2727             config.num_pipes_active == 1 && config.sprites_enabled) {
2728                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
2729                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
2730
2731                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
2732         } else {
2733                 best_lp_wm = &lp_wm_1_2;
2734         }
2735
2736         partitioning = (best_lp_wm == &lp_wm_1_2) ?
2737                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
2738
2739         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
2740
2741         ilk_write_wm_values(dev_priv, &results);
2742 }
2743
2744 static void
2745 ilk_update_sprite_wm(struct drm_plane *plane,
2746                      struct drm_crtc *crtc,
2747                      uint32_t sprite_width, uint32_t sprite_height,
2748                      int pixel_size, bool enabled, bool scaled)
2749 {
2750         struct drm_device *dev = plane->dev;
2751         struct intel_plane *intel_plane = to_intel_plane(plane);
2752
2753         intel_plane->wm.enabled = enabled;
2754         intel_plane->wm.scaled = scaled;
2755         intel_plane->wm.horiz_pixels = sprite_width;
2756         intel_plane->wm.vert_pixels = sprite_width;
2757         intel_plane->wm.bytes_per_pixel = pixel_size;
2758
2759         /*
2760          * IVB workaround: must disable low power watermarks for at least
2761          * one frame before enabling scaling.  LP watermarks can be re-enabled
2762          * when scaling is disabled.
2763          *
2764          * WaCxSRDisabledForSpriteScaling:ivb
2765          */
2766         if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
2767                 intel_wait_for_vblank(dev, intel_plane->pipe);
2768
2769         ilk_update_wm(crtc);
2770 }
2771
2772 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
2773 {
2774         struct drm_device *dev = crtc->dev;
2775         struct drm_i915_private *dev_priv = dev->dev_private;
2776         struct ilk_wm_values *hw = &dev_priv->wm.hw;
2777         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2778         struct intel_pipe_wm *active = &intel_crtc->wm.active;
2779         enum i915_pipe pipe = intel_crtc->pipe;
2780         static const unsigned int wm0_pipe_reg[] = {
2781                 [PIPE_A] = WM0_PIPEA_ILK,
2782                 [PIPE_B] = WM0_PIPEB_ILK,
2783                 [PIPE_C] = WM0_PIPEC_IVB,
2784         };
2785
2786         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
2787         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2788                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
2789
2790         active->pipe_enabled = intel_crtc_active(crtc);
2791
2792         if (active->pipe_enabled) {
2793                 u32 tmp = hw->wm_pipe[pipe];
2794
2795                 /*
2796                  * For active pipes LP0 watermark is marked as
2797                  * enabled, and LP1+ watermaks as disabled since
2798                  * we can't really reverse compute them in case
2799                  * multiple pipes are active.
2800                  */
2801                 active->wm[0].enable = true;
2802                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
2803                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
2804                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
2805                 active->linetime = hw->wm_linetime[pipe];
2806         } else {
2807                 int level, max_level = ilk_wm_max_level(dev);
2808
2809                 /*
2810                  * For inactive pipes, all watermark levels
2811                  * should be marked as enabled but zeroed,
2812                  * which is what we'd compute them to.
2813                  */
2814                 for (level = 0; level <= max_level; level++)
2815                         active->wm[level].enable = true;
2816         }
2817 }
2818
2819 void ilk_wm_get_hw_state(struct drm_device *dev)
2820 {
2821         struct drm_i915_private *dev_priv = dev->dev_private;
2822         struct ilk_wm_values *hw = &dev_priv->wm.hw;
2823         struct drm_crtc *crtc;
2824
2825         for_each_crtc(dev, crtc)
2826                 ilk_pipe_wm_get_hw_state(crtc);
2827
2828         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
2829         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
2830         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
2831
2832         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
2833         if (INTEL_INFO(dev)->gen >= 7) {
2834                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
2835                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
2836         }
2837
2838         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2839                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
2840                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2841         else if (IS_IVYBRIDGE(dev))
2842                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
2843                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
2844
2845         hw->enable_fbc_wm =
2846                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
2847 }
2848
2849 /**
2850  * intel_update_watermarks - update FIFO watermark values based on current modes
2851  *
2852  * Calculate watermark values for the various WM regs based on current mode
2853  * and plane configuration.
2854  *
2855  * There are several cases to deal with here:
2856  *   - normal (i.e. non-self-refresh)
2857  *   - self-refresh (SR) mode
2858  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2859  *   - lines are small relative to FIFO size (buffer can hold more than 2
2860  *     lines), so need to account for TLB latency
2861  *
2862  *   The normal calculation is:
2863  *     watermark = dotclock * bytes per pixel * latency
2864  *   where latency is platform & configuration dependent (we assume pessimal
2865  *   values here).
2866  *
2867  *   The SR calculation is:
2868  *     watermark = (trunc(latency/line time)+1) * surface width *
2869  *       bytes per pixel
2870  *   where
2871  *     line time = htotal / dotclock
2872  *     surface width = hdisplay for normal plane and 64 for cursor
2873  *   and latency is assumed to be high, as above.
2874  *
2875  * The final value programmed to the register should always be rounded up,
2876  * and include an extra 2 entries to account for clock crossings.
2877  *
2878  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2879  * to set the non-SR watermarks to 8.
2880  */
2881 void intel_update_watermarks(struct drm_crtc *crtc)
2882 {
2883         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
2884
2885         if (dev_priv->display.update_wm)
2886                 dev_priv->display.update_wm(crtc);
2887 }
2888
2889 void intel_update_sprite_watermarks(struct drm_plane *plane,
2890                                     struct drm_crtc *crtc,
2891                                     uint32_t sprite_width,
2892                                     uint32_t sprite_height,
2893                                     int pixel_size,
2894                                     bool enabled, bool scaled)
2895 {
2896         struct drm_i915_private *dev_priv = plane->dev->dev_private;
2897
2898         if (dev_priv->display.update_sprite_wm)
2899                 dev_priv->display.update_sprite_wm(plane, crtc,
2900                                                    sprite_width, sprite_height,
2901                                                    pixel_size, enabled, scaled);
2902 }
2903
2904 static struct drm_i915_gem_object *
2905 intel_alloc_context_page(struct drm_device *dev)
2906 {
2907         struct drm_i915_gem_object *ctx;
2908         int ret;
2909
2910         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2911
2912         ctx = i915_gem_alloc_object(dev, 4096);
2913         if (!ctx) {
2914                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2915                 return NULL;
2916         }
2917
2918         ret = i915_gem_obj_ggtt_pin(ctx, 4096, 0);
2919         if (ret) {
2920                 DRM_ERROR("failed to pin power context: %d\n", ret);
2921                 goto err_unref;
2922         }
2923
2924         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2925         if (ret) {
2926                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2927                 goto err_unpin;
2928         }
2929
2930         return ctx;
2931
2932 err_unpin:
2933         i915_gem_object_ggtt_unpin(ctx);
2934 err_unref:
2935         drm_gem_object_unreference(&ctx->base);
2936         return NULL;
2937 }
2938
2939 /**
2940  * Lock protecting IPS related data structures
2941  */
2942 struct lock mchdev_lock;
2943 LOCK_SYSINIT(mchdev, &mchdev_lock, "mchdev", LK_CANRECURSE);
2944
2945 /* Global for IPS driver to get at the current i915 device. Protected by
2946  * mchdev_lock. */
2947 static struct drm_i915_private *i915_mch_dev;
2948
2949 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2950 {
2951         struct drm_i915_private *dev_priv = dev->dev_private;
2952         u16 rgvswctl;
2953
2954         assert_spin_locked(&mchdev_lock);
2955
2956         rgvswctl = I915_READ16(MEMSWCTL);
2957         if (rgvswctl & MEMCTL_CMD_STS) {
2958                 DRM_DEBUG("gpu busy, RCS change rejected\n");
2959                 return false; /* still busy with another command */
2960         }
2961
2962         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2963                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2964         I915_WRITE16(MEMSWCTL, rgvswctl);
2965         POSTING_READ16(MEMSWCTL);
2966
2967         rgvswctl |= MEMCTL_CMD_STS;
2968         I915_WRITE16(MEMSWCTL, rgvswctl);
2969
2970         return true;
2971 }
2972
2973 static void ironlake_enable_drps(struct drm_device *dev)
2974 {
2975         struct drm_i915_private *dev_priv = dev->dev_private;
2976         u32 rgvmodectl = I915_READ(MEMMODECTL);
2977         u8 fmax, fmin, fstart, vstart;
2978
2979         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
2980
2981         /* Enable temp reporting */
2982         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2983         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2984
2985         /* 100ms RC evaluation intervals */
2986         I915_WRITE(RCUPEI, 100000);
2987         I915_WRITE(RCDNEI, 100000);
2988
2989         /* Set max/min thresholds to 90ms and 80ms respectively */
2990         I915_WRITE(RCBMAXAVG, 90000);
2991         I915_WRITE(RCBMINAVG, 80000);
2992
2993         I915_WRITE(MEMIHYST, 1);
2994
2995         /* Set up min, max, and cur for interrupt handling */
2996         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2997         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2998         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2999                 MEMMODE_FSTART_SHIFT;
3000
3001         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
3002                 PXVFREQ_PX_SHIFT;
3003
3004         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
3005         dev_priv->ips.fstart = fstart;
3006
3007         dev_priv->ips.max_delay = fstart;
3008         dev_priv->ips.min_delay = fmin;
3009         dev_priv->ips.cur_delay = fstart;
3010
3011         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
3012                          fmax, fmin, fstart);
3013
3014         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
3015
3016         /*
3017          * Interrupts will be enabled in ironlake_irq_postinstall
3018          */
3019
3020         I915_WRITE(VIDSTART, vstart);
3021         POSTING_READ(VIDSTART);
3022
3023         rgvmodectl |= MEMMODE_SWMODE_EN;
3024         I915_WRITE(MEMMODECTL, rgvmodectl);
3025
3026         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3027                 DRM_ERROR("stuck trying to change perf mode\n");
3028         mdelay(1);
3029
3030         ironlake_set_drps(dev, fstart);
3031
3032         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3033                 I915_READ(0x112e0);
3034         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
3035         dev_priv->ips.last_count2 = I915_READ(0x112f4);
3036         getrawmonotonic(&dev_priv->ips.last_time2);
3037
3038         lockmgr(&mchdev_lock, LK_RELEASE);
3039 }
3040
3041 static void ironlake_disable_drps(struct drm_device *dev)
3042 {
3043         struct drm_i915_private *dev_priv = dev->dev_private;
3044         u16 rgvswctl;
3045
3046         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3047
3048         rgvswctl = I915_READ16(MEMSWCTL);
3049
3050         /* Ack interrupts, disable EFC interrupt */
3051         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3052         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3053         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3054         I915_WRITE(DEIIR, DE_PCU_EVENT);
3055         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3056
3057         /* Go back to the starting frequency */
3058         ironlake_set_drps(dev, dev_priv->ips.fstart);
3059         mdelay(1);
3060         rgvswctl |= MEMCTL_CMD_STS;
3061         I915_WRITE(MEMSWCTL, rgvswctl);
3062         mdelay(1);
3063
3064         lockmgr(&mchdev_lock, LK_RELEASE);
3065 }
3066
3067 /* There's a funny hw issue where the hw returns all 0 when reading from
3068  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3069  * ourselves, instead of doing a rmw cycle (which might result in us clearing
3070  * all limits and the gpu stuck at whatever frequency it is at atm).
3071  */
3072 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3073 {
3074         u32 limits;
3075
3076         /* Only set the down limit when we've reached the lowest level to avoid
3077          * getting more interrupts, otherwise leave this clear. This prevents a
3078          * race in the hw when coming out of rc6: There's a tiny window where
3079          * the hw runs at the minimal clock before selecting the desired
3080          * frequency, if the down threshold expires in that window we will not
3081          * receive a down interrupt. */
3082         limits = dev_priv->rps.max_freq_softlimit << 24;
3083         if (val <= dev_priv->rps.min_freq_softlimit)
3084                 limits |= dev_priv->rps.min_freq_softlimit << 16;
3085
3086         return limits;
3087 }
3088
3089 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
3090 {
3091         int new_power;
3092
3093         new_power = dev_priv->rps.power;
3094         switch (dev_priv->rps.power) {
3095         case LOW_POWER:
3096                 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3097                         new_power = BETWEEN;
3098                 break;
3099
3100         case BETWEEN:
3101                 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3102                         new_power = LOW_POWER;
3103                 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3104                         new_power = HIGH_POWER;
3105                 break;
3106
3107         case HIGH_POWER:
3108                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3109                         new_power = BETWEEN;
3110                 break;
3111         }
3112         /* Max/min bins are special */
3113         if (val == dev_priv->rps.min_freq_softlimit)
3114                 new_power = LOW_POWER;
3115         if (val == dev_priv->rps.max_freq_softlimit)
3116                 new_power = HIGH_POWER;
3117         if (new_power == dev_priv->rps.power)
3118                 return;
3119
3120         /* Note the units here are not exactly 1us, but 1280ns. */
3121         switch (new_power) {
3122         case LOW_POWER:
3123                 /* Upclock if more than 95% busy over 16ms */
3124                 I915_WRITE(GEN6_RP_UP_EI, 12500);
3125                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
3126
3127                 /* Downclock if less than 85% busy over 32ms */
3128                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3129                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
3130
3131                 I915_WRITE(GEN6_RP_CONTROL,
3132                            GEN6_RP_MEDIA_TURBO |
3133                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3134                            GEN6_RP_MEDIA_IS_GFX |
3135                            GEN6_RP_ENABLE |
3136                            GEN6_RP_UP_BUSY_AVG |
3137                            GEN6_RP_DOWN_IDLE_AVG);
3138                 break;
3139
3140         case BETWEEN:
3141                 /* Upclock if more than 90% busy over 13ms */
3142                 I915_WRITE(GEN6_RP_UP_EI, 10250);
3143                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
3144
3145                 /* Downclock if less than 75% busy over 32ms */
3146                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3147                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
3148
3149                 I915_WRITE(GEN6_RP_CONTROL,
3150                            GEN6_RP_MEDIA_TURBO |
3151                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3152                            GEN6_RP_MEDIA_IS_GFX |
3153                            GEN6_RP_ENABLE |
3154                            GEN6_RP_UP_BUSY_AVG |
3155                            GEN6_RP_DOWN_IDLE_AVG);
3156                 break;
3157
3158         case HIGH_POWER:
3159                 /* Upclock if more than 85% busy over 10ms */
3160                 I915_WRITE(GEN6_RP_UP_EI, 8000);
3161                 I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
3162
3163                 /* Downclock if less than 60% busy over 32ms */
3164                 I915_WRITE(GEN6_RP_DOWN_EI, 25000);
3165                 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
3166
3167                 I915_WRITE(GEN6_RP_CONTROL,
3168                            GEN6_RP_MEDIA_TURBO |
3169                            GEN6_RP_MEDIA_HW_NORMAL_MODE |
3170                            GEN6_RP_MEDIA_IS_GFX |
3171                            GEN6_RP_ENABLE |
3172                            GEN6_RP_UP_BUSY_AVG |
3173                            GEN6_RP_DOWN_IDLE_AVG);
3174                 break;
3175         }
3176
3177         dev_priv->rps.power = new_power;
3178         dev_priv->rps.last_adj = 0;
3179 }
3180
3181 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
3182 {
3183         u32 mask = 0;
3184
3185         if (val > dev_priv->rps.min_freq_softlimit)
3186                 mask |= GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
3187         if (val < dev_priv->rps.max_freq_softlimit)
3188                 mask |= GEN6_PM_RP_UP_THRESHOLD;
3189
3190         mask |= dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED);
3191         mask &= dev_priv->pm_rps_events;
3192
3193         /* IVB and SNB hard hangs on looping batchbuffer
3194          * if GEN6_PM_UP_EI_EXPIRED is masked.
3195          */
3196         if (INTEL_INFO(dev_priv->dev)->gen <= 7 && !IS_HASWELL(dev_priv->dev))
3197                 mask |= GEN6_PM_RP_UP_EI_EXPIRED;
3198
3199         if (IS_GEN8(dev_priv->dev))
3200                 mask |= GEN8_PMINTR_REDIRECT_TO_NON_DISP;
3201
3202         return ~mask;
3203 }
3204
3205 /* gen6_set_rps is called to update the frequency request, but should also be
3206  * called when the range (min_delay and max_delay) is modified so that we can
3207  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3208 void gen6_set_rps(struct drm_device *dev, u8 val)
3209 {
3210         struct drm_i915_private *dev_priv = dev->dev_private;
3211
3212         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3213         WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3214         WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3215
3216         /* min/max delay may still have been modified so be sure to
3217          * write the limits value.
3218          */
3219         if (val != dev_priv->rps.cur_freq) {
3220                 gen6_set_rps_thresholds(dev_priv, val);
3221
3222                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3223                         I915_WRITE(GEN6_RPNSWREQ,
3224                                    HSW_FREQUENCY(val));
3225                 else
3226                         I915_WRITE(GEN6_RPNSWREQ,
3227                                    GEN6_FREQUENCY(val) |
3228                                    GEN6_OFFSET(0) |
3229                                    GEN6_AGGRESSIVE_TURBO);
3230         }
3231
3232         /* Make sure we continue to get interrupts
3233          * until we hit the minimum or maximum frequencies.
3234          */
3235         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, gen6_rps_limits(dev_priv, val));
3236         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3237
3238         POSTING_READ(GEN6_RPNSWREQ);
3239
3240         dev_priv->rps.cur_freq = val;
3241         trace_intel_gpu_freq_change(val * 50);
3242 }
3243
3244 /* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
3245  *
3246  * * If Gfx is Idle, then
3247  * 1. Mask Turbo interrupts
3248  * 2. Bring up Gfx clock
3249  * 3. Change the freq to Rpn and wait till P-Unit updates freq
3250  * 4. Clear the Force GFX CLK ON bit so that Gfx can down
3251  * 5. Unmask Turbo interrupts
3252 */
3253 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
3254 {
3255         int revision;
3256
3257         struct drm_device *dev = dev_priv->dev;
3258
3259         /* Latest VLV doesn't need to force the gfx clock */
3260         revision = pci_read_config(dev->dev, PCIR_REVID, 1);
3261         if (revision >= 0xd) {
3262                 valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3263                 return;
3264         }
3265
3266         /*
3267          * When we are idle.  Drop to min voltage state.
3268          */
3269
3270         if (dev_priv->rps.cur_freq <= dev_priv->rps.min_freq_softlimit)
3271                 return;
3272
3273         /* Mask turbo interrupt so that they will not come in between */
3274         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3275
3276         vlv_force_gfx_clock(dev_priv, true);
3277
3278         dev_priv->rps.cur_freq = dev_priv->rps.min_freq_softlimit;
3279
3280         vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ,
3281                                         dev_priv->rps.min_freq_softlimit);
3282
3283         if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
3284                                 & GENFREQSTATUS) == 0, 5))
3285                 DRM_ERROR("timed out waiting for Punit\n");
3286
3287         vlv_force_gfx_clock(dev_priv, false);
3288
3289         I915_WRITE(GEN6_PMINTRMSK,
3290                    gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
3291 }
3292
3293 void gen6_rps_idle(struct drm_i915_private *dev_priv)
3294 {
3295         struct drm_device *dev = dev_priv->dev;
3296
3297         mutex_lock(&dev_priv->rps.hw_lock);
3298         if (dev_priv->rps.enabled) {
3299                 if (IS_CHERRYVIEW(dev))
3300                         valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3301                 else if (IS_VALLEYVIEW(dev))
3302                         vlv_set_rps_idle(dev_priv);
3303                 else
3304                         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3305                 dev_priv->rps.last_adj = 0;
3306         }
3307         mutex_unlock(&dev_priv->rps.hw_lock);
3308 }
3309
3310 void gen6_rps_boost(struct drm_i915_private *dev_priv)
3311 {
3312         struct drm_device *dev = dev_priv->dev;
3313
3314         mutex_lock(&dev_priv->rps.hw_lock);
3315         if (dev_priv->rps.enabled) {
3316                 if (IS_VALLEYVIEW(dev))
3317                         valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3318                 else
3319                         gen6_set_rps(dev_priv->dev, dev_priv->rps.max_freq_softlimit);
3320                 dev_priv->rps.last_adj = 0;
3321         }
3322         mutex_unlock(&dev_priv->rps.hw_lock);
3323 }
3324
3325 void valleyview_set_rps(struct drm_device *dev, u8 val)
3326 {
3327         struct drm_i915_private *dev_priv = dev->dev_private;
3328
3329         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3330         WARN_ON(val > dev_priv->rps.max_freq_softlimit);
3331         WARN_ON(val < dev_priv->rps.min_freq_softlimit);
3332
3333         DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
3334                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
3335                          dev_priv->rps.cur_freq,
3336                          vlv_gpu_freq(dev_priv, val), val);
3337
3338         if (val != dev_priv->rps.cur_freq)
3339                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
3340
3341         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3342
3343         dev_priv->rps.cur_freq = val;
3344         trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv, val));
3345 }
3346
3347 static void gen8_disable_rps_interrupts(struct drm_device *dev)
3348 {
3349         struct drm_i915_private *dev_priv = dev->dev_private;
3350
3351         I915_WRITE(GEN6_PMINTRMSK, ~GEN8_PMINTR_REDIRECT_TO_NON_DISP);
3352         I915_WRITE(GEN8_GT_IER(2), I915_READ(GEN8_GT_IER(2)) &
3353                                    ~dev_priv->pm_rps_events);
3354         /* Complete PM interrupt masking here doesn't race with the rps work
3355          * item again unmasking PM interrupts because that is using a different
3356          * register (GEN8_GT_IMR(2)) to mask PM interrupts. The only risk is in
3357          * leaving stale bits in GEN8_GT_IIR(2) and GEN8_GT_IMR(2) which
3358          * gen8_enable_rps will clean up. */
3359
3360         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3361         dev_priv->rps.pm_iir = 0;
3362         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3363
3364         I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
3365 }
3366
3367 static void gen6_disable_rps_interrupts(struct drm_device *dev)
3368 {
3369         struct drm_i915_private *dev_priv = dev->dev_private;
3370
3371         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
3372         I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) &
3373                                 ~dev_priv->pm_rps_events);
3374         /* Complete PM interrupt masking here doesn't race with the rps work
3375          * item again unmasking PM interrupts because that is using a different
3376          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
3377          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
3378
3379         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3380         dev_priv->rps.pm_iir = 0;
3381         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3382
3383         I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3384 }
3385
3386 static void gen6_disable_rps(struct drm_device *dev)
3387 {
3388         struct drm_i915_private *dev_priv = dev->dev_private;
3389
3390         I915_WRITE(GEN6_RC_CONTROL, 0);
3391         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
3392
3393         if (IS_BROADWELL(dev))
3394                 gen8_disable_rps_interrupts(dev);
3395         else
3396                 gen6_disable_rps_interrupts(dev);
3397 }
3398
3399 static void cherryview_disable_rps(struct drm_device *dev)
3400 {
3401         struct drm_i915_private *dev_priv = dev->dev_private;
3402
3403         I915_WRITE(GEN6_RC_CONTROL, 0);
3404
3405         gen8_disable_rps_interrupts(dev);
3406 }
3407
3408 static void valleyview_disable_rps(struct drm_device *dev)
3409 {
3410         struct drm_i915_private *dev_priv = dev->dev_private;
3411
3412         I915_WRITE(GEN6_RC_CONTROL, 0);
3413
3414         gen6_disable_rps_interrupts(dev);
3415 }
3416
3417 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
3418 {
3419         if (IS_VALLEYVIEW(dev)) {
3420                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
3421                         mode = GEN6_RC_CTL_RC6_ENABLE;
3422                 else
3423                         mode = 0;
3424         }
3425         DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
3426                       (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
3427                       (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
3428                       (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
3429 }
3430
3431 static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
3432 {
3433         /* No RC6 before Ironlake */
3434         if (INTEL_INFO(dev)->gen < 5)
3435                 return 0;
3436
3437         /* RC6 is only on Ironlake mobile not on desktop */
3438         if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
3439                 return 0;
3440
3441         /* Respect the kernel parameter if it is set */
3442         if (enable_rc6 >= 0) {
3443                 int mask;
3444
3445                 if (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
3446                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
3447                                INTEL_RC6pp_ENABLE;
3448                 else
3449                         mask = INTEL_RC6_ENABLE;
3450
3451                 if ((enable_rc6 & mask) != enable_rc6)
3452                         DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
3453                                       enable_rc6 & mask, enable_rc6, mask);
3454
3455                 return enable_rc6 & mask;
3456         }
3457
3458         /* Disable RC6 on Ironlake */
3459         if (INTEL_INFO(dev)->gen == 5)
3460                 return 0;
3461
3462         if (IS_IVYBRIDGE(dev))
3463                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
3464
3465         return INTEL_RC6_ENABLE;
3466 }
3467
3468 int intel_enable_rc6(const struct drm_device *dev)
3469 {
3470         return i915.enable_rc6;
3471 }
3472
3473 static void gen8_enable_rps_interrupts(struct drm_device *dev)
3474 {
3475         struct drm_i915_private *dev_priv = dev->dev_private;
3476
3477         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3478         WARN_ON(dev_priv->rps.pm_iir);
3479         gen8_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3480         I915_WRITE(GEN8_GT_IIR(2), dev_priv->pm_rps_events);
3481         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3482 }
3483
3484 static void gen6_enable_rps_interrupts(struct drm_device *dev)
3485 {
3486         struct drm_i915_private *dev_priv = dev->dev_private;
3487
3488         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
3489         WARN_ON(dev_priv->rps.pm_iir);
3490         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
3491         I915_WRITE(GEN6_PMIIR, dev_priv->pm_rps_events);
3492         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
3493 }
3494
3495 static void parse_rp_state_cap(struct drm_i915_private *dev_priv, u32 rp_state_cap)
3496 {
3497         /* All of these values are in units of 50MHz */
3498         dev_priv->rps.cur_freq          = 0;
3499         /* static values from HW: RP0 < RPe < RP1 < RPn (min_freq) */
3500         dev_priv->rps.rp1_freq          = (rp_state_cap >>  8) & 0xff;
3501         dev_priv->rps.rp0_freq          = (rp_state_cap >>  0) & 0xff;
3502         dev_priv->rps.min_freq          = (rp_state_cap >> 16) & 0xff;
3503         /* XXX: only BYT has a special efficient freq */
3504         dev_priv->rps.efficient_freq    = dev_priv->rps.rp1_freq;
3505         /* hw_max = RP0 until we check for overclocking */
3506         dev_priv->rps.max_freq          = dev_priv->rps.rp0_freq;
3507
3508         /* Preserve min/max settings in case of re-init */
3509         if (dev_priv->rps.max_freq_softlimit == 0)
3510                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
3511
3512         if (dev_priv->rps.min_freq_softlimit == 0)
3513                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
3514 }
3515
3516 static void gen8_enable_rps(struct drm_device *dev)
3517 {
3518         struct drm_i915_private *dev_priv = dev->dev_private;
3519         struct intel_engine_cs *ring;
3520         uint32_t rc6_mask = 0, rp_state_cap;
3521         int unused;
3522
3523         /* 1a: Software RC state - RC0 */
3524         I915_WRITE(GEN6_RC_STATE, 0);
3525
3526         /* 1c & 1d: Get forcewake during program sequence. Although the driver
3527          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
3528         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3529
3530         /* 2a: Disable RC states. */
3531         I915_WRITE(GEN6_RC_CONTROL, 0);
3532
3533         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3534         parse_rp_state_cap(dev_priv, rp_state_cap);
3535
3536         /* 2b: Program RC6 thresholds.*/
3537         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
3538         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
3539         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
3540         for_each_ring(ring, dev_priv, unused)
3541                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3542         I915_WRITE(GEN6_RC_SLEEP, 0);
3543         if (IS_BROADWELL(dev))
3544                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
3545         else
3546                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
3547
3548         /* 3: Enable RC6 */
3549         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
3550                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
3551         intel_print_rc6_info(dev, rc6_mask);
3552         if (IS_BROADWELL(dev))
3553                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3554                                 GEN7_RC_CTL_TO_MODE |
3555                                 rc6_mask);
3556         else
3557                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
3558                                 GEN6_RC_CTL_EI_MODE(1) |
3559                                 rc6_mask);
3560
3561         /* 4 Program defaults and thresholds for RPS*/
3562         I915_WRITE(GEN6_RPNSWREQ,
3563                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3564         I915_WRITE(GEN6_RC_VIDEO_FREQ,
3565                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
3566         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
3567         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
3568
3569         /* Docs recommend 900MHz, and 300 MHz respectively */
3570         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
3571                    dev_priv->rps.max_freq_softlimit << 24 |
3572                    dev_priv->rps.min_freq_softlimit << 16);
3573
3574         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
3575         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
3576         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
3577         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
3578
3579         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3580
3581         /* 5: Enable RPS */
3582         I915_WRITE(GEN6_RP_CONTROL,
3583                    GEN6_RP_MEDIA_TURBO |
3584                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3585                    GEN6_RP_MEDIA_IS_GFX |
3586                    GEN6_RP_ENABLE |
3587                    GEN6_RP_UP_BUSY_AVG |
3588                    GEN6_RP_DOWN_IDLE_AVG);
3589
3590         /* 6: Ring frequency + overclocking (our driver does this later */
3591
3592         gen6_set_rps(dev, (I915_READ(GEN6_GT_PERF_STATUS) & 0xff00) >> 8);
3593
3594         gen8_enable_rps_interrupts(dev);
3595
3596         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3597 }
3598
3599 static void gen6_enable_rps(struct drm_device *dev)
3600 {
3601         struct drm_i915_private *dev_priv = dev->dev_private;
3602         struct intel_engine_cs *ring;
3603         u32 rp_state_cap;
3604         u32 gt_perf_status;
3605         u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
3606         u32 gtfifodbg;
3607         int rc6_mode;
3608         int i, ret;
3609
3610         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3611
3612         /* Here begins a magic sequence of register writes to enable
3613          * auto-downclocking.
3614          *
3615          * Perhaps there might be some value in exposing these to
3616          * userspace...
3617          */
3618         I915_WRITE(GEN6_RC_STATE, 0);
3619
3620         /* Clear the DBG now so we don't confuse earlier errors */
3621         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
3622                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
3623                 I915_WRITE(GTFIFODBG, gtfifodbg);
3624         }
3625
3626         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
3627
3628         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3629         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
3630
3631         parse_rp_state_cap(dev_priv, rp_state_cap);
3632
3633         /* disable the counters and set deterministic thresholds */
3634         I915_WRITE(GEN6_RC_CONTROL, 0);
3635
3636         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
3637         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
3638         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
3639         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
3640         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
3641
3642         for_each_ring(ring, dev_priv, i)
3643                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
3644
3645         I915_WRITE(GEN6_RC_SLEEP, 0);
3646         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
3647         if (IS_IVYBRIDGE(dev))
3648                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
3649         else
3650                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
3651         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
3652         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
3653
3654         /* Check if we are enabling RC6 */
3655         rc6_mode = intel_enable_rc6(dev_priv->dev);
3656         if (rc6_mode & INTEL_RC6_ENABLE)
3657                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
3658
3659         /* We don't use those on Haswell */
3660         if (!IS_HASWELL(dev)) {
3661                 if (rc6_mode & INTEL_RC6p_ENABLE)
3662                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
3663
3664                 if (rc6_mode & INTEL_RC6pp_ENABLE)
3665                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
3666         }
3667
3668         intel_print_rc6_info(dev, rc6_mask);
3669
3670         I915_WRITE(GEN6_RC_CONTROL,
3671                    rc6_mask |
3672                    GEN6_RC_CTL_EI_MODE(1) |
3673                    GEN6_RC_CTL_HW_ENABLE);
3674
3675         /* Power down if completely idle for over 50ms */
3676         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
3677         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
3678
3679         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
3680         if (ret)
3681                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
3682
3683         ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
3684         if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
3685                 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
3686                                  (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
3687                                  (pcu_mbox & 0xff) * 50);
3688                 dev_priv->rps.max_freq = pcu_mbox & 0xff;
3689         }
3690
3691         dev_priv->rps.power = HIGH_POWER; /* force a reset */
3692         gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
3693
3694         gen6_enable_rps_interrupts(dev);
3695
3696         rc6vids = 0;
3697         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
3698         if (IS_GEN6(dev) && ret) {
3699                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
3700         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
3701                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
3702                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
3703                 rc6vids &= 0xffff00;
3704                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
3705                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
3706                 if (ret)
3707                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
3708         }
3709
3710         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
3711 }
3712
3713 static void __gen6_update_ring_freq(struct drm_device *dev)
3714 {
3715         struct drm_i915_private *dev_priv = dev->dev_private;
3716         int min_freq = 15;
3717         unsigned int gpu_freq;
3718         unsigned int max_ia_freq, min_ring_freq;
3719         int scaling_factor = 180;
3720
3721         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3722
3723 #if 0
3724         policy = cpufreq_cpu_get(0);
3725         if (policy) {
3726                 max_ia_freq = policy->cpuinfo.max_freq;
3727                 cpufreq_cpu_put(policy);
3728         } else {
3729                 /*
3730                  * Default to measured freq if none found, PCU will ensure we
3731                  * don't go over
3732                  */
3733                 max_ia_freq = tsc_khz;
3734         }
3735 #else
3736         max_ia_freq = tsc_frequency / 1000;
3737 #endif
3738
3739         /* Convert from kHz to MHz */
3740         max_ia_freq /= 1000;
3741
3742         min_ring_freq = I915_READ(DCLK) & 0xf;
3743         /* convert DDR frequency from units of 266.6MHz to bandwidth */
3744         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
3745
3746         /*
3747          * For each potential GPU frequency, load a ring frequency we'd like
3748          * to use for memory access.  We do this by specifying the IA frequency
3749          * the PCU should use as a reference to determine the ring frequency.
3750          */
3751         for (gpu_freq = dev_priv->rps.max_freq_softlimit; gpu_freq >= dev_priv->rps.min_freq_softlimit;
3752              gpu_freq--) {
3753                 int diff = dev_priv->rps.max_freq_softlimit - gpu_freq;
3754                 unsigned int ia_freq = 0, ring_freq = 0;
3755
3756                 if (INTEL_INFO(dev)->gen >= 8) {
3757                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
3758                         ring_freq = max(min_ring_freq, gpu_freq);
3759                 } else if (IS_HASWELL(dev)) {
3760                         ring_freq = mult_frac(gpu_freq, 5, 4);
3761                         ring_freq = max(min_ring_freq, ring_freq);
3762                         /* leave ia_freq as the default, chosen by cpufreq */
3763                 } else {
3764                         /* On older processors, there is no separate ring
3765                          * clock domain, so in order to boost the bandwidth
3766                          * of the ring, we need to upclock the CPU (ia_freq).
3767                          *
3768                          * For GPU frequencies less than 750MHz,
3769                          * just use the lowest ring freq.
3770                          */
3771                         if (gpu_freq < min_freq)
3772                                 ia_freq = 800;
3773                         else
3774                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
3775                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
3776                 }
3777
3778                 sandybridge_pcode_write(dev_priv,
3779                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
3780                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
3781                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
3782                                         gpu_freq);
3783         }
3784 }
3785
3786 void gen6_update_ring_freq(struct drm_device *dev)
3787 {
3788         struct drm_i915_private *dev_priv = dev->dev_private;
3789
3790         if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
3791                 return;
3792
3793         mutex_lock(&dev_priv->rps.hw_lock);
3794         __gen6_update_ring_freq(dev);
3795         mutex_unlock(&dev_priv->rps.hw_lock);
3796 }
3797
3798 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
3799 {
3800         u32 val, rp0;
3801
3802         val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
3803         rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
3804
3805         return rp0;
3806 }
3807
3808 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3809 {
3810         u32 val, rpe;
3811
3812         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
3813         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
3814
3815         return rpe;
3816 }
3817
3818 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
3819 {
3820         u32 val, rp1;
3821
3822         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
3823         rp1 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) & PUNIT_GPU_STATUS_MAX_FREQ_MASK;
3824
3825         return rp1;
3826 }
3827
3828 static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
3829 {
3830         u32 val, rpn;
3831
3832         val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
3833         rpn = (val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) & PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK;
3834         return rpn;
3835 }
3836
3837 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
3838 {
3839         u32 val, rp1;
3840
3841         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3842
3843         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
3844
3845         return rp1;
3846 }
3847
3848 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
3849 {
3850         u32 val, rp0;
3851
3852         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
3853
3854         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
3855         /* Clamp to max */
3856         rp0 = min_t(u32, rp0, 0xea);
3857
3858         return rp0;
3859 }
3860
3861 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
3862 {
3863         u32 val, rpe;
3864
3865         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
3866         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
3867         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
3868         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
3869
3870         return rpe;
3871 }
3872
3873 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
3874 {
3875         return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
3876 }
3877
3878 /* Check that the pctx buffer wasn't move under us. */
3879 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
3880 {
3881         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
3882
3883         /* DragonFly - if EDID fails vlv_pctx can wind up NULL */
3884         if (WARN_ON(!dev_priv->vlv_pctx))
3885                 return;
3886
3887         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
3888                              dev_priv->vlv_pctx->stolen->start);
3889 }
3890
3891
3892 /* Check that the pcbr address is not empty. */
3893 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
3894 {
3895         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
3896
3897         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
3898 }
3899
3900 static void cherryview_setup_pctx(struct drm_device *dev)
3901 {
3902         struct drm_i915_private *dev_priv = dev->dev_private;
3903         unsigned long pctx_paddr, paddr;
3904         struct i915_gtt *gtt = &dev_priv->gtt;
3905         u32 pcbr;
3906         int pctx_size = 32*1024;
3907
3908         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3909
3910         pcbr = I915_READ(VLV_PCBR);
3911         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
3912                 paddr = (dev_priv->mm.stolen_base +
3913                          (gtt->stolen_size - pctx_size));
3914
3915                 pctx_paddr = (paddr & (~4095));
3916                 I915_WRITE(VLV_PCBR, pctx_paddr);
3917         }
3918 }
3919
3920 static void valleyview_setup_pctx(struct drm_device *dev)
3921 {
3922         struct drm_i915_private *dev_priv = dev->dev_private;
3923         struct drm_i915_gem_object *pctx;
3924         unsigned long pctx_paddr;
3925         u32 pcbr;
3926         int pctx_size = 24*1024;
3927
3928         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
3929
3930         pcbr = I915_READ(VLV_PCBR);
3931         if (pcbr) {
3932                 /* BIOS set it up already, grab the pre-alloc'd space */
3933                 int pcbr_offset;
3934
3935                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
3936                 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
3937                                                                       pcbr_offset,
3938                                                                       I915_GTT_OFFSET_NONE,
3939                                                                       pctx_size);
3940                 goto out;
3941         }
3942
3943         /*
3944          * From the Gunit register HAS:
3945          * The Gfx driver is expected to program this register and ensure
3946          * proper allocation within Gfx stolen memory.  For example, this
3947          * register should be programmed such than the PCBR range does not
3948          * overlap with other ranges, such as the frame buffer, protected
3949          * memory, or any other relevant ranges.
3950          */
3951         pctx = i915_gem_object_create_stolen(dev, pctx_size);
3952         if (!pctx) {
3953                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
3954                 return;
3955         }
3956
3957         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
3958         I915_WRITE(VLV_PCBR, pctx_paddr);
3959
3960 out:
3961         dev_priv->vlv_pctx = pctx;
3962 }
3963
3964 static void valleyview_cleanup_pctx(struct drm_device *dev)
3965 {
3966         struct drm_i915_private *dev_priv = dev->dev_private;
3967
3968         if (WARN_ON(!dev_priv->vlv_pctx))
3969                 return;
3970
3971         drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
3972         dev_priv->vlv_pctx = NULL;
3973 }
3974
3975 static void valleyview_init_gt_powersave(struct drm_device *dev)
3976 {
3977         struct drm_i915_private *dev_priv = dev->dev_private;
3978
3979         valleyview_setup_pctx(dev);
3980
3981         mutex_lock(&dev_priv->rps.hw_lock);
3982
3983         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
3984         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
3985         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
3986                          vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
3987                          dev_priv->rps.max_freq);
3988
3989         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
3990         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
3991                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
3992                          dev_priv->rps.efficient_freq);
3993
3994         dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
3995         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
3996                          vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
3997                          dev_priv->rps.rp1_freq);
3998
3999         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
4000         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4001                          vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4002                          dev_priv->rps.min_freq);
4003
4004         /* Preserve min/max settings in case of re-init */
4005         if (dev_priv->rps.max_freq_softlimit == 0)
4006                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4007
4008         if (dev_priv->rps.min_freq_softlimit == 0)
4009                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4010
4011         mutex_unlock(&dev_priv->rps.hw_lock);
4012 }
4013
4014 static void cherryview_init_gt_powersave(struct drm_device *dev)
4015 {
4016         struct drm_i915_private *dev_priv = dev->dev_private;
4017
4018         cherryview_setup_pctx(dev);
4019
4020         mutex_lock(&dev_priv->rps.hw_lock);
4021
4022         dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
4023         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4024         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4025                          vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4026                          dev_priv->rps.max_freq);
4027
4028         dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
4029         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4030                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4031                          dev_priv->rps.efficient_freq);
4032
4033         dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
4034         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
4035                          vlv_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4036                          dev_priv->rps.rp1_freq);
4037
4038         dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
4039         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4040                          vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4041                          dev_priv->rps.min_freq);
4042
4043         /* Preserve min/max settings in case of re-init */
4044         if (dev_priv->rps.max_freq_softlimit == 0)
4045                 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4046
4047         if (dev_priv->rps.min_freq_softlimit == 0)
4048                 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4049
4050         mutex_unlock(&dev_priv->rps.hw_lock);
4051 }
4052
4053 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
4054 {
4055         valleyview_cleanup_pctx(dev);
4056 }
4057
4058 static void cherryview_enable_rps(struct drm_device *dev)
4059 {
4060         struct drm_i915_private *dev_priv = dev->dev_private;
4061         struct intel_engine_cs *ring;
4062         u32 gtfifodbg, val, rc6_mode = 0, pcbr;
4063         int i;
4064
4065         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4066
4067         gtfifodbg = I915_READ(GTFIFODBG);
4068         if (gtfifodbg) {
4069                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4070                                  gtfifodbg);
4071                 I915_WRITE(GTFIFODBG, gtfifodbg);
4072         }
4073
4074         cherryview_check_pctx(dev_priv);
4075
4076         /* 1a & 1b: Get forcewake during program sequence. Although the driver
4077          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4078         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4079
4080         /* 2a: Program RC6 thresholds.*/
4081         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4082         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4083         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4084
4085         for_each_ring(ring, dev_priv, i)
4086                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4087         I915_WRITE(GEN6_RC_SLEEP, 0);
4088
4089         I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4090
4091         /* allows RC6 residency counter to work */
4092         I915_WRITE(VLV_COUNTER_CONTROL,
4093                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
4094                                       VLV_MEDIA_RC6_COUNT_EN |
4095                                       VLV_RENDER_RC6_COUNT_EN));
4096
4097         /* For now we assume BIOS is allocating and populating the PCBR  */
4098         pcbr = I915_READ(VLV_PCBR);
4099
4100         DRM_DEBUG_DRIVER("PCBR offset : 0x%x\n", pcbr);
4101
4102         /* 3: Enable RC6 */
4103         if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
4104                                                 (pcbr >> VLV_PCBR_ADDR_SHIFT))
4105                 rc6_mode = GEN6_RC_CTL_EI_MODE(1);
4106
4107         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4108
4109         /* 4 Program defaults and thresholds for RPS*/
4110         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4111         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4112         I915_WRITE(GEN6_RP_UP_EI, 66000);
4113         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4114
4115         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4116
4117         /* WaDisablePwrmtrEvent:chv (pre-production hw) */
4118         I915_WRITE(0xA80C, I915_READ(0xA80C) & 0x00ffffff);
4119         I915_WRITE(0xA810, I915_READ(0xA810) & 0xffffff00);
4120
4121         /* 5: Enable RPS */
4122         I915_WRITE(GEN6_RP_CONTROL,
4123                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4124                    GEN6_RP_MEDIA_IS_GFX | /* WaSetMaskForGfxBusyness:chv (pre-production hw ?) */
4125                    GEN6_RP_ENABLE |
4126                    GEN6_RP_UP_BUSY_AVG |
4127                    GEN6_RP_DOWN_IDLE_AVG);
4128
4129         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4130
4131         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
4132         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4133
4134         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4135         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4136                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4137                          dev_priv->rps.cur_freq);
4138
4139         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4140                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4141                          dev_priv->rps.efficient_freq);
4142
4143         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4144
4145         gen8_enable_rps_interrupts(dev);
4146
4147         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4148 }
4149
4150 static void valleyview_enable_rps(struct drm_device *dev)
4151 {
4152         struct drm_i915_private *dev_priv = dev->dev_private;
4153         struct intel_engine_cs *ring;
4154         u32 gtfifodbg, val, rc6_mode = 0;
4155         int i;
4156
4157         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4158
4159         valleyview_check_pctx(dev_priv);
4160
4161         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4162                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4163                                  gtfifodbg);
4164                 I915_WRITE(GTFIFODBG, gtfifodbg);
4165         }
4166
4167         /* If VLV, Forcewake all wells, else re-direct to regular path */
4168         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4169
4170         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
4171         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
4172         I915_WRITE(GEN6_RP_UP_EI, 66000);
4173         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
4174
4175         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4176         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 0xf4240);
4177
4178         I915_WRITE(GEN6_RP_CONTROL,
4179                    GEN6_RP_MEDIA_TURBO |
4180                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4181                    GEN6_RP_MEDIA_IS_GFX |
4182                    GEN6_RP_ENABLE |
4183                    GEN6_RP_UP_BUSY_AVG |
4184                    GEN6_RP_DOWN_IDLE_CONT);
4185
4186         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
4187         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4188         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4189
4190         for_each_ring(ring, dev_priv, i)
4191                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4192
4193         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
4194
4195         /* allows RC6 residency counter to work */
4196         I915_WRITE(VLV_COUNTER_CONTROL,
4197                    _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
4198                                       VLV_RENDER_RC0_COUNT_EN |
4199                                       VLV_MEDIA_RC6_COUNT_EN |
4200                                       VLV_RENDER_RC6_COUNT_EN));
4201
4202         if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4203                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
4204
4205         intel_print_rc6_info(dev, rc6_mode);
4206
4207         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
4208
4209         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4210
4211         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
4212         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
4213
4214         dev_priv->rps.cur_freq = (val >> 8) & 0xff;
4215         DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
4216                          vlv_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
4217                          dev_priv->rps.cur_freq);
4218
4219         DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
4220                          vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4221                          dev_priv->rps.efficient_freq);
4222
4223         valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
4224
4225         gen6_enable_rps_interrupts(dev);
4226
4227         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4228 }
4229
4230 void ironlake_teardown_rc6(struct drm_device *dev)
4231 {
4232         struct drm_i915_private *dev_priv = dev->dev_private;
4233
4234         if (dev_priv->ips.renderctx) {
4235                 i915_gem_object_ggtt_unpin(dev_priv->ips.renderctx);
4236                 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
4237                 dev_priv->ips.renderctx = NULL;
4238         }
4239
4240         if (dev_priv->ips.pwrctx) {
4241                 i915_gem_object_ggtt_unpin(dev_priv->ips.pwrctx);
4242                 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
4243                 dev_priv->ips.pwrctx = NULL;
4244         }
4245 }
4246
4247 static void ironlake_disable_rc6(struct drm_device *dev)
4248 {
4249         struct drm_i915_private *dev_priv = dev->dev_private;
4250
4251         if (I915_READ(PWRCTXA)) {
4252                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
4253                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
4254                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
4255                          50);
4256
4257                 I915_WRITE(PWRCTXA, 0);
4258                 POSTING_READ(PWRCTXA);
4259
4260                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4261                 POSTING_READ(RSTDBYCTL);
4262         }
4263 }
4264
4265 static int ironlake_setup_rc6(struct drm_device *dev)
4266 {
4267         struct drm_i915_private *dev_priv = dev->dev_private;
4268
4269         if (dev_priv->ips.renderctx == NULL)
4270                 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
4271         if (!dev_priv->ips.renderctx)
4272                 return -ENOMEM;
4273
4274         if (dev_priv->ips.pwrctx == NULL)
4275                 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
4276         if (!dev_priv->ips.pwrctx) {
4277                 ironlake_teardown_rc6(dev);
4278                 return -ENOMEM;
4279         }
4280
4281         return 0;
4282 }
4283
4284 static void ironlake_enable_rc6(struct drm_device *dev)
4285 {
4286         struct drm_i915_private *dev_priv = dev->dev_private;
4287         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
4288         bool was_interruptible;
4289         int ret;
4290
4291         /* rc6 disabled by default due to repeated reports of hanging during
4292          * boot and resume.
4293          */
4294         if (!intel_enable_rc6(dev))
4295                 return;
4296
4297         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4298
4299         ret = ironlake_setup_rc6(dev);
4300         if (ret)
4301                 return;
4302
4303         was_interruptible = dev_priv->mm.interruptible;
4304         dev_priv->mm.interruptible = false;
4305
4306         /*
4307          * GPU can automatically power down the render unit if given a page
4308          * to save state.
4309          */
4310         ret = intel_ring_begin(ring, 6);
4311         if (ret) {
4312                 ironlake_teardown_rc6(dev);
4313                 dev_priv->mm.interruptible = was_interruptible;
4314                 return;
4315         }
4316
4317         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
4318         intel_ring_emit(ring, MI_SET_CONTEXT);
4319         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
4320                         MI_MM_SPACE_GTT |
4321                         MI_SAVE_EXT_STATE_EN |
4322                         MI_RESTORE_EXT_STATE_EN |
4323                         MI_RESTORE_INHIBIT);
4324         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
4325         intel_ring_emit(ring, MI_NOOP);
4326         intel_ring_emit(ring, MI_FLUSH);
4327         intel_ring_advance(ring);
4328
4329         /*
4330          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
4331          * does an implicit flush, combined with MI_FLUSH above, it should be
4332          * safe to assume that renderctx is valid
4333          */
4334         ret = intel_ring_idle(ring);
4335         dev_priv->mm.interruptible = was_interruptible;
4336         if (ret) {
4337                 DRM_ERROR("failed to enable ironlake power savings\n");
4338                 ironlake_teardown_rc6(dev);
4339                 return;
4340         }
4341
4342         I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
4343         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
4344
4345         intel_print_rc6_info(dev, GEN6_RC_CTL_RC6_ENABLE);
4346 }
4347
4348 static unsigned long intel_pxfreq(u32 vidfreq)
4349 {
4350         unsigned long freq;
4351         int div = (vidfreq & 0x3f0000) >> 16;
4352         int post = (vidfreq & 0x3000) >> 12;
4353         int pre = (vidfreq & 0x7);
4354
4355         if (!pre)
4356                 return 0;
4357
4358         freq = ((div * 133333) / ((1<<post) * pre));
4359
4360         return freq;
4361 }
4362
4363 static const struct cparams {
4364         u16 i;
4365         u16 t;
4366         u16 m;
4367         u16 c;
4368 } cparams[] = {
4369         { 1, 1333, 301, 28664 },
4370         { 1, 1066, 294, 24460 },
4371         { 1, 800, 294, 25192 },
4372         { 0, 1333, 276, 27605 },
4373         { 0, 1066, 276, 27605 },
4374         { 0, 800, 231, 23784 },
4375 };
4376
4377 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
4378 {
4379         u64 total_count, diff, ret;
4380         u32 count1, count2, count3, m = 0, c = 0;
4381         unsigned long now = jiffies_to_msecs(jiffies), diff1;
4382         int i;
4383
4384         assert_spin_locked(&mchdev_lock);
4385
4386         diff1 = now - dev_priv->ips.last_time1;
4387
4388         /* Prevent division-by-zero if we are asking too fast.
4389          * Also, we don't get interesting results if we are polling
4390          * faster than once in 10ms, so just return the saved value
4391          * in such cases.
4392          */
4393         if (diff1 <= 10)
4394                 return dev_priv->ips.chipset_power;
4395
4396         count1 = I915_READ(DMIEC);
4397         count2 = I915_READ(DDREC);
4398         count3 = I915_READ(CSIEC);
4399
4400         total_count = count1 + count2 + count3;
4401
4402         /* FIXME: handle per-counter overflow */
4403         if (total_count < dev_priv->ips.last_count1) {
4404                 diff = ~0UL - dev_priv->ips.last_count1;
4405                 diff += total_count;
4406         } else {
4407                 diff = total_count - dev_priv->ips.last_count1;
4408         }
4409
4410         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
4411                 if (cparams[i].i == dev_priv->ips.c_m &&
4412                     cparams[i].t == dev_priv->ips.r_t) {
4413                         m = cparams[i].m;
4414                         c = cparams[i].c;
4415                         break;
4416                 }
4417         }
4418
4419         diff = div_u64(diff, diff1);
4420         ret = ((m * diff) + c);
4421         ret = div_u64(ret, 10);
4422
4423         dev_priv->ips.last_count1 = total_count;
4424         dev_priv->ips.last_time1 = now;
4425
4426         dev_priv->ips.chipset_power = ret;
4427
4428         return ret;
4429 }
4430
4431 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
4432 {
4433         struct drm_device *dev = dev_priv->dev;
4434         unsigned long val;
4435
4436         if (INTEL_INFO(dev)->gen != 5)
4437                 return 0;
4438
4439         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
4440
4441         val = __i915_chipset_val(dev_priv);
4442
4443         lockmgr(&mchdev_lock, LK_RELEASE);
4444
4445         return val;
4446 }
4447
4448 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
4449 {
4450         unsigned long m, x, b;
4451         u32 tsfs;
4452
4453         tsfs = I915_READ(TSFS);
4454
4455         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
4456         x = I915_READ8(TR1);
4457
4458         b = tsfs & TSFS_INTR_MASK;
4459
4460         return ((m * x) / 127) - b;
4461 }
4462
4463 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
4464 {
4465         struct drm_device *dev = dev_priv->dev;
4466         static const struct v_table {
4467                 u16 vd; /* in .1 mil */
4468                 u16 vm; /* in .1 mil */
4469         } v_table[] = {
4470                 { 0, 0, },
4471                 { 375, 0, },
4472                 { 500, 0, },
4473                 { 625, 0, },
4474                 { 750, 0, },
4475                 { 875, 0, },
4476                 { 1000, 0, },
4477                 { 1125, 0, },
4478                 { 4125, 3000, },
4479                 { 4125, 3000, },
4480                 { 4125, 3000, },
4481                 { 4125, 3000, },
4482                 { 4125, 3000, },
4483                 { 4125, 3000, },
4484                 { 4125, 3000, },
4485                 { 4125, 3000, },
4486                 { 4125, 3000, },
4487                 { 4125, 3000, },
4488                 { 4125, 3000, },
4489                 { 4125, 3000, },
4490                 { 4125, 3000, },
4491                 { 4125, 3000, },
4492                 { 4125, 3000, },
4493                 { 4125, 3000, },
4494                 { 4125, 3000, },
4495                 { 4125, 3000, },
4496                 { 4125, 3000, },
4497                 { 4125, 3000, },
4498                 { 4125, 3000, },
4499                 { 4125, 3000, },
4500                 { 4125, 3000, },
4501                 { 4125, 3000, },
4502                 { 4250, 3125, },
4503                 { 4375, 3250, },
4504                 { 4500, 3375, },
4505                 { 4625, 3500, },
4506                 { 4750, 3625, },
4507                 { 4875, 3750, },
4508                 { 5000, 3875, },
4509                 { 5125, 4000, },
4510                 { 5250, 4125, },
4511                 { 5375, 4250, },
4512                 { 5500, 4375, },
4513                 { 5625, 4500, },
4514                 { 5750, 4625, },
4515                 { 5875, 4750, },
4516                 { 6000, 4875, },
4517                 { 6125, 5000, },
4518                 { 6250, 5125, },
4519                 { 6375, 5250, },
4520                 { 6500, 5375, },
4521                 { 6625, 5500, },
4522                 { 6750, 5625, },
4523                 { 6875, 5750, },
4524                 { 7000, 5875, },
4525                 { 7125, 6000, },
4526                 { 7250, 6125, },
4527                 { 7375, 6250, },
4528                 { 7500, 6375, },
4529                 { 7625, 6500, },
4530                 { 7750, 6625, },
4531                 { 7875, 6750, },
4532                 { 8000, 6875, },
4533                 { 8125, 7000, },
4534                 { 8250, 7125, },
4535                 { 8375, 7250, },
4536                 { 8500, 7375, },
4537                 { 8625, 7500, },
4538                 { 8750, 7625, },
4539                 { 8875, 7750, },
4540                 { 9000, 7875, },
4541                 { 9125, 8000, },
4542                 { 9250, 8125, },
4543                 { 9375, 8250, },
4544                 { 9500, 8375, },
4545                 { 9625, 8500, },
4546                 { 9750, 8625, },
4547                 { 9875, 8750, },
4548                 { 10000, 8875, },
4549                 { 10125, 9000, },
4550                 { 10250, 9125, },
4551                 { 10375, 9250, },
4552                 { 10500, 9375, },
4553                 { 10625, 9500, },
4554                 { 10750, 9625, },
4555                 { 10875, 9750, },
4556                 { 11000, 9875, },
4557                 { 11125, 10000, },
4558                 { 11250, 10125, },
4559                 { 11375, 10250, },
4560                 { 11500, 10375, },
4561                 { 11625, 10500, },
4562                 { 11750, 10625, },
4563                 { 11875, 10750, },
4564                 { 12000, 10875, },
4565                 { 12125, 11000, },
4566                 { 12250, 11125, },
4567                 { 12375, 11250, },
4568                 { 12500, 11375, },
4569                 { 12625, 11500, },
4570                 { 12750, 11625, },
4571                 { 12875, 11750, },
4572                 { 13000, 11875, },
4573                 { 13125, 12000, },
4574                 { 13250, 12125, },
4575                 { 13375, 12250, },
4576                 { 13500, 12375, },
4577                 { 13625, 12500, },
4578                 { 13750, 12625, },
4579                 { 13875, 12750, },
4580                 { 14000, 12875, },
4581                 { 14125, 13000, },
4582                 { 14250, 13125, },
4583                 { 14375, 13250, },
4584                 { 14500, 13375, },
4585                 { 14625, 13500, },
4586                 { 14750, 13625, },
4587                 { 14875, 13750, },
4588                 { 15000, 13875, },
4589                 { 15125, 14000, },
4590                 { 15250, 14125, },
4591                 { 15375, 14250, },
4592                 { 15500, 14375, },
4593                 { 15625, 14500, },
4594                 { 15750, 14625, },
4595                 { 15875, 14750, },
4596                 { 16000, 14875, },
4597                 { 16125, 15000, },
4598         };
4599         if (INTEL_INFO(dev)->is_mobile)
4600                 return v_table[pxvid].vm;
4601         else
4602                 return v_table[pxvid].vd;
4603 }
4604
4605 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
4606 {
4607         struct timespec now, diff1;
4608         u64 diff;
4609         unsigned long diffms;
4610         u32 count;
4611
4612         assert_spin_locked(&mchdev_lock);
4613
4614         getrawmonotonic(&now);
4615         diff1 = timespec_sub(now, dev_priv->ips.last_time2);
4616
4617         /* Don't divide by 0 */
4618         diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
4619         if (!diffms)
4620                 return;
4621
4622         count = I915_READ(GFXEC);
4623
4624         if (count < dev_priv->ips.last_count2) {
4625                 diff = ~0UL - dev_priv->ips.last_count2;
4626                 diff += count;
4627         } else {
4628                 diff = count - dev_priv->ips.last_count2;
4629         }
4630
4631         dev_priv->ips.last_count2 = count;
4632         dev_priv->ips.last_time2 = now;
4633
4634         /* More magic constants... */
4635         diff = diff * 1181;
4636         diff = div_u64(diff, diffms * 10);
4637         dev_priv->ips.gfx_power = diff;
4638 }
4639
4640 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
4641 {
4642         struct drm_device *dev = dev_priv->dev;
4643
4644         if (INTEL_INFO(dev)->gen != 5)
4645                 return;
4646
4647         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
4648
4649         __i915_update_gfx_val(dev_priv);
4650
4651         lockmgr(&mchdev_lock, LK_RELEASE);
4652 }
4653
4654 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
4655 {
4656         unsigned long t, corr, state1, corr2, state2;
4657         u32 pxvid, ext_v;
4658
4659         assert_spin_locked(&mchdev_lock);
4660
4661         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
4662         pxvid = (pxvid >> 24) & 0x7f;
4663         ext_v = pvid_to_extvid(dev_priv, pxvid);
4664
4665         state1 = ext_v;
4666
4667         t = i915_mch_val(dev_priv);
4668
4669         /* Revel in the empirically derived constants */
4670
4671         /* Correction factor in 1/100000 units */
4672         if (t > 80)
4673                 corr = ((t * 2349) + 135940);
4674         else if (t >= 50)
4675                 corr = ((t * 964) + 29317);
4676         else /* < 50 */
4677                 corr = ((t * 301) + 1004);
4678
4679         corr = corr * ((150142 * state1) / 10000 - 78642);
4680         corr /= 100000;
4681         corr2 = (corr * dev_priv->ips.corr);
4682
4683         state2 = (corr2 * state1) / 10000;
4684         state2 /= 100; /* convert to mW */
4685
4686         __i915_update_gfx_val(dev_priv);
4687
4688         return dev_priv->ips.gfx_power + state2;
4689 }
4690
4691 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
4692 {
4693         struct drm_device *dev = dev_priv->dev;
4694         unsigned long val;
4695
4696         if (INTEL_INFO(dev)->gen != 5)
4697                 return 0;
4698
4699         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
4700
4701         val = __i915_gfx_val(dev_priv);
4702
4703         lockmgr(&mchdev_lock, LK_RELEASE);
4704
4705         return val;
4706 }
4707
4708 /**
4709  * i915_read_mch_val - return value for IPS use
4710  *
4711  * Calculate and return a value for the IPS driver to use when deciding whether
4712  * we have thermal and power headroom to increase CPU or GPU power budget.
4713  */
4714 unsigned long i915_read_mch_val(void)
4715 {
4716         struct drm_i915_private *dev_priv;
4717         unsigned long chipset_val, graphics_val, ret = 0;
4718
4719         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
4720         if (!i915_mch_dev)
4721                 goto out_unlock;
4722         dev_priv = i915_mch_dev;
4723
4724         chipset_val = __i915_chipset_val(dev_priv);
4725         graphics_val = __i915_gfx_val(dev_priv);
4726
4727         ret = chipset_val + graphics_val;
4728
4729 out_unlock:
4730         lockmgr(&mchdev_lock, LK_RELEASE);
4731
4732         return ret;
4733 }
4734
4735 /**
4736  * i915_gpu_raise - raise GPU frequency limit
4737  *
4738  * Raise the limit; IPS indicates we have thermal headroom.
4739  */
4740 bool i915_gpu_raise(void)
4741 {
4742         struct drm_i915_private *dev_priv;
4743         bool ret = true;
4744
4745         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
4746         if (!i915_mch_dev) {
4747                 ret = false;
4748                 goto out_unlock;
4749         }
4750         dev_priv = i915_mch_dev;
4751
4752         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
4753                 dev_priv->ips.max_delay--;
4754
4755 out_unlock:
4756         lockmgr(&mchdev_lock, LK_RELEASE);
4757
4758         return ret;
4759 }
4760
4761 /**
4762  * i915_gpu_lower - lower GPU frequency limit
4763  *
4764  * IPS indicates we're close to a thermal limit, so throttle back the GPU
4765  * frequency maximum.
4766  */
4767 bool i915_gpu_lower(void)
4768 {
4769         struct drm_i915_private *dev_priv;
4770         bool ret = true;
4771
4772         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
4773         if (!i915_mch_dev) {
4774                 ret = false;
4775                 goto out_unlock;
4776         }
4777         dev_priv = i915_mch_dev;
4778
4779         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
4780                 dev_priv->ips.max_delay++;
4781
4782 out_unlock:
4783         lockmgr(&mchdev_lock, LK_RELEASE);
4784
4785         return ret;
4786 }
4787
4788 /**
4789  * i915_gpu_busy - indicate GPU business to IPS
4790  *
4791  * Tell the IPS driver whether or not the GPU is busy.
4792  */
4793 bool i915_gpu_busy(void)
4794 {
4795         struct drm_i915_private *dev_priv;
4796         struct intel_engine_cs *ring;
4797         bool ret = false;
4798         int i;
4799
4800         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
4801         if (!i915_mch_dev)
4802                 goto out_unlock;
4803         dev_priv = i915_mch_dev;
4804
4805         for_each_ring(ring, dev_priv, i)
4806                 ret |= !list_empty(&ring->request_list);
4807
4808 out_unlock:
4809         lockmgr(&mchdev_lock, LK_RELEASE);
4810
4811         return ret;
4812 }
4813
4814 /**
4815  * i915_gpu_turbo_disable - disable graphics turbo
4816  *
4817  * Disable graphics turbo by resetting the max frequency and setting the
4818  * current frequency to the default.
4819  */
4820 bool i915_gpu_turbo_disable(void)
4821 {
4822         struct drm_i915_private *dev_priv;
4823         bool ret = true;
4824
4825         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
4826         if (!i915_mch_dev) {
4827                 ret = false;
4828                 goto out_unlock;
4829         }
4830         dev_priv = i915_mch_dev;
4831
4832         dev_priv->ips.max_delay = dev_priv->ips.fstart;
4833
4834         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
4835                 ret = false;
4836
4837 out_unlock:
4838         lockmgr(&mchdev_lock, LK_RELEASE);
4839
4840         return ret;
4841 }
4842
4843 #if 0
4844 /**
4845  * Tells the intel_ips driver that the i915 driver is now loaded, if
4846  * IPS got loaded first.
4847  *
4848  * This awkward dance is so that neither module has to depend on the
4849  * other in order for IPS to do the appropriate communication of
4850  * GPU turbo limits to i915.
4851  */
4852 static void
4853 ips_ping_for_i915_load(void)
4854 {
4855         void (*link)(void);
4856
4857         link = symbol_get(ips_link_to_i915_driver);
4858         if (link) {
4859                 link();
4860                 symbol_put(ips_link_to_i915_driver);
4861         }
4862 }
4863 #endif
4864
4865 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
4866 {
4867         /* We only register the i915 ips part with intel-ips once everything is
4868          * set up, to avoid intel-ips sneaking in and reading bogus values. */
4869         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
4870         i915_mch_dev = dev_priv;
4871         lockmgr(&mchdev_lock, LK_RELEASE);
4872 }
4873
4874 void intel_gpu_ips_teardown(void)
4875 {
4876         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
4877         i915_mch_dev = NULL;
4878         lockmgr(&mchdev_lock, LK_RELEASE);
4879 }
4880
4881 static void intel_init_emon(struct drm_device *dev)
4882 {
4883         struct drm_i915_private *dev_priv = dev->dev_private;
4884         u32 lcfuse;
4885         u8 pxw[16];
4886         int i;
4887
4888         /* Disable to program */
4889         I915_WRITE(ECR, 0);
4890         POSTING_READ(ECR);
4891
4892         /* Program energy weights for various events */
4893         I915_WRITE(SDEW, 0x15040d00);
4894         I915_WRITE(CSIEW0, 0x007f0000);
4895         I915_WRITE(CSIEW1, 0x1e220004);
4896         I915_WRITE(CSIEW2, 0x04000004);
4897
4898         for (i = 0; i < 5; i++)
4899                 I915_WRITE(PEW + (i * 4), 0);
4900         for (i = 0; i < 3; i++)
4901                 I915_WRITE(DEW + (i * 4), 0);
4902
4903         /* Program P-state weights to account for frequency power adjustment */
4904         for (i = 0; i < 16; i++) {
4905                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
4906                 unsigned long freq = intel_pxfreq(pxvidfreq);
4907                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
4908                         PXVFREQ_PX_SHIFT;
4909                 unsigned long val;
4910
4911                 val = vid * vid;
4912                 val *= (freq / 1000);
4913                 val *= 255;
4914                 val /= (127*127*900);
4915                 if (val > 0xff)
4916                         DRM_ERROR("bad pxval: %ld\n", val);
4917                 pxw[i] = val;
4918         }
4919         /* Render standby states get 0 weight */
4920         pxw[14] = 0;
4921         pxw[15] = 0;
4922
4923         for (i = 0; i < 4; i++) {
4924                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
4925                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
4926                 I915_WRITE(PXW + (i * 4), val);
4927         }
4928
4929         /* Adjust magic regs to magic values (more experimental results) */
4930         I915_WRITE(OGW0, 0);
4931         I915_WRITE(OGW1, 0);
4932         I915_WRITE(EG0, 0x00007f00);
4933         I915_WRITE(EG1, 0x0000000e);
4934         I915_WRITE(EG2, 0x000e0000);
4935         I915_WRITE(EG3, 0x68000300);
4936         I915_WRITE(EG4, 0x42000000);
4937         I915_WRITE(EG5, 0x00140031);
4938         I915_WRITE(EG6, 0);
4939         I915_WRITE(EG7, 0);
4940
4941         for (i = 0; i < 8; i++)
4942                 I915_WRITE(PXWL + (i * 4), 0);
4943
4944         /* Enable PMON + select events */
4945         I915_WRITE(ECR, 0x80000019);
4946
4947         lcfuse = I915_READ(LCFUSE02);
4948
4949         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
4950 }
4951
4952 void intel_init_gt_powersave(struct drm_device *dev)
4953 {
4954         i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
4955
4956         if (IS_CHERRYVIEW(dev))
4957                 cherryview_init_gt_powersave(dev);
4958         else if (IS_VALLEYVIEW(dev))
4959                 valleyview_init_gt_powersave(dev);
4960 }
4961
4962 void intel_cleanup_gt_powersave(struct drm_device *dev)
4963 {
4964         if (IS_CHERRYVIEW(dev))
4965                 return;
4966         else if (IS_VALLEYVIEW(dev))
4967                 valleyview_cleanup_gt_powersave(dev);
4968 }
4969
4970 /**
4971  * intel_suspend_gt_powersave - suspend PM work and helper threads
4972  * @dev: drm device
4973  *
4974  * We don't want to disable RC6 or other features here, we just want
4975  * to make sure any work we've queued has finished and won't bother
4976  * us while we're suspended.
4977  */
4978 void intel_suspend_gt_powersave(struct drm_device *dev)
4979 {
4980         struct drm_i915_private *dev_priv = dev->dev_private;
4981
4982         /* Interrupts should be disabled already to avoid re-arming. */
4983         WARN_ON(intel_irqs_enabled(dev_priv));
4984
4985 #if 0
4986         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4987 #endif
4988
4989         cancel_work_sync(&dev_priv->rps.work);
4990
4991         /* Force GPU to min freq during suspend */
4992         gen6_rps_idle(dev_priv);
4993 }
4994
4995 void intel_disable_gt_powersave(struct drm_device *dev)
4996 {
4997         struct drm_i915_private *dev_priv = dev->dev_private;
4998
4999         /* Interrupts should be disabled already to avoid re-arming. */
5000         WARN_ON(intel_irqs_enabled(dev_priv));
5001
5002         if (IS_IRONLAKE_M(dev)) {
5003                 ironlake_disable_drps(dev);
5004                 ironlake_disable_rc6(dev);
5005         } else if (INTEL_INFO(dev)->gen >= 6) {
5006                 intel_suspend_gt_powersave(dev);
5007
5008                 mutex_lock(&dev_priv->rps.hw_lock);
5009                 if (IS_CHERRYVIEW(dev))
5010                         cherryview_disable_rps(dev);
5011                 else if (IS_VALLEYVIEW(dev))
5012                         valleyview_disable_rps(dev);
5013                 else
5014                         gen6_disable_rps(dev);
5015                 dev_priv->rps.enabled = false;
5016                 mutex_unlock(&dev_priv->rps.hw_lock);
5017         }
5018 }
5019
5020 static void intel_gen6_powersave_work(struct work_struct *work)
5021 {
5022         struct drm_i915_private *dev_priv =
5023                 container_of(work, struct drm_i915_private,
5024                              rps.delayed_resume_work.work);
5025         struct drm_device *dev = dev_priv->dev;
5026
5027         mutex_lock(&dev_priv->rps.hw_lock);
5028
5029         if (IS_CHERRYVIEW(dev)) {
5030                 cherryview_enable_rps(dev);
5031         } else if (IS_VALLEYVIEW(dev)) {
5032                 valleyview_enable_rps(dev);
5033         } else if (IS_BROADWELL(dev)) {
5034                 gen8_enable_rps(dev);
5035                 __gen6_update_ring_freq(dev);
5036         } else {
5037                 gen6_enable_rps(dev);
5038                 __gen6_update_ring_freq(dev);
5039         }
5040         dev_priv->rps.enabled = true;
5041         mutex_unlock(&dev_priv->rps.hw_lock);
5042
5043         intel_runtime_pm_put(dev_priv);
5044 }
5045
5046 void intel_enable_gt_powersave(struct drm_device *dev)
5047 {
5048         struct drm_i915_private *dev_priv = dev->dev_private;
5049
5050         if (IS_IRONLAKE_M(dev)) {
5051                 mutex_lock(&dev->struct_mutex);
5052                 ironlake_enable_drps(dev);
5053                 ironlake_enable_rc6(dev);
5054                 intel_init_emon(dev);
5055                 mutex_unlock(&dev->struct_mutex);
5056         } else if (INTEL_INFO(dev)->gen >= 6) {
5057                 /*
5058                  * PCU communication is slow and this doesn't need to be
5059                  * done at any specific time, so do this out of our fast path
5060                  * to make resume and init faster.
5061                  *
5062                  * We depend on the HW RC6 power context save/restore
5063                  * mechanism when entering D3 through runtime PM suspend. So
5064                  * disable RPM until RPS/RC6 is properly setup. We can only
5065                  * get here via the driver load/system resume/runtime resume
5066                  * paths, so the _noresume version is enough (and in case of
5067                  * runtime resume it's necessary).
5068                  */
5069                 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
5070                                            round_jiffies_up_relative(HZ)))
5071                         intel_runtime_pm_get_noresume(dev_priv);
5072         }
5073 }
5074
5075 void intel_reset_gt_powersave(struct drm_device *dev)
5076 {
5077         struct drm_i915_private *dev_priv = dev->dev_private;
5078
5079         dev_priv->rps.enabled = false;
5080         intel_enable_gt_powersave(dev);
5081 }
5082
5083 static void ibx_init_clock_gating(struct drm_device *dev)
5084 {
5085         struct drm_i915_private *dev_priv = dev->dev_private;
5086
5087         /*
5088          * On Ibex Peak and Cougar Point, we need to disable clock
5089          * gating for the panel power sequencer or it will fail to
5090          * start up when no ports are active.
5091          */
5092         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
5093 }
5094
5095 static void g4x_disable_trickle_feed(struct drm_device *dev)
5096 {
5097         struct drm_i915_private *dev_priv = dev->dev_private;
5098         int pipe;
5099
5100         for_each_pipe(pipe) {
5101                 I915_WRITE(DSPCNTR(pipe),
5102                            I915_READ(DSPCNTR(pipe)) |
5103                            DISPPLANE_TRICKLE_FEED_DISABLE);
5104                 intel_flush_primary_plane(dev_priv, pipe);
5105         }
5106 }
5107
5108 static void ilk_init_lp_watermarks(struct drm_device *dev)
5109 {
5110         struct drm_i915_private *dev_priv = dev->dev_private;
5111
5112         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
5113         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
5114         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
5115
5116         /*
5117          * Don't touch WM1S_LP_EN here.
5118          * Doing so could cause underruns.
5119          */
5120 }
5121
5122 static void ironlake_init_clock_gating(struct drm_device *dev)
5123 {
5124         struct drm_i915_private *dev_priv = dev->dev_private;
5125         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5126
5127         /*
5128          * Required for FBC
5129          * WaFbcDisableDpfcClockGating:ilk
5130          */
5131         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
5132                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
5133                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5134
5135         I915_WRITE(PCH_3DCGDIS0,
5136                    MARIUNIT_CLOCK_GATE_DISABLE |
5137                    SVSMUNIT_CLOCK_GATE_DISABLE);
5138         I915_WRITE(PCH_3DCGDIS1,
5139                    VFMUNIT_CLOCK_GATE_DISABLE);
5140
5141         /*
5142          * According to the spec the following bits should be set in
5143          * order to enable memory self-refresh
5144          * The bit 22/21 of 0x42004
5145          * The bit 5 of 0x42020
5146          * The bit 15 of 0x45000
5147          */
5148         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5149                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
5150                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5151         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5152         I915_WRITE(DISP_ARB_CTL,
5153                    (I915_READ(DISP_ARB_CTL) |
5154                     DISP_FBC_WM_DIS));
5155
5156         ilk_init_lp_watermarks(dev);
5157
5158         /*
5159          * Based on the document from hardware guys the following bits
5160          * should be set unconditionally in order to enable FBC.
5161          * The bit 22 of 0x42000
5162          * The bit 22 of 0x42004
5163          * The bit 7,8,9 of 0x42020.
5164          */
5165         if (IS_IRONLAKE_M(dev)) {
5166                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
5167                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5168                            I915_READ(ILK_DISPLAY_CHICKEN1) |
5169                            ILK_FBCQ_DIS);
5170                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5171                            I915_READ(ILK_DISPLAY_CHICKEN2) |
5172                            ILK_DPARB_GATE);
5173         }
5174
5175         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5176
5177         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5178                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5179                    ILK_ELPIN_409_SELECT);
5180         I915_WRITE(_3D_CHICKEN2,
5181                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
5182                    _3D_CHICKEN2_WM_READ_PIPELINED);
5183
5184         /* WaDisableRenderCachePipelinedFlush:ilk */
5185         I915_WRITE(CACHE_MODE_0,
5186                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5187
5188         /* WaDisable_RenderCache_OperationalFlush:ilk */
5189         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5190
5191         g4x_disable_trickle_feed(dev);
5192
5193         ibx_init_clock_gating(dev);
5194 }
5195
5196 static void cpt_init_clock_gating(struct drm_device *dev)
5197 {
5198         struct drm_i915_private *dev_priv = dev->dev_private;
5199         int pipe;
5200         uint32_t val;
5201
5202         /*
5203          * On Ibex Peak and Cougar Point, we need to disable clock
5204          * gating for the panel power sequencer or it will fail to
5205          * start up when no ports are active.
5206          */
5207         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
5208                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
5209                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
5210         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
5211                    DPLS_EDP_PPS_FIX_DIS);
5212         /* The below fixes the weird display corruption, a few pixels shifted
5213          * downward, on (only) LVDS of some HP laptops with IVY.
5214          */
5215         for_each_pipe(pipe) {
5216                 val = I915_READ(TRANS_CHICKEN2(pipe));
5217                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
5218                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5219                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
5220                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5221                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
5222                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
5223                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5224                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
5225         }
5226         /* WADP0ClockGatingDisable */
5227         for_each_pipe(pipe) {
5228                 I915_WRITE(TRANS_CHICKEN1(pipe),
5229                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5230         }
5231 }
5232
5233 static void gen6_check_mch_setup(struct drm_device *dev)
5234 {
5235         struct drm_i915_private *dev_priv = dev->dev_private;
5236         uint32_t tmp;
5237
5238         tmp = I915_READ(MCH_SSKPD);
5239         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
5240                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
5241                               tmp);
5242 }
5243
5244 static void gen6_init_clock_gating(struct drm_device *dev)
5245 {
5246         struct drm_i915_private *dev_priv = dev->dev_private;
5247         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5248
5249         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5250
5251         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5252                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5253                    ILK_ELPIN_409_SELECT);
5254
5255         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5256         I915_WRITE(_3D_CHICKEN,
5257                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
5258
5259         /* WaSetupGtModeTdRowDispatch:snb */
5260         if (IS_SNB_GT1(dev))
5261                 I915_WRITE(GEN6_GT_MODE,
5262                            _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
5263
5264         /* WaDisable_RenderCache_OperationalFlush:snb */
5265         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5266
5267         /*
5268          * BSpec recoomends 8x4 when MSAA is used,
5269          * however in practice 16x4 seems fastest.
5270          *
5271          * Note that PS/WM thread counts depend on the WIZ hashing
5272          * disable bit, which we don't touch here, but it's good
5273          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5274          */
5275         I915_WRITE(GEN6_GT_MODE,
5276                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5277
5278         ilk_init_lp_watermarks(dev);
5279
5280         I915_WRITE(CACHE_MODE_0,
5281                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5282
5283         I915_WRITE(GEN6_UCGCTL1,
5284                    I915_READ(GEN6_UCGCTL1) |
5285                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
5286                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5287
5288         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5289          * gating disable must be set.  Failure to set it results in
5290          * flickering pixels due to Z write ordering failures after
5291          * some amount of runtime in the Mesa "fire" demo, and Unigine
5292          * Sanctuary and Tropics, and apparently anything else with
5293          * alpha test or pixel discard.
5294          *
5295          * According to the spec, bit 11 (RCCUNIT) must also be set,
5296          * but we didn't debug actual testcases to find it out.
5297          *
5298          * WaDisableRCCUnitClockGating:snb
5299          * WaDisableRCPBUnitClockGating:snb
5300          */
5301         I915_WRITE(GEN6_UCGCTL2,
5302                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
5303                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
5304
5305         /* WaStripsFansDisableFastClipPerformanceFix:snb */
5306         I915_WRITE(_3D_CHICKEN3,
5307                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
5308
5309         /*
5310          * Bspec says:
5311          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
5312          * 3DSTATE_SF number of SF output attributes is more than 16."
5313          */
5314         I915_WRITE(_3D_CHICKEN3,
5315                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
5316
5317         /*
5318          * According to the spec the following bits should be
5319          * set in order to enable memory self-refresh and fbc:
5320          * The bit21 and bit22 of 0x42000
5321          * The bit21 and bit22 of 0x42004
5322          * The bit5 and bit7 of 0x42020
5323          * The bit14 of 0x70180
5324          * The bit14 of 0x71180
5325          *
5326          * WaFbcAsynchFlipDisableFbcQueue:snb
5327          */
5328         I915_WRITE(ILK_DISPLAY_CHICKEN1,
5329                    I915_READ(ILK_DISPLAY_CHICKEN1) |
5330                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
5331         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5332                    I915_READ(ILK_DISPLAY_CHICKEN2) |
5333                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
5334         I915_WRITE(ILK_DSPCLK_GATE_D,
5335                    I915_READ(ILK_DSPCLK_GATE_D) |
5336                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
5337                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
5338
5339         g4x_disable_trickle_feed(dev);
5340
5341         cpt_init_clock_gating(dev);
5342
5343         gen6_check_mch_setup(dev);
5344 }
5345
5346 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
5347 {
5348         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
5349
5350         /*
5351          * WaVSThreadDispatchOverride:ivb,vlv
5352          *
5353          * This actually overrides the dispatch
5354          * mode for all thread types.
5355          */
5356         reg &= ~GEN7_FF_SCHED_MASK;
5357         reg |= GEN7_FF_TS_SCHED_HW;
5358         reg |= GEN7_FF_VS_SCHED_HW;
5359         reg |= GEN7_FF_DS_SCHED_HW;
5360
5361         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
5362 }
5363
5364 static void lpt_init_clock_gating(struct drm_device *dev)
5365 {
5366         struct drm_i915_private *dev_priv = dev->dev_private;
5367
5368         /*
5369          * TODO: this bit should only be enabled when really needed, then
5370          * disabled when not needed anymore in order to save power.
5371          */
5372         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
5373                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
5374                            I915_READ(SOUTH_DSPCLK_GATE_D) |
5375                            PCH_LP_PARTITION_LEVEL_DISABLE);
5376
5377         /* WADPOClockGatingDisable:hsw */
5378         I915_WRITE(_TRANSA_CHICKEN1,
5379                    I915_READ(_TRANSA_CHICKEN1) |
5380                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5381 }
5382
5383 static void lpt_suspend_hw(struct drm_device *dev)
5384 {
5385         struct drm_i915_private *dev_priv = dev->dev_private;
5386
5387         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
5388                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
5389
5390                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
5391                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
5392         }
5393 }
5394
5395 static void gen8_init_clock_gating(struct drm_device *dev)
5396 {
5397         struct drm_i915_private *dev_priv = dev->dev_private;
5398         enum i915_pipe pipe;
5399
5400         I915_WRITE(WM3_LP_ILK, 0);
5401         I915_WRITE(WM2_LP_ILK, 0);
5402         I915_WRITE(WM1_LP_ILK, 0);
5403
5404         /* FIXME(BDW): Check all the w/a, some might only apply to
5405          * pre-production hw. */
5406
5407         /* WaDisablePartialInstShootdown:bdw */
5408         I915_WRITE(GEN8_ROW_CHICKEN,
5409                    _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
5410
5411         /* WaDisableThreadStallDopClockGating:bdw */
5412         /* FIXME: Unclear whether we really need this on production bdw. */
5413         I915_WRITE(GEN8_ROW_CHICKEN,
5414                    _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
5415
5416         /*
5417          * This GEN8_CENTROID_PIXEL_OPT_DIS W/A is only needed for
5418          * pre-production hardware
5419          */
5420         I915_WRITE(HALF_SLICE_CHICKEN3,
5421                    _MASKED_BIT_ENABLE(GEN8_CENTROID_PIXEL_OPT_DIS));
5422         I915_WRITE(HALF_SLICE_CHICKEN3,
5423                    _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
5424         I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_BWGTLB_DISABLE));
5425
5426         I915_WRITE(_3D_CHICKEN3,
5427                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SDE_LIMIT_FIFO_POLY_DEPTH(2)));
5428
5429         I915_WRITE(COMMON_SLICE_CHICKEN2,
5430                    _MASKED_BIT_ENABLE(GEN8_CSC2_SBE_VUE_CACHE_CONSERVATIVE));
5431
5432         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5433                    _MASKED_BIT_ENABLE(GEN7_SINGLE_SUBSCAN_DISPATCH_ENABLE));
5434
5435         /* WaDisableDopClockGating:bdw May not be needed for production */
5436         I915_WRITE(GEN7_ROW_CHICKEN2,
5437                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5438
5439         /* WaSwitchSolVfFArbitrationPriority:bdw */
5440         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5441
5442         /* WaPsrDPAMaskVBlankInSRD:bdw */
5443         I915_WRITE(CHICKEN_PAR1_1,
5444                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
5445
5446         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
5447         for_each_pipe(pipe) {
5448                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
5449                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
5450                            BDW_DPRS_MASK_VBLANK_SRD);
5451         }
5452
5453         /* Use Force Non-Coherent whenever executing a 3D context. This is a
5454          * workaround for for a possible hang in the unlikely event a TLB
5455          * invalidation occurs during a PSD flush.
5456          */
5457         I915_WRITE(HDC_CHICKEN0,
5458                    I915_READ(HDC_CHICKEN0) |
5459                    _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT));
5460
5461         /* WaVSRefCountFullforceMissDisable:bdw */
5462         /* WaDSRefCountFullforceMissDisable:bdw */
5463         I915_WRITE(GEN7_FF_THREAD_MODE,
5464                    I915_READ(GEN7_FF_THREAD_MODE) &
5465                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5466
5467         /*
5468          * BSpec recommends 8x4 when MSAA is used,
5469          * however in practice 16x4 seems fastest.
5470          *
5471          * Note that PS/WM thread counts depend on the WIZ hashing
5472          * disable bit, which we don't touch here, but it's good
5473          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5474          */
5475         I915_WRITE(GEN7_GT_MODE,
5476                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5477
5478         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5479                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5480
5481         /* WaDisableSDEUnitClockGating:bdw */
5482         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
5483                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5484
5485         /* Wa4x4STCOptimizationDisable:bdw */
5486         I915_WRITE(CACHE_MODE_1,
5487                    _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
5488 }
5489
5490 static void haswell_init_clock_gating(struct drm_device *dev)
5491 {
5492         struct drm_i915_private *dev_priv = dev->dev_private;
5493
5494         ilk_init_lp_watermarks(dev);
5495
5496         /* L3 caching of data atomics doesn't work -- disable it. */
5497         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
5498         I915_WRITE(HSW_ROW_CHICKEN3,
5499                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
5500
5501         /* This is required by WaCatErrorRejectionIssue:hsw */
5502         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5503                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5504                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5505
5506         /* WaVSRefCountFullforceMissDisable:hsw */
5507         I915_WRITE(GEN7_FF_THREAD_MODE,
5508                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
5509
5510         /* WaDisable_RenderCache_OperationalFlush:hsw */
5511         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5512
5513         /* enable HiZ Raw Stall Optimization */
5514         I915_WRITE(CACHE_MODE_0_GEN7,
5515                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5516
5517         /* WaDisable4x2SubspanOptimization:hsw */
5518         I915_WRITE(CACHE_MODE_1,
5519                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5520
5521         /*
5522          * BSpec recommends 8x4 when MSAA is used,
5523          * however in practice 16x4 seems fastest.
5524          *
5525          * Note that PS/WM thread counts depend on the WIZ hashing
5526          * disable bit, which we don't touch here, but it's good
5527          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5528          */
5529         I915_WRITE(GEN7_GT_MODE,
5530                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5531
5532         /* WaSwitchSolVfFArbitrationPriority:hsw */
5533         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
5534
5535         /* WaRsPkgCStateDisplayPMReq:hsw */
5536         I915_WRITE(CHICKEN_PAR1_1,
5537                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
5538
5539         lpt_init_clock_gating(dev);
5540 }
5541
5542 static void ivybridge_init_clock_gating(struct drm_device *dev)
5543 {
5544         struct drm_i915_private *dev_priv = dev->dev_private;
5545         uint32_t snpcr;
5546
5547         ilk_init_lp_watermarks(dev);
5548
5549         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
5550
5551         /* WaDisableEarlyCull:ivb */
5552         I915_WRITE(_3D_CHICKEN3,
5553                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5554
5555         /* WaDisableBackToBackFlipFix:ivb */
5556         I915_WRITE(IVB_CHICKEN3,
5557                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5558                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5559
5560         /* WaDisablePSDDualDispatchEnable:ivb */
5561         if (IS_IVB_GT1(dev))
5562                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5563                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5564
5565         /* WaDisable_RenderCache_OperationalFlush:ivb */
5566         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5567
5568         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
5569         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
5570                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
5571
5572         /* WaApplyL3ControlAndL3ChickenMode:ivb */
5573         I915_WRITE(GEN7_L3CNTLREG1,
5574                         GEN7_WA_FOR_GEN7_L3_CONTROL);
5575         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
5576                    GEN7_WA_L3_CHICKEN_MODE);
5577         if (IS_IVB_GT1(dev))
5578                 I915_WRITE(GEN7_ROW_CHICKEN2,
5579                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5580         else {
5581                 /* must write both registers */
5582                 I915_WRITE(GEN7_ROW_CHICKEN2,
5583                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5584                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
5585                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5586         }
5587
5588         /* WaForceL3Serialization:ivb */
5589         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5590                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5591
5592         /*
5593          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5594          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
5595          */
5596         I915_WRITE(GEN6_UCGCTL2,
5597                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5598
5599         /* This is required by WaCatErrorRejectionIssue:ivb */
5600         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5601                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5602                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5603
5604         g4x_disable_trickle_feed(dev);
5605
5606         gen7_setup_fixed_func_scheduler(dev_priv);
5607
5608         if (0) { /* causes HiZ corruption on ivb:gt1 */
5609                 /* enable HiZ Raw Stall Optimization */
5610                 I915_WRITE(CACHE_MODE_0_GEN7,
5611                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
5612         }
5613
5614         /* WaDisable4x2SubspanOptimization:ivb */
5615         I915_WRITE(CACHE_MODE_1,
5616                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5617
5618         /*
5619          * BSpec recommends 8x4 when MSAA is used,
5620          * however in practice 16x4 seems fastest.
5621          *
5622          * Note that PS/WM thread counts depend on the WIZ hashing
5623          * disable bit, which we don't touch here, but it's good
5624          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5625          */
5626         I915_WRITE(GEN7_GT_MODE,
5627                    GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
5628
5629         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5630         snpcr &= ~GEN6_MBC_SNPCR_MASK;
5631         snpcr |= GEN6_MBC_SNPCR_MED;
5632         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5633
5634         if (!HAS_PCH_NOP(dev))
5635                 cpt_init_clock_gating(dev);
5636
5637         gen6_check_mch_setup(dev);
5638 }
5639
5640 static void valleyview_init_clock_gating(struct drm_device *dev)
5641 {
5642         struct drm_i915_private *dev_priv = dev->dev_private;
5643         u32 val;
5644
5645         mutex_lock(&dev_priv->rps.hw_lock);
5646         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5647         mutex_unlock(&dev_priv->rps.hw_lock);
5648         switch ((val >> 6) & 3) {
5649         case 0:
5650         case 1:
5651                 dev_priv->mem_freq = 800;
5652                 break;
5653         case 2:
5654                 dev_priv->mem_freq = 1066;
5655                 break;
5656         case 3:
5657                 dev_priv->mem_freq = 1333;
5658                 break;
5659         }
5660         DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
5661
5662         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5663
5664         /* WaDisableEarlyCull:vlv */
5665         I915_WRITE(_3D_CHICKEN3,
5666                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
5667
5668         /* WaDisableBackToBackFlipFix:vlv */
5669         I915_WRITE(IVB_CHICKEN3,
5670                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
5671                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
5672
5673         /* WaPsdDispatchEnable:vlv */
5674         /* WaDisablePSDDualDispatchEnable:vlv */
5675         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
5676                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
5677                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
5678
5679         /* WaDisable_RenderCache_OperationalFlush:vlv */
5680         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5681
5682         /* WaForceL3Serialization:vlv */
5683         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
5684                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
5685
5686         /* WaDisableDopClockGating:vlv */
5687         I915_WRITE(GEN7_ROW_CHICKEN2,
5688                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5689
5690         /* This is required by WaCatErrorRejectionIssue:vlv */
5691         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
5692                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
5693                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
5694
5695         gen7_setup_fixed_func_scheduler(dev_priv);
5696
5697         /*
5698          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
5699          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
5700          */
5701         I915_WRITE(GEN6_UCGCTL2,
5702                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
5703
5704         /* WaDisableL3Bank2xClockGate:vlv
5705          * Disabling L3 clock gating- MMIO 940c[25] = 1
5706          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
5707         I915_WRITE(GEN7_UCGCTL4,
5708                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
5709
5710         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5711
5712         /*
5713          * BSpec says this must be set, even though
5714          * WaDisable4x2SubspanOptimization isn't listed for VLV.
5715          */
5716         I915_WRITE(CACHE_MODE_1,
5717                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
5718
5719         /*
5720          * WaIncreaseL3CreditsForVLVB0:vlv
5721          * This is the hardware default actually.
5722          */
5723         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
5724
5725         /*
5726          * WaDisableVLVClockGating_VBIIssue:vlv
5727          * Disable clock gating on th GCFG unit to prevent a delay
5728          * in the reporting of vblank events.
5729          */
5730         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
5731 }
5732
5733 static void cherryview_init_clock_gating(struct drm_device *dev)
5734 {
5735         struct drm_i915_private *dev_priv = dev->dev_private;
5736         u32 val;
5737
5738         mutex_lock(&dev_priv->rps.hw_lock);
5739         val = vlv_punit_read(dev_priv, CCK_FUSE_REG);
5740         mutex_unlock(&dev_priv->rps.hw_lock);
5741         switch ((val >> 2) & 0x7) {
5742         case 0:
5743         case 1:
5744                         dev_priv->rps.cz_freq = CHV_CZ_CLOCK_FREQ_MODE_200;
5745                         dev_priv->mem_freq = 1600;
5746                         break;
5747         case 2:
5748                         dev_priv->rps.cz_freq = CHV_CZ_CLOCK_FREQ_MODE_267;
5749                         dev_priv->mem_freq = 1600;
5750                         break;
5751         case 3:
5752                         dev_priv->rps.cz_freq = CHV_CZ_CLOCK_FREQ_MODE_333;
5753                         dev_priv->mem_freq = 2000;
5754                         break;
5755         case 4:
5756                         dev_priv->rps.cz_freq = CHV_CZ_CLOCK_FREQ_MODE_320;
5757                         dev_priv->mem_freq = 1600;
5758                         break;
5759         case 5:
5760                         dev_priv->rps.cz_freq = CHV_CZ_CLOCK_FREQ_MODE_400;
5761                         dev_priv->mem_freq = 1600;
5762                         break;
5763         }
5764         DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
5765
5766         I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
5767
5768         I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
5769
5770         /* WaDisablePartialInstShootdown:chv */
5771         I915_WRITE(GEN8_ROW_CHICKEN,
5772                    _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
5773
5774         /* WaDisableThreadStallDopClockGating:chv */
5775         I915_WRITE(GEN8_ROW_CHICKEN,
5776                    _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
5777
5778         /* WaVSRefCountFullforceMissDisable:chv */
5779         /* WaDSRefCountFullforceMissDisable:chv */
5780         I915_WRITE(GEN7_FF_THREAD_MODE,
5781                    I915_READ(GEN7_FF_THREAD_MODE) &
5782                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
5783
5784         /* WaDisableSemaphoreAndSyncFlipWait:chv */
5785         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5786                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
5787
5788         /* WaDisableCSUnitClockGating:chv */
5789         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
5790                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5791
5792         /* WaDisableSDEUnitClockGating:chv */
5793         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
5794                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
5795
5796         /* WaDisableSamplerPowerBypass:chv (pre-production hw) */
5797         I915_WRITE(HALF_SLICE_CHICKEN3,
5798                    _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
5799
5800         /* WaDisableGunitClockGating:chv (pre-production hw) */
5801         I915_WRITE(VLV_GUNIT_CLOCK_GATE, I915_READ(VLV_GUNIT_CLOCK_GATE) |
5802                    GINT_DIS);
5803
5804         /* WaDisableFfDopClockGating:chv (pre-production hw) */
5805         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
5806                    _MASKED_BIT_ENABLE(GEN8_FF_DOP_CLOCK_GATE_DISABLE));
5807
5808         /* WaDisableDopClockGating:chv (pre-production hw) */
5809         I915_WRITE(GEN7_ROW_CHICKEN2,
5810                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
5811         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
5812                    GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
5813 }
5814
5815 static void g4x_init_clock_gating(struct drm_device *dev)
5816 {
5817         struct drm_i915_private *dev_priv = dev->dev_private;
5818         uint32_t dspclk_gate;
5819
5820         I915_WRITE(RENCLK_GATE_D1, 0);
5821         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5822                    GS_UNIT_CLOCK_GATE_DISABLE |
5823                    CL_UNIT_CLOCK_GATE_DISABLE);
5824         I915_WRITE(RAMCLK_GATE_D, 0);
5825         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5826                 OVRUNIT_CLOCK_GATE_DISABLE |
5827                 OVCUNIT_CLOCK_GATE_DISABLE;
5828         if (IS_GM45(dev))
5829                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5830         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5831
5832         /* WaDisableRenderCachePipelinedFlush */
5833         I915_WRITE(CACHE_MODE_0,
5834                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5835
5836         /* WaDisable_RenderCache_OperationalFlush:g4x */
5837         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5838
5839         g4x_disable_trickle_feed(dev);
5840 }
5841
5842 static void crestline_init_clock_gating(struct drm_device *dev)
5843 {
5844         struct drm_i915_private *dev_priv = dev->dev_private;
5845
5846         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5847         I915_WRITE(RENCLK_GATE_D2, 0);
5848         I915_WRITE(DSPCLK_GATE_D, 0);
5849         I915_WRITE(RAMCLK_GATE_D, 0);
5850         I915_WRITE16(DEUC, 0);
5851         I915_WRITE(MI_ARB_STATE,
5852                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5853
5854         /* WaDisable_RenderCache_OperationalFlush:gen4 */
5855         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5856 }
5857
5858 static void broadwater_init_clock_gating(struct drm_device *dev)
5859 {
5860         struct drm_i915_private *dev_priv = dev->dev_private;
5861
5862         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5863                    I965_RCC_CLOCK_GATE_DISABLE |
5864                    I965_RCPB_CLOCK_GATE_DISABLE |
5865                    I965_ISC_CLOCK_GATE_DISABLE |
5866                    I965_FBC_CLOCK_GATE_DISABLE);
5867         I915_WRITE(RENCLK_GATE_D2, 0);
5868         I915_WRITE(MI_ARB_STATE,
5869                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
5870
5871         /* WaDisable_RenderCache_OperationalFlush:gen4 */
5872         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5873 }
5874
5875 static void gen3_init_clock_gating(struct drm_device *dev)
5876 {
5877         struct drm_i915_private *dev_priv = dev->dev_private;
5878         u32 dstate = I915_READ(D_STATE);
5879
5880         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5881                 DSTATE_DOT_CLOCK_GATING;
5882         I915_WRITE(D_STATE, dstate);
5883
5884         if (IS_PINEVIEW(dev))
5885                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
5886
5887         /* IIR "flip pending" means done if this bit is set */
5888         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
5889
5890         /* interrupts should cause a wake up from C3 */
5891         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
5892
5893         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
5894         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5895 }
5896
5897 static void i85x_init_clock_gating(struct drm_device *dev)
5898 {
5899         struct drm_i915_private *dev_priv = dev->dev_private;
5900
5901         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5902
5903         /* interrupts should cause a wake up from C3 */
5904         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
5905                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
5906 }
5907
5908 static void i830_init_clock_gating(struct drm_device *dev)
5909 {
5910         struct drm_i915_private *dev_priv = dev->dev_private;
5911
5912         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5913 }
5914
5915 void intel_init_clock_gating(struct drm_device *dev)
5916 {
5917         struct drm_i915_private *dev_priv = dev->dev_private;
5918
5919         dev_priv->display.init_clock_gating(dev);
5920 }
5921
5922 void intel_suspend_hw(struct drm_device *dev)
5923 {
5924         if (HAS_PCH_LPT(dev))
5925                 lpt_suspend_hw(dev);
5926 }
5927
5928 #define for_each_power_well(i, power_well, domain_mask, power_domains)  \
5929         for (i = 0;                                                     \
5930              i < (power_domains)->power_well_count &&                   \
5931                  ((power_well) = &(power_domains)->power_wells[i]);     \
5932              i++)                                                       \
5933                 if ((power_well)->domains & (domain_mask))
5934
5935 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
5936         for (i = (power_domains)->power_well_count - 1;                  \
5937              i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
5938              i--)                                                        \
5939                 if ((power_well)->domains & (domain_mask))
5940
5941 /**
5942  * We should only use the power well if we explicitly asked the hardware to
5943  * enable it, so check if it's enabled and also check if we've requested it to
5944  * be enabled.
5945  */
5946 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
5947                                    struct i915_power_well *power_well)
5948 {
5949         return I915_READ(HSW_PWR_WELL_DRIVER) ==
5950                      (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
5951 }
5952
5953 bool intel_display_power_enabled_unlocked(struct drm_i915_private *dev_priv,
5954                                           enum intel_display_power_domain domain)
5955 {
5956         struct i915_power_domains *power_domains;
5957         struct i915_power_well *power_well;
5958         bool is_enabled;
5959         int i;
5960
5961         if (dev_priv->pm.suspended)
5962                 return false;
5963
5964         power_domains = &dev_priv->power_domains;
5965
5966         is_enabled = true;
5967
5968         for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
5969                 if (power_well->always_on)
5970                         continue;
5971
5972                 if (!power_well->hw_enabled) {
5973                         is_enabled = false;
5974                         break;
5975                 }
5976         }
5977
5978         return is_enabled;
5979 }
5980
5981 bool intel_display_power_enabled(struct drm_i915_private *dev_priv,
5982                                  enum intel_display_power_domain domain)
5983 {
5984         struct i915_power_domains *power_domains;
5985         bool ret;
5986
5987         power_domains = &dev_priv->power_domains;
5988
5989         mutex_lock(&power_domains->lock);
5990         ret = intel_display_power_enabled_unlocked(dev_priv, domain);
5991         mutex_unlock(&power_domains->lock);
5992
5993         return ret;
5994 }
5995
5996 /*
5997  * Starting with Haswell, we have a "Power Down Well" that can be turned off
5998  * when not needed anymore. We have 4 registers that can request the power well
5999  * to be enabled, and it will only be disabled if none of the registers is
6000  * requesting it to be enabled.
6001  */
6002 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
6003 {
6004         struct drm_device *dev = dev_priv->dev;
6005
6006         /*
6007          * After we re-enable the power well, if we touch VGA register 0x3d5
6008          * we'll get unclaimed register interrupts. This stops after we write
6009          * anything to the VGA MSR register. The vgacon module uses this
6010          * register all the time, so if we unbind our driver and, as a
6011          * consequence, bind vgacon, we'll get stuck in an infinite loop at
6012          * console_unlock(). So make here we touch the VGA MSR register, making
6013          * sure vgacon can keep working normally without triggering interrupts
6014          * and error messages.
6015          */
6016 #if 0
6017         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
6018         outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
6019         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
6020 #endif
6021
6022         if (IS_BROADWELL(dev))
6023                 gen8_irq_power_well_post_enable(dev_priv);
6024 }
6025
6026 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
6027                                struct i915_power_well *power_well, bool enable)
6028 {
6029         bool is_enabled, enable_requested;
6030         uint32_t tmp;
6031
6032         tmp = I915_READ(HSW_PWR_WELL_DRIVER);
6033         is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
6034         enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
6035
6036         if (enable) {
6037                 if (!enable_requested)
6038                         I915_WRITE(HSW_PWR_WELL_DRIVER,
6039                                    HSW_PWR_WELL_ENABLE_REQUEST);
6040
6041                 if (!is_enabled) {
6042                         DRM_DEBUG_KMS("Enabling power well\n");
6043                         if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
6044                                       HSW_PWR_WELL_STATE_ENABLED), 20))
6045                                 DRM_ERROR("Timeout enabling power well\n");
6046                 }
6047
6048                 hsw_power_well_post_enable(dev_priv);
6049         } else {
6050                 if (enable_requested) {
6051                         I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
6052                         POSTING_READ(HSW_PWR_WELL_DRIVER);
6053                         DRM_DEBUG_KMS("Requesting to disable the power well\n");
6054                 }
6055         }
6056 }
6057
6058 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
6059                                    struct i915_power_well *power_well)
6060 {
6061         hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
6062
6063         /*
6064          * We're taking over the BIOS, so clear any requests made by it since
6065          * the driver is in charge now.
6066          */
6067         if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
6068                 I915_WRITE(HSW_PWR_WELL_BIOS, 0);
6069 }
6070
6071 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
6072                                   struct i915_power_well *power_well)
6073 {
6074         hsw_set_power_well(dev_priv, power_well, true);
6075 }
6076
6077 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
6078                                    struct i915_power_well *power_well)
6079 {
6080         hsw_set_power_well(dev_priv, power_well, false);
6081 }
6082
6083 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
6084                                            struct i915_power_well *power_well)
6085 {
6086 }
6087
6088 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
6089                                              struct i915_power_well *power_well)
6090 {
6091         return true;
6092 }
6093
6094 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
6095                                struct i915_power_well *power_well, bool enable)
6096 {
6097         enum punit_power_well power_well_id = power_well->data;
6098         u32 mask;
6099         u32 state;
6100         u32 ctrl;
6101
6102         mask = PUNIT_PWRGT_MASK(power_well_id);
6103         state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
6104                          PUNIT_PWRGT_PWR_GATE(power_well_id);
6105
6106         mutex_lock(&dev_priv->rps.hw_lock);
6107
6108 #define COND \
6109         ((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
6110
6111         if (COND)
6112                 goto out;
6113
6114         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
6115         ctrl &= ~mask;
6116         ctrl |= state;
6117         vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
6118
6119         if (wait_for(COND, 100))
6120                 DRM_ERROR("timout setting power well state %08x (%08x)\n",
6121                           state,
6122                           vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
6123
6124 #undef COND
6125
6126 out:
6127         mutex_unlock(&dev_priv->rps.hw_lock);
6128 }
6129
6130 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
6131                                    struct i915_power_well *power_well)
6132 {
6133         vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
6134 }
6135
6136 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
6137                                   struct i915_power_well *power_well)
6138 {
6139         vlv_set_power_well(dev_priv, power_well, true);
6140 }
6141
6142 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
6143                                    struct i915_power_well *power_well)
6144 {
6145         vlv_set_power_well(dev_priv, power_well, false);
6146 }
6147
6148 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
6149                                    struct i915_power_well *power_well)
6150 {
6151         int power_well_id = power_well->data;
6152         bool enabled = false;
6153         u32 mask;
6154         u32 state;
6155         u32 ctrl;
6156
6157         mask = PUNIT_PWRGT_MASK(power_well_id);
6158         ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
6159
6160         mutex_lock(&dev_priv->rps.hw_lock);
6161
6162         state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
6163         /*
6164          * We only ever set the power-on and power-gate states, anything
6165          * else is unexpected.
6166          */
6167         WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
6168                 state != PUNIT_PWRGT_PWR_GATE(power_well_id));
6169         if (state == ctrl)
6170                 enabled = true;
6171
6172         /*
6173          * A transient state at this point would mean some unexpected party
6174          * is poking at the power controls too.
6175          */
6176         ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
6177         WARN_ON(ctrl != state);
6178
6179         mutex_unlock(&dev_priv->rps.hw_lock);
6180
6181         return enabled;
6182 }
6183
6184 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
6185                                           struct i915_power_well *power_well)
6186 {
6187         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
6188
6189         vlv_set_power_well(dev_priv, power_well, true);
6190
6191         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
6192         valleyview_enable_display_irqs(dev_priv);
6193         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
6194
6195         /*
6196          * During driver initialization/resume we can avoid restoring the
6197          * part of the HW/SW state that will be inited anyway explicitly.
6198          */
6199         if (dev_priv->power_domains.initializing)
6200                 return;
6201
6202         intel_hpd_init(dev_priv->dev);
6203
6204         i915_redisable_vga_power_on(dev_priv->dev);
6205 }
6206
6207 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
6208                                            struct i915_power_well *power_well)
6209 {
6210         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
6211
6212         lockmgr(&dev_priv->irq_lock, LK_EXCLUSIVE);
6213         valleyview_disable_display_irqs(dev_priv);
6214         lockmgr(&dev_priv->irq_lock, LK_RELEASE);
6215
6216         vlv_set_power_well(dev_priv, power_well, false);
6217 }
6218
6219 static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
6220                                            struct i915_power_well *power_well)
6221 {
6222         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
6223
6224         /*
6225          * Enable the CRI clock source so we can get at the
6226          * display and the reference clock for VGA
6227          * hotplug / manual detection.
6228          */
6229         I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
6230                    DPLL_REFA_CLK_ENABLE_VLV | DPLL_INTEGRATED_CRI_CLK_VLV);
6231         udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
6232
6233         vlv_set_power_well(dev_priv, power_well, true);
6234
6235         /*
6236          * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
6237          *  6.  De-assert cmn_reset/side_reset. Same as VLV X0.
6238          *   a. GUnit 0x2110 bit[0] set to 1 (def 0)
6239          *   b. The other bits such as sfr settings / modesel may all
6240          *      be set to 0.
6241          *
6242          * This should only be done on init and resume from S3 with
6243          * both PLLs disabled, or we risk losing DPIO and PLL
6244          * synchronization.
6245          */
6246         I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
6247 }
6248
6249 static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
6250                                             struct i915_power_well *power_well)
6251 {
6252         struct drm_device *dev = dev_priv->dev;
6253         enum i915_pipe pipe;
6254
6255         WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
6256
6257         for_each_pipe(pipe)
6258                 assert_pll_disabled(dev_priv, pipe);
6259
6260         /* Assert common reset */
6261         I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
6262
6263         vlv_set_power_well(dev_priv, power_well, false);
6264 }
6265
6266 static void check_power_well_state(struct drm_i915_private *dev_priv,
6267                                    struct i915_power_well *power_well)
6268 {
6269         bool enabled = power_well->ops->is_enabled(dev_priv, power_well);
6270
6271         if (power_well->always_on || !i915.disable_power_well) {
6272                 if (!enabled)
6273                         goto mismatch;
6274
6275                 return;
6276         }
6277
6278         if (enabled != (power_well->count > 0))
6279                 goto mismatch;
6280
6281         return;
6282
6283 mismatch:
6284         WARN(1, "state mismatch for '%s' (always_on %d hw state %d use-count %d disable_power_well %d\n",
6285                   power_well->name, power_well->always_on, enabled,
6286                   power_well->count, i915.disable_power_well);
6287 }
6288
6289 void intel_display_power_get(struct drm_i915_private *dev_priv,
6290                              enum intel_display_power_domain domain)
6291 {
6292         struct i915_power_domains *power_domains;
6293         struct i915_power_well *power_well;
6294         int i;
6295
6296         intel_runtime_pm_get(dev_priv);
6297
6298         power_domains = &dev_priv->power_domains;
6299
6300         mutex_lock(&power_domains->lock);
6301
6302         for_each_power_well(i, power_well, BIT(domain), power_domains) {
6303                 if (!power_well->count++) {
6304                         DRM_DEBUG_KMS("enabling %s\n", power_well->name);
6305                         power_well->ops->enable(dev_priv, power_well);
6306                         power_well->hw_enabled = true;
6307                 }
6308
6309                 check_power_well_state(dev_priv, power_well);
6310         }
6311
6312         power_domains->domain_use_count[domain]++;
6313
6314         mutex_unlock(&power_domains->lock);
6315 }
6316
6317 void intel_display_power_put(struct drm_i915_private *dev_priv,
6318                              enum intel_display_power_domain domain)
6319 {
6320         struct i915_power_domains *power_domains;
6321         struct i915_power_well *power_well;
6322         int i;
6323
6324         power_domains = &dev_priv->power_domains;
6325
6326         mutex_lock(&power_domains->lock);
6327
6328         WARN_ON(!power_domains->domain_use_count[domain]);
6329         power_domains->domain_use_count[domain]--;
6330
6331         for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
6332                 WARN_ON(!power_well->count);
6333
6334                 if (!--power_well->count && i915.disable_power_well) {
6335                         DRM_DEBUG_KMS("disabling %s\n", power_well->name);
6336                         power_well->hw_enabled = false;
6337                         power_well->ops->disable(dev_priv, power_well);
6338                 }
6339
6340                 check_power_well_state(dev_priv, power_well);
6341         }
6342
6343         mutex_unlock(&power_domains->lock);
6344
6345         intel_runtime_pm_put(dev_priv);
6346 }
6347
6348 static struct i915_power_domains *hsw_pwr;
6349
6350 /* Display audio driver power well request */
6351 int i915_request_power_well(void)
6352 {
6353         struct drm_i915_private *dev_priv;
6354
6355         if (!hsw_pwr)
6356                 return -ENODEV;
6357
6358         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6359                                 power_domains);
6360         intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
6361         return 0;
6362 }
6363
6364 /* Display audio driver power well release */
6365 int i915_release_power_well(void)
6366 {
6367         struct drm_i915_private *dev_priv;
6368
6369         if (!hsw_pwr)
6370                 return -ENODEV;
6371
6372         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6373                                 power_domains);
6374         intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
6375         return 0;
6376 }
6377
6378 /*
6379  * Private interface for the audio driver to get CDCLK in kHz.
6380  *
6381  * Caller must request power well using i915_request_power_well() prior to
6382  * making the call.
6383  */
6384 int i915_get_cdclk_freq(void)
6385 {
6386         struct drm_i915_private *dev_priv;
6387
6388         if (!hsw_pwr)
6389                 return -ENODEV;
6390
6391         dev_priv = container_of(hsw_pwr, struct drm_i915_private,
6392                                 power_domains);
6393
6394         return intel_ddi_get_cdclk_freq(dev_priv);
6395 }
6396
6397 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
6398
6399 #define HSW_ALWAYS_ON_POWER_DOMAINS (                   \
6400         BIT(POWER_DOMAIN_PIPE_A) |                      \
6401         BIT(POWER_DOMAIN_TRANSCODER_EDP) |              \
6402         BIT(POWER_DOMAIN_PORT_DDI_A_2_LANES) |          \
6403         BIT(POWER_DOMAIN_PORT_DDI_A_4_LANES) |          \
6404         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |          \
6405         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |          \
6406         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |          \
6407         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |          \
6408         BIT(POWER_DOMAIN_PORT_DDI_D_2_LANES) |          \
6409         BIT(POWER_DOMAIN_PORT_DDI_D_4_LANES) |          \
6410         BIT(POWER_DOMAIN_PORT_CRT) |                    \
6411         BIT(POWER_DOMAIN_PLLS) |                        \
6412         BIT(POWER_DOMAIN_INIT))
6413 #define HSW_DISPLAY_POWER_DOMAINS (                             \
6414         (POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) |    \
6415         BIT(POWER_DOMAIN_INIT))
6416
6417 #define BDW_ALWAYS_ON_POWER_DOMAINS (                   \
6418         HSW_ALWAYS_ON_POWER_DOMAINS |                   \
6419         BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
6420 #define BDW_DISPLAY_POWER_DOMAINS (                             \
6421         (POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) |    \
6422         BIT(POWER_DOMAIN_INIT))
6423
6424 #define VLV_ALWAYS_ON_POWER_DOMAINS     BIT(POWER_DOMAIN_INIT)
6425 #define VLV_DISPLAY_POWER_DOMAINS       POWER_DOMAIN_MASK
6426
6427 #define VLV_DPIO_CMN_BC_POWER_DOMAINS (         \
6428         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |  \
6429         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
6430         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |  \
6431         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
6432         BIT(POWER_DOMAIN_PORT_CRT) |            \
6433         BIT(POWER_DOMAIN_INIT))
6434
6435 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (  \
6436         BIT(POWER_DOMAIN_PORT_DDI_B_2_LANES) |  \
6437         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
6438         BIT(POWER_DOMAIN_INIT))
6439
6440 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (  \
6441         BIT(POWER_DOMAIN_PORT_DDI_B_4_LANES) |  \
6442         BIT(POWER_DOMAIN_INIT))
6443
6444 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (  \
6445         BIT(POWER_DOMAIN_PORT_DDI_C_2_LANES) |  \
6446         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
6447         BIT(POWER_DOMAIN_INIT))
6448
6449 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (  \
6450         BIT(POWER_DOMAIN_PORT_DDI_C_4_LANES) |  \
6451         BIT(POWER_DOMAIN_INIT))
6452
6453 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
6454         .sync_hw = i9xx_always_on_power_well_noop,
6455         .enable = i9xx_always_on_power_well_noop,
6456         .disable = i9xx_always_on_power_well_noop,
6457         .is_enabled = i9xx_always_on_power_well_enabled,
6458 };
6459
6460 static struct i915_power_well i9xx_always_on_power_well[] = {
6461         {
6462                 .name = "always-on",
6463                 .always_on = 1,
6464                 .domains = POWER_DOMAIN_MASK,
6465                 .ops = &i9xx_always_on_power_well_ops,
6466         },
6467 };
6468
6469 static const struct i915_power_well_ops hsw_power_well_ops = {
6470         .sync_hw = hsw_power_well_sync_hw,
6471         .enable = hsw_power_well_enable,
6472         .disable = hsw_power_well_disable,
6473         .is_enabled = hsw_power_well_enabled,
6474 };
6475
6476 static struct i915_power_well hsw_power_wells[] = {
6477         {
6478                 .name = "always-on",
6479                 .always_on = 1,
6480                 .domains = HSW_ALWAYS_ON_POWER_DOMAINS,
6481                 .ops = &i9xx_always_on_power_well_ops,
6482         },
6483         {
6484                 .name = "display",
6485                 .domains = HSW_DISPLAY_POWER_DOMAINS,
6486                 .ops = &hsw_power_well_ops,
6487         },
6488 };
6489
6490 static struct i915_power_well bdw_power_wells[] = {
6491         {
6492                 .name = "always-on",
6493                 .always_on = 1,
6494                 .domains = BDW_ALWAYS_ON_POWER_DOMAINS,
6495                 .ops = &i9xx_always_on_power_well_ops,
6496         },
6497         {
6498                 .name = "display",
6499                 .domains = BDW_DISPLAY_POWER_DOMAINS,
6500                 .ops = &hsw_power_well_ops,
6501         },
6502 };
6503
6504 static const struct i915_power_well_ops vlv_display_power_well_ops = {
6505         .sync_hw = vlv_power_well_sync_hw,
6506         .enable = vlv_display_power_well_enable,
6507         .disable = vlv_display_power_well_disable,
6508         .is_enabled = vlv_power_well_enabled,
6509 };
6510
6511 static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
6512         .sync_hw = vlv_power_well_sync_hw,
6513         .enable = vlv_dpio_cmn_power_well_enable,
6514         .disable = vlv_dpio_cmn_power_well_disable,
6515         .is_enabled = vlv_power_well_enabled,
6516 };
6517
6518 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
6519         .sync_hw = vlv_power_well_sync_hw,
6520         .enable = vlv_power_well_enable,
6521         .disable = vlv_power_well_disable,
6522         .is_enabled = vlv_power_well_enabled,
6523 };
6524
6525 static struct i915_power_well vlv_power_wells[] = {
6526         {
6527                 .name = "always-on",
6528                 .always_on = 1,
6529                 .domains = VLV_ALWAYS_ON_POWER_DOMAINS,
6530                 .ops = &i9xx_always_on_power_well_ops,
6531         },
6532         {
6533                 .name = "display",
6534                 .domains = VLV_DISPLAY_POWER_DOMAINS,
6535                 .data = PUNIT_POWER_WELL_DISP2D,
6536                 .ops = &vlv_display_power_well_ops,
6537         },
6538         {
6539                 .name = "dpio-tx-b-01",
6540                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6541                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6542                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6543                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6544                 .ops = &vlv_dpio_power_well_ops,
6545                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
6546         },
6547         {
6548                 .name = "dpio-tx-b-23",
6549                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6550                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6551                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6552                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6553                 .ops = &vlv_dpio_power_well_ops,
6554                 .data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
6555         },
6556         {
6557                 .name = "dpio-tx-c-01",
6558                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6559                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6560                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6561                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6562                 .ops = &vlv_dpio_power_well_ops,
6563                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
6564         },
6565         {
6566                 .name = "dpio-tx-c-23",
6567                 .domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
6568                            VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
6569                            VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
6570                            VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
6571                 .ops = &vlv_dpio_power_well_ops,
6572                 .data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
6573         },
6574         {
6575                 .name = "dpio-common",
6576                 .domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
6577                 .data = PUNIT_POWER_WELL_DPIO_CMN_BC,
6578                 .ops = &vlv_dpio_cmn_power_well_ops,
6579         },
6580 };
6581
6582 static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
6583                                                  enum punit_power_well power_well_id)
6584 {
6585         struct i915_power_domains *power_domains = &dev_priv->power_domains;
6586         struct i915_power_well *power_well;
6587         int i;
6588
6589         for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
6590                 if (power_well->data == power_well_id)
6591                         return power_well;
6592         }
6593
6594         return NULL;
6595 }
6596
6597 #define set_power_wells(power_domains, __power_wells) ({                \
6598         (power_domains)->power_wells = (__power_wells);                 \
6599         (power_domains)->power_well_count = ARRAY_SIZE(__power_wells);  \
6600 })
6601
6602 int intel_power_domains_init(struct drm_i915_private *dev_priv)
6603 {
6604         struct i915_power_domains *power_domains = &dev_priv->power_domains;
6605
6606         lockinit(&power_domains->lock, "i915pl", 0, LK_CANRECURSE);
6607
6608         /*
6609          * The enabling order will be from lower to higher indexed wells,
6610          * the disabling order is reversed.
6611          */
6612         if (IS_HASWELL(dev_priv->dev)) {
6613                 set_power_wells(power_domains, hsw_power_wells);
6614                 hsw_pwr = power_domains;
6615         } else if (IS_BROADWELL(dev_priv->dev)) {
6616                 set_power_wells(power_domains, bdw_power_wells);
6617                 hsw_pwr = power_domains;
6618         } else if (IS_VALLEYVIEW(dev_priv->dev)) {
6619                 set_power_wells(power_domains, vlv_power_wells);
6620         } else {
6621                 set_power_wells(power_domains, i9xx_always_on_power_well);
6622         }
6623
6624         return 0;
6625 }
6626
6627 void intel_power_domains_remove(struct drm_i915_private *dev_priv)
6628 {
6629         hsw_pwr = NULL;
6630 }
6631
6632 static void intel_power_domains_resume(struct drm_i915_private *dev_priv)
6633 {
6634         struct i915_power_domains *power_domains = &dev_priv->power_domains;
6635         struct i915_power_well *power_well;
6636         int i;
6637
6638         mutex_lock(&power_domains->lock);
6639         for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
6640                 power_well->ops->sync_hw(dev_priv, power_well);
6641                 power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
6642                                                                      power_well);
6643         }
6644         mutex_unlock(&power_domains->lock);
6645 }
6646
6647 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
6648 {
6649         struct i915_power_well *cmn =
6650                 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
6651         struct i915_power_well *disp2d =
6652                 lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
6653
6654         /* nothing to do if common lane is already off */
6655         if (!cmn->ops->is_enabled(dev_priv, cmn))
6656                 return;
6657
6658         /* If the display might be already active skip this */
6659         if (disp2d->ops->is_enabled(dev_priv, disp2d) &&
6660             I915_READ(DPIO_CTL) & DPIO_CMNRST)
6661                 return;
6662
6663         DRM_DEBUG_KMS("toggling display PHY side reset\n");
6664
6665         /* cmnlane needs DPLL registers */
6666         disp2d->ops->enable(dev_priv, disp2d);
6667
6668         /*
6669          * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
6670          * Need to assert and de-assert PHY SB reset by gating the
6671          * common lane power, then un-gating it.
6672          * Simply ungating isn't enough to reset the PHY enough to get
6673          * ports and lanes running.
6674          */
6675         cmn->ops->disable(dev_priv, cmn);
6676 }
6677
6678 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv)
6679 {
6680         struct drm_device *dev = dev_priv->dev;
6681         struct i915_power_domains *power_domains = &dev_priv->power_domains;
6682
6683         power_domains->initializing = true;
6684
6685         if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
6686                 mutex_lock(&power_domains->lock);
6687                 vlv_cmnlane_wa(dev_priv);
6688                 mutex_unlock(&power_domains->lock);
6689         }
6690
6691         /* For now, we need the power well to be always enabled. */
6692         intel_display_set_init_power(dev_priv, true);
6693         intel_power_domains_resume(dev_priv);
6694         power_domains->initializing = false;
6695 }
6696
6697 void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
6698 {
6699         intel_runtime_pm_get(dev_priv);
6700 }
6701
6702 void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
6703 {
6704         intel_runtime_pm_put(dev_priv);
6705 }
6706
6707 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
6708 {
6709 #if 0
6710         struct drm_device *dev = dev_priv->dev;
6711         struct device *device = &dev->pdev->dev;
6712
6713         if (!HAS_RUNTIME_PM(dev))
6714                 return;
6715
6716         pm_runtime_get_sync(device);
6717         WARN(dev_priv->pm.suspended, "Device still suspended.\n");
6718 #endif
6719 }
6720
6721 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
6722 {
6723         struct drm_device *dev = dev_priv->dev;
6724 #if 0
6725         struct device *device = &dev->pdev->dev;
6726 #endif
6727
6728         if (!HAS_RUNTIME_PM(dev))
6729                 return;
6730
6731         WARN(dev_priv->pm.suspended, "Getting nosync-ref while suspended.\n");
6732 #if 0
6733         pm_runtime_get_noresume(device);
6734 #endif
6735 }
6736
6737 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
6738 {
6739 #if 0
6740         struct drm_device *dev = dev_priv->dev;
6741         struct device *device = &dev->pdev->dev;
6742
6743         if (!HAS_RUNTIME_PM(dev))
6744                 return;
6745
6746         pm_runtime_mark_last_busy(device);
6747         pm_runtime_put_autosuspend(device);
6748 #endif
6749 }
6750
6751 void intel_init_runtime_pm(struct drm_i915_private *dev_priv)
6752 {
6753         struct drm_device *dev = dev_priv->dev;
6754 #if 0
6755         struct device *device = &dev->pdev->dev;
6756 #endif
6757
6758         if (!HAS_RUNTIME_PM(dev))
6759                 return;
6760
6761 #if 0
6762         pm_runtime_set_active(device);
6763
6764         /*
6765          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6766          * requirement.
6767          */
6768         if (!intel_enable_rc6(dev)) {
6769                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6770                 return;
6771         }
6772
6773         pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
6774         pm_runtime_mark_last_busy(device);
6775         pm_runtime_use_autosuspend(device);
6776
6777         pm_runtime_put_autosuspend(device);
6778 #endif
6779 }
6780
6781 void intel_fini_runtime_pm(struct drm_i915_private *dev_priv)
6782 {
6783 #if 0
6784         struct drm_device *dev = dev_priv->dev;
6785         struct device *device = &dev->pdev->dev;
6786
6787         if (!HAS_RUNTIME_PM(dev))
6788                 return;
6789
6790         if (!intel_enable_rc6(dev))
6791                 return;
6792
6793         /* Make sure we're not suspended first. */
6794         pm_runtime_get_sync(device);
6795         pm_runtime_disable(device);
6796 #endif
6797 }
6798
6799 /* Set up chip specific power management-related functions */
6800 void intel_init_pm(struct drm_device *dev)
6801 {
6802         struct drm_i915_private *dev_priv = dev->dev_private;
6803
6804         if (HAS_FBC(dev)) {
6805                 if (INTEL_INFO(dev)->gen >= 7) {
6806                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6807                         dev_priv->display.enable_fbc = gen7_enable_fbc;
6808                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
6809                 } else if (INTEL_INFO(dev)->gen >= 5) {
6810                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
6811                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
6812                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
6813                 } else if (IS_GM45(dev)) {
6814                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
6815                         dev_priv->display.enable_fbc = g4x_enable_fbc;
6816                         dev_priv->display.disable_fbc = g4x_disable_fbc;
6817                 } else {
6818                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
6819                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
6820                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
6821
6822                         /* This value was pulled out of someone's hat */
6823                         I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
6824                 }
6825         }
6826
6827         /* For cxsr */
6828         if (IS_PINEVIEW(dev))
6829                 i915_pineview_get_mem_freq(dev);
6830         else if (IS_GEN5(dev))
6831                 i915_ironlake_get_mem_freq(dev);
6832
6833         /* For FIFO watermark updates */
6834         if (HAS_PCH_SPLIT(dev)) {
6835                 ilk_setup_wm_latency(dev);
6836
6837                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
6838                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
6839                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
6840                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
6841                         dev_priv->display.update_wm = ilk_update_wm;
6842                         dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
6843                 } else {
6844                         DRM_DEBUG_KMS("Failed to read display plane latency. "
6845                                       "Disable CxSR\n");
6846                 }
6847
6848                 if (IS_GEN5(dev))
6849                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6850                 else if (IS_GEN6(dev))
6851                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6852                 else if (IS_IVYBRIDGE(dev))
6853                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6854                 else if (IS_HASWELL(dev))
6855                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6856                 else if (INTEL_INFO(dev)->gen == 8)
6857                         dev_priv->display.init_clock_gating = gen8_init_clock_gating;
6858         } else if (IS_CHERRYVIEW(dev)) {
6859                 dev_priv->display.update_wm = valleyview_update_wm;
6860                 dev_priv->display.init_clock_gating =
6861                         cherryview_init_clock_gating;
6862         } else if (IS_VALLEYVIEW(dev)) {
6863                 dev_priv->display.update_wm = valleyview_update_wm;
6864                 dev_priv->display.init_clock_gating =
6865                         valleyview_init_clock_gating;
6866         } else if (IS_PINEVIEW(dev)) {
6867                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6868                                             dev_priv->is_ddr3,
6869                                             dev_priv->fsb_freq,
6870                                             dev_priv->mem_freq)) {
6871                         DRM_INFO("failed to find known CxSR latency "
6872                                  "(found ddr%s fsb freq %d, mem freq %d), "
6873                                  "disabling CxSR\n",
6874                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
6875                                  dev_priv->fsb_freq, dev_priv->mem_freq);
6876                         /* Disable CxSR and never update its watermark again */
6877                         intel_set_memory_cxsr(dev_priv, false);
6878                         dev_priv->display.update_wm = NULL;
6879                 } else
6880                         dev_priv->display.update_wm = pineview_update_wm;
6881                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6882         } else if (IS_G4X(dev)) {
6883                 dev_priv->display.update_wm = g4x_update_wm;
6884                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
6885         } else if (IS_GEN4(dev)) {
6886                 dev_priv->display.update_wm = i965_update_wm;
6887                 if (IS_CRESTLINE(dev))
6888                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
6889                 else if (IS_BROADWATER(dev))
6890                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
6891         } else if (IS_GEN3(dev)) {
6892                 dev_priv->display.update_wm = i9xx_update_wm;
6893                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6894                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6895         } else if (IS_GEN2(dev)) {
6896                 if (INTEL_INFO(dev)->num_pipes == 1) {
6897                         dev_priv->display.update_wm = i845_update_wm;
6898                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
6899                 } else {
6900                         dev_priv->display.update_wm = i9xx_update_wm;
6901                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
6902                 }
6903
6904                 if (IS_I85X(dev) || IS_I865G(dev))
6905                         dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6906                 else
6907                         dev_priv->display.init_clock_gating = i830_init_clock_gating;
6908         } else {
6909                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6910         }
6911 }
6912
6913 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
6914 {
6915         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6916
6917         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6918                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
6919                 return -EAGAIN;
6920         }
6921
6922         I915_WRITE(GEN6_PCODE_DATA, *val);
6923         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6924
6925         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6926                      500)) {
6927                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
6928                 return -ETIMEDOUT;
6929         }
6930
6931         *val = I915_READ(GEN6_PCODE_DATA);
6932         I915_WRITE(GEN6_PCODE_DATA, 0);
6933
6934         return 0;
6935 }
6936
6937 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
6938 {
6939         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6940
6941         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6942                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
6943                 return -EAGAIN;
6944         }
6945
6946         I915_WRITE(GEN6_PCODE_DATA, val);
6947         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6948
6949         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6950                      500)) {
6951                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
6952                 return -ETIMEDOUT;
6953         }
6954
6955         I915_WRITE(GEN6_PCODE_DATA, 0);
6956
6957         return 0;
6958 }
6959
6960 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
6961 {
6962         int div;
6963
6964         /* 4 x czclk */
6965         switch (dev_priv->mem_freq) {
6966         case 800:
6967                 div = 10;
6968                 break;
6969         case 1066:
6970                 div = 12;
6971                 break;
6972         case 1333:
6973                 div = 16;
6974                 break;
6975         default:
6976                 return -1;
6977         }
6978
6979         return DIV_ROUND_CLOSEST(dev_priv->mem_freq * (val + 6 - 0xbd), 4 * div);
6980 }
6981
6982 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
6983 {
6984         int mul;
6985
6986         /* 4 x czclk */
6987         switch (dev_priv->mem_freq) {
6988         case 800:
6989                 mul = 10;
6990                 break;
6991         case 1066:
6992                 mul = 12;
6993                 break;
6994         case 1333:
6995                 mul = 16;
6996                 break;
6997         default:
6998                 return -1;
6999         }
7000
7001         return DIV_ROUND_CLOSEST(4 * mul * val, dev_priv->mem_freq) + 0xbd - 6;
7002 }
7003
7004 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7005 {
7006         int div, freq;
7007
7008         switch (dev_priv->rps.cz_freq) {
7009         case 200:
7010                 div = 5;
7011                 break;
7012         case 267:
7013                 div = 6;
7014                 break;
7015         case 320:
7016         case 333:
7017         case 400:
7018                 div = 8;
7019                 break;
7020         default:
7021                 return -1;
7022         }
7023
7024         freq = (DIV_ROUND_CLOSEST((dev_priv->rps.cz_freq * val), 2 * div) / 2);
7025
7026         return freq;
7027 }
7028
7029 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7030 {
7031         int mul, opcode;
7032
7033         switch (dev_priv->rps.cz_freq) {
7034         case 200:
7035                 mul = 5;
7036                 break;
7037         case 267:
7038                 mul = 6;
7039                 break;
7040         case 320:
7041         case 333:
7042         case 400:
7043                 mul = 8;
7044                 break;
7045         default:
7046                 return -1;
7047         }
7048
7049         opcode = (DIV_ROUND_CLOSEST((val * 2 * mul), dev_priv->rps.cz_freq) * 2);
7050
7051         return opcode;
7052 }
7053
7054 int vlv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7055 {
7056         int ret = -1;
7057
7058         if (IS_CHERRYVIEW(dev_priv->dev))
7059                 ret = chv_gpu_freq(dev_priv, val);
7060         else if (IS_VALLEYVIEW(dev_priv->dev))
7061                 ret = byt_gpu_freq(dev_priv, val);
7062
7063         return ret;
7064 }
7065
7066 int vlv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7067 {
7068         int ret = -1;
7069
7070         if (IS_CHERRYVIEW(dev_priv->dev))
7071                 ret = chv_freq_opcode(dev_priv, val);
7072         else if (IS_VALLEYVIEW(dev_priv->dev))
7073                 ret = byt_freq_opcode(dev_priv, val);
7074
7075         return ret;
7076 }
7077
7078 void intel_pm_setup(struct drm_device *dev)
7079 {
7080         struct drm_i915_private *dev_priv = dev->dev_private;
7081
7082         lockinit(&dev_priv->rps.hw_lock, "i915 rps.hw_lock", 0, LK_CANRECURSE);
7083
7084         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7085                           intel_gen6_powersave_work);
7086
7087         dev_priv->pm.suspended = false;
7088         dev_priv->pm._irqs_disabled = false;
7089 }