drm/i915: i915_gem_object_pin() takes 4 arguments
[dragonfly.git] / sys / dev / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include "intel_drv.h"
30 #include "i915_drv.h"
31 #include <linux/kernel.h>
32 #include <machine/clock.h>
33
34 #define FORCEWAKE_ACK_TIMEOUT_MS 2
35
36 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
37  * framebuffer contents in-memory, aiming at reducing the required bandwidth
38  * during in-memory transfers and, therefore, reduce the power packet.
39  *
40  * The benefits of FBC are mostly visible with solid backgrounds and
41  * variation-less patterns.
42  *
43  * FBC-related functionality can be enabled by the means of the
44  * i915.i915_enable_fbc parameter
45  */
46
47 static bool intel_crtc_active(struct drm_crtc *crtc)
48 {
49         /* Be paranoid as we can arrive here with only partial
50          * state retrieved from the hardware during setup.
51          */
52         return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
53 }
54
55 static void i8xx_disable_fbc(struct drm_device *dev)
56 {
57         struct drm_i915_private *dev_priv = dev->dev_private;
58         u32 fbc_ctl;
59
60         /* Disable compression */
61         fbc_ctl = I915_READ(FBC_CONTROL);
62         if ((fbc_ctl & FBC_CTL_EN) == 0)
63                 return;
64
65         fbc_ctl &= ~FBC_CTL_EN;
66         I915_WRITE(FBC_CONTROL, fbc_ctl);
67
68         /* Wait for compressing bit to clear */
69         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
70                 DRM_DEBUG_KMS("FBC idle timed out\n");
71                 return;
72         }
73
74         DRM_DEBUG_KMS("disabled FBC\n");
75 }
76
77 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
78 {
79         struct drm_device *dev = crtc->dev;
80         struct drm_i915_private *dev_priv = dev->dev_private;
81         struct drm_framebuffer *fb = crtc->fb;
82         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
83         struct drm_i915_gem_object *obj = intel_fb->obj;
84         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
85         int cfb_pitch;
86         int plane, i;
87         u32 fbc_ctl, fbc_ctl2;
88
89         cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
90         if (fb->pitches[0] < cfb_pitch)
91                 cfb_pitch = fb->pitches[0];
92
93         /* FBC_CTL wants 64B units */
94         cfb_pitch = (cfb_pitch / 64) - 1;
95         plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
96
97         /* Clear old tags */
98         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
99                 I915_WRITE(FBC_TAG + (i * 4), 0);
100
101         /* Set it up... */
102         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
103         fbc_ctl2 |= plane;
104         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
105         I915_WRITE(FBC_FENCE_OFF, crtc->y);
106
107         /* enable it... */
108         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
109         if (IS_I945GM(dev))
110                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
111         fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
112         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
113         fbc_ctl |= obj->fence_reg;
114         I915_WRITE(FBC_CONTROL, fbc_ctl);
115
116         DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
117                       cfb_pitch, crtc->y, intel_crtc->plane);
118 }
119
120 static bool i8xx_fbc_enabled(struct drm_device *dev)
121 {
122         struct drm_i915_private *dev_priv = dev->dev_private;
123
124         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
125 }
126
127 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
128 {
129         struct drm_device *dev = crtc->dev;
130         struct drm_i915_private *dev_priv = dev->dev_private;
131         struct drm_framebuffer *fb = crtc->fb;
132         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
133         struct drm_i915_gem_object *obj = intel_fb->obj;
134         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
135         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
136         unsigned long stall_watermark = 200;
137         u32 dpfc_ctl;
138
139         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
140         dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
141         I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
142
143         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
144                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
145                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
146         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
147
148         /* enable it... */
149         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
150
151         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
152 }
153
154 static void g4x_disable_fbc(struct drm_device *dev)
155 {
156         struct drm_i915_private *dev_priv = dev->dev_private;
157         u32 dpfc_ctl;
158
159         /* Disable compression */
160         dpfc_ctl = I915_READ(DPFC_CONTROL);
161         if (dpfc_ctl & DPFC_CTL_EN) {
162                 dpfc_ctl &= ~DPFC_CTL_EN;
163                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
164
165                 DRM_DEBUG_KMS("disabled FBC\n");
166         }
167 }
168
169 static bool g4x_fbc_enabled(struct drm_device *dev)
170 {
171         struct drm_i915_private *dev_priv = dev->dev_private;
172
173         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
174 }
175
176 static void sandybridge_blit_fbc_update(struct drm_device *dev)
177 {
178         struct drm_i915_private *dev_priv = dev->dev_private;
179         u32 blt_ecoskpd;
180
181         /* Make sure blitter notifies FBC of writes */
182         gen6_gt_force_wake_get(dev_priv);
183         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
184         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
185                 GEN6_BLITTER_LOCK_SHIFT;
186         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
187         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
188         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
189         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
190                          GEN6_BLITTER_LOCK_SHIFT);
191         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
192         POSTING_READ(GEN6_BLITTER_ECOSKPD);
193         gen6_gt_force_wake_put(dev_priv);
194 }
195
196 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
197 {
198         struct drm_device *dev = crtc->dev;
199         struct drm_i915_private *dev_priv = dev->dev_private;
200         struct drm_framebuffer *fb = crtc->fb;
201         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
202         struct drm_i915_gem_object *obj = intel_fb->obj;
203         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
204         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
205         unsigned long stall_watermark = 200;
206         u32 dpfc_ctl;
207
208         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
209         dpfc_ctl &= DPFC_RESERVED;
210         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
211         /* Set persistent mode for front-buffer rendering, ala X. */
212         dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
213         dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
214         I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
215
216         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
217                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
218                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
219         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
220         I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
221         /* enable it... */
222         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
223
224         if (IS_GEN6(dev)) {
225                 I915_WRITE(SNB_DPFC_CTL_SA,
226                            SNB_CPU_FENCE_ENABLE | obj->fence_reg);
227                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
228                 sandybridge_blit_fbc_update(dev);
229         }
230
231         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
232 }
233
234 static void ironlake_disable_fbc(struct drm_device *dev)
235 {
236         struct drm_i915_private *dev_priv = dev->dev_private;
237         u32 dpfc_ctl;
238
239         /* Disable compression */
240         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
241         if (dpfc_ctl & DPFC_CTL_EN) {
242                 dpfc_ctl &= ~DPFC_CTL_EN;
243                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
244
245                 DRM_DEBUG_KMS("disabled FBC\n");
246         }
247 }
248
249 static bool ironlake_fbc_enabled(struct drm_device *dev)
250 {
251         struct drm_i915_private *dev_priv = dev->dev_private;
252
253         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
254 }
255
256 bool intel_fbc_enabled(struct drm_device *dev)
257 {
258         struct drm_i915_private *dev_priv = dev->dev_private;
259
260         if (!dev_priv->display.fbc_enabled)
261                 return false;
262
263         return dev_priv->display.fbc_enabled(dev);
264 }
265
266 static void intel_fbc_work_fn(struct work_struct *__work)
267 {
268         struct intel_fbc_work *work =
269                 container_of(to_delayed_work(__work),
270                              struct intel_fbc_work, work);
271         struct drm_device *dev = work->crtc->dev;
272         struct drm_i915_private *dev_priv = dev->dev_private;
273
274         DRM_LOCK(dev);
275         if (work == dev_priv->fbc_work) {
276                 /* Double check that we haven't switched fb without cancelling
277                  * the prior work.
278                  */
279                 if (work->crtc->fb == work->fb) {
280                         dev_priv->display.enable_fbc(work->crtc,
281                                                      work->interval);
282
283                         dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
284                         dev_priv->cfb_fb = work->crtc->fb->base.id;
285                         dev_priv->cfb_y = work->crtc->y;
286                 }
287
288                 dev_priv->fbc_work = NULL;
289         }
290         DRM_UNLOCK(dev);
291
292         kfree(work, DRM_MEM_KMS);
293 }
294
295 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
296 {
297         if (dev_priv->fbc_work == NULL)
298                 return;
299
300         DRM_DEBUG_KMS("cancelling pending FBC enable\n");
301
302         /* Synchronisation is provided by struct_mutex and checking of
303          * dev_priv->fbc_work, so we can perform the cancellation
304          * entirely asynchronously.
305          */
306         if (cancel_delayed_work(&dev_priv->fbc_work->work))
307                 /* tasklet was killed before being run, clean up */
308                 kfree(dev_priv->fbc_work, DRM_MEM_KMS);
309
310         /* Mark the work as no longer wanted so that if it does
311          * wake-up (because the work was already running and waiting
312          * for our mutex), it will discover that is no longer
313          * necessary to run.
314          */
315         dev_priv->fbc_work = NULL;
316 }
317
318 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
319 {
320         struct intel_fbc_work *work;
321         struct drm_device *dev = crtc->dev;
322         struct drm_i915_private *dev_priv = dev->dev_private;
323
324         if (!dev_priv->display.enable_fbc)
325                 return;
326
327         intel_cancel_fbc_work(dev_priv);
328
329         work = kmalloc(sizeof(*work), DRM_MEM_KMS, M_WAITOK | M_ZERO);
330         if (work == NULL) {
331                 dev_priv->display.enable_fbc(crtc, interval);
332                 return;
333         }
334
335         work->crtc = crtc;
336         work->fb = crtc->fb;
337         work->interval = interval;
338         INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
339
340         dev_priv->fbc_work = work;
341
342         DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
343
344         /* Delay the actual enabling to let pageflipping cease and the
345          * display to settle before starting the compression. Note that
346          * this delay also serves a second purpose: it allows for a
347          * vblank to pass after disabling the FBC before we attempt
348          * to modify the control registers.
349          *
350          * A more complicated solution would involve tracking vblanks
351          * following the termination of the page-flipping sequence
352          * and indeed performing the enable as a co-routine and not
353          * waiting synchronously upon the vblank.
354          */
355         schedule_delayed_work(&work->work, msecs_to_jiffies(50));
356 }
357
358 void intel_disable_fbc(struct drm_device *dev)
359 {
360         struct drm_i915_private *dev_priv = dev->dev_private;
361
362         intel_cancel_fbc_work(dev_priv);
363
364         if (!dev_priv->display.disable_fbc)
365                 return;
366
367         dev_priv->display.disable_fbc(dev);
368         dev_priv->cfb_plane = -1;
369 }
370
371 /**
372  * intel_update_fbc - enable/disable FBC as needed
373  * @dev: the drm_device
374  *
375  * Set up the framebuffer compression hardware at mode set time.  We
376  * enable it if possible:
377  *   - plane A only (on pre-965)
378  *   - no pixel mulitply/line duplication
379  *   - no alpha buffer discard
380  *   - no dual wide
381  *   - framebuffer <= 2048 in width, 1536 in height
382  *
383  * We can't assume that any compression will take place (worst case),
384  * so the compressed buffer has to be the same size as the uncompressed
385  * one.  It also must reside (along with the line length buffer) in
386  * stolen memory.
387  *
388  * We need to enable/disable FBC on a global basis.
389  */
390 void intel_update_fbc(struct drm_device *dev)
391 {
392         struct drm_i915_private *dev_priv = dev->dev_private;
393         struct drm_crtc *crtc = NULL, *tmp_crtc;
394         struct intel_crtc *intel_crtc;
395         struct drm_framebuffer *fb;
396         struct intel_framebuffer *intel_fb;
397         struct drm_i915_gem_object *obj;
398         int enable_fbc;
399
400         if (!i915_powersave)
401                 return;
402
403         if (!I915_HAS_FBC(dev))
404                 return;
405
406         /*
407          * If FBC is already on, we just have to verify that we can
408          * keep it that way...
409          * Need to disable if:
410          *   - more than one pipe is active
411          *   - changing FBC params (stride, fence, mode)
412          *   - new fb is too large to fit in compressed buffer
413          *   - going to an unsupported config (interlace, pixel multiply, etc.)
414          */
415         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
416                 if (intel_crtc_active(tmp_crtc) &&
417                     !to_intel_crtc(tmp_crtc)->primary_disabled) {
418                         if (crtc) {
419                                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
420                                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
421                                 goto out_disable;
422                         }
423                         crtc = tmp_crtc;
424                 }
425         }
426
427         if (!crtc || crtc->fb == NULL) {
428                 DRM_DEBUG_KMS("no output, disabling\n");
429                 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
430                 goto out_disable;
431         }
432
433         intel_crtc = to_intel_crtc(crtc);
434         fb = crtc->fb;
435         intel_fb = to_intel_framebuffer(fb);
436         obj = intel_fb->obj;
437
438         enable_fbc = i915_enable_fbc;
439         if (enable_fbc < 0) {
440                 DRM_DEBUG_KMS("fbc set to per-chip default\n");
441                 enable_fbc = 1;
442                 if (INTEL_INFO(dev)->gen <= 6)
443                         enable_fbc = 0;
444         }
445         if (!enable_fbc) {
446                 DRM_DEBUG_KMS("fbc disabled per module param\n");
447                 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
448                 goto out_disable;
449         }
450         if (intel_fb->obj->base.size > dev_priv->cfb_size) {
451                 DRM_DEBUG_KMS("framebuffer too large, disabling "
452                               "compression\n");
453                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
454                 goto out_disable;
455         }
456         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
457             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
458                 DRM_DEBUG_KMS("mode incompatible with compression, "
459                               "disabling\n");
460                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
461                 goto out_disable;
462         }
463         if ((crtc->mode.hdisplay > 2048) ||
464             (crtc->mode.vdisplay > 1536)) {
465                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
466                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
467                 goto out_disable;
468         }
469         if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
470                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
471                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
472                 goto out_disable;
473         }
474
475         /* The use of a CPU fence is mandatory in order to detect writes
476          * by the CPU to the scanout and trigger updates to the FBC.
477          */
478         if (obj->tiling_mode != I915_TILING_X ||
479             obj->fence_reg == I915_FENCE_REG_NONE) {
480                 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
481                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
482                 goto out_disable;
483         }
484
485 #ifdef DDB
486         /* If the kernel debugger is active, always disable compression */
487         if (db_active)
488                 goto out_disable;
489 #endif
490
491         /* If the scanout has not changed, don't modify the FBC settings.
492          * Note that we make the fundamental assumption that the fb->obj
493          * cannot be unpinned (and have its GTT offset and fence revoked)
494          * without first being decoupled from the scanout and FBC disabled.
495          */
496         if (dev_priv->cfb_plane == intel_crtc->plane &&
497             dev_priv->cfb_fb == fb->base.id &&
498             dev_priv->cfb_y == crtc->y)
499                 return;
500
501         if (intel_fbc_enabled(dev)) {
502                 /* We update FBC along two paths, after changing fb/crtc
503                  * configuration (modeswitching) and after page-flipping
504                  * finishes. For the latter, we know that not only did
505                  * we disable the FBC at the start of the page-flip
506                  * sequence, but also more than one vblank has passed.
507                  *
508                  * For the former case of modeswitching, it is possible
509                  * to switch between two FBC valid configurations
510                  * instantaneously so we do need to disable the FBC
511                  * before we can modify its control registers. We also
512                  * have to wait for the next vblank for that to take
513                  * effect. However, since we delay enabling FBC we can
514                  * assume that a vblank has passed since disabling and
515                  * that we can safely alter the registers in the deferred
516                  * callback.
517                  *
518                  * In the scenario that we go from a valid to invalid
519                  * and then back to valid FBC configuration we have
520                  * no strict enforcement that a vblank occurred since
521                  * disabling the FBC. However, along all current pipe
522                  * disabling paths we do need to wait for a vblank at
523                  * some point. And we wait before enabling FBC anyway.
524                  */
525                 DRM_DEBUG_KMS("disabling active FBC for update\n");
526                 intel_disable_fbc(dev);
527         }
528
529         intel_enable_fbc(crtc, 500);
530         return;
531
532 out_disable:
533         /* Multiple disables should be harmless */
534         if (intel_fbc_enabled(dev)) {
535                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
536                 intel_disable_fbc(dev);
537         }
538 }
539
540 static void i915_pineview_get_mem_freq(struct drm_device *dev)
541 {
542         drm_i915_private_t *dev_priv = dev->dev_private;
543         u32 tmp;
544
545         tmp = I915_READ(CLKCFG);
546
547         switch (tmp & CLKCFG_FSB_MASK) {
548         case CLKCFG_FSB_533:
549                 dev_priv->fsb_freq = 533; /* 133*4 */
550                 break;
551         case CLKCFG_FSB_800:
552                 dev_priv->fsb_freq = 800; /* 200*4 */
553                 break;
554         case CLKCFG_FSB_667:
555                 dev_priv->fsb_freq =  667; /* 167*4 */
556                 break;
557         case CLKCFG_FSB_400:
558                 dev_priv->fsb_freq = 400; /* 100*4 */
559                 break;
560         }
561
562         switch (tmp & CLKCFG_MEM_MASK) {
563         case CLKCFG_MEM_533:
564                 dev_priv->mem_freq = 533;
565                 break;
566         case CLKCFG_MEM_667:
567                 dev_priv->mem_freq = 667;
568                 break;
569         case CLKCFG_MEM_800:
570                 dev_priv->mem_freq = 800;
571                 break;
572         }
573
574         /* detect pineview DDR3 setting */
575         tmp = I915_READ(CSHRDDR3CTL);
576         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
577 }
578
579 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
580 {
581         drm_i915_private_t *dev_priv = dev->dev_private;
582         u16 ddrpll, csipll;
583
584         ddrpll = I915_READ16(DDRMPLL1);
585         csipll = I915_READ16(CSIPLL0);
586
587         switch (ddrpll & 0xff) {
588         case 0xc:
589                 dev_priv->mem_freq = 800;
590                 break;
591         case 0x10:
592                 dev_priv->mem_freq = 1066;
593                 break;
594         case 0x14:
595                 dev_priv->mem_freq = 1333;
596                 break;
597         case 0x18:
598                 dev_priv->mem_freq = 1600;
599                 break;
600         default:
601                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
602                                  ddrpll & 0xff);
603                 dev_priv->mem_freq = 0;
604                 break;
605         }
606
607         dev_priv->ips.r_t = dev_priv->mem_freq;
608
609         switch (csipll & 0x3ff) {
610         case 0x00c:
611                 dev_priv->fsb_freq = 3200;
612                 break;
613         case 0x00e:
614                 dev_priv->fsb_freq = 3733;
615                 break;
616         case 0x010:
617                 dev_priv->fsb_freq = 4266;
618                 break;
619         case 0x012:
620                 dev_priv->fsb_freq = 4800;
621                 break;
622         case 0x014:
623                 dev_priv->fsb_freq = 5333;
624                 break;
625         case 0x016:
626                 dev_priv->fsb_freq = 5866;
627                 break;
628         case 0x018:
629                 dev_priv->fsb_freq = 6400;
630                 break;
631         default:
632                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
633                                  csipll & 0x3ff);
634                 dev_priv->fsb_freq = 0;
635                 break;
636         }
637
638         if (dev_priv->fsb_freq == 3200) {
639                 dev_priv->ips.c_m = 0;
640         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
641                 dev_priv->ips.c_m = 1;
642         } else {
643                 dev_priv->ips.c_m = 2;
644         }
645 }
646
647 static const struct cxsr_latency cxsr_latency_table[] = {
648         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
649         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
650         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
651         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
652         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
653
654         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
655         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
656         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
657         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
658         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
659
660         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
661         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
662         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
663         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
664         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
665
666         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
667         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
668         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
669         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
670         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
671
672         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
673         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
674         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
675         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
676         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
677
678         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
679         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
680         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
681         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
682         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
683 };
684
685 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
686                                                          int is_ddr3,
687                                                          int fsb,
688                                                          int mem)
689 {
690         const struct cxsr_latency *latency;
691         int i;
692
693         if (fsb == 0 || mem == 0)
694                 return NULL;
695
696         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
697                 latency = &cxsr_latency_table[i];
698                 if (is_desktop == latency->is_desktop &&
699                     is_ddr3 == latency->is_ddr3 &&
700                     fsb == latency->fsb_freq && mem == latency->mem_freq)
701                         return latency;
702         }
703
704         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
705
706         return NULL;
707 }
708
709 static void pineview_disable_cxsr(struct drm_device *dev)
710 {
711         struct drm_i915_private *dev_priv = dev->dev_private;
712
713         /* deactivate cxsr */
714         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
715 }
716
717 /*
718  * Latency for FIFO fetches is dependent on several factors:
719  *   - memory configuration (speed, channels)
720  *   - chipset
721  *   - current MCH state
722  * It can be fairly high in some situations, so here we assume a fairly
723  * pessimal value.  It's a tradeoff between extra memory fetches (if we
724  * set this value too high, the FIFO will fetch frequently to stay full)
725  * and power consumption (set it too low to save power and we might see
726  * FIFO underruns and display "flicker").
727  *
728  * A value of 5us seems to be a good balance; safe for very low end
729  * platforms but not overly aggressive on lower latency configs.
730  */
731 static const int latency_ns = 5000;
732
733 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
734 {
735         struct drm_i915_private *dev_priv = dev->dev_private;
736         uint32_t dsparb = I915_READ(DSPARB);
737         int size;
738
739         size = dsparb & 0x7f;
740         if (plane)
741                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
742
743         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
744                       plane ? "B" : "A", size);
745
746         return size;
747 }
748
749 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
750 {
751         struct drm_i915_private *dev_priv = dev->dev_private;
752         uint32_t dsparb = I915_READ(DSPARB);
753         int size;
754
755         size = dsparb & 0x1ff;
756         if (plane)
757                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
758         size >>= 1; /* Convert to cachelines */
759
760         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
761                       plane ? "B" : "A", size);
762
763         return size;
764 }
765
766 static int i845_get_fifo_size(struct drm_device *dev, int plane)
767 {
768         struct drm_i915_private *dev_priv = dev->dev_private;
769         uint32_t dsparb = I915_READ(DSPARB);
770         int size;
771
772         size = dsparb & 0x7f;
773         size >>= 2; /* Convert to cachelines */
774
775         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
776                       plane ? "B" : "A",
777                       size);
778
779         return size;
780 }
781
782 static int i830_get_fifo_size(struct drm_device *dev, int plane)
783 {
784         struct drm_i915_private *dev_priv = dev->dev_private;
785         uint32_t dsparb = I915_READ(DSPARB);
786         int size;
787
788         size = dsparb & 0x7f;
789         size >>= 1; /* Convert to cachelines */
790
791         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
792                       plane ? "B" : "A", size);
793
794         return size;
795 }
796
797 /* Pineview has different values for various configs */
798 static const struct intel_watermark_params pineview_display_wm = {
799         PINEVIEW_DISPLAY_FIFO,
800         PINEVIEW_MAX_WM,
801         PINEVIEW_DFT_WM,
802         PINEVIEW_GUARD_WM,
803         PINEVIEW_FIFO_LINE_SIZE
804 };
805 static const struct intel_watermark_params pineview_display_hplloff_wm = {
806         PINEVIEW_DISPLAY_FIFO,
807         PINEVIEW_MAX_WM,
808         PINEVIEW_DFT_HPLLOFF_WM,
809         PINEVIEW_GUARD_WM,
810         PINEVIEW_FIFO_LINE_SIZE
811 };
812 static const struct intel_watermark_params pineview_cursor_wm = {
813         PINEVIEW_CURSOR_FIFO,
814         PINEVIEW_CURSOR_MAX_WM,
815         PINEVIEW_CURSOR_DFT_WM,
816         PINEVIEW_CURSOR_GUARD_WM,
817         PINEVIEW_FIFO_LINE_SIZE,
818 };
819 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
820         PINEVIEW_CURSOR_FIFO,
821         PINEVIEW_CURSOR_MAX_WM,
822         PINEVIEW_CURSOR_DFT_WM,
823         PINEVIEW_CURSOR_GUARD_WM,
824         PINEVIEW_FIFO_LINE_SIZE
825 };
826 static const struct intel_watermark_params g4x_wm_info = {
827         G4X_FIFO_SIZE,
828         G4X_MAX_WM,
829         G4X_MAX_WM,
830         2,
831         G4X_FIFO_LINE_SIZE,
832 };
833 static const struct intel_watermark_params g4x_cursor_wm_info = {
834         I965_CURSOR_FIFO,
835         I965_CURSOR_MAX_WM,
836         I965_CURSOR_DFT_WM,
837         2,
838         G4X_FIFO_LINE_SIZE,
839 };
840 static const struct intel_watermark_params valleyview_wm_info = {
841         VALLEYVIEW_FIFO_SIZE,
842         VALLEYVIEW_MAX_WM,
843         VALLEYVIEW_MAX_WM,
844         2,
845         G4X_FIFO_LINE_SIZE,
846 };
847 static const struct intel_watermark_params valleyview_cursor_wm_info = {
848         I965_CURSOR_FIFO,
849         VALLEYVIEW_CURSOR_MAX_WM,
850         I965_CURSOR_DFT_WM,
851         2,
852         G4X_FIFO_LINE_SIZE,
853 };
854 static const struct intel_watermark_params i965_cursor_wm_info = {
855         I965_CURSOR_FIFO,
856         I965_CURSOR_MAX_WM,
857         I965_CURSOR_DFT_WM,
858         2,
859         I915_FIFO_LINE_SIZE,
860 };
861 static const struct intel_watermark_params i945_wm_info = {
862         I945_FIFO_SIZE,
863         I915_MAX_WM,
864         1,
865         2,
866         I915_FIFO_LINE_SIZE
867 };
868 static const struct intel_watermark_params i915_wm_info = {
869         I915_FIFO_SIZE,
870         I915_MAX_WM,
871         1,
872         2,
873         I915_FIFO_LINE_SIZE
874 };
875 static const struct intel_watermark_params i855_wm_info = {
876         I855GM_FIFO_SIZE,
877         I915_MAX_WM,
878         1,
879         2,
880         I830_FIFO_LINE_SIZE
881 };
882 static const struct intel_watermark_params i830_wm_info = {
883         I830_FIFO_SIZE,
884         I915_MAX_WM,
885         1,
886         2,
887         I830_FIFO_LINE_SIZE
888 };
889
890 static const struct intel_watermark_params ironlake_display_wm_info = {
891         ILK_DISPLAY_FIFO,
892         ILK_DISPLAY_MAXWM,
893         ILK_DISPLAY_DFTWM,
894         2,
895         ILK_FIFO_LINE_SIZE
896 };
897 static const struct intel_watermark_params ironlake_cursor_wm_info = {
898         ILK_CURSOR_FIFO,
899         ILK_CURSOR_MAXWM,
900         ILK_CURSOR_DFTWM,
901         2,
902         ILK_FIFO_LINE_SIZE
903 };
904 static const struct intel_watermark_params ironlake_display_srwm_info = {
905         ILK_DISPLAY_SR_FIFO,
906         ILK_DISPLAY_MAX_SRWM,
907         ILK_DISPLAY_DFT_SRWM,
908         2,
909         ILK_FIFO_LINE_SIZE
910 };
911 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
912         ILK_CURSOR_SR_FIFO,
913         ILK_CURSOR_MAX_SRWM,
914         ILK_CURSOR_DFT_SRWM,
915         2,
916         ILK_FIFO_LINE_SIZE
917 };
918
919 static const struct intel_watermark_params sandybridge_display_wm_info = {
920         SNB_DISPLAY_FIFO,
921         SNB_DISPLAY_MAXWM,
922         SNB_DISPLAY_DFTWM,
923         2,
924         SNB_FIFO_LINE_SIZE
925 };
926 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
927         SNB_CURSOR_FIFO,
928         SNB_CURSOR_MAXWM,
929         SNB_CURSOR_DFTWM,
930         2,
931         SNB_FIFO_LINE_SIZE
932 };
933 static const struct intel_watermark_params sandybridge_display_srwm_info = {
934         SNB_DISPLAY_SR_FIFO,
935         SNB_DISPLAY_MAX_SRWM,
936         SNB_DISPLAY_DFT_SRWM,
937         2,
938         SNB_FIFO_LINE_SIZE
939 };
940 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
941         SNB_CURSOR_SR_FIFO,
942         SNB_CURSOR_MAX_SRWM,
943         SNB_CURSOR_DFT_SRWM,
944         2,
945         SNB_FIFO_LINE_SIZE
946 };
947
948
949 /**
950  * intel_calculate_wm - calculate watermark level
951  * @clock_in_khz: pixel clock
952  * @wm: chip FIFO params
953  * @pixel_size: display pixel size
954  * @latency_ns: memory latency for the platform
955  *
956  * Calculate the watermark level (the level at which the display plane will
957  * start fetching from memory again).  Each chip has a different display
958  * FIFO size and allocation, so the caller needs to figure that out and pass
959  * in the correct intel_watermark_params structure.
960  *
961  * As the pixel clock runs, the FIFO will be drained at a rate that depends
962  * on the pixel size.  When it reaches the watermark level, it'll start
963  * fetching FIFO line sized based chunks from memory until the FIFO fills
964  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
965  * will occur, and a display engine hang could result.
966  */
967 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
968                                         const struct intel_watermark_params *wm,
969                                         int fifo_size,
970                                         int pixel_size,
971                                         unsigned long latency_ns)
972 {
973         long entries_required, wm_size;
974
975         /*
976          * Note: we need to make sure we don't overflow for various clock &
977          * latency values.
978          * clocks go from a few thousand to several hundred thousand.
979          * latency is usually a few thousand
980          */
981         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
982                 1000;
983         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
984
985         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
986
987         wm_size = fifo_size - (entries_required + wm->guard_size);
988
989         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
990
991         /* Don't promote wm_size to unsigned... */
992         if (wm_size > (long)wm->max_wm)
993                 wm_size = wm->max_wm;
994         if (wm_size <= 0)
995                 wm_size = wm->default_wm;
996         return wm_size;
997 }
998
999 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
1000 {
1001         struct drm_crtc *crtc, *enabled = NULL;
1002
1003         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1004                 if (intel_crtc_active(crtc)) {
1005                         if (enabled)
1006                                 return NULL;
1007                         enabled = crtc;
1008                 }
1009         }
1010
1011         return enabled;
1012 }
1013
1014 static void pineview_update_wm(struct drm_device *dev)
1015 {
1016         struct drm_i915_private *dev_priv = dev->dev_private;
1017         struct drm_crtc *crtc;
1018         const struct cxsr_latency *latency;
1019         u32 reg;
1020         unsigned long wm;
1021
1022         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1023                                          dev_priv->fsb_freq, dev_priv->mem_freq);
1024         if (!latency) {
1025                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1026                 pineview_disable_cxsr(dev);
1027                 return;
1028         }
1029
1030         crtc = single_enabled_crtc(dev);
1031         if (crtc) {
1032                 int clock = crtc->mode.clock;
1033                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1034
1035                 /* Display SR */
1036                 wm = intel_calculate_wm(clock, &pineview_display_wm,
1037                                         pineview_display_wm.fifo_size,
1038                                         pixel_size, latency->display_sr);
1039                 reg = I915_READ(DSPFW1);
1040                 reg &= ~DSPFW_SR_MASK;
1041                 reg |= wm << DSPFW_SR_SHIFT;
1042                 I915_WRITE(DSPFW1, reg);
1043                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1044
1045                 /* cursor SR */
1046                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1047                                         pineview_display_wm.fifo_size,
1048                                         pixel_size, latency->cursor_sr);
1049                 reg = I915_READ(DSPFW3);
1050                 reg &= ~DSPFW_CURSOR_SR_MASK;
1051                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1052                 I915_WRITE(DSPFW3, reg);
1053
1054                 /* Display HPLL off SR */
1055                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1056                                         pineview_display_hplloff_wm.fifo_size,
1057                                         pixel_size, latency->display_hpll_disable);
1058                 reg = I915_READ(DSPFW3);
1059                 reg &= ~DSPFW_HPLL_SR_MASK;
1060                 reg |= wm & DSPFW_HPLL_SR_MASK;
1061                 I915_WRITE(DSPFW3, reg);
1062
1063                 /* cursor HPLL off SR */
1064                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1065                                         pineview_display_hplloff_wm.fifo_size,
1066                                         pixel_size, latency->cursor_hpll_disable);
1067                 reg = I915_READ(DSPFW3);
1068                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1069                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1070                 I915_WRITE(DSPFW3, reg);
1071                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1072
1073                 /* activate cxsr */
1074                 I915_WRITE(DSPFW3,
1075                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1076                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1077         } else {
1078                 pineview_disable_cxsr(dev);
1079                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1080         }
1081 }
1082
1083 static bool g4x_compute_wm0(struct drm_device *dev,
1084                             int plane,
1085                             const struct intel_watermark_params *display,
1086                             int display_latency_ns,
1087                             const struct intel_watermark_params *cursor,
1088                             int cursor_latency_ns,
1089                             int *plane_wm,
1090                             int *cursor_wm)
1091 {
1092         struct drm_crtc *crtc;
1093         int htotal, hdisplay, clock, pixel_size;
1094         int line_time_us, line_count;
1095         int entries, tlb_miss;
1096
1097         crtc = intel_get_crtc_for_plane(dev, plane);
1098         if (!intel_crtc_active(crtc)) {
1099                 *cursor_wm = cursor->guard_size;
1100                 *plane_wm = display->guard_size;
1101                 return false;
1102         }
1103
1104         htotal = crtc->mode.htotal;
1105         hdisplay = crtc->mode.hdisplay;
1106         clock = crtc->mode.clock;
1107         pixel_size = crtc->fb->bits_per_pixel / 8;
1108
1109         /* Use the small buffer method to calculate plane watermark */
1110         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1111         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1112         if (tlb_miss > 0)
1113                 entries += tlb_miss;
1114         entries = DIV_ROUND_UP(entries, display->cacheline_size);
1115         *plane_wm = entries + display->guard_size;
1116         if (*plane_wm > (int)display->max_wm)
1117                 *plane_wm = display->max_wm;
1118
1119         /* Use the large buffer method to calculate cursor watermark */
1120         line_time_us = ((htotal * 1000) / clock);
1121         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1122         entries = line_count * 64 * pixel_size;
1123         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1124         if (tlb_miss > 0)
1125                 entries += tlb_miss;
1126         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1127         *cursor_wm = entries + cursor->guard_size;
1128         if (*cursor_wm > (int)cursor->max_wm)
1129                 *cursor_wm = (int)cursor->max_wm;
1130
1131         return true;
1132 }
1133
1134 /*
1135  * Check the wm result.
1136  *
1137  * If any calculated watermark values is larger than the maximum value that
1138  * can be programmed into the associated watermark register, that watermark
1139  * must be disabled.
1140  */
1141 static bool g4x_check_srwm(struct drm_device *dev,
1142                            int display_wm, int cursor_wm,
1143                            const struct intel_watermark_params *display,
1144                            const struct intel_watermark_params *cursor)
1145 {
1146         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1147                       display_wm, cursor_wm);
1148
1149         if (display_wm > display->max_wm) {
1150                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1151                               display_wm, display->max_wm);
1152                 return false;
1153         }
1154
1155         if (cursor_wm > cursor->max_wm) {
1156                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1157                               cursor_wm, cursor->max_wm);
1158                 return false;
1159         }
1160
1161         if (!(display_wm || cursor_wm)) {
1162                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1163                 return false;
1164         }
1165
1166         return true;
1167 }
1168
1169 static bool g4x_compute_srwm(struct drm_device *dev,
1170                              int plane,
1171                              int latency_ns,
1172                              const struct intel_watermark_params *display,
1173                              const struct intel_watermark_params *cursor,
1174                              int *display_wm, int *cursor_wm)
1175 {
1176         struct drm_crtc *crtc;
1177         int hdisplay, htotal, pixel_size, clock;
1178         unsigned long line_time_us;
1179         int line_count, line_size;
1180         int small, large;
1181         int entries;
1182
1183         if (!latency_ns) {
1184                 *display_wm = *cursor_wm = 0;
1185                 return false;
1186         }
1187
1188         crtc = intel_get_crtc_for_plane(dev, plane);
1189         hdisplay = crtc->mode.hdisplay;
1190         htotal = crtc->mode.htotal;
1191         clock = crtc->mode.clock;
1192         pixel_size = crtc->fb->bits_per_pixel / 8;
1193
1194         line_time_us = (htotal * 1000) / clock;
1195         line_count = (latency_ns / line_time_us + 1000) / 1000;
1196         line_size = hdisplay * pixel_size;
1197
1198         /* Use the minimum of the small and large buffer method for primary */
1199         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1200         large = line_count * line_size;
1201
1202         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1203         *display_wm = entries + display->guard_size;
1204
1205         /* calculate the self-refresh watermark for display cursor */
1206         entries = line_count * pixel_size * 64;
1207         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1208         *cursor_wm = entries + cursor->guard_size;
1209
1210         return g4x_check_srwm(dev,
1211                               *display_wm, *cursor_wm,
1212                               display, cursor);
1213 }
1214
1215 static bool vlv_compute_drain_latency(struct drm_device *dev,
1216                                      int plane,
1217                                      int *plane_prec_mult,
1218                                      int *plane_dl,
1219                                      int *cursor_prec_mult,
1220                                      int *cursor_dl)
1221 {
1222         struct drm_crtc *crtc;
1223         int clock, pixel_size;
1224         int entries;
1225
1226         crtc = intel_get_crtc_for_plane(dev, plane);
1227         if (!intel_crtc_active(crtc))
1228                 return false;
1229
1230         clock = crtc->mode.clock;       /* VESA DOT Clock */
1231         pixel_size = crtc->fb->bits_per_pixel / 8;      /* BPP */
1232
1233         entries = (clock / 1000) * pixel_size;
1234         *plane_prec_mult = (entries > 256) ?
1235                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1236         *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1237                                                      pixel_size);
1238
1239         entries = (clock / 1000) * 4;   /* BPP is always 4 for cursor */
1240         *cursor_prec_mult = (entries > 256) ?
1241                 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1242         *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1243
1244         return true;
1245 }
1246
1247 /*
1248  * Update drain latency registers of memory arbiter
1249  *
1250  * Valleyview SoC has a new memory arbiter and needs drain latency registers
1251  * to be programmed. Each plane has a drain latency multiplier and a drain
1252  * latency value.
1253  */
1254
1255 static void vlv_update_drain_latency(struct drm_device *dev)
1256 {
1257         struct drm_i915_private *dev_priv = dev->dev_private;
1258         int planea_prec, planea_dl, planeb_prec, planeb_dl;
1259         int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1260         int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1261                                                         either 16 or 32 */
1262
1263         /* For plane A, Cursor A */
1264         if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1265                                       &cursor_prec_mult, &cursora_dl)) {
1266                 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1267                         DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1268                 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1269                         DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1270
1271                 I915_WRITE(VLV_DDL1, cursora_prec |
1272                                 (cursora_dl << DDL_CURSORA_SHIFT) |
1273                                 planea_prec | planea_dl);
1274         }
1275
1276         /* For plane B, Cursor B */
1277         if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1278                                       &cursor_prec_mult, &cursorb_dl)) {
1279                 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1280                         DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1281                 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1282                         DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1283
1284                 I915_WRITE(VLV_DDL2, cursorb_prec |
1285                                 (cursorb_dl << DDL_CURSORB_SHIFT) |
1286                                 planeb_prec | planeb_dl);
1287         }
1288 }
1289
1290 #define single_plane_enabled(mask) ((mask) != 0 && powerof2(mask))
1291
1292 static void valleyview_update_wm(struct drm_device *dev)
1293 {
1294         static const int sr_latency_ns = 12000;
1295         struct drm_i915_private *dev_priv = dev->dev_private;
1296         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1297         int plane_sr, cursor_sr;
1298         int ignore_plane_sr, ignore_cursor_sr;
1299         unsigned int enabled = 0;
1300
1301         vlv_update_drain_latency(dev);
1302
1303         if (g4x_compute_wm0(dev, 0,
1304                             &valleyview_wm_info, latency_ns,
1305                             &valleyview_cursor_wm_info, latency_ns,
1306                             &planea_wm, &cursora_wm))
1307                 enabled |= 1;
1308
1309         if (g4x_compute_wm0(dev, 1,
1310                             &valleyview_wm_info, latency_ns,
1311                             &valleyview_cursor_wm_info, latency_ns,
1312                             &planeb_wm, &cursorb_wm))
1313                 enabled |= 2;
1314
1315         if (single_plane_enabled(enabled) &&
1316             g4x_compute_srwm(dev, ffs(enabled) - 1,
1317                              sr_latency_ns,
1318                              &valleyview_wm_info,
1319                              &valleyview_cursor_wm_info,
1320                              &plane_sr, &ignore_cursor_sr) &&
1321             g4x_compute_srwm(dev, ffs(enabled) - 1,
1322                              2*sr_latency_ns,
1323                              &valleyview_wm_info,
1324                              &valleyview_cursor_wm_info,
1325                              &ignore_plane_sr, &cursor_sr)) {
1326                 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1327         } else {
1328                 I915_WRITE(FW_BLC_SELF_VLV,
1329                            I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1330                 plane_sr = cursor_sr = 0;
1331         }
1332
1333         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1334                       planea_wm, cursora_wm,
1335                       planeb_wm, cursorb_wm,
1336                       plane_sr, cursor_sr);
1337
1338         I915_WRITE(DSPFW1,
1339                    (plane_sr << DSPFW_SR_SHIFT) |
1340                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1341                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1342                    planea_wm);
1343         I915_WRITE(DSPFW2,
1344                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1345                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1346         I915_WRITE(DSPFW3,
1347                    (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
1348                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1349 }
1350
1351 static void g4x_update_wm(struct drm_device *dev)
1352 {
1353         static const int sr_latency_ns = 12000;
1354         struct drm_i915_private *dev_priv = dev->dev_private;
1355         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1356         int plane_sr, cursor_sr;
1357         unsigned int enabled = 0;
1358
1359         if (g4x_compute_wm0(dev, 0,
1360                             &g4x_wm_info, latency_ns,
1361                             &g4x_cursor_wm_info, latency_ns,
1362                             &planea_wm, &cursora_wm))
1363                 enabled |= 1;
1364
1365         if (g4x_compute_wm0(dev, 1,
1366                             &g4x_wm_info, latency_ns,
1367                             &g4x_cursor_wm_info, latency_ns,
1368                             &planeb_wm, &cursorb_wm))
1369                 enabled |= 2;
1370
1371         if (single_plane_enabled(enabled) &&
1372             g4x_compute_srwm(dev, ffs(enabled) - 1,
1373                              sr_latency_ns,
1374                              &g4x_wm_info,
1375                              &g4x_cursor_wm_info,
1376                              &plane_sr, &cursor_sr)) {
1377                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1378         } else {
1379                 I915_WRITE(FW_BLC_SELF,
1380                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1381                 plane_sr = cursor_sr = 0;
1382         }
1383
1384         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1385                       planea_wm, cursora_wm,
1386                       planeb_wm, cursorb_wm,
1387                       plane_sr, cursor_sr);
1388
1389         I915_WRITE(DSPFW1,
1390                    (plane_sr << DSPFW_SR_SHIFT) |
1391                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1392                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
1393                    planea_wm);
1394         I915_WRITE(DSPFW2,
1395                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1396                    (cursora_wm << DSPFW_CURSORA_SHIFT));
1397         /* HPLL off in SR has some issues on G4x... disable it */
1398         I915_WRITE(DSPFW3,
1399                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1400                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1401 }
1402
1403 static void i965_update_wm(struct drm_device *dev)
1404 {
1405         struct drm_i915_private *dev_priv = dev->dev_private;
1406         struct drm_crtc *crtc;
1407         int srwm = 1;
1408         int cursor_sr = 16;
1409
1410         /* Calc sr entries for one plane configs */
1411         crtc = single_enabled_crtc(dev);
1412         if (crtc) {
1413                 /* self-refresh has much higher latency */
1414                 static const int sr_latency_ns = 12000;
1415                 int clock = crtc->mode.clock;
1416                 int htotal = crtc->mode.htotal;
1417                 int hdisplay = crtc->mode.hdisplay;
1418                 int pixel_size = crtc->fb->bits_per_pixel / 8;
1419                 unsigned long line_time_us;
1420                 int entries;
1421
1422                 line_time_us = ((htotal * 1000) / clock);
1423
1424                 /* Use ns/us then divide to preserve precision */
1425                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1426                         pixel_size * hdisplay;
1427                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1428                 srwm = I965_FIFO_SIZE - entries;
1429                 if (srwm < 0)
1430                         srwm = 1;
1431                 srwm &= 0x1ff;
1432                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1433                               entries, srwm);
1434
1435                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1436                         pixel_size * 64;
1437                 entries = DIV_ROUND_UP(entries,
1438                                           i965_cursor_wm_info.cacheline_size);
1439                 cursor_sr = i965_cursor_wm_info.fifo_size -
1440                         (entries + i965_cursor_wm_info.guard_size);
1441
1442                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1443                         cursor_sr = i965_cursor_wm_info.max_wm;
1444
1445                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1446                               "cursor %d\n", srwm, cursor_sr);
1447
1448                 if (IS_CRESTLINE(dev))
1449                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1450         } else {
1451                 /* Turn off self refresh if both pipes are enabled */
1452                 if (IS_CRESTLINE(dev))
1453                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1454                                    & ~FW_BLC_SELF_EN);
1455         }
1456
1457         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1458                       srwm);
1459
1460         /* 965 has limitations... */
1461         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1462                    (8 << 16) | (8 << 8) | (8 << 0));
1463         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1464         /* update cursor SR watermark */
1465         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1466 }
1467
1468 static void i9xx_update_wm(struct drm_device *dev)
1469 {
1470         struct drm_i915_private *dev_priv = dev->dev_private;
1471         const struct intel_watermark_params *wm_info;
1472         uint32_t fwater_lo;
1473         uint32_t fwater_hi;
1474         int cwm, srwm = 1;
1475         int fifo_size;
1476         int planea_wm, planeb_wm;
1477         struct drm_crtc *crtc, *enabled = NULL;
1478
1479         if (IS_I945GM(dev))
1480                 wm_info = &i945_wm_info;
1481         else if (!IS_GEN2(dev))
1482                 wm_info = &i915_wm_info;
1483         else
1484                 wm_info = &i855_wm_info;
1485
1486         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1487         crtc = intel_get_crtc_for_plane(dev, 0);
1488         if (intel_crtc_active(crtc)) {
1489                 int cpp = crtc->fb->bits_per_pixel / 8;
1490                 if (IS_GEN2(dev))
1491                         cpp = 4;
1492
1493                 planea_wm = intel_calculate_wm(crtc->mode.clock,
1494                                                wm_info, fifo_size, cpp,
1495                                                latency_ns);
1496                 enabled = crtc;
1497         } else
1498                 planea_wm = fifo_size - wm_info->guard_size;
1499
1500         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1501         crtc = intel_get_crtc_for_plane(dev, 1);
1502         if (intel_crtc_active(crtc)) {
1503                 int cpp = crtc->fb->bits_per_pixel / 8;
1504                 if (IS_GEN2(dev))
1505                         cpp = 4;
1506
1507                 planeb_wm = intel_calculate_wm(crtc->mode.clock,
1508                                                wm_info, fifo_size, cpp,
1509                                                latency_ns);
1510                 if (enabled == NULL)
1511                         enabled = crtc;
1512                 else
1513                         enabled = NULL;
1514         } else
1515                 planeb_wm = fifo_size - wm_info->guard_size;
1516
1517         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1518
1519         /*
1520          * Overlay gets an aggressive default since video jitter is bad.
1521          */
1522         cwm = 2;
1523
1524         /* Play safe and disable self-refresh before adjusting watermarks. */
1525         if (IS_I945G(dev) || IS_I945GM(dev))
1526                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1527         else if (IS_I915GM(dev))
1528                 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1529
1530         /* Calc sr entries for one plane configs */
1531         if (HAS_FW_BLC(dev) && enabled) {
1532                 /* self-refresh has much higher latency */
1533                 static const int sr_latency_ns = 6000;
1534                 int clock = enabled->mode.clock;
1535                 int htotal = enabled->mode.htotal;
1536                 int hdisplay = enabled->mode.hdisplay;
1537                 int pixel_size = enabled->fb->bits_per_pixel / 8;
1538                 unsigned long line_time_us;
1539                 int entries;
1540
1541                 line_time_us = (htotal * 1000) / clock;
1542
1543                 /* Use ns/us then divide to preserve precision */
1544                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1545                         pixel_size * hdisplay;
1546                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1547                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1548                 srwm = wm_info->fifo_size - entries;
1549                 if (srwm < 0)
1550                         srwm = 1;
1551
1552                 if (IS_I945G(dev) || IS_I945GM(dev))
1553                         I915_WRITE(FW_BLC_SELF,
1554                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1555                 else if (IS_I915GM(dev))
1556                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1557         }
1558
1559         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1560                       planea_wm, planeb_wm, cwm, srwm);
1561
1562         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1563         fwater_hi = (cwm & 0x1f);
1564
1565         /* Set request length to 8 cachelines per fetch */
1566         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1567         fwater_hi = fwater_hi | (1 << 8);
1568
1569         I915_WRITE(FW_BLC, fwater_lo);
1570         I915_WRITE(FW_BLC2, fwater_hi);
1571
1572         if (HAS_FW_BLC(dev)) {
1573                 if (enabled) {
1574                         if (IS_I945G(dev) || IS_I945GM(dev))
1575                                 I915_WRITE(FW_BLC_SELF,
1576                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1577                         else if (IS_I915GM(dev))
1578                                 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1579                         DRM_DEBUG_KMS("memory self refresh enabled\n");
1580                 } else
1581                         DRM_DEBUG_KMS("memory self refresh disabled\n");
1582         }
1583 }
1584
1585 static void i830_update_wm(struct drm_device *dev)
1586 {
1587         struct drm_i915_private *dev_priv = dev->dev_private;
1588         struct drm_crtc *crtc;
1589         uint32_t fwater_lo;
1590         int planea_wm;
1591
1592         crtc = single_enabled_crtc(dev);
1593         if (crtc == NULL)
1594                 return;
1595
1596         planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1597                                        dev_priv->display.get_fifo_size(dev, 0),
1598                                        4, latency_ns);
1599         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1600         fwater_lo |= (3<<8) | planea_wm;
1601
1602         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1603
1604         I915_WRITE(FW_BLC, fwater_lo);
1605 }
1606
1607 #define ILK_LP0_PLANE_LATENCY           700
1608 #define ILK_LP0_CURSOR_LATENCY          1300
1609
1610 /*
1611  * Check the wm result.
1612  *
1613  * If any calculated watermark values is larger than the maximum value that
1614  * can be programmed into the associated watermark register, that watermark
1615  * must be disabled.
1616  */
1617 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1618                                 int fbc_wm, int display_wm, int cursor_wm,
1619                                 const struct intel_watermark_params *display,
1620                                 const struct intel_watermark_params *cursor)
1621 {
1622         struct drm_i915_private *dev_priv = dev->dev_private;
1623
1624         DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1625                       " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1626
1627         if (fbc_wm > SNB_FBC_MAX_SRWM) {
1628                 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1629                               fbc_wm, SNB_FBC_MAX_SRWM, level);
1630
1631                 /* fbc has it's own way to disable FBC WM */
1632                 I915_WRITE(DISP_ARB_CTL,
1633                            I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1634                 return false;
1635         }
1636
1637         if (display_wm > display->max_wm) {
1638                 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1639                               display_wm, SNB_DISPLAY_MAX_SRWM, level);
1640                 return false;
1641         }
1642
1643         if (cursor_wm > cursor->max_wm) {
1644                 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1645                               cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1646                 return false;
1647         }
1648
1649         if (!(fbc_wm || display_wm || cursor_wm)) {
1650                 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1651                 return false;
1652         }
1653
1654         return true;
1655 }
1656
1657 /*
1658  * Compute watermark values of WM[1-3],
1659  */
1660 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1661                                   int latency_ns,
1662                                   const struct intel_watermark_params *display,
1663                                   const struct intel_watermark_params *cursor,
1664                                   int *fbc_wm, int *display_wm, int *cursor_wm)
1665 {
1666         struct drm_crtc *crtc;
1667         unsigned long line_time_us;
1668         int hdisplay, htotal, pixel_size, clock;
1669         int line_count, line_size;
1670         int small, large;
1671         int entries;
1672
1673         if (!latency_ns) {
1674                 *fbc_wm = *display_wm = *cursor_wm = 0;
1675                 return false;
1676         }
1677
1678         crtc = intel_get_crtc_for_plane(dev, plane);
1679         hdisplay = crtc->mode.hdisplay;
1680         htotal = crtc->mode.htotal;
1681         clock = crtc->mode.clock;
1682         pixel_size = crtc->fb->bits_per_pixel / 8;
1683
1684         line_time_us = (htotal * 1000) / clock;
1685         line_count = (latency_ns / line_time_us + 1000) / 1000;
1686         line_size = hdisplay * pixel_size;
1687
1688         /* Use the minimum of the small and large buffer method for primary */
1689         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1690         large = line_count * line_size;
1691
1692         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1693         *display_wm = entries + display->guard_size;
1694
1695         /*
1696          * Spec says:
1697          * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1698          */
1699         *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1700
1701         /* calculate the self-refresh watermark for display cursor */
1702         entries = line_count * pixel_size * 64;
1703         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1704         *cursor_wm = entries + cursor->guard_size;
1705
1706         return ironlake_check_srwm(dev, level,
1707                                    *fbc_wm, *display_wm, *cursor_wm,
1708                                    display, cursor);
1709 }
1710
1711 static void ironlake_update_wm(struct drm_device *dev)
1712 {
1713         struct drm_i915_private *dev_priv = dev->dev_private;
1714         int fbc_wm, plane_wm, cursor_wm;
1715         unsigned int enabled;
1716
1717         enabled = 0;
1718         if (g4x_compute_wm0(dev, 0,
1719                             &ironlake_display_wm_info,
1720                             ILK_LP0_PLANE_LATENCY,
1721                             &ironlake_cursor_wm_info,
1722                             ILK_LP0_CURSOR_LATENCY,
1723                             &plane_wm, &cursor_wm)) {
1724                 I915_WRITE(WM0_PIPEA_ILK,
1725                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1726                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1727                               " plane %d, " "cursor: %d\n",
1728                               plane_wm, cursor_wm);
1729                 enabled |= 1;
1730         }
1731
1732         if (g4x_compute_wm0(dev, 1,
1733                             &ironlake_display_wm_info,
1734                             ILK_LP0_PLANE_LATENCY,
1735                             &ironlake_cursor_wm_info,
1736                             ILK_LP0_CURSOR_LATENCY,
1737                             &plane_wm, &cursor_wm)) {
1738                 I915_WRITE(WM0_PIPEB_ILK,
1739                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1740                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1741                               " plane %d, cursor: %d\n",
1742                               plane_wm, cursor_wm);
1743                 enabled |= 2;
1744         }
1745
1746         /*
1747          * Calculate and update the self-refresh watermark only when one
1748          * display plane is used.
1749          */
1750         I915_WRITE(WM3_LP_ILK, 0);
1751         I915_WRITE(WM2_LP_ILK, 0);
1752         I915_WRITE(WM1_LP_ILK, 0);
1753
1754         if (!single_plane_enabled(enabled))
1755                 return;
1756         enabled = ffs(enabled) - 1;
1757
1758         /* WM1 */
1759         if (!ironlake_compute_srwm(dev, 1, enabled,
1760                                    ILK_READ_WM1_LATENCY() * 500,
1761                                    &ironlake_display_srwm_info,
1762                                    &ironlake_cursor_srwm_info,
1763                                    &fbc_wm, &plane_wm, &cursor_wm))
1764                 return;
1765
1766         I915_WRITE(WM1_LP_ILK,
1767                    WM1_LP_SR_EN |
1768                    (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1769                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1770                    (plane_wm << WM1_LP_SR_SHIFT) |
1771                    cursor_wm);
1772
1773         /* WM2 */
1774         if (!ironlake_compute_srwm(dev, 2, enabled,
1775                                    ILK_READ_WM2_LATENCY() * 500,
1776                                    &ironlake_display_srwm_info,
1777                                    &ironlake_cursor_srwm_info,
1778                                    &fbc_wm, &plane_wm, &cursor_wm))
1779                 return;
1780
1781         I915_WRITE(WM2_LP_ILK,
1782                    WM2_LP_EN |
1783                    (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1784                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1785                    (plane_wm << WM1_LP_SR_SHIFT) |
1786                    cursor_wm);
1787
1788         /*
1789          * WM3 is unsupported on ILK, probably because we don't have latency
1790          * data for that power state
1791          */
1792 }
1793
1794 static void sandybridge_update_wm(struct drm_device *dev)
1795 {
1796         struct drm_i915_private *dev_priv = dev->dev_private;
1797         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
1798         u32 val;
1799         int fbc_wm, plane_wm, cursor_wm;
1800         unsigned int enabled;
1801
1802         enabled = 0;
1803         if (g4x_compute_wm0(dev, 0,
1804                             &sandybridge_display_wm_info, latency,
1805                             &sandybridge_cursor_wm_info, latency,
1806                             &plane_wm, &cursor_wm)) {
1807                 val = I915_READ(WM0_PIPEA_ILK);
1808                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1809                 I915_WRITE(WM0_PIPEA_ILK, val |
1810                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1811                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1812                               " plane %d, " "cursor: %d\n",
1813                               plane_wm, cursor_wm);
1814                 enabled |= 1;
1815         }
1816
1817         if (g4x_compute_wm0(dev, 1,
1818                             &sandybridge_display_wm_info, latency,
1819                             &sandybridge_cursor_wm_info, latency,
1820                             &plane_wm, &cursor_wm)) {
1821                 val = I915_READ(WM0_PIPEB_ILK);
1822                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1823                 I915_WRITE(WM0_PIPEB_ILK, val |
1824                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1825                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1826                               " plane %d, cursor: %d\n",
1827                               plane_wm, cursor_wm);
1828                 enabled |= 2;
1829         }
1830
1831         /*
1832          * Calculate and update the self-refresh watermark only when one
1833          * display plane is used.
1834          *
1835          * SNB support 3 levels of watermark.
1836          *
1837          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1838          * and disabled in the descending order
1839          *
1840          */
1841         I915_WRITE(WM3_LP_ILK, 0);
1842         I915_WRITE(WM2_LP_ILK, 0);
1843         I915_WRITE(WM1_LP_ILK, 0);
1844
1845         if (!single_plane_enabled(enabled) ||
1846             dev_priv->sprite_scaling_enabled)
1847                 return;
1848         enabled = ffs(enabled) - 1;
1849
1850         /* WM1 */
1851         if (!ironlake_compute_srwm(dev, 1, enabled,
1852                                    SNB_READ_WM1_LATENCY() * 500,
1853                                    &sandybridge_display_srwm_info,
1854                                    &sandybridge_cursor_srwm_info,
1855                                    &fbc_wm, &plane_wm, &cursor_wm))
1856                 return;
1857
1858         I915_WRITE(WM1_LP_ILK,
1859                    WM1_LP_SR_EN |
1860                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1861                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1862                    (plane_wm << WM1_LP_SR_SHIFT) |
1863                    cursor_wm);
1864
1865         /* WM2 */
1866         if (!ironlake_compute_srwm(dev, 2, enabled,
1867                                    SNB_READ_WM2_LATENCY() * 500,
1868                                    &sandybridge_display_srwm_info,
1869                                    &sandybridge_cursor_srwm_info,
1870                                    &fbc_wm, &plane_wm, &cursor_wm))
1871                 return;
1872
1873         I915_WRITE(WM2_LP_ILK,
1874                    WM2_LP_EN |
1875                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1876                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1877                    (plane_wm << WM1_LP_SR_SHIFT) |
1878                    cursor_wm);
1879
1880         /* WM3 */
1881         if (!ironlake_compute_srwm(dev, 3, enabled,
1882                                    SNB_READ_WM3_LATENCY() * 500,
1883                                    &sandybridge_display_srwm_info,
1884                                    &sandybridge_cursor_srwm_info,
1885                                    &fbc_wm, &plane_wm, &cursor_wm))
1886                 return;
1887
1888         I915_WRITE(WM3_LP_ILK,
1889                    WM3_LP_EN |
1890                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1891                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1892                    (plane_wm << WM1_LP_SR_SHIFT) |
1893                    cursor_wm);
1894 }
1895
1896 static void ivybridge_update_wm(struct drm_device *dev)
1897 {
1898         struct drm_i915_private *dev_priv = dev->dev_private;
1899         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
1900         u32 val;
1901         int fbc_wm, plane_wm, cursor_wm;
1902         int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
1903         unsigned int enabled;
1904
1905         enabled = 0;
1906         if (g4x_compute_wm0(dev, 0,
1907                             &sandybridge_display_wm_info, latency,
1908                             &sandybridge_cursor_wm_info, latency,
1909                             &plane_wm, &cursor_wm)) {
1910                 val = I915_READ(WM0_PIPEA_ILK);
1911                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1912                 I915_WRITE(WM0_PIPEA_ILK, val |
1913                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1914                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1915                               " plane %d, " "cursor: %d\n",
1916                               plane_wm, cursor_wm);
1917                 enabled |= 1;
1918         }
1919
1920         if (g4x_compute_wm0(dev, 1,
1921                             &sandybridge_display_wm_info, latency,
1922                             &sandybridge_cursor_wm_info, latency,
1923                             &plane_wm, &cursor_wm)) {
1924                 val = I915_READ(WM0_PIPEB_ILK);
1925                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1926                 I915_WRITE(WM0_PIPEB_ILK, val |
1927                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1928                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1929                               " plane %d, cursor: %d\n",
1930                               plane_wm, cursor_wm);
1931                 enabled |= 2;
1932         }
1933
1934         if (g4x_compute_wm0(dev, 2,
1935                             &sandybridge_display_wm_info, latency,
1936                             &sandybridge_cursor_wm_info, latency,
1937                             &plane_wm, &cursor_wm)) {
1938                 val = I915_READ(WM0_PIPEC_IVB);
1939                 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1940                 I915_WRITE(WM0_PIPEC_IVB, val |
1941                            ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1942                 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
1943                               " plane %d, cursor: %d\n",
1944                               plane_wm, cursor_wm);
1945                 enabled |= 3;
1946         }
1947
1948         /*
1949          * Calculate and update the self-refresh watermark only when one
1950          * display plane is used.
1951          *
1952          * SNB support 3 levels of watermark.
1953          *
1954          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1955          * and disabled in the descending order
1956          *
1957          */
1958         I915_WRITE(WM3_LP_ILK, 0);
1959         I915_WRITE(WM2_LP_ILK, 0);
1960         I915_WRITE(WM1_LP_ILK, 0);
1961
1962         if (!single_plane_enabled(enabled) ||
1963             dev_priv->sprite_scaling_enabled)
1964                 return;
1965         enabled = ffs(enabled) - 1;
1966
1967         /* WM1 */
1968         if (!ironlake_compute_srwm(dev, 1, enabled,
1969                                    SNB_READ_WM1_LATENCY() * 500,
1970                                    &sandybridge_display_srwm_info,
1971                                    &sandybridge_cursor_srwm_info,
1972                                    &fbc_wm, &plane_wm, &cursor_wm))
1973                 return;
1974
1975         I915_WRITE(WM1_LP_ILK,
1976                    WM1_LP_SR_EN |
1977                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1978                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1979                    (plane_wm << WM1_LP_SR_SHIFT) |
1980                    cursor_wm);
1981
1982         /* WM2 */
1983         if (!ironlake_compute_srwm(dev, 2, enabled,
1984                                    SNB_READ_WM2_LATENCY() * 500,
1985                                    &sandybridge_display_srwm_info,
1986                                    &sandybridge_cursor_srwm_info,
1987                                    &fbc_wm, &plane_wm, &cursor_wm))
1988                 return;
1989
1990         I915_WRITE(WM2_LP_ILK,
1991                    WM2_LP_EN |
1992                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1993                    (fbc_wm << WM1_LP_FBC_SHIFT) |
1994                    (plane_wm << WM1_LP_SR_SHIFT) |
1995                    cursor_wm);
1996
1997         /* WM3, note we have to correct the cursor latency */
1998         if (!ironlake_compute_srwm(dev, 3, enabled,
1999                                    SNB_READ_WM3_LATENCY() * 500,
2000                                    &sandybridge_display_srwm_info,
2001                                    &sandybridge_cursor_srwm_info,
2002                                    &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
2003             !ironlake_compute_srwm(dev, 3, enabled,
2004                                    2 * SNB_READ_WM3_LATENCY() * 500,
2005                                    &sandybridge_display_srwm_info,
2006                                    &sandybridge_cursor_srwm_info,
2007                                    &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
2008                 return;
2009
2010         I915_WRITE(WM3_LP_ILK,
2011                    WM3_LP_EN |
2012                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
2013                    (fbc_wm << WM1_LP_FBC_SHIFT) |
2014                    (plane_wm << WM1_LP_SR_SHIFT) |
2015                    cursor_wm);
2016 }
2017
2018 static void
2019 haswell_update_linetime_wm(struct drm_device *dev, int pipe,
2020                                  struct drm_display_mode *mode)
2021 {
2022         struct drm_i915_private *dev_priv = dev->dev_private;
2023         u32 temp;
2024
2025         temp = I915_READ(PIPE_WM_LINETIME(pipe));
2026         temp &= ~PIPE_WM_LINETIME_MASK;
2027
2028         /* The WM are computed with base on how long it takes to fill a single
2029          * row at the given clock rate, multiplied by 8.
2030          * */
2031         temp |= PIPE_WM_LINETIME_TIME(
2032                 ((mode->crtc_hdisplay * 1000) / mode->clock) * 8);
2033
2034         /* IPS watermarks are only used by pipe A, and are ignored by
2035          * pipes B and C.  They are calculated similarly to the common
2036          * linetime values, except that we are using CD clock frequency
2037          * in MHz instead of pixel rate for the division.
2038          *
2039          * This is a placeholder for the IPS watermark calculation code.
2040          */
2041
2042         I915_WRITE(PIPE_WM_LINETIME(pipe), temp);
2043 }
2044
2045 static bool
2046 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
2047                               uint32_t sprite_width, int pixel_size,
2048                               const struct intel_watermark_params *display,
2049                               int display_latency_ns, int *sprite_wm)
2050 {
2051         struct drm_crtc *crtc;
2052         int clock;
2053         int entries, tlb_miss;
2054
2055         crtc = intel_get_crtc_for_plane(dev, plane);
2056         if (!intel_crtc_active(crtc)) {
2057                 *sprite_wm = display->guard_size;
2058                 return false;
2059         }
2060
2061         clock = crtc->mode.clock;
2062
2063         /* Use the small buffer method to calculate the sprite watermark */
2064         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
2065         tlb_miss = display->fifo_size*display->cacheline_size -
2066                 sprite_width * 8;
2067         if (tlb_miss > 0)
2068                 entries += tlb_miss;
2069         entries = DIV_ROUND_UP(entries, display->cacheline_size);
2070         *sprite_wm = entries + display->guard_size;
2071         if (*sprite_wm > (int)display->max_wm)
2072                 *sprite_wm = display->max_wm;
2073
2074         return true;
2075 }
2076
2077 static bool
2078 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
2079                                 uint32_t sprite_width, int pixel_size,
2080                                 const struct intel_watermark_params *display,
2081                                 int latency_ns, int *sprite_wm)
2082 {
2083         struct drm_crtc *crtc;
2084         unsigned long line_time_us;
2085         int clock;
2086         int line_count, line_size;
2087         int small, large;
2088         int entries;
2089
2090         if (!latency_ns) {
2091                 *sprite_wm = 0;
2092                 return false;
2093         }
2094
2095         crtc = intel_get_crtc_for_plane(dev, plane);
2096         clock = crtc->mode.clock;
2097         if (!clock) {
2098                 *sprite_wm = 0;
2099                 return false;
2100         }
2101
2102         line_time_us = (sprite_width * 1000) / clock;
2103         if (!line_time_us) {
2104                 *sprite_wm = 0;
2105                 return false;
2106         }
2107
2108         line_count = (latency_ns / line_time_us + 1000) / 1000;
2109         line_size = sprite_width * pixel_size;
2110
2111         /* Use the minimum of the small and large buffer method for primary */
2112         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
2113         large = line_count * line_size;
2114
2115         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
2116         *sprite_wm = entries + display->guard_size;
2117
2118         return *sprite_wm > 0x3ff ? false : true;
2119 }
2120
2121 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
2122                                          uint32_t sprite_width, int pixel_size)
2123 {
2124         struct drm_i915_private *dev_priv = dev->dev_private;
2125         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
2126         u32 val;
2127         int sprite_wm, reg;
2128         int ret;
2129
2130         switch (pipe) {
2131         case 0:
2132                 reg = WM0_PIPEA_ILK;
2133                 break;
2134         case 1:
2135                 reg = WM0_PIPEB_ILK;
2136                 break;
2137         case 2:
2138                 reg = WM0_PIPEC_IVB;
2139                 break;
2140         default:
2141                 return; /* bad pipe */
2142         }
2143
2144         ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2145                                             &sandybridge_display_wm_info,
2146                                             latency, &sprite_wm);
2147         if (!ret) {
2148                 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
2149                               pipe);
2150                 return;
2151         }
2152
2153         val = I915_READ(reg);
2154         val &= ~WM0_PIPE_SPRITE_MASK;
2155         I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2156         DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
2157
2158
2159         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2160                                               pixel_size,
2161                                               &sandybridge_display_srwm_info,
2162                                               SNB_READ_WM1_LATENCY() * 500,
2163                                               &sprite_wm);
2164         if (!ret) {
2165                 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
2166                               pipe);
2167                 return;
2168         }
2169         I915_WRITE(WM1S_LP_ILK, sprite_wm);
2170
2171         /* Only IVB has two more LP watermarks for sprite */
2172         if (!IS_IVYBRIDGE(dev))
2173                 return;
2174
2175         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2176                                               pixel_size,
2177                                               &sandybridge_display_srwm_info,
2178                                               SNB_READ_WM2_LATENCY() * 500,
2179                                               &sprite_wm);
2180         if (!ret) {
2181                 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
2182                               pipe);
2183                 return;
2184         }
2185         I915_WRITE(WM2S_LP_IVB, sprite_wm);
2186
2187         ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2188                                               pixel_size,
2189                                               &sandybridge_display_srwm_info,
2190                                               SNB_READ_WM3_LATENCY() * 500,
2191                                               &sprite_wm);
2192         if (!ret) {
2193                 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
2194                               pipe);
2195                 return;
2196         }
2197         I915_WRITE(WM3S_LP_IVB, sprite_wm);
2198 }
2199
2200 /**
2201  * intel_update_watermarks - update FIFO watermark values based on current modes
2202  *
2203  * Calculate watermark values for the various WM regs based on current mode
2204  * and plane configuration.
2205  *
2206  * There are several cases to deal with here:
2207  *   - normal (i.e. non-self-refresh)
2208  *   - self-refresh (SR) mode
2209  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2210  *   - lines are small relative to FIFO size (buffer can hold more than 2
2211  *     lines), so need to account for TLB latency
2212  *
2213  *   The normal calculation is:
2214  *     watermark = dotclock * bytes per pixel * latency
2215  *   where latency is platform & configuration dependent (we assume pessimal
2216  *   values here).
2217  *
2218  *   The SR calculation is:
2219  *     watermark = (trunc(latency/line time)+1) * surface width *
2220  *       bytes per pixel
2221  *   where
2222  *     line time = htotal / dotclock
2223  *     surface width = hdisplay for normal plane and 64 for cursor
2224  *   and latency is assumed to be high, as above.
2225  *
2226  * The final value programmed to the register should always be rounded up,
2227  * and include an extra 2 entries to account for clock crossings.
2228  *
2229  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2230  * to set the non-SR watermarks to 8.
2231  */
2232 void intel_update_watermarks(struct drm_device *dev)
2233 {
2234         struct drm_i915_private *dev_priv = dev->dev_private;
2235
2236         if (dev_priv->display.update_wm)
2237                 dev_priv->display.update_wm(dev);
2238 }
2239
2240 void intel_update_linetime_watermarks(struct drm_device *dev,
2241                 int pipe, struct drm_display_mode *mode)
2242 {
2243         struct drm_i915_private *dev_priv = dev->dev_private;
2244
2245         if (dev_priv->display.update_linetime_wm)
2246                 dev_priv->display.update_linetime_wm(dev, pipe, mode);
2247 }
2248
2249 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2250                                     uint32_t sprite_width, int pixel_size)
2251 {
2252         struct drm_i915_private *dev_priv = dev->dev_private;
2253
2254         if (dev_priv->display.update_sprite_wm)
2255                 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2256                                                    pixel_size);
2257 }
2258
2259 static struct drm_i915_gem_object *
2260 intel_alloc_context_page(struct drm_device *dev)
2261 {
2262         struct drm_i915_gem_object *ctx;
2263         int ret;
2264
2265         DRM_LOCK_ASSERT(dev);
2266
2267         ctx = i915_gem_alloc_object(dev, 4096);
2268         if (!ctx) {
2269                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2270                 return NULL;
2271         }
2272
2273         ret = i915_gem_object_pin(ctx, 4096, true, false);
2274         if (ret) {
2275                 DRM_ERROR("failed to pin power context: %d\n", ret);
2276                 goto err_unref;
2277         }
2278
2279         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2280         if (ret) {
2281                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2282                 goto err_unpin;
2283         }
2284
2285         return ctx;
2286
2287 err_unpin:
2288         i915_gem_object_unpin(ctx);
2289 err_unref:
2290         drm_gem_object_unreference(&ctx->base);
2291         DRM_UNLOCK(dev);
2292         return NULL;
2293 }
2294
2295 /**
2296  * Lock protecting IPS related data structures
2297  */
2298 struct lock mchdev_lock;
2299 LOCK_SYSINIT(mchdev, &mchdev_lock, "mchdev", LK_CANRECURSE);
2300
2301 /* Global for IPS driver to get at the current i915 device. Protected by
2302  * mchdev_lock. */
2303 struct drm_i915_private *i915_mch_dev;
2304
2305 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2306 {
2307         struct drm_i915_private *dev_priv = dev->dev_private;
2308         u16 rgvswctl;
2309
2310         rgvswctl = I915_READ16(MEMSWCTL);
2311         if (rgvswctl & MEMCTL_CMD_STS) {
2312                 DRM_DEBUG("gpu busy, RCS change rejected\n");
2313                 return false; /* still busy with another command */
2314         }
2315
2316         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2317                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2318         I915_WRITE16(MEMSWCTL, rgvswctl);
2319         POSTING_READ16(MEMSWCTL);
2320
2321         rgvswctl |= MEMCTL_CMD_STS;
2322         I915_WRITE16(MEMSWCTL, rgvswctl);
2323
2324         return true;
2325 }
2326
2327 static void ironlake_enable_drps(struct drm_device *dev)
2328 {
2329         struct drm_i915_private *dev_priv = dev->dev_private;
2330         u32 rgvmodectl = I915_READ(MEMMODECTL);
2331         u8 fmax, fmin, fstart, vstart;
2332
2333         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
2334
2335         /* Enable temp reporting */
2336         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2337         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2338
2339         /* 100ms RC evaluation intervals */
2340         I915_WRITE(RCUPEI, 100000);
2341         I915_WRITE(RCDNEI, 100000);
2342
2343         /* Set max/min thresholds to 90ms and 80ms respectively */
2344         I915_WRITE(RCBMAXAVG, 90000);
2345         I915_WRITE(RCBMINAVG, 80000);
2346
2347         I915_WRITE(MEMIHYST, 1);
2348
2349         /* Set up min, max, and cur for interrupt handling */
2350         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2351         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2352         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2353                 MEMMODE_FSTART_SHIFT;
2354
2355         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2356                 PXVFREQ_PX_SHIFT;
2357
2358         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2359         dev_priv->ips.fstart = fstart;
2360
2361         dev_priv->ips.max_delay = fstart;
2362         dev_priv->ips.min_delay = fmin;
2363         dev_priv->ips.cur_delay = fstart;
2364
2365         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2366                          fmax, fmin, fstart);
2367
2368         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2369
2370         /*
2371          * Interrupts will be enabled in ironlake_irq_postinstall
2372          */
2373
2374         I915_WRITE(VIDSTART, vstart);
2375         POSTING_READ(VIDSTART);
2376
2377         rgvmodectl |= MEMMODE_SWMODE_EN;
2378         I915_WRITE(MEMMODECTL, rgvmodectl);
2379
2380         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2381                 DRM_ERROR("stuck trying to change perf mode\n");
2382         DELAY(1000);
2383
2384         ironlake_set_drps(dev, fstart);
2385
2386         dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2387                 I915_READ(0x112e0);
2388         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2389         dev_priv->ips.last_count2 = I915_READ(0x112f4);
2390         nanotime(&dev_priv->ips.last_time2);
2391
2392         lockmgr(&mchdev_lock, LK_RELEASE);
2393 }
2394
2395 static void ironlake_disable_drps(struct drm_device *dev)
2396 {
2397         struct drm_i915_private *dev_priv = dev->dev_private;
2398         u16 rgvswctl;
2399
2400         lockmgr(&mchdev_lock, LK_RELEASE);
2401
2402         rgvswctl = I915_READ16(MEMSWCTL);
2403
2404         /* Ack interrupts, disable EFC interrupt */
2405         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2406         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2407         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2408         I915_WRITE(DEIIR, DE_PCU_EVENT);
2409         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2410
2411         /* Go back to the starting frequency */
2412         ironlake_set_drps(dev, dev_priv->ips.fstart);
2413         DELAY(1000);
2414         rgvswctl |= MEMCTL_CMD_STS;
2415         I915_WRITE(MEMSWCTL, rgvswctl);
2416         DELAY(1000);
2417
2418         lockmgr(&mchdev_lock, LK_RELEASE);
2419 }
2420
2421 /* There's a funny hw issue where the hw returns all 0 when reading from
2422  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2423  * ourselves, instead of doing a rmw cycle (which might result in us clearing
2424  * all limits and the gpu stuck at whatever frequency it is at atm).
2425  */
2426 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
2427 {
2428         u32 limits;
2429
2430         limits = 0;
2431
2432         if (*val >= dev_priv->rps.max_delay)
2433                 *val = dev_priv->rps.max_delay;
2434         limits |= dev_priv->rps.max_delay << 24;
2435
2436         /* Only set the down limit when we've reached the lowest level to avoid
2437          * getting more interrupts, otherwise leave this clear. This prevents a
2438          * race in the hw when coming out of rc6: There's a tiny window where
2439          * the hw runs at the minimal clock before selecting the desired
2440          * frequency, if the down threshold expires in that window we will not
2441          * receive a down interrupt. */
2442         if (*val <= dev_priv->rps.min_delay) {
2443                 *val = dev_priv->rps.min_delay;
2444                 limits |= dev_priv->rps.min_delay << 16;
2445         }
2446
2447         return limits;
2448 }
2449
2450 void gen6_set_rps(struct drm_device *dev, u8 val)
2451 {
2452         struct drm_i915_private *dev_priv = dev->dev_private;
2453         u32 limits = gen6_rps_limits(dev_priv, &val);
2454
2455         WARN_ON(val > dev_priv->rps.max_delay);
2456         WARN_ON(val < dev_priv->rps.min_delay);
2457
2458         if (val == dev_priv->rps.cur_delay)
2459                 return;
2460
2461         I915_WRITE(GEN6_RPNSWREQ,
2462                    GEN6_FREQUENCY(val) |
2463                    GEN6_OFFSET(0) |
2464                    GEN6_AGGRESSIVE_TURBO);
2465
2466         /* Make sure we continue to get interrupts
2467          * until we hit the minimum or maximum frequencies.
2468          */
2469         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
2470
2471         POSTING_READ(GEN6_RPNSWREQ);
2472
2473         dev_priv->rps.cur_delay = val;
2474 }
2475
2476 static void gen6_disable_rps(struct drm_device *dev)
2477 {
2478         struct drm_i915_private *dev_priv = dev->dev_private;
2479
2480         I915_WRITE(GEN6_RC_CONTROL, 0);
2481         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
2482         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
2483         I915_WRITE(GEN6_PMIER, 0);
2484         /* Complete PM interrupt masking here doesn't race with the rps work
2485          * item again unmasking PM interrupts because that is using a different
2486          * register (PMIMR) to mask PM interrupts. The only risk is in leaving
2487          * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
2488
2489         spin_lock(&dev_priv->rps.lock);
2490         dev_priv->rps.pm_iir = 0;
2491         spin_unlock(&dev_priv->rps.lock);
2492
2493         I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2494 }
2495
2496 int intel_enable_rc6(const struct drm_device *dev)
2497 {
2498         /* Respect the kernel parameter if it is set */
2499         if (i915_enable_rc6 >= 0)
2500                 return i915_enable_rc6;
2501
2502         /* Disable RC6 on Ironlake */
2503         if (INTEL_INFO(dev)->gen == 5)
2504                 return 0;
2505
2506         if (IS_HASWELL(dev)) {
2507                 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
2508                 return INTEL_RC6_ENABLE;
2509         }
2510
2511         /* snb/ivb have more than one rc6 state. */
2512         if (INTEL_INFO(dev)->gen == 6) {
2513                 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
2514                 return INTEL_RC6_ENABLE;
2515         }
2516
2517         DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
2518         return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
2519 }
2520
2521 static void gen6_enable_rps(struct drm_device *dev)
2522 {
2523         struct drm_i915_private *dev_priv = dev->dev_private;
2524         struct intel_ring_buffer *ring;
2525         u32 rp_state_cap;
2526         u32 gt_perf_status;
2527         u32 rc6vids, pcu_mbox, rc6_mask = 0;
2528         u32 gtfifodbg;
2529         int rc6_mode;
2530         int i, ret;
2531
2532         /* Here begins a magic sequence of register writes to enable
2533          * auto-downclocking.
2534          *
2535          * Perhaps there might be some value in exposing these to
2536          * userspace...
2537          */
2538         I915_WRITE(GEN6_RC_STATE, 0);
2539
2540         /* Clear the DBG now so we don't confuse earlier errors */
2541         if ((gtfifodbg = I915_READ(GTFIFODBG))) {
2542                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
2543                 I915_WRITE(GTFIFODBG, gtfifodbg);
2544         }
2545
2546         gen6_gt_force_wake_get(dev_priv);
2547
2548         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
2549         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
2550
2551         /* In units of 100MHz */
2552         dev_priv->rps.max_delay = rp_state_cap & 0xff;
2553         dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
2554         dev_priv->rps.cur_delay = 0;
2555
2556         /* disable the counters and set deterministic thresholds */
2557         I915_WRITE(GEN6_RC_CONTROL, 0);
2558
2559         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
2560         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
2561         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
2562         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
2563         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
2564
2565         for_each_ring(ring, dev_priv, i)
2566                 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
2567
2568         I915_WRITE(GEN6_RC_SLEEP, 0);
2569         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
2570         I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
2571         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
2572         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
2573
2574         /* Check if we are enabling RC6 */
2575         rc6_mode = intel_enable_rc6(dev_priv->dev);
2576         if (rc6_mode & INTEL_RC6_ENABLE)
2577                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
2578
2579         /* We don't use those on Haswell */
2580         if (!IS_HASWELL(dev)) {
2581                 if (rc6_mode & INTEL_RC6p_ENABLE)
2582                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
2583
2584                 if (rc6_mode & INTEL_RC6pp_ENABLE)
2585                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
2586         }
2587
2588         DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
2589                         (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
2590                         (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
2591                         (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
2592
2593         I915_WRITE(GEN6_RC_CONTROL,
2594                    rc6_mask |
2595                    GEN6_RC_CTL_EI_MODE(1) |
2596                    GEN6_RC_CTL_HW_ENABLE);
2597
2598         I915_WRITE(GEN6_RPNSWREQ,
2599                    GEN6_FREQUENCY(10) |
2600                    GEN6_OFFSET(0) |
2601                    GEN6_AGGRESSIVE_TURBO);
2602         I915_WRITE(GEN6_RC_VIDEO_FREQ,
2603                    GEN6_FREQUENCY(12));
2604
2605         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
2606         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
2607                    dev_priv->rps.max_delay << 24 |
2608                    dev_priv->rps.min_delay << 16);
2609
2610         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
2611         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
2612         I915_WRITE(GEN6_RP_UP_EI, 66000);
2613         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
2614
2615         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2616         I915_WRITE(GEN6_RP_CONTROL,
2617                    GEN6_RP_MEDIA_TURBO |
2618                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
2619                    GEN6_RP_MEDIA_IS_GFX |
2620                    GEN6_RP_ENABLE |
2621                    GEN6_RP_UP_BUSY_AVG |
2622                    (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
2623
2624         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
2625         if (!ret) {
2626                 pcu_mbox = 0;
2627                 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
2628                 if (ret && pcu_mbox & (1<<31)) { /* OC supported */
2629                         dev_priv->rps.max_delay = pcu_mbox & 0xff;
2630                         DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
2631                 }
2632         } else {
2633                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
2634         }
2635
2636         gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
2637
2638         /* requires MSI enabled */
2639         I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
2640         spin_lock(&dev_priv->rps.lock);
2641         WARN_ON(dev_priv->rps.pm_iir != 0);
2642         I915_WRITE(GEN6_PMIMR, 0);
2643         spin_unlock(&dev_priv->rps.lock);
2644         /* enable all PM interrupts */
2645         I915_WRITE(GEN6_PMINTRMSK, 0);
2646
2647         rc6vids = 0;
2648         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
2649         if (IS_GEN6(dev) && ret) {
2650                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
2651         } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
2652                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
2653                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
2654                 rc6vids &= 0xffff00;
2655                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
2656                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
2657                 if (ret)
2658                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
2659         }
2660
2661         gen6_gt_force_wake_put(dev_priv);
2662 }
2663
2664 static void gen6_update_ring_freq(struct drm_device *dev)
2665 {
2666         struct drm_i915_private *dev_priv = dev->dev_private;
2667         int min_freq = 15;
2668         int gpu_freq;
2669         unsigned int ia_freq, max_ia_freq;
2670         int scaling_factor = 180;
2671
2672 #if 0
2673         max_ia_freq = cpufreq_quick_get_max(0);
2674         /*
2675          * Default to measured freq if none found, PCU will ensure we don't go
2676          * over
2677          */
2678         if (!max_ia_freq)
2679                 max_ia_freq = tsc_khz;
2680 #else
2681         max_ia_freq = tsc_frequency / 1000;
2682 #endif
2683
2684         /* Convert from kHz to MHz */
2685         max_ia_freq /= 1000;
2686
2687         /*
2688          * For each potential GPU frequency, load a ring frequency we'd like
2689          * to use for memory access.  We do this by specifying the IA frequency
2690          * the PCU should use as a reference to determine the ring frequency.
2691          */
2692         for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
2693              gpu_freq--) {
2694                 int diff = dev_priv->rps.max_delay - gpu_freq;
2695
2696                 /*
2697                  * For GPU frequencies less than 750MHz, just use the lowest
2698                  * ring freq.
2699                  */
2700                 if (gpu_freq < min_freq)
2701                         ia_freq = 800;
2702                 else
2703                         ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
2704 #if 0
2705                 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
2706 #else
2707                 ia_freq = (ia_freq + 50) / 100;
2708 #endif
2709                 ia_freq <<= GEN6_PCODE_FREQ_IA_RATIO_SHIFT;
2710
2711                 sandybridge_pcode_write(dev_priv,
2712                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
2713                                         ia_freq | gpu_freq);
2714         }
2715 }
2716
2717 void ironlake_teardown_rc6(struct drm_device *dev)
2718 {
2719         struct drm_i915_private *dev_priv = dev->dev_private;
2720
2721         if (dev_priv->ips.renderctx) {
2722                 i915_gem_object_unpin(dev_priv->ips.renderctx);
2723                 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
2724                 dev_priv->ips.renderctx = NULL;
2725         }
2726
2727         if (dev_priv->ips.pwrctx) {
2728                 i915_gem_object_unpin(dev_priv->ips.pwrctx);
2729                 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
2730                 dev_priv->ips.pwrctx = NULL;
2731         }
2732 }
2733
2734 static void ironlake_disable_rc6(struct drm_device *dev)
2735 {
2736         struct drm_i915_private *dev_priv = dev->dev_private;
2737
2738         if (I915_READ(PWRCTXA)) {
2739                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
2740                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
2741                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
2742                          50);
2743
2744                 I915_WRITE(PWRCTXA, 0);
2745                 POSTING_READ(PWRCTXA);
2746
2747                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2748                 POSTING_READ(RSTDBYCTL);
2749         }
2750 }
2751
2752 static int ironlake_setup_rc6(struct drm_device *dev)
2753 {
2754         struct drm_i915_private *dev_priv = dev->dev_private;
2755
2756         if (dev_priv->ips.renderctx == NULL)
2757                 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
2758         if (!dev_priv->ips.renderctx)
2759                 return -ENOMEM;
2760
2761         if (dev_priv->ips.pwrctx == NULL)
2762                 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
2763         if (!dev_priv->ips.pwrctx) {
2764                 ironlake_teardown_rc6(dev);
2765                 return -ENOMEM;
2766         }
2767
2768         return 0;
2769 }
2770
2771 static void ironlake_enable_rc6(struct drm_device *dev)
2772 {
2773         struct drm_i915_private *dev_priv = dev->dev_private;
2774         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
2775         bool was_interruptible;
2776         int ret;
2777
2778         /* rc6 disabled by default due to repeated reports of hanging during
2779          * boot and resume.
2780          */
2781         if (!intel_enable_rc6(dev))
2782                 return;
2783
2784         ret = ironlake_setup_rc6(dev);
2785         if (ret)
2786                 return;
2787
2788         was_interruptible = dev_priv->mm.interruptible;
2789         dev_priv->mm.interruptible = false;
2790
2791         /*
2792          * GPU can automatically power down the render unit if given a page
2793          * to save state.
2794          */
2795         ret = intel_ring_begin(ring, 6);
2796         if (ret) {
2797                 ironlake_teardown_rc6(dev);
2798                 dev_priv->mm.interruptible = was_interruptible;
2799                 return;
2800         }
2801
2802         intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
2803         intel_ring_emit(ring, MI_SET_CONTEXT);
2804         intel_ring_emit(ring, dev_priv->ips.renderctx->gtt_offset |
2805                         MI_MM_SPACE_GTT |
2806                         MI_SAVE_EXT_STATE_EN |
2807                         MI_RESTORE_EXT_STATE_EN |
2808                         MI_RESTORE_INHIBIT);
2809         intel_ring_emit(ring, MI_SUSPEND_FLUSH);
2810         intel_ring_emit(ring, MI_NOOP);
2811         intel_ring_emit(ring, MI_FLUSH);
2812         intel_ring_advance(ring);
2813
2814         /*
2815          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
2816          * does an implicit flush, combined with MI_FLUSH above, it should be
2817          * safe to assume that renderctx is valid
2818          */
2819         ret = intel_ring_idle(ring);
2820         dev_priv->mm.interruptible = was_interruptible;
2821         if (ret) {
2822                 DRM_ERROR("failed to enable ironlake power savings\n");
2823                 ironlake_teardown_rc6(dev);
2824                 return;
2825         }
2826
2827         I915_WRITE(PWRCTXA, dev_priv->ips.pwrctx->gtt_offset | PWRCTX_EN);
2828         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2829 }
2830
2831 static unsigned long intel_pxfreq(u32 vidfreq)
2832 {
2833         unsigned long freq;
2834         int div = (vidfreq & 0x3f0000) >> 16;
2835         int post = (vidfreq & 0x3000) >> 12;
2836         int pre = (vidfreq & 0x7);
2837
2838         if (!pre)
2839                 return 0;
2840
2841         freq = ((div * 133333) / ((1<<post) * pre));
2842
2843         return freq;
2844 }
2845
2846 static const struct cparams {
2847         u16 i;
2848         u16 t;
2849         u16 m;
2850         u16 c;
2851 } cparams[] = {
2852         { 1, 1333, 301, 28664 },
2853         { 1, 1066, 294, 24460 },
2854         { 1, 800, 294, 25192 },
2855         { 0, 1333, 276, 27605 },
2856         { 0, 1066, 276, 27605 },
2857         { 0, 800, 231, 23784 },
2858 };
2859
2860 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
2861 {
2862         u64 total_count, diff, ret;
2863         u32 count1, count2, count3, m = 0, c = 0;
2864         unsigned long now = jiffies_to_msecs(jiffies), diff1;
2865         int i;
2866
2867         diff1 = now - dev_priv->ips.last_time1;
2868
2869         /* Prevent division-by-zero if we are asking too fast.
2870          * Also, we don't get interesting results if we are polling
2871          * faster than once in 10ms, so just return the saved value
2872          * in such cases.
2873          */
2874         if (diff1 <= 10)
2875                 return dev_priv->ips.chipset_power;
2876
2877         count1 = I915_READ(DMIEC);
2878         count2 = I915_READ(DDREC);
2879         count3 = I915_READ(CSIEC);
2880
2881         total_count = count1 + count2 + count3;
2882
2883         /* FIXME: handle per-counter overflow */
2884         if (total_count < dev_priv->ips.last_count1) {
2885                 diff = ~0UL - dev_priv->ips.last_count1;
2886                 diff += total_count;
2887         } else {
2888                 diff = total_count - dev_priv->ips.last_count1;
2889         }
2890
2891         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
2892                 if (cparams[i].i == dev_priv->ips.c_m &&
2893                     cparams[i].t == dev_priv->ips.r_t) {
2894                         m = cparams[i].m;
2895                         c = cparams[i].c;
2896                         break;
2897                 }
2898         }
2899
2900         diff = diff / diff1;
2901         ret = ((m * diff) + c);
2902         ret = ret / 10;
2903
2904         dev_priv->ips.last_count1 = total_count;
2905         dev_priv->ips.last_time1 = now;
2906
2907         dev_priv->ips.chipset_power = ret;
2908
2909         return ret;
2910 }
2911
2912 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
2913 {
2914         unsigned long val;
2915
2916         if (dev_priv->info->gen != 5)
2917                 return 0;
2918
2919         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
2920
2921         val = __i915_chipset_val(dev_priv);
2922
2923         lockmgr(&mchdev_lock, LK_RELEASE);
2924
2925         return val;
2926 }
2927
2928 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
2929 {
2930         unsigned long m, x, b;
2931         u32 tsfs;
2932
2933         tsfs = I915_READ(TSFS);
2934
2935         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
2936         x = I915_READ8(TR1);
2937
2938         b = tsfs & TSFS_INTR_MASK;
2939
2940         return ((m * x) / 127) - b;
2941 }
2942
2943 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
2944 {
2945         static const struct v_table {
2946                 u16 vd; /* in .1 mil */
2947                 u16 vm; /* in .1 mil */
2948         } v_table[] = {
2949                 { 0, 0, },
2950                 { 375, 0, },
2951                 { 500, 0, },
2952                 { 625, 0, },
2953                 { 750, 0, },
2954                 { 875, 0, },
2955                 { 1000, 0, },
2956                 { 1125, 0, },
2957                 { 4125, 3000, },
2958                 { 4125, 3000, },
2959                 { 4125, 3000, },
2960                 { 4125, 3000, },
2961                 { 4125, 3000, },
2962                 { 4125, 3000, },
2963                 { 4125, 3000, },
2964                 { 4125, 3000, },
2965                 { 4125, 3000, },
2966                 { 4125, 3000, },
2967                 { 4125, 3000, },
2968                 { 4125, 3000, },
2969                 { 4125, 3000, },
2970                 { 4125, 3000, },
2971                 { 4125, 3000, },
2972                 { 4125, 3000, },
2973                 { 4125, 3000, },
2974                 { 4125, 3000, },
2975                 { 4125, 3000, },
2976                 { 4125, 3000, },
2977                 { 4125, 3000, },
2978                 { 4125, 3000, },
2979                 { 4125, 3000, },
2980                 { 4125, 3000, },
2981                 { 4250, 3125, },
2982                 { 4375, 3250, },
2983                 { 4500, 3375, },
2984                 { 4625, 3500, },
2985                 { 4750, 3625, },
2986                 { 4875, 3750, },
2987                 { 5000, 3875, },
2988                 { 5125, 4000, },
2989                 { 5250, 4125, },
2990                 { 5375, 4250, },
2991                 { 5500, 4375, },
2992                 { 5625, 4500, },
2993                 { 5750, 4625, },
2994                 { 5875, 4750, },
2995                 { 6000, 4875, },
2996                 { 6125, 5000, },
2997                 { 6250, 5125, },
2998                 { 6375, 5250, },
2999                 { 6500, 5375, },
3000                 { 6625, 5500, },
3001                 { 6750, 5625, },
3002                 { 6875, 5750, },
3003                 { 7000, 5875, },
3004                 { 7125, 6000, },
3005                 { 7250, 6125, },
3006                 { 7375, 6250, },
3007                 { 7500, 6375, },
3008                 { 7625, 6500, },
3009                 { 7750, 6625, },
3010                 { 7875, 6750, },
3011                 { 8000, 6875, },
3012                 { 8125, 7000, },
3013                 { 8250, 7125, },
3014                 { 8375, 7250, },
3015                 { 8500, 7375, },
3016                 { 8625, 7500, },
3017                 { 8750, 7625, },
3018                 { 8875, 7750, },
3019                 { 9000, 7875, },
3020                 { 9125, 8000, },
3021                 { 9250, 8125, },
3022                 { 9375, 8250, },
3023                 { 9500, 8375, },
3024                 { 9625, 8500, },
3025                 { 9750, 8625, },
3026                 { 9875, 8750, },
3027                 { 10000, 8875, },
3028                 { 10125, 9000, },
3029                 { 10250, 9125, },
3030                 { 10375, 9250, },
3031                 { 10500, 9375, },
3032                 { 10625, 9500, },
3033                 { 10750, 9625, },
3034                 { 10875, 9750, },
3035                 { 11000, 9875, },
3036                 { 11125, 10000, },
3037                 { 11250, 10125, },
3038                 { 11375, 10250, },
3039                 { 11500, 10375, },
3040                 { 11625, 10500, },
3041                 { 11750, 10625, },
3042                 { 11875, 10750, },
3043                 { 12000, 10875, },
3044                 { 12125, 11000, },
3045                 { 12250, 11125, },
3046                 { 12375, 11250, },
3047                 { 12500, 11375, },
3048                 { 12625, 11500, },
3049                 { 12750, 11625, },
3050                 { 12875, 11750, },
3051                 { 13000, 11875, },
3052                 { 13125, 12000, },
3053                 { 13250, 12125, },
3054                 { 13375, 12250, },
3055                 { 13500, 12375, },
3056                 { 13625, 12500, },
3057                 { 13750, 12625, },
3058                 { 13875, 12750, },
3059                 { 14000, 12875, },
3060                 { 14125, 13000, },
3061                 { 14250, 13125, },
3062                 { 14375, 13250, },
3063                 { 14500, 13375, },
3064                 { 14625, 13500, },
3065                 { 14750, 13625, },
3066                 { 14875, 13750, },
3067                 { 15000, 13875, },
3068                 { 15125, 14000, },
3069                 { 15250, 14125, },
3070                 { 15375, 14250, },
3071                 { 15500, 14375, },
3072                 { 15625, 14500, },
3073                 { 15750, 14625, },
3074                 { 15875, 14750, },
3075                 { 16000, 14875, },
3076                 { 16125, 15000, },
3077         };
3078         if (dev_priv->info->is_mobile)
3079                 return v_table[pxvid].vm;
3080         else
3081                 return v_table[pxvid].vd;
3082 }
3083
3084 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
3085 {
3086         struct timespec now, diff1;
3087         u64 diff;
3088         unsigned long diffms;
3089         u32 count;
3090
3091         nanotime(&now);
3092         diff1 = now;
3093         timespecsub(&diff1, &dev_priv->ips.last_time2);
3094
3095         /* Don't divide by 0 */
3096         diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
3097         if (!diffms)
3098                 return;
3099
3100         count = I915_READ(GFXEC);
3101
3102         if (count < dev_priv->ips.last_count2) {
3103                 diff = ~0UL - dev_priv->ips.last_count2;
3104                 diff += count;
3105         } else {
3106                 diff = count - dev_priv->ips.last_count2;
3107         }
3108
3109         dev_priv->ips.last_count2 = count;
3110         dev_priv->ips.last_time2 = now;
3111
3112         /* More magic constants... */
3113         diff = diff * 1181;
3114         diff = diff / (diffms * 10);
3115         dev_priv->ips.gfx_power = diff;
3116 }
3117
3118 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
3119 {
3120         if (dev_priv->info->gen != 5)
3121                 return;
3122
3123         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3124
3125         __i915_update_gfx_val(dev_priv);
3126
3127         lockmgr(&mchdev_lock, LK_RELEASE);
3128 }
3129
3130 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
3131 {
3132         unsigned long t, corr, state1, corr2, state2;
3133         u32 pxvid, ext_v;
3134
3135         pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
3136         pxvid = (pxvid >> 24) & 0x7f;
3137         ext_v = pvid_to_extvid(dev_priv, pxvid);
3138
3139         state1 = ext_v;
3140
3141         t = i915_mch_val(dev_priv);
3142
3143         /* Revel in the empirically derived constants */
3144
3145         /* Correction factor in 1/100000 units */
3146         if (t > 80)
3147                 corr = ((t * 2349) + 135940);
3148         else if (t >= 50)
3149                 corr = ((t * 964) + 29317);
3150         else /* < 50 */
3151                 corr = ((t * 301) + 1004);
3152
3153         corr = corr * ((150142 * state1) / 10000 - 78642);
3154         corr /= 100000;
3155         corr2 = (corr * dev_priv->ips.corr);
3156
3157         state2 = (corr2 * state1) / 10000;
3158         state2 /= 100; /* convert to mW */
3159
3160         __i915_update_gfx_val(dev_priv);
3161
3162         return dev_priv->ips.gfx_power + state2;
3163 }
3164
3165 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
3166 {
3167         unsigned long val;
3168
3169         if (dev_priv->info->gen != 5)
3170                 return 0;
3171
3172         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3173
3174         val = __i915_gfx_val(dev_priv);
3175
3176         lockmgr(&mchdev_lock, LK_RELEASE);
3177
3178         return val;
3179 }
3180
3181 /**
3182  * i915_read_mch_val - return value for IPS use
3183  *
3184  * Calculate and return a value for the IPS driver to use when deciding whether
3185  * we have thermal and power headroom to increase CPU or GPU power budget.
3186  */
3187 unsigned long i915_read_mch_val(void)
3188 {
3189         struct drm_i915_private *dev_priv;
3190         unsigned long chipset_val, graphics_val, ret = 0;
3191
3192         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3193         if (!i915_mch_dev)
3194                 goto out_unlock;
3195         dev_priv = i915_mch_dev;
3196
3197         chipset_val = __i915_chipset_val(dev_priv);
3198         graphics_val = __i915_gfx_val(dev_priv);
3199
3200         ret = chipset_val + graphics_val;
3201
3202 out_unlock:
3203         lockmgr(&mchdev_lock, LK_RELEASE);
3204
3205         return ret;
3206 }
3207
3208 /**
3209  * i915_gpu_raise - raise GPU frequency limit
3210  *
3211  * Raise the limit; IPS indicates we have thermal headroom.
3212  */
3213 bool i915_gpu_raise(void)
3214 {
3215         struct drm_i915_private *dev_priv;
3216         bool ret = true;
3217
3218         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3219         if (!i915_mch_dev) {
3220                 ret = false;
3221                 goto out_unlock;
3222         }
3223         dev_priv = i915_mch_dev;
3224
3225         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
3226                 dev_priv->ips.max_delay--;
3227
3228 out_unlock:
3229         lockmgr(&mchdev_lock, LK_RELEASE);
3230
3231         return ret;
3232 }
3233
3234 /**
3235  * i915_gpu_lower - lower GPU frequency limit
3236  *
3237  * IPS indicates we're close to a thermal limit, so throttle back the GPU
3238  * frequency maximum.
3239  */
3240 bool i915_gpu_lower(void)
3241 {
3242         struct drm_i915_private *dev_priv;
3243         bool ret = true;
3244
3245         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3246         if (!i915_mch_dev) {
3247                 ret = false;
3248                 goto out_unlock;
3249         }
3250         dev_priv = i915_mch_dev;
3251
3252         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
3253                 dev_priv->ips.max_delay++;
3254
3255 out_unlock:
3256         lockmgr(&mchdev_lock, LK_RELEASE);
3257
3258         return ret;
3259 }
3260
3261 /**
3262  * i915_gpu_busy - indicate GPU business to IPS
3263  *
3264  * Tell the IPS driver whether or not the GPU is busy.
3265  */
3266 bool i915_gpu_busy(void)
3267 {
3268         struct drm_i915_private *dev_priv;
3269         struct intel_ring_buffer *ring;
3270         bool ret = false;
3271         int i;
3272
3273         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3274         if (!i915_mch_dev)
3275                 goto out_unlock;
3276         dev_priv = i915_mch_dev;
3277
3278         for_each_ring(ring, dev_priv, i)
3279                 ret |= !list_empty(&ring->request_list);
3280
3281 out_unlock:
3282         lockmgr(&mchdev_lock, LK_RELEASE);
3283
3284         return ret;
3285 }
3286
3287 /**
3288  * i915_gpu_turbo_disable - disable graphics turbo
3289  *
3290  * Disable graphics turbo by resetting the max frequency and setting the
3291  * current frequency to the default.
3292  */
3293 bool i915_gpu_turbo_disable(void)
3294 {
3295         struct drm_i915_private *dev_priv;
3296         bool ret = true;
3297
3298         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3299         if (!i915_mch_dev) {
3300                 ret = false;
3301                 goto out_unlock;
3302         }
3303         dev_priv = i915_mch_dev;
3304
3305         dev_priv->ips.max_delay = dev_priv->ips.fstart;
3306
3307         if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
3308                 ret = false;
3309
3310 out_unlock:
3311         lockmgr(&mchdev_lock, LK_RELEASE);
3312
3313         return ret;
3314 }
3315
3316 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
3317 {
3318         /* We only register the i915 ips part with intel-ips once everything is
3319          * set up, to avoid intel-ips sneaking in and reading bogus values. */
3320         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3321         i915_mch_dev = dev_priv;
3322         lockmgr(&mchdev_lock, LK_RELEASE);
3323 }
3324
3325 void intel_gpu_ips_teardown(void)
3326 {
3327         lockmgr(&mchdev_lock, LK_EXCLUSIVE);
3328         i915_mch_dev = NULL;
3329         lockmgr(&mchdev_lock, LK_RELEASE);
3330 }
3331
3332 static void intel_init_emon(struct drm_device *dev)
3333 {
3334         struct drm_i915_private *dev_priv = dev->dev_private;
3335         u32 lcfuse;
3336         u8 pxw[16];
3337         int i;
3338
3339         /* Disable to program */
3340         I915_WRITE(ECR, 0);
3341         POSTING_READ(ECR);
3342
3343         /* Program energy weights for various events */
3344         I915_WRITE(SDEW, 0x15040d00);
3345         I915_WRITE(CSIEW0, 0x007f0000);
3346         I915_WRITE(CSIEW1, 0x1e220004);
3347         I915_WRITE(CSIEW2, 0x04000004);
3348
3349         for (i = 0; i < 5; i++)
3350                 I915_WRITE(PEW + (i * 4), 0);
3351         for (i = 0; i < 3; i++)
3352                 I915_WRITE(DEW + (i * 4), 0);
3353
3354         /* Program P-state weights to account for frequency power adjustment */
3355         for (i = 0; i < 16; i++) {
3356                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
3357                 unsigned long freq = intel_pxfreq(pxvidfreq);
3358                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
3359                         PXVFREQ_PX_SHIFT;
3360                 unsigned long val;
3361
3362                 val = vid * vid;
3363                 val *= (freq / 1000);
3364                 val *= 255;
3365                 val /= (127*127*900);
3366                 if (val > 0xff)
3367                         DRM_ERROR("bad pxval: %ld\n", val);
3368                 pxw[i] = val;
3369         }
3370         /* Render standby states get 0 weight */
3371         pxw[14] = 0;
3372         pxw[15] = 0;
3373
3374         for (i = 0; i < 4; i++) {
3375                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
3376                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
3377                 I915_WRITE(PXW + (i * 4), val);
3378         }
3379
3380         /* Adjust magic regs to magic values (more experimental results) */
3381         I915_WRITE(OGW0, 0);
3382         I915_WRITE(OGW1, 0);
3383         I915_WRITE(EG0, 0x00007f00);
3384         I915_WRITE(EG1, 0x0000000e);
3385         I915_WRITE(EG2, 0x000e0000);
3386         I915_WRITE(EG3, 0x68000300);
3387         I915_WRITE(EG4, 0x42000000);
3388         I915_WRITE(EG5, 0x00140031);
3389         I915_WRITE(EG6, 0);
3390         I915_WRITE(EG7, 0);
3391
3392         for (i = 0; i < 8; i++)
3393                 I915_WRITE(PXWL + (i * 4), 0);
3394
3395         /* Enable PMON + select events */
3396         I915_WRITE(ECR, 0x80000019);
3397
3398         lcfuse = I915_READ(LCFUSE02);
3399
3400         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
3401 }
3402
3403 void intel_disable_gt_powersave(struct drm_device *dev)
3404 {
3405         struct drm_i915_private *dev_priv = dev->dev_private;
3406
3407         if (IS_IRONLAKE_M(dev)) {
3408                 ironlake_disable_drps(dev);
3409                 ironlake_disable_rc6(dev);
3410         } else if (INTEL_INFO(dev)->gen >= 6 && !IS_VALLEYVIEW(dev)) {
3411                 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
3412                 lockmgr(&dev_priv->rps.hw_lock, LK_EXCLUSIVE);
3413                 gen6_disable_rps(dev);
3414                 lockmgr(&dev_priv->rps.hw_lock, LK_RELEASE);
3415         }
3416 }
3417
3418 static void intel_gen6_powersave_work(struct work_struct *work)
3419 {
3420         struct drm_i915_private *dev_priv =
3421                 container_of(work, struct drm_i915_private,
3422                              rps.delayed_resume_work.work);
3423         struct drm_device *dev = dev_priv->dev;
3424
3425         lockmgr(&dev_priv->rps.hw_lock, LK_EXCLUSIVE);
3426         gen6_enable_rps(dev);
3427         gen6_update_ring_freq(dev);
3428         lockmgr(&dev_priv->rps.hw_lock, LK_RELEASE);
3429 }
3430
3431 void intel_enable_gt_powersave(struct drm_device *dev)
3432 {
3433         struct drm_i915_private *dev_priv = dev->dev_private;
3434
3435         if (IS_IRONLAKE_M(dev)) {
3436                 ironlake_enable_drps(dev);
3437                 ironlake_enable_rc6(dev);
3438                 intel_init_emon(dev);
3439         } else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
3440                 /*
3441                  * PCU communication is slow and this doesn't need to be
3442                  * done at any specific time, so do this out of our fast path
3443                  * to make resume and init faster.
3444                  */
3445                 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
3446                                       round_jiffies_up_relative(hz));
3447         }
3448 }
3449
3450 static void ibx_init_clock_gating(struct drm_device *dev)
3451 {
3452         struct drm_i915_private *dev_priv = dev->dev_private;
3453
3454         /*
3455          * On Ibex Peak and Cougar Point, we need to disable clock
3456          * gating for the panel power sequencer or it will fail to
3457          * start up when no ports are active.
3458          */
3459         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3460 }
3461
3462 static void ironlake_init_clock_gating(struct drm_device *dev)
3463 {
3464         struct drm_i915_private *dev_priv = dev->dev_private;
3465         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3466
3467         /* Required for FBC */
3468         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
3469                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
3470                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
3471
3472         I915_WRITE(PCH_3DCGDIS0,
3473                    MARIUNIT_CLOCK_GATE_DISABLE |
3474                    SVSMUNIT_CLOCK_GATE_DISABLE);
3475         I915_WRITE(PCH_3DCGDIS1,
3476                    VFMUNIT_CLOCK_GATE_DISABLE);
3477
3478         /*
3479          * According to the spec the following bits should be set in
3480          * order to enable memory self-refresh
3481          * The bit 22/21 of 0x42004
3482          * The bit 5 of 0x42020
3483          * The bit 15 of 0x45000
3484          */
3485         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3486                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
3487                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
3488         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
3489         I915_WRITE(DISP_ARB_CTL,
3490                    (I915_READ(DISP_ARB_CTL) |
3491                     DISP_FBC_WM_DIS));
3492         I915_WRITE(WM3_LP_ILK, 0);
3493         I915_WRITE(WM2_LP_ILK, 0);
3494         I915_WRITE(WM1_LP_ILK, 0);
3495
3496         /*
3497          * Based on the document from hardware guys the following bits
3498          * should be set unconditionally in order to enable FBC.
3499          * The bit 22 of 0x42000
3500          * The bit 22 of 0x42004
3501          * The bit 7,8,9 of 0x42020.
3502          */
3503         if (IS_IRONLAKE_M(dev)) {
3504                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
3505                            I915_READ(ILK_DISPLAY_CHICKEN1) |
3506                            ILK_FBCQ_DIS);
3507                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3508                            I915_READ(ILK_DISPLAY_CHICKEN2) |
3509                            ILK_DPARB_GATE);
3510         }
3511
3512         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3513
3514         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3515                    I915_READ(ILK_DISPLAY_CHICKEN2) |
3516                    ILK_ELPIN_409_SELECT);
3517         I915_WRITE(_3D_CHICKEN2,
3518                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
3519                    _3D_CHICKEN2_WM_READ_PIPELINED);
3520
3521         /* WaDisableRenderCachePipelinedFlush */
3522         I915_WRITE(CACHE_MODE_0,
3523                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
3524
3525         ibx_init_clock_gating(dev);
3526 }
3527
3528 static void cpt_init_clock_gating(struct drm_device *dev)
3529 {
3530         struct drm_i915_private *dev_priv = dev->dev_private;
3531         int pipe;
3532         uint32_t val;
3533
3534         /*
3535          * On Ibex Peak and Cougar Point, we need to disable clock
3536          * gating for the panel power sequencer or it will fail to
3537          * start up when no ports are active.
3538          */
3539         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3540         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
3541                    DPLS_EDP_PPS_FIX_DIS);
3542         /* The below fixes the weird display corruption, a few pixels shifted
3543          * downward, on (only) LVDS of some HP laptops with IVY.
3544          */
3545         for_each_pipe(pipe) {
3546                 val = TRANS_CHICKEN2_TIMING_OVERRIDE;
3547                 if (dev_priv->fdi_rx_polarity_inverted)
3548                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
3549                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
3550         }
3551         /* WADP0ClockGatingDisable */
3552         for_each_pipe(pipe) {
3553                 I915_WRITE(TRANS_CHICKEN1(pipe),
3554                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
3555         }
3556 }
3557
3558 static void gen6_init_clock_gating(struct drm_device *dev)
3559 {
3560         struct drm_i915_private *dev_priv = dev->dev_private;
3561         int pipe;
3562         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3563
3564         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3565
3566         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3567                    I915_READ(ILK_DISPLAY_CHICKEN2) |
3568                    ILK_ELPIN_409_SELECT);
3569
3570         /* WaDisableHiZPlanesWhenMSAAEnabled */
3571         I915_WRITE(_3D_CHICKEN,
3572                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
3573
3574         /* WaSetupGtModeTdRowDispatch */
3575         if (IS_SNB_GT1(dev))
3576                 I915_WRITE(GEN6_GT_MODE,
3577                            _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
3578
3579         I915_WRITE(WM3_LP_ILK, 0);
3580         I915_WRITE(WM2_LP_ILK, 0);
3581         I915_WRITE(WM1_LP_ILK, 0);
3582
3583         I915_WRITE(CACHE_MODE_0,
3584                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
3585
3586         I915_WRITE(GEN6_UCGCTL1,
3587                    I915_READ(GEN6_UCGCTL1) |
3588                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
3589                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
3590
3591         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3592          * gating disable must be set.  Failure to set it results in
3593          * flickering pixels due to Z write ordering failures after
3594          * some amount of runtime in the Mesa "fire" demo, and Unigine
3595          * Sanctuary and Tropics, and apparently anything else with
3596          * alpha test or pixel discard.
3597          *
3598          * According to the spec, bit 11 (RCCUNIT) must also be set,
3599          * but we didn't debug actual testcases to find it out.
3600          *
3601          * Also apply WaDisableVDSUnitClockGating and
3602          * WaDisableRCPBUnitClockGating.
3603          */
3604         I915_WRITE(GEN6_UCGCTL2,
3605                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3606                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3607                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3608
3609         /* Bspec says we need to always set all mask bits. */
3610         I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
3611                    _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
3612
3613         /*
3614          * According to the spec the following bits should be
3615          * set in order to enable memory self-refresh and fbc:
3616          * The bit21 and bit22 of 0x42000
3617          * The bit21 and bit22 of 0x42004
3618          * The bit5 and bit7 of 0x42020
3619          * The bit14 of 0x70180
3620          * The bit14 of 0x71180
3621          */
3622         I915_WRITE(ILK_DISPLAY_CHICKEN1,
3623                    I915_READ(ILK_DISPLAY_CHICKEN1) |
3624                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
3625         I915_WRITE(ILK_DISPLAY_CHICKEN2,
3626                    I915_READ(ILK_DISPLAY_CHICKEN2) |
3627                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
3628         I915_WRITE(ILK_DSPCLK_GATE_D,
3629                    I915_READ(ILK_DSPCLK_GATE_D) |
3630                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
3631                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
3632
3633         /* WaMbcDriverBootEnable */
3634         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3635                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
3636
3637         for_each_pipe(pipe) {
3638                 I915_WRITE(DSPCNTR(pipe),
3639                            I915_READ(DSPCNTR(pipe)) |
3640                            DISPPLANE_TRICKLE_FEED_DISABLE);
3641                 intel_flush_display_plane(dev_priv, pipe);
3642         }
3643
3644         /* The default value should be 0x200 according to docs, but the two
3645          * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
3646         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
3647         I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
3648
3649         cpt_init_clock_gating(dev);
3650 }
3651
3652 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
3653 {
3654         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
3655
3656         reg &= ~GEN7_FF_SCHED_MASK;
3657         reg |= GEN7_FF_TS_SCHED_HW;
3658         reg |= GEN7_FF_VS_SCHED_HW;
3659         reg |= GEN7_FF_DS_SCHED_HW;
3660
3661         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
3662 }
3663
3664 static void lpt_init_clock_gating(struct drm_device *dev)
3665 {
3666         struct drm_i915_private *dev_priv = dev->dev_private;
3667
3668         /*
3669          * TODO: this bit should only be enabled when really needed, then
3670          * disabled when not needed anymore in order to save power.
3671          */
3672         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
3673                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
3674                            I915_READ(SOUTH_DSPCLK_GATE_D) |
3675                            PCH_LP_PARTITION_LEVEL_DISABLE);
3676 }
3677
3678 static void haswell_init_clock_gating(struct drm_device *dev)
3679 {
3680         struct drm_i915_private *dev_priv = dev->dev_private;
3681         int pipe;
3682
3683         I915_WRITE(WM3_LP_ILK, 0);
3684         I915_WRITE(WM2_LP_ILK, 0);
3685         I915_WRITE(WM1_LP_ILK, 0);
3686
3687         /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3688          * This implements the WaDisableRCZUnitClockGating workaround.
3689          */
3690         I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3691
3692         /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3693         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3694                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3695
3696         /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3697         I915_WRITE(GEN7_L3CNTLREG1,
3698                         GEN7_WA_FOR_GEN7_L3_CONTROL);
3699         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3700                         GEN7_WA_L3_CHICKEN_MODE);
3701
3702         /* This is required by WaCatErrorRejectionIssue */
3703         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3704                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3705                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3706
3707         for_each_pipe(pipe) {
3708                 I915_WRITE(DSPCNTR(pipe),
3709                            I915_READ(DSPCNTR(pipe)) |
3710                            DISPPLANE_TRICKLE_FEED_DISABLE);
3711                 intel_flush_display_plane(dev_priv, pipe);
3712         }
3713
3714         gen7_setup_fixed_func_scheduler(dev_priv);
3715
3716         /* WaDisable4x2SubspanOptimization */
3717         I915_WRITE(CACHE_MODE_1,
3718                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3719
3720         /* WaMbcDriverBootEnable */
3721         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3722                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
3723
3724         /* XXX: This is a workaround for early silicon revisions and should be
3725          * removed later.
3726          */
3727         I915_WRITE(WM_DBG,
3728                         I915_READ(WM_DBG) |
3729                         WM_DBG_DISALLOW_MULTIPLE_LP |
3730                         WM_DBG_DISALLOW_SPRITE |
3731                         WM_DBG_DISALLOW_MAXFIFO);
3732
3733         lpt_init_clock_gating(dev);
3734 }
3735
3736 static void ivybridge_init_clock_gating(struct drm_device *dev)
3737 {
3738         struct drm_i915_private *dev_priv = dev->dev_private;
3739         int pipe;
3740         uint32_t snpcr;
3741
3742         I915_WRITE(WM3_LP_ILK, 0);
3743         I915_WRITE(WM2_LP_ILK, 0);
3744         I915_WRITE(WM1_LP_ILK, 0);
3745
3746         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3747
3748         /* WaDisableEarlyCull */
3749         I915_WRITE(_3D_CHICKEN3,
3750                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
3751
3752         /* WaDisableBackToBackFlipFix */
3753         I915_WRITE(IVB_CHICKEN3,
3754                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3755                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
3756
3757         /* WaDisablePSDDualDispatchEnable */
3758         if (IS_IVB_GT1(dev))
3759                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3760                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3761         else
3762                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
3763                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3764
3765         /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3766         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3767                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3768
3769         /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3770         I915_WRITE(GEN7_L3CNTLREG1,
3771                         GEN7_WA_FOR_GEN7_L3_CONTROL);
3772         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3773                    GEN7_WA_L3_CHICKEN_MODE);
3774         if (IS_IVB_GT1(dev))
3775                 I915_WRITE(GEN7_ROW_CHICKEN2,
3776                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3777         else
3778                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
3779                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3780
3781
3782         /* WaForceL3Serialization */
3783         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3784                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3785
3786         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3787          * gating disable must be set.  Failure to set it results in
3788          * flickering pixels due to Z write ordering failures after
3789          * some amount of runtime in the Mesa "fire" demo, and Unigine
3790          * Sanctuary and Tropics, and apparently anything else with
3791          * alpha test or pixel discard.
3792          *
3793          * According to the spec, bit 11 (RCCUNIT) must also be set,
3794          * but we didn't debug actual testcases to find it out.
3795          *
3796          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3797          * This implements the WaDisableRCZUnitClockGating workaround.
3798          */
3799         I915_WRITE(GEN6_UCGCTL2,
3800                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3801                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3802
3803         /* This is required by WaCatErrorRejectionIssue */
3804         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3805                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3806                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3807
3808         for_each_pipe(pipe) {
3809                 I915_WRITE(DSPCNTR(pipe),
3810                            I915_READ(DSPCNTR(pipe)) |
3811                            DISPPLANE_TRICKLE_FEED_DISABLE);
3812                 intel_flush_display_plane(dev_priv, pipe);
3813         }
3814
3815         /* WaMbcDriverBootEnable */
3816         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3817                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
3818
3819         gen7_setup_fixed_func_scheduler(dev_priv);
3820
3821         /* WaDisable4x2SubspanOptimization */
3822         I915_WRITE(CACHE_MODE_1,
3823                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3824
3825         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3826         snpcr &= ~GEN6_MBC_SNPCR_MASK;
3827         snpcr |= GEN6_MBC_SNPCR_MED;
3828         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3829
3830         cpt_init_clock_gating(dev);
3831 }
3832
3833 static void valleyview_init_clock_gating(struct drm_device *dev)
3834 {
3835         struct drm_i915_private *dev_priv = dev->dev_private;
3836         int pipe;
3837
3838         I915_WRITE(WM3_LP_ILK, 0);
3839         I915_WRITE(WM2_LP_ILK, 0);
3840         I915_WRITE(WM1_LP_ILK, 0);
3841
3842         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3843
3844         /* WaDisableEarlyCull */
3845         I915_WRITE(_3D_CHICKEN3,
3846                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
3847
3848         /* WaDisableBackToBackFlipFix */
3849         I915_WRITE(IVB_CHICKEN3,
3850                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3851                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
3852
3853         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3854                    _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3855
3856         /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3857         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3858                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3859
3860         /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3861         I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
3862         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
3863
3864         /* WaForceL3Serialization */
3865         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3866                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3867
3868         /* WaDisableDopClockGating */
3869         I915_WRITE(GEN7_ROW_CHICKEN2,
3870                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3871
3872         /* WaForceL3Serialization */
3873         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3874                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3875
3876         /* This is required by WaCatErrorRejectionIssue */
3877         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3878                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3879                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3880
3881         /* WaMbcDriverBootEnable */
3882         I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3883                    GEN6_MBCTL_ENABLE_BOOT_FETCH);
3884
3885
3886         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3887          * gating disable must be set.  Failure to set it results in
3888          * flickering pixels due to Z write ordering failures after
3889          * some amount of runtime in the Mesa "fire" demo, and Unigine
3890          * Sanctuary and Tropics, and apparently anything else with
3891          * alpha test or pixel discard.
3892          *
3893          * According to the spec, bit 11 (RCCUNIT) must also be set,
3894          * but we didn't debug actual testcases to find it out.
3895          *
3896          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3897          * This implements the WaDisableRCZUnitClockGating workaround.
3898          *
3899          * Also apply WaDisableVDSUnitClockGating and
3900          * WaDisableRCPBUnitClockGating.
3901          */
3902         I915_WRITE(GEN6_UCGCTL2,
3903                    GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3904                    GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
3905                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3906                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3907                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3908
3909         I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
3910
3911         for_each_pipe(pipe) {
3912                 I915_WRITE(DSPCNTR(pipe),
3913                            I915_READ(DSPCNTR(pipe)) |
3914                            DISPPLANE_TRICKLE_FEED_DISABLE);
3915                 intel_flush_display_plane(dev_priv, pipe);
3916         }
3917
3918         I915_WRITE(CACHE_MODE_1,
3919                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3920
3921         /*
3922          * On ValleyView, the GUnit needs to signal the GT
3923          * when flip and other events complete.  So enable
3924          * all the GUnit->GT interrupts here
3925          */
3926         I915_WRITE(VLV_DPFLIPSTAT, PIPEB_LINE_COMPARE_INT_EN |
3927                    PIPEB_HLINE_INT_EN | PIPEB_VBLANK_INT_EN |
3928                    SPRITED_FLIPDONE_INT_EN | SPRITEC_FLIPDONE_INT_EN |
3929                    PLANEB_FLIPDONE_INT_EN | PIPEA_LINE_COMPARE_INT_EN |
3930                    PIPEA_HLINE_INT_EN | PIPEA_VBLANK_INT_EN |
3931                    SPRITEB_FLIPDONE_INT_EN | SPRITEA_FLIPDONE_INT_EN |
3932                    PLANEA_FLIPDONE_INT_EN);
3933
3934         /*
3935          * WaDisableVLVClockGating_VBIIssue
3936          * Disable clock gating on th GCFG unit to prevent a delay
3937          * in the reporting of vblank events.
3938          */
3939         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
3940 }
3941
3942 static void g4x_init_clock_gating(struct drm_device *dev)
3943 {
3944         struct drm_i915_private *dev_priv = dev->dev_private;
3945         uint32_t dspclk_gate;
3946
3947         I915_WRITE(RENCLK_GATE_D1, 0);
3948         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
3949                    GS_UNIT_CLOCK_GATE_DISABLE |
3950                    CL_UNIT_CLOCK_GATE_DISABLE);
3951         I915_WRITE(RAMCLK_GATE_D, 0);
3952         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
3953                 OVRUNIT_CLOCK_GATE_DISABLE |
3954                 OVCUNIT_CLOCK_GATE_DISABLE;
3955         if (IS_GM45(dev))
3956                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
3957         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
3958
3959         /* WaDisableRenderCachePipelinedFlush */
3960         I915_WRITE(CACHE_MODE_0,
3961                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
3962 }
3963
3964 static void crestline_init_clock_gating(struct drm_device *dev)
3965 {
3966         struct drm_i915_private *dev_priv = dev->dev_private;
3967
3968         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
3969         I915_WRITE(RENCLK_GATE_D2, 0);
3970         I915_WRITE(DSPCLK_GATE_D, 0);
3971         I915_WRITE(RAMCLK_GATE_D, 0);
3972         I915_WRITE16(DEUC, 0);
3973 }
3974
3975 static void broadwater_init_clock_gating(struct drm_device *dev)
3976 {
3977         struct drm_i915_private *dev_priv = dev->dev_private;
3978
3979         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
3980                    I965_RCC_CLOCK_GATE_DISABLE |
3981                    I965_RCPB_CLOCK_GATE_DISABLE |
3982                    I965_ISC_CLOCK_GATE_DISABLE |
3983                    I965_FBC_CLOCK_GATE_DISABLE);
3984         I915_WRITE(RENCLK_GATE_D2, 0);
3985 }
3986
3987 static void gen3_init_clock_gating(struct drm_device *dev)
3988 {
3989         struct drm_i915_private *dev_priv = dev->dev_private;
3990         u32 dstate = I915_READ(D_STATE);
3991
3992         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
3993                 DSTATE_DOT_CLOCK_GATING;
3994         I915_WRITE(D_STATE, dstate);
3995
3996         if (IS_PINEVIEW(dev))
3997                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
3998
3999         /* IIR "flip pending" means done if this bit is set */
4000         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
4001 }
4002
4003 static void i85x_init_clock_gating(struct drm_device *dev)
4004 {
4005         struct drm_i915_private *dev_priv = dev->dev_private;
4006
4007         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4008 }
4009
4010 static void i830_init_clock_gating(struct drm_device *dev)
4011 {
4012         struct drm_i915_private *dev_priv = dev->dev_private;
4013
4014         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4015 }
4016
4017 void intel_init_clock_gating(struct drm_device *dev)
4018 {
4019         struct drm_i915_private *dev_priv = dev->dev_private;
4020
4021         dev_priv->display.init_clock_gating(dev);
4022 }
4023
4024 /* Starting with Haswell, we have different power wells for
4025  * different parts of the GPU. This attempts to enable them all.
4026  */
4027 void intel_init_power_wells(struct drm_device *dev)
4028 {
4029         struct drm_i915_private *dev_priv = dev->dev_private;
4030         unsigned long power_wells[] = {
4031                 HSW_PWR_WELL_CTL1,
4032                 HSW_PWR_WELL_CTL2,
4033                 HSW_PWR_WELL_CTL4
4034         };
4035         int i;
4036
4037         if (!IS_HASWELL(dev))
4038                 return;
4039
4040         DRM_LOCK(dev);
4041
4042         for (i = 0; i < ARRAY_SIZE(power_wells); i++) {
4043                 int well = I915_READ(power_wells[i]);
4044
4045                 if ((well & HSW_PWR_WELL_STATE) == 0) {
4046                         I915_WRITE(power_wells[i], well & HSW_PWR_WELL_ENABLE);
4047                         if (wait_for((I915_READ(power_wells[i]) & HSW_PWR_WELL_STATE), 20))
4048                                 DRM_ERROR("Error enabling power well %lx\n", power_wells[i]);
4049                 }
4050         }
4051
4052         DRM_UNLOCK(dev);
4053 }
4054
4055 /* Set up chip specific power management-related functions */
4056 void intel_init_pm(struct drm_device *dev)
4057 {
4058         struct drm_i915_private *dev_priv = dev->dev_private;
4059
4060         if (I915_HAS_FBC(dev)) {
4061                 if (HAS_PCH_SPLIT(dev)) {
4062                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
4063                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
4064                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
4065                 } else if (IS_GM45(dev)) {
4066                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
4067                         dev_priv->display.enable_fbc = g4x_enable_fbc;
4068                         dev_priv->display.disable_fbc = g4x_disable_fbc;
4069                 } else if (IS_CRESTLINE(dev)) {
4070                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
4071                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
4072                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
4073                 }
4074                 /* 855GM needs testing */
4075         }
4076
4077         /* For cxsr */
4078         if (IS_PINEVIEW(dev))
4079                 i915_pineview_get_mem_freq(dev);
4080         else if (IS_GEN5(dev))
4081                 i915_ironlake_get_mem_freq(dev);
4082
4083         /* For FIFO watermark updates */
4084         if (HAS_PCH_SPLIT(dev)) {
4085                 if (IS_GEN5(dev)) {
4086                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
4087                                 dev_priv->display.update_wm = ironlake_update_wm;
4088                         else {
4089                                 DRM_DEBUG_KMS("Failed to get proper latency. "
4090                                               "Disable CxSR\n");
4091                                 dev_priv->display.update_wm = NULL;
4092                         }
4093                         dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
4094                 } else if (IS_GEN6(dev)) {
4095                         if (SNB_READ_WM0_LATENCY()) {
4096                                 dev_priv->display.update_wm = sandybridge_update_wm;
4097                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4098                         } else {
4099                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
4100                                               "Disable CxSR\n");
4101                                 dev_priv->display.update_wm = NULL;
4102                         }
4103                         dev_priv->display.init_clock_gating = gen6_init_clock_gating;
4104                 } else if (IS_IVYBRIDGE(dev)) {
4105                         /* FIXME: detect B0+ stepping and use auto training */
4106                         if (SNB_READ_WM0_LATENCY()) {
4107                                 dev_priv->display.update_wm = ivybridge_update_wm;
4108                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4109                         } else {
4110                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
4111                                               "Disable CxSR\n");
4112                                 dev_priv->display.update_wm = NULL;
4113                         }
4114                         dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
4115                 } else if (IS_HASWELL(dev)) {
4116                         if (SNB_READ_WM0_LATENCY()) {
4117                                 dev_priv->display.update_wm = sandybridge_update_wm;
4118                                 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4119                                 dev_priv->display.update_linetime_wm = haswell_update_linetime_wm;
4120                         } else {
4121                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
4122                                               "Disable CxSR\n");
4123                                 dev_priv->display.update_wm = NULL;
4124                         }
4125                         dev_priv->display.init_clock_gating = haswell_init_clock_gating;
4126                 } else
4127                         dev_priv->display.update_wm = NULL;
4128         } else if (IS_VALLEYVIEW(dev)) {
4129                 dev_priv->display.update_wm = valleyview_update_wm;
4130                 dev_priv->display.init_clock_gating =
4131                         valleyview_init_clock_gating;
4132         } else if (IS_PINEVIEW(dev)) {
4133                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
4134                                             dev_priv->is_ddr3,
4135                                             dev_priv->fsb_freq,
4136                                             dev_priv->mem_freq)) {
4137                         DRM_INFO("failed to find known CxSR latency "
4138                                  "(found ddr%s fsb freq %d, mem freq %d), "
4139                                  "disabling CxSR\n",
4140                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
4141                                  dev_priv->fsb_freq, dev_priv->mem_freq);
4142                         /* Disable CxSR and never update its watermark again */
4143                         pineview_disable_cxsr(dev);
4144                         dev_priv->display.update_wm = NULL;
4145                 } else
4146                         dev_priv->display.update_wm = pineview_update_wm;
4147                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4148         } else if (IS_G4X(dev)) {
4149                 dev_priv->display.update_wm = g4x_update_wm;
4150                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
4151         } else if (IS_GEN4(dev)) {
4152                 dev_priv->display.update_wm = i965_update_wm;
4153                 if (IS_CRESTLINE(dev))
4154                         dev_priv->display.init_clock_gating = crestline_init_clock_gating;
4155                 else if (IS_BROADWATER(dev))
4156                         dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
4157         } else if (IS_GEN3(dev)) {
4158                 dev_priv->display.update_wm = i9xx_update_wm;
4159                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
4160                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4161         } else if (IS_I865G(dev)) {
4162                 dev_priv->display.update_wm = i830_update_wm;
4163                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4164                 dev_priv->display.get_fifo_size = i830_get_fifo_size;
4165         } else if (IS_I85X(dev)) {
4166                 dev_priv->display.update_wm = i9xx_update_wm;
4167                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
4168                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4169         } else {
4170                 dev_priv->display.update_wm = i830_update_wm;
4171                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
4172                 if (IS_845G(dev))
4173                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
4174                 else
4175                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
4176         }
4177 }
4178
4179 static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
4180 {
4181         u32 gt_thread_status_mask;
4182
4183         if (IS_HASWELL(dev_priv->dev))
4184                 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
4185         else
4186                 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
4187
4188         /* w/a for a sporadic read returning 0 by waiting for the GT
4189          * thread to wake up.
4190          */
4191         if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
4192                 DRM_ERROR("GT thread status wait timed out\n");
4193 }
4194
4195 static void __gen6_gt_force_wake_reset(struct drm_i915_private *dev_priv)
4196 {
4197         I915_WRITE_NOTRACE(FORCEWAKE, 0);
4198         POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4199 }
4200
4201 static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4202 {
4203         u32 forcewake_ack;
4204
4205         if (IS_HASWELL(dev_priv->dev))
4206                 forcewake_ack = FORCEWAKE_ACK_HSW;
4207         else
4208                 forcewake_ack = FORCEWAKE_ACK;
4209
4210         if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0,
4211                             FORCEWAKE_ACK_TIMEOUT_MS))
4212                 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4213
4214         I915_WRITE_NOTRACE(FORCEWAKE, FORCEWAKE_KERNEL);
4215         POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4216
4217         if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1),
4218                             FORCEWAKE_ACK_TIMEOUT_MS))
4219                 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4220
4221         __gen6_gt_wait_for_thread_c0(dev_priv);
4222 }
4223
4224 static void __gen6_gt_force_wake_mt_reset(struct drm_i915_private *dev_priv)
4225 {
4226         I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(0xffff));
4227         /* something from same cacheline, but !FORCEWAKE_MT */
4228         POSTING_READ(ECOBUS);
4229 }
4230
4231 static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
4232 {
4233         u32 forcewake_ack;
4234
4235         if (IS_HASWELL(dev_priv->dev))
4236                 forcewake_ack = FORCEWAKE_ACK_HSW;
4237         else
4238                 forcewake_ack = FORCEWAKE_MT_ACK;
4239
4240         if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0,
4241                             FORCEWAKE_ACK_TIMEOUT_MS))
4242                 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4243
4244         I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4245         /* something from same cacheline, but !FORCEWAKE_MT */
4246         POSTING_READ(ECOBUS);
4247
4248         if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1),
4249                             FORCEWAKE_ACK_TIMEOUT_MS))
4250                 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4251
4252         __gen6_gt_wait_for_thread_c0(dev_priv);
4253 }
4254
4255 /*
4256  * Generally this is called implicitly by the register read function. However,
4257  * if some sequence requires the GT to not power down then this function should
4258  * be called at the beginning of the sequence followed by a call to
4259  * gen6_gt_force_wake_put() at the end of the sequence.
4260  */
4261 void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4262 {
4263
4264         lockmgr(&dev_priv->gt_lock, LK_EXCLUSIVE);
4265         if (dev_priv->forcewake_count++ == 0)
4266                 dev_priv->gt.force_wake_get(dev_priv);
4267         lockmgr(&dev_priv->gt_lock, LK_RELEASE);
4268 }
4269
4270 void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
4271 {
4272         u32 gtfifodbg;
4273         gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
4274         if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
4275              "MMIO read or write has been dropped %x\n", gtfifodbg))
4276                 I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
4277 }
4278
4279 static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4280 {
4281         I915_WRITE_NOTRACE(FORCEWAKE, 0);
4282         /* something from same cacheline, but !FORCEWAKE */
4283         POSTING_READ(ECOBUS);
4284         gen6_gt_check_fifodbg(dev_priv);
4285 }
4286
4287 static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
4288 {
4289         I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4290         /* something from same cacheline, but !FORCEWAKE_MT */
4291         POSTING_READ(ECOBUS);
4292         gen6_gt_check_fifodbg(dev_priv);
4293 }
4294
4295 /*
4296  * see gen6_gt_force_wake_get()
4297  */
4298 void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4299 {
4300         lockmgr(&dev_priv->gt_lock, LK_EXCLUSIVE);
4301         if (--dev_priv->forcewake_count == 0)
4302                 dev_priv->gt.force_wake_put(dev_priv);
4303         lockmgr(&dev_priv->gt_lock, LK_RELEASE);
4304 }
4305
4306 int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
4307 {
4308         int ret = 0;
4309
4310         if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
4311                 int loop = 500;
4312                 u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4313                 while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
4314                         udelay(10);
4315                         fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4316                 }
4317                 if (loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES) {
4318                         kprintf("%s loop\n", __func__);
4319                         ++ret;
4320                 }
4321                 dev_priv->gt_fifo_count = fifo;
4322         }
4323         dev_priv->gt_fifo_count--;
4324
4325         return ret;
4326 }
4327
4328 static void vlv_force_wake_reset(struct drm_i915_private *dev_priv)
4329 {
4330         I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(0xffff));
4331         /* something from same cacheline, but !FORCEWAKE_VLV */
4332         POSTING_READ(FORCEWAKE_ACK_VLV);
4333 }
4334
4335 static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
4336 {
4337         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1) == 0,
4338                             FORCEWAKE_ACK_TIMEOUT_MS))
4339                 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4340
4341         I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4342
4343         if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1),
4344                             FORCEWAKE_ACK_TIMEOUT_MS))
4345                 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4346
4347         __gen6_gt_wait_for_thread_c0(dev_priv);
4348 }
4349
4350 static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
4351 {
4352         I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4353         /* something from same cacheline, but !FORCEWAKE_VLV */
4354         POSTING_READ(FORCEWAKE_ACK_VLV);
4355         gen6_gt_check_fifodbg(dev_priv);
4356 }
4357
4358 void intel_gt_reset(struct drm_device *dev)
4359 {
4360         struct drm_i915_private *dev_priv = dev->dev_private;
4361
4362         if (IS_VALLEYVIEW(dev)) {
4363                 vlv_force_wake_reset(dev_priv);
4364         } else if (INTEL_INFO(dev)->gen >= 6) {
4365                 __gen6_gt_force_wake_reset(dev_priv);
4366                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4367                         __gen6_gt_force_wake_mt_reset(dev_priv);
4368         }
4369 }
4370
4371 void intel_gt_init(struct drm_device *dev)
4372 {
4373         struct drm_i915_private *dev_priv = dev->dev_private;
4374
4375         lockinit(&dev_priv->gt_lock, "915gt", 0, LK_CANRECURSE);
4376
4377         intel_gt_reset(dev);
4378
4379         if (IS_VALLEYVIEW(dev)) {
4380                 dev_priv->gt.force_wake_get = vlv_force_wake_get;
4381                 dev_priv->gt.force_wake_put = vlv_force_wake_put;
4382         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
4383                 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_mt_get;
4384                 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_mt_put;
4385         } else if (IS_GEN6(dev)) {
4386                 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
4387                 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
4388         }
4389         INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
4390                           intel_gen6_powersave_work);
4391 }
4392
4393 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
4394 {
4395
4396         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4397                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
4398                 return -EAGAIN;
4399         }
4400
4401         I915_WRITE(GEN6_PCODE_DATA, *val);
4402         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4403
4404         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4405                      500)) {
4406                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
4407                 return -ETIMEDOUT;
4408         }
4409
4410         *val = I915_READ(GEN6_PCODE_DATA);
4411         I915_WRITE(GEN6_PCODE_DATA, 0);
4412
4413         return 0;
4414 }
4415
4416 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
4417 {
4418
4419         if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4420                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
4421                 return -EAGAIN;
4422         }
4423
4424         I915_WRITE(GEN6_PCODE_DATA, val);
4425         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4426
4427         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4428                      500)) {
4429                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
4430                 return -ETIMEDOUT;
4431         }
4432
4433         I915_WRITE(GEN6_PCODE_DATA, 0);
4434
4435         return 0;
4436 }