Merge branch 'vendor/GREP'
[dragonfly.git] / sys / vm / vm_map.c
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *      This product includes software developed by the University of
21  *      California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  *
66  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
67  */
68
69 /*
70  *      Virtual memory mapping module.
71  */
72
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/kernel.h>
76 #include <sys/proc.h>
77 #include <sys/serialize.h>
78 #include <sys/lock.h>
79 #include <sys/vmmeter.h>
80 #include <sys/mman.h>
81 #include <sys/vnode.h>
82 #include <sys/resourcevar.h>
83 #include <sys/shm.h>
84 #include <sys/tree.h>
85 #include <sys/malloc.h>
86
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <vm/pmap.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_zone.h>
98
99 #include <sys/thread2.h>
100 #include <sys/sysref2.h>
101 #include <sys/random.h>
102 #include <sys/sysctl.h>
103
104 /*
105  * Virtual memory maps provide for the mapping, protection, and sharing
106  * of virtual memory objects.  In addition, this module provides for an
107  * efficient virtual copy of memory from one map to another.
108  *
109  * Synchronization is required prior to most operations.
110  *
111  * Maps consist of an ordered doubly-linked list of simple entries.
112  * A hint and a RB tree is used to speed-up lookups.
113  *
114  * Callers looking to modify maps specify start/end addresses which cause
115  * the related map entry to be clipped if necessary, and then later
116  * recombined if the pieces remained compatible.
117  *
118  * Virtual copy operations are performed by copying VM object references
119  * from one map to another, and then marking both regions as copy-on-write.
120  */
121 static void vmspace_terminate(struct vmspace *vm);
122 static void vmspace_lock(struct vmspace *vm);
123 static void vmspace_unlock(struct vmspace *vm);
124 static void vmspace_dtor(void *obj, void *private);
125
126 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
127
128 struct sysref_class vmspace_sysref_class = {
129         .name =         "vmspace",
130         .mtype =        M_VMSPACE,
131         .proto =        SYSREF_PROTO_VMSPACE,
132         .offset =       offsetof(struct vmspace, vm_sysref),
133         .objsize =      sizeof(struct vmspace),
134         .nom_cache =    32,
135         .flags = SRC_MANAGEDINIT,
136         .dtor = vmspace_dtor,
137         .ops = {
138                 .terminate = (sysref_terminate_func_t)vmspace_terminate,
139                 .lock = (sysref_lock_func_t)vmspace_lock,
140                 .unlock = (sysref_lock_func_t)vmspace_unlock
141         }
142 };
143
144 /*
145  * per-cpu page table cross mappings are initialized in early boot
146  * and might require a considerable number of vm_map_entry structures.
147  */
148 #define VMEPERCPU       (MAXCPU+1)
149
150 static struct vm_zone mapentzone_store, mapzone_store;
151 static vm_zone_t mapentzone, mapzone;
152 static struct vm_object mapentobj, mapobj;
153
154 static struct vm_map_entry map_entry_init[MAX_MAPENT];
155 static struct vm_map_entry cpu_map_entry_init[MAXCPU][VMEPERCPU];
156 static struct vm_map map_init[MAX_KMAP];
157
158 static int randomize_mmap;
159 SYSCTL_INT(_vm, OID_AUTO, randomize_mmap, CTLFLAG_RW, &randomize_mmap, 0,
160     "Randomize mmap offsets");
161 static int vm_map_relock_enable = 1;
162 SYSCTL_INT(_vm, OID_AUTO, map_relock_enable, CTLFLAG_RW,
163            &vm_map_relock_enable, 0, "Randomize mmap offsets");
164
165 static void vm_map_entry_shadow(vm_map_entry_t entry, int addref);
166 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
167 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
168 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
169 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
170 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
171 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
172 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
173                 vm_map_entry_t);
174 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry, vm_offset_t start, vm_offset_t end, int *count, int flags);
175
176 /*
177  * Initialize the vm_map module.  Must be called before any other vm_map
178  * routines.
179  *
180  * Map and entry structures are allocated from the general purpose
181  * memory pool with some exceptions:
182  *
183  *      - The kernel map is allocated statically.
184  *      - Initial kernel map entries are allocated out of a static pool.
185  *
186  *      These restrictions are necessary since malloc() uses the
187  *      maps and requires map entries.
188  *
189  * Called from the low level boot code only.
190  */
191 void
192 vm_map_startup(void)
193 {
194         mapzone = &mapzone_store;
195         zbootinit(mapzone, "MAP", sizeof (struct vm_map),
196                 map_init, MAX_KMAP);
197         mapentzone = &mapentzone_store;
198         zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
199                 map_entry_init, MAX_MAPENT);
200 }
201
202 /*
203  * Called prior to any vmspace allocations.
204  *
205  * Called from the low level boot code only.
206  */
207 void
208 vm_init2(void) 
209 {
210         zinitna(mapentzone, &mapentobj, NULL, 0, 0, 
211                 ZONE_USE_RESERVE | ZONE_SPECIAL, 1);
212         zinitna(mapzone, &mapobj, NULL, 0, 0, 0, 1);
213         pmap_init2();
214         vm_object_init2();
215 }
216
217
218 /*
219  * Red black tree functions
220  *
221  * The caller must hold the related map lock.
222  */
223 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
224 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
225
226 /* a->start is address, and the only field has to be initialized */
227 static int
228 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
229 {
230         if (a->start < b->start)
231                 return(-1);
232         else if (a->start > b->start)
233                 return(1);
234         return(0);
235 }
236
237 /*
238  * Allocate a vmspace structure, including a vm_map and pmap.
239  * Initialize numerous fields.  While the initial allocation is zerod,
240  * subsequence reuse from the objcache leaves elements of the structure
241  * intact (particularly the pmap), so portions must be zerod.
242  *
243  * The structure is not considered activated until we call sysref_activate().
244  *
245  * No requirements.
246  */
247 struct vmspace *
248 vmspace_alloc(vm_offset_t min, vm_offset_t max)
249 {
250         struct vmspace *vm;
251
252         vm = sysref_alloc(&vmspace_sysref_class);
253         bzero(&vm->vm_startcopy,
254               (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
255         vm_map_init(&vm->vm_map, min, max, NULL);       /* initializes token */
256
257         /*
258          * Use a hold to prevent any additional racing hold from terminating
259          * the vmspace before we manage to activate it.  This also acquires
260          * the token for safety.
261          */
262         KKASSERT(vm->vm_holdcount == 0);
263         KKASSERT(vm->vm_exitingcnt == 0);
264         vmspace_hold(vm);
265         pmap_pinit(vmspace_pmap(vm));           /* (some fields reused) */
266         vm->vm_map.pmap = vmspace_pmap(vm);             /* XXX */
267         vm->vm_shm = NULL;
268         vm->vm_flags = 0;
269         cpu_vmspace_alloc(vm);
270         sysref_activate(&vm->vm_sysref);
271         vmspace_drop(vm);
272
273         return (vm);
274 }
275
276 /*
277  * Free a primary reference to a vmspace.  This can trigger a
278  * stage-1 termination.
279  */
280 void
281 vmspace_free(struct vmspace *vm)
282 {
283         /*
284          * We want all finalization to occur via vmspace_drop() so we
285          * need to hold the vm around the put.
286          */
287         vmspace_hold(vm);
288         sysref_put(&vm->vm_sysref);
289         vmspace_drop(vm);
290 }
291
292 void
293 vmspace_ref(struct vmspace *vm)
294 {
295         sysref_get(&vm->vm_sysref);
296 }
297
298 void
299 vmspace_hold(struct vmspace *vm)
300 {
301         refcount_acquire(&vm->vm_holdcount);
302         lwkt_gettoken(&vm->vm_map.token);
303 }
304
305 void
306 vmspace_drop(struct vmspace *vm)
307 {
308         lwkt_reltoken(&vm->vm_map.token);
309         if (refcount_release(&vm->vm_holdcount)) {
310                 if (vm->vm_exitingcnt == 0 &&
311                     sysref_isinactive(&vm->vm_sysref)) {
312                         vmspace_terminate(vm);
313                 }
314         }
315 }
316
317 /*
318  * dtor function - Some elements of the pmap are retained in the
319  * free-cached vmspaces to improve performance.  We have to clean them up
320  * here before returning the vmspace to the memory pool.
321  *
322  * No requirements.
323  */
324 static void
325 vmspace_dtor(void *obj, void *private)
326 {
327         struct vmspace *vm = obj;
328
329         pmap_puninit(vmspace_pmap(vm));
330 }
331
332 /*
333  * Called in three cases:
334  *
335  * (1) When the last sysref is dropped and the vmspace becomes inactive.
336  *     (holdcount will not be 0 because the vmspace is held through the op)
337  *
338  * (2) When exitingcount becomes 0 on the last reap
339  *     (holdcount will not be 0 because the vmspace is held through the op)
340  *
341  * (3) When the holdcount becomes 0 in addition to the above two
342  *
343  * sysref will not scrap the object until we call sysref_put() once more
344  * after the last ref has been dropped.
345  *
346  * VMSPACE_EXIT1 flags the primary deactivation
347  * VMSPACE_EXIT2 flags the last reap
348  */
349 static void
350 vmspace_terminate(struct vmspace *vm)
351 {
352         int count;
353
354         /*
355          *
356          */
357         lwkt_gettoken(&vm->vm_map.token);
358         if ((vm->vm_flags & VMSPACE_EXIT1) == 0) {
359                 vm->vm_flags |= VMSPACE_EXIT1;
360                 shmexit(vm);
361                 pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
362                                   VM_MAX_USER_ADDRESS);
363                 vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
364                               VM_MAX_USER_ADDRESS);
365         }
366         if ((vm->vm_flags & VMSPACE_EXIT2) == 0 && vm->vm_exitingcnt == 0) {
367                 vm->vm_flags |= VMSPACE_EXIT2;
368                 cpu_vmspace_free(vm);
369                 shmexit(vm);
370
371                 /*
372                  * Lock the map, to wait out all other references to it.
373                  * Delete all of the mappings and pages they hold, then call
374                  * the pmap module to reclaim anything left.
375                  */
376                 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
377                 vm_map_lock(&vm->vm_map);
378                 vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
379                               vm->vm_map.max_offset, &count);
380                 vm_map_unlock(&vm->vm_map);
381                 vm_map_entry_release(count);
382
383                 lwkt_gettoken(&vmspace_pmap(vm)->pm_token);
384                 pmap_release(vmspace_pmap(vm));
385                 lwkt_reltoken(&vmspace_pmap(vm)->pm_token);
386         }
387
388         lwkt_reltoken(&vm->vm_map.token);
389         if (vm->vm_exitingcnt == 0 && vm->vm_holdcount == 0) {
390                 KKASSERT(vm->vm_flags & VMSPACE_EXIT1);
391                 KKASSERT(vm->vm_flags & VMSPACE_EXIT2);
392                 sysref_put(&vm->vm_sysref);
393         }
394 }
395
396 /*
397  * vmspaces are not currently locked.
398  */
399 static void
400 vmspace_lock(struct vmspace *vm __unused)
401 {
402 }
403
404 static void
405 vmspace_unlock(struct vmspace *vm __unused)
406 {
407 }
408
409 /*
410  * This is called during exit indicating that the vmspace is no
411  * longer in used by an exiting process, but the process has not yet
412  * been reaped.
413  *
414  * No requirements.
415  */
416 void
417 vmspace_exitbump(struct vmspace *vm)
418 {
419         vmspace_hold(vm);
420         ++vm->vm_exitingcnt;
421         vmspace_drop(vm);       /* handles termination sequencing */
422 }
423
424 /*
425  * Decrement the exitingcnt and issue the stage-2 termination if it becomes
426  * zero and the stage1 termination has already occured.
427  *
428  * No requirements.
429  */
430 void
431 vmspace_exitfree(struct proc *p)
432 {
433         struct vmspace *vm;
434
435         vm = p->p_vmspace;
436         p->p_vmspace = NULL;
437         vmspace_hold(vm);
438         KKASSERT(vm->vm_exitingcnt > 0);
439         if (--vm->vm_exitingcnt == 0 && sysref_isinactive(&vm->vm_sysref))
440                 vmspace_terminate(vm);
441         vmspace_drop(vm);       /* handles termination sequencing */
442 }
443
444 /*
445  * Swap useage is determined by taking the proportional swap used by
446  * VM objects backing the VM map.  To make up for fractional losses,
447  * if the VM object has any swap use at all the associated map entries
448  * count for at least 1 swap page.
449  *
450  * No requirements.
451  */
452 int
453 vmspace_swap_count(struct vmspace *vm)
454 {
455         vm_map_t map = &vm->vm_map;
456         vm_map_entry_t cur;
457         vm_object_t object;
458         int count = 0;
459         int n;
460
461         vmspace_hold(vm);
462         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
463                 switch(cur->maptype) {
464                 case VM_MAPTYPE_NORMAL:
465                 case VM_MAPTYPE_VPAGETABLE:
466                         if ((object = cur->object.vm_object) == NULL)
467                                 break;
468                         if (object->swblock_count) {
469                                 n = (cur->end - cur->start) / PAGE_SIZE;
470                                 count += object->swblock_count *
471                                     SWAP_META_PAGES * n / object->size + 1;
472                         }
473                         break;
474                 default:
475                         break;
476                 }
477         }
478         vmspace_drop(vm);
479
480         return(count);
481 }
482
483 /*
484  * Calculate the approximate number of anonymous pages in use by
485  * this vmspace.  To make up for fractional losses, we count each
486  * VM object as having at least 1 anonymous page.
487  *
488  * No requirements.
489  */
490 int
491 vmspace_anonymous_count(struct vmspace *vm)
492 {
493         vm_map_t map = &vm->vm_map;
494         vm_map_entry_t cur;
495         vm_object_t object;
496         int count = 0;
497
498         vmspace_hold(vm);
499         for (cur = map->header.next; cur != &map->header; cur = cur->next) {
500                 switch(cur->maptype) {
501                 case VM_MAPTYPE_NORMAL:
502                 case VM_MAPTYPE_VPAGETABLE:
503                         if ((object = cur->object.vm_object) == NULL)
504                                 break;
505                         if (object->type != OBJT_DEFAULT &&
506                             object->type != OBJT_SWAP) {
507                                 break;
508                         }
509                         count += object->resident_page_count;
510                         break;
511                 default:
512                         break;
513                 }
514         }
515         vmspace_drop(vm);
516
517         return(count);
518 }
519
520 /*
521  * Creates and returns a new empty VM map with the given physical map
522  * structure, and having the given lower and upper address bounds.
523  *
524  * No requirements.
525  */
526 vm_map_t
527 vm_map_create(vm_map_t result, pmap_t pmap, vm_offset_t min, vm_offset_t max)
528 {
529         if (result == NULL)
530                 result = zalloc(mapzone);
531         vm_map_init(result, min, max, pmap);
532         return (result);
533 }
534
535 /*
536  * Initialize an existing vm_map structure such as that in the vmspace
537  * structure.  The pmap is initialized elsewhere.
538  *
539  * No requirements.
540  */
541 void
542 vm_map_init(struct vm_map *map, vm_offset_t min, vm_offset_t max, pmap_t pmap)
543 {
544         map->header.next = map->header.prev = &map->header;
545         RB_INIT(&map->rb_root);
546         map->nentries = 0;
547         map->size = 0;
548         map->system_map = 0;
549         map->min_offset = min;
550         map->max_offset = max;
551         map->pmap = pmap;
552         map->first_free = &map->header;
553         map->hint = &map->header;
554         map->timestamp = 0;
555         map->flags = 0;
556         lwkt_token_init(&map->token, "vm_map");
557         lockinit(&map->lock, "thrd_sleep", (hz + 9) / 10, 0);
558         TUNABLE_INT("vm.cache_vmspaces", &vmspace_sysref_class.nom_cache);
559 }
560
561 /*
562  * Shadow the vm_map_entry's object.  This typically needs to be done when
563  * a write fault is taken on an entry which had previously been cloned by
564  * fork().  The shared object (which might be NULL) must become private so
565  * we add a shadow layer above it.
566  *
567  * Object allocation for anonymous mappings is defered as long as possible.
568  * When creating a shadow, however, the underlying object must be instantiated
569  * so it can be shared.
570  *
571  * If the map segment is governed by a virtual page table then it is
572  * possible to address offsets beyond the mapped area.  Just allocate
573  * a maximally sized object for this case.
574  *
575  * The vm_map must be exclusively locked.
576  * No other requirements.
577  */
578 static
579 void
580 vm_map_entry_shadow(vm_map_entry_t entry, int addref)
581 {
582         if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
583                 vm_object_shadow(&entry->object.vm_object, &entry->offset,
584                                  0x7FFFFFFF, addref);   /* XXX */
585         } else {
586                 vm_object_shadow(&entry->object.vm_object, &entry->offset,
587                                  atop(entry->end - entry->start), addref);
588         }
589         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
590 }
591
592 /*
593  * Allocate an object for a vm_map_entry.
594  *
595  * Object allocation for anonymous mappings is defered as long as possible.
596  * This function is called when we can defer no longer, generally when a map
597  * entry might be split or forked or takes a page fault.
598  *
599  * If the map segment is governed by a virtual page table then it is
600  * possible to address offsets beyond the mapped area.  Just allocate
601  * a maximally sized object for this case.
602  *
603  * The vm_map must be exclusively locked.
604  * No other requirements.
605  */
606 void 
607 vm_map_entry_allocate_object(vm_map_entry_t entry)
608 {
609         vm_object_t obj;
610
611         if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
612                 obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
613         } else {
614                 obj = vm_object_allocate(OBJT_DEFAULT,
615                                          atop(entry->end - entry->start));
616         }
617         entry->object.vm_object = obj;
618         entry->offset = 0;
619 }
620
621 /*
622  * Set an initial negative count so the first attempt to reserve
623  * space preloads a bunch of vm_map_entry's for this cpu.  Also
624  * pre-allocate 2 vm_map_entries which will be needed by zalloc() to
625  * map a new page for vm_map_entry structures.  SMP systems are
626  * particularly sensitive.
627  *
628  * This routine is called in early boot so we cannot just call
629  * vm_map_entry_reserve().
630  *
631  * Called from the low level boot code only (for each cpu)
632  */
633 void
634 vm_map_entry_reserve_cpu_init(globaldata_t gd)
635 {
636         vm_map_entry_t entry;
637         int i;
638
639         gd->gd_vme_avail -= MAP_RESERVE_COUNT * 2;
640         entry = &cpu_map_entry_init[gd->gd_cpuid][0];
641         for (i = 0; i < VMEPERCPU; ++i, ++entry) {
642                 entry->next = gd->gd_vme_base;
643                 gd->gd_vme_base = entry;
644         }
645 }
646
647 /*
648  * Reserves vm_map_entry structures so code later on can manipulate
649  * map_entry structures within a locked map without blocking trying
650  * to allocate a new vm_map_entry.
651  *
652  * No requirements.
653  */
654 int
655 vm_map_entry_reserve(int count)
656 {
657         struct globaldata *gd = mycpu;
658         vm_map_entry_t entry;
659
660         /*
661          * Make sure we have enough structures in gd_vme_base to handle
662          * the reservation request.
663          *
664          * The critical section protects access to the per-cpu gd.
665          */
666         crit_enter();
667         while (gd->gd_vme_avail < count) {
668                 entry = zalloc(mapentzone);
669                 entry->next = gd->gd_vme_base;
670                 gd->gd_vme_base = entry;
671                 ++gd->gd_vme_avail;
672         }
673         gd->gd_vme_avail -= count;
674         crit_exit();
675
676         return(count);
677 }
678
679 /*
680  * Releases previously reserved vm_map_entry structures that were not
681  * used.  If we have too much junk in our per-cpu cache clean some of
682  * it out.
683  *
684  * No requirements.
685  */
686 void
687 vm_map_entry_release(int count)
688 {
689         struct globaldata *gd = mycpu;
690         vm_map_entry_t entry;
691
692         crit_enter();
693         gd->gd_vme_avail += count;
694         while (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
695                 entry = gd->gd_vme_base;
696                 KKASSERT(entry != NULL);
697                 gd->gd_vme_base = entry->next;
698                 --gd->gd_vme_avail;
699                 crit_exit();
700                 zfree(mapentzone, entry);
701                 crit_enter();
702         }
703         crit_exit();
704 }
705
706 /*
707  * Reserve map entry structures for use in kernel_map itself.  These
708  * entries have *ALREADY* been reserved on a per-cpu basis when the map
709  * was inited.  This function is used by zalloc() to avoid a recursion
710  * when zalloc() itself needs to allocate additional kernel memory.
711  *
712  * This function works like the normal reserve but does not load the
713  * vm_map_entry cache (because that would result in an infinite
714  * recursion).  Note that gd_vme_avail may go negative.  This is expected.
715  *
716  * Any caller of this function must be sure to renormalize after
717  * potentially eating entries to ensure that the reserve supply
718  * remains intact.
719  *
720  * No requirements.
721  */
722 int
723 vm_map_entry_kreserve(int count)
724 {
725         struct globaldata *gd = mycpu;
726
727         crit_enter();
728         gd->gd_vme_avail -= count;
729         crit_exit();
730         KASSERT(gd->gd_vme_base != NULL,
731                 ("no reserved entries left, gd_vme_avail = %d",
732                 gd->gd_vme_avail));
733         return(count);
734 }
735
736 /*
737  * Release previously reserved map entries for kernel_map.  We do not
738  * attempt to clean up like the normal release function as this would
739  * cause an unnecessary (but probably not fatal) deep procedure call.
740  *
741  * No requirements.
742  */
743 void
744 vm_map_entry_krelease(int count)
745 {
746         struct globaldata *gd = mycpu;
747
748         crit_enter();
749         gd->gd_vme_avail += count;
750         crit_exit();
751 }
752
753 /*
754  * Allocates a VM map entry for insertion.  No entry fields are filled in.
755  *
756  * The entries should have previously been reserved.  The reservation count
757  * is tracked in (*countp).
758  *
759  * No requirements.
760  */
761 static vm_map_entry_t
762 vm_map_entry_create(vm_map_t map, int *countp)
763 {
764         struct globaldata *gd = mycpu;
765         vm_map_entry_t entry;
766
767         KKASSERT(*countp > 0);
768         --*countp;
769         crit_enter();
770         entry = gd->gd_vme_base;
771         KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
772         gd->gd_vme_base = entry->next;
773         crit_exit();
774
775         return(entry);
776 }
777
778 /*
779  * Dispose of a vm_map_entry that is no longer being referenced.
780  *
781  * No requirements.
782  */
783 static void
784 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
785 {
786         struct globaldata *gd = mycpu;
787
788         KKASSERT(map->hint != entry);
789         KKASSERT(map->first_free != entry);
790
791         ++*countp;
792         crit_enter();
793         entry->next = gd->gd_vme_base;
794         gd->gd_vme_base = entry;
795         crit_exit();
796 }
797
798
799 /*
800  * Insert/remove entries from maps.
801  *
802  * The related map must be exclusively locked.
803  * The caller must hold map->token
804  * No other requirements.
805  */
806 static __inline void
807 vm_map_entry_link(vm_map_t map,
808                   vm_map_entry_t after_where,
809                   vm_map_entry_t entry)
810 {
811         ASSERT_VM_MAP_LOCKED(map);
812
813         map->nentries++;
814         entry->prev = after_where;
815         entry->next = after_where->next;
816         entry->next->prev = entry;
817         after_where->next = entry;
818         if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
819                 panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
820 }
821
822 static __inline void
823 vm_map_entry_unlink(vm_map_t map,
824                     vm_map_entry_t entry)
825 {
826         vm_map_entry_t prev;
827         vm_map_entry_t next;
828
829         ASSERT_VM_MAP_LOCKED(map);
830
831         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
832                 panic("vm_map_entry_unlink: attempt to mess with "
833                       "locked entry! %p", entry);
834         }
835         prev = entry->prev;
836         next = entry->next;
837         next->prev = prev;
838         prev->next = next;
839         vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
840         map->nentries--;
841 }
842
843 /*
844  * Finds the map entry containing (or immediately preceding) the specified
845  * address in the given map.  The entry is returned in (*entry).
846  *
847  * The boolean result indicates whether the address is actually contained
848  * in the map.
849  *
850  * The related map must be locked.
851  * No other requirements.
852  */
853 boolean_t
854 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry)
855 {
856         vm_map_entry_t tmp;
857         vm_map_entry_t last;
858
859         ASSERT_VM_MAP_LOCKED(map);
860 #if 0
861         /*
862          * XXX TEMPORARILY DISABLED.  For some reason our attempt to revive
863          * the hint code with the red-black lookup meets with system crashes
864          * and lockups.  We do not yet know why.
865          *
866          * It is possible that the problem is related to the setting
867          * of the hint during map_entry deletion, in the code specified
868          * at the GGG comment later on in this file.
869          *
870          * YYY More likely it's because this function can be called with
871          * a shared lock on the map, resulting in map->hint updates possibly
872          * racing.  Fixed now but untested.
873          */
874         /*
875          * Quickly check the cached hint, there's a good chance of a match.
876          */
877         tmp = map->hint;
878         cpu_ccfence();
879         if (tmp != &map->header) {
880                 if (address >= tmp->start && address < tmp->end) {
881                         *entry = tmp;
882                         return(TRUE);
883                 }
884         }
885 #endif
886
887         /*
888          * Locate the record from the top of the tree.  'last' tracks the
889          * closest prior record and is returned if no match is found, which
890          * in binary tree terms means tracking the most recent right-branch
891          * taken.  If there is no prior record, &map->header is returned.
892          */
893         last = &map->header;
894         tmp = RB_ROOT(&map->rb_root);
895
896         while (tmp) {
897                 if (address >= tmp->start) {
898                         if (address < tmp->end) {
899                                 *entry = tmp;
900                                 map->hint = tmp;
901                                 return(TRUE);
902                         }
903                         last = tmp;
904                         tmp = RB_RIGHT(tmp, rb_entry);
905                 } else {
906                         tmp = RB_LEFT(tmp, rb_entry);
907                 }
908         }
909         *entry = last;
910         return (FALSE);
911 }
912
913 /*
914  * Inserts the given whole VM object into the target map at the specified
915  * address range.  The object's size should match that of the address range.
916  *
917  * The map must be exclusively locked.
918  * The object must be held.
919  * The caller must have reserved sufficient vm_map_entry structures.
920  *
921  * If object is non-NULL, ref count must be bumped by caller prior to
922  * making call to account for the new entry.
923  */
924 int
925 vm_map_insert(vm_map_t map, int *countp,
926               vm_object_t object, vm_ooffset_t offset,
927               vm_offset_t start, vm_offset_t end,
928               vm_maptype_t maptype,
929               vm_prot_t prot, vm_prot_t max,
930               int cow)
931 {
932         vm_map_entry_t new_entry;
933         vm_map_entry_t prev_entry;
934         vm_map_entry_t temp_entry;
935         vm_eflags_t protoeflags;
936         int must_drop = 0;
937
938         ASSERT_VM_MAP_LOCKED(map);
939         if (object)
940                 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
941
942         /*
943          * Check that the start and end points are not bogus.
944          */
945         if ((start < map->min_offset) || (end > map->max_offset) ||
946             (start >= end))
947                 return (KERN_INVALID_ADDRESS);
948
949         /*
950          * Find the entry prior to the proposed starting address; if it's part
951          * of an existing entry, this range is bogus.
952          */
953         if (vm_map_lookup_entry(map, start, &temp_entry))
954                 return (KERN_NO_SPACE);
955
956         prev_entry = temp_entry;
957
958         /*
959          * Assert that the next entry doesn't overlap the end point.
960          */
961
962         if ((prev_entry->next != &map->header) &&
963             (prev_entry->next->start < end))
964                 return (KERN_NO_SPACE);
965
966         protoeflags = 0;
967
968         if (cow & MAP_COPY_ON_WRITE)
969                 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
970
971         if (cow & MAP_NOFAULT) {
972                 protoeflags |= MAP_ENTRY_NOFAULT;
973
974                 KASSERT(object == NULL,
975                         ("vm_map_insert: paradoxical MAP_NOFAULT request"));
976         }
977         if (cow & MAP_DISABLE_SYNCER)
978                 protoeflags |= MAP_ENTRY_NOSYNC;
979         if (cow & MAP_DISABLE_COREDUMP)
980                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
981         if (cow & MAP_IS_STACK)
982                 protoeflags |= MAP_ENTRY_STACK;
983         if (cow & MAP_IS_KSTACK)
984                 protoeflags |= MAP_ENTRY_KSTACK;
985
986         lwkt_gettoken(&map->token);
987
988         if (object) {
989                 /*
990                  * When object is non-NULL, it could be shared with another
991                  * process.  We have to set or clear OBJ_ONEMAPPING 
992                  * appropriately.
993                  *
994                  * NOTE: This flag is only applicable to DEFAULT and SWAP
995                  *       objects and will already be clear in other types
996                  *       of objects, so a shared object lock is ok for
997                  *       VNODE objects.
998                  */
999                 if ((object->ref_count > 1) || (object->shadow_count != 0)) {
1000                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
1001                 }
1002         }
1003         else if ((prev_entry != &map->header) &&
1004                  (prev_entry->eflags == protoeflags) &&
1005                  (prev_entry->end == start) &&
1006                  (prev_entry->wired_count == 0) &&
1007                  prev_entry->maptype == maptype &&
1008                  ((prev_entry->object.vm_object == NULL) ||
1009                   vm_object_coalesce(prev_entry->object.vm_object,
1010                                      OFF_TO_IDX(prev_entry->offset),
1011                                      (vm_size_t)(prev_entry->end - prev_entry->start),
1012                                      (vm_size_t)(end - prev_entry->end)))) {
1013                 /*
1014                  * We were able to extend the object.  Determine if we
1015                  * can extend the previous map entry to include the 
1016                  * new range as well.
1017                  */
1018                 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
1019                     (prev_entry->protection == prot) &&
1020                     (prev_entry->max_protection == max)) {
1021                         map->size += (end - prev_entry->end);
1022                         prev_entry->end = end;
1023                         vm_map_simplify_entry(map, prev_entry, countp);
1024                         lwkt_reltoken(&map->token);
1025                         return (KERN_SUCCESS);
1026                 }
1027
1028                 /*
1029                  * If we can extend the object but cannot extend the
1030                  * map entry, we have to create a new map entry.  We
1031                  * must bump the ref count on the extended object to
1032                  * account for it.  object may be NULL.
1033                  */
1034                 object = prev_entry->object.vm_object;
1035                 offset = prev_entry->offset +
1036                         (prev_entry->end - prev_entry->start);
1037                 if (object) {
1038                         vm_object_hold(object);
1039                         vm_object_chain_wait(object);
1040                         vm_object_reference_locked(object);
1041                         must_drop = 1;
1042                 }
1043         }
1044
1045         /*
1046          * NOTE: if conditionals fail, object can be NULL here.  This occurs
1047          * in things like the buffer map where we manage kva but do not manage
1048          * backing objects.
1049          */
1050
1051         /*
1052          * Create a new entry
1053          */
1054
1055         new_entry = vm_map_entry_create(map, countp);
1056         new_entry->start = start;
1057         new_entry->end = end;
1058
1059         new_entry->maptype = maptype;
1060         new_entry->eflags = protoeflags;
1061         new_entry->object.vm_object = object;
1062         new_entry->offset = offset;
1063         new_entry->aux.master_pde = 0;
1064
1065         new_entry->inheritance = VM_INHERIT_DEFAULT;
1066         new_entry->protection = prot;
1067         new_entry->max_protection = max;
1068         new_entry->wired_count = 0;
1069
1070         /*
1071          * Insert the new entry into the list
1072          */
1073
1074         vm_map_entry_link(map, prev_entry, new_entry);
1075         map->size += new_entry->end - new_entry->start;
1076
1077         /*
1078          * Update the free space hint.  Entries cannot overlap.
1079          * An exact comparison is needed to avoid matching
1080          * against the map->header.
1081          */
1082         if ((map->first_free == prev_entry) &&
1083             (prev_entry->end == new_entry->start)) {
1084                 map->first_free = new_entry;
1085         }
1086
1087 #if 0
1088         /*
1089          * Temporarily removed to avoid MAP_STACK panic, due to
1090          * MAP_STACK being a huge hack.  Will be added back in
1091          * when MAP_STACK (and the user stack mapping) is fixed.
1092          */
1093         /*
1094          * It may be possible to simplify the entry
1095          */
1096         vm_map_simplify_entry(map, new_entry, countp);
1097 #endif
1098
1099         /*
1100          * Try to pre-populate the page table.  Mappings governed by virtual
1101          * page tables cannot be prepopulated without a lot of work, so
1102          * don't try.
1103          */
1104         if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
1105             maptype != VM_MAPTYPE_VPAGETABLE) {
1106                 int dorelock = 0;
1107                 if (vm_map_relock_enable && (cow & MAP_PREFAULT_RELOCK)) {
1108                         dorelock = 1;
1109                         vm_object_lock_swap();
1110                         vm_object_drop(object);
1111                 }
1112                 pmap_object_init_pt(map->pmap, start, prot,
1113                                     object, OFF_TO_IDX(offset), end - start,
1114                                     cow & MAP_PREFAULT_PARTIAL);
1115                 if (dorelock) {
1116                         vm_object_hold(object);
1117                         vm_object_lock_swap();
1118                 }
1119         }
1120         if (must_drop)
1121                 vm_object_drop(object);
1122
1123         lwkt_reltoken(&map->token);
1124         return (KERN_SUCCESS);
1125 }
1126
1127 /*
1128  * Find sufficient space for `length' bytes in the given map, starting at
1129  * `start'.  Returns 0 on success, 1 on no space.
1130  *
1131  * This function will returned an arbitrarily aligned pointer.  If no
1132  * particular alignment is required you should pass align as 1.  Note that
1133  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
1134  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
1135  * argument.
1136  *
1137  * 'align' should be a power of 2 but is not required to be.
1138  *
1139  * The map must be exclusively locked.
1140  * No other requirements.
1141  */
1142 int
1143 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1144                  vm_size_t align, int flags, vm_offset_t *addr)
1145 {
1146         vm_map_entry_t entry, next;
1147         vm_offset_t end;
1148         vm_offset_t align_mask;
1149
1150         if (start < map->min_offset)
1151                 start = map->min_offset;
1152         if (start > map->max_offset)
1153                 return (1);
1154
1155         /*
1156          * If the alignment is not a power of 2 we will have to use
1157          * a mod/division, set align_mask to a special value.
1158          */
1159         if ((align | (align - 1)) + 1 != (align << 1))
1160                 align_mask = (vm_offset_t)-1;
1161         else
1162                 align_mask = align - 1;
1163
1164         /*
1165          * Look for the first possible address; if there's already something
1166          * at this address, we have to start after it.
1167          */
1168         if (start == map->min_offset) {
1169                 if ((entry = map->first_free) != &map->header)
1170                         start = entry->end;
1171         } else {
1172                 vm_map_entry_t tmp;
1173
1174                 if (vm_map_lookup_entry(map, start, &tmp))
1175                         start = tmp->end;
1176                 entry = tmp;
1177         }
1178
1179         /*
1180          * Look through the rest of the map, trying to fit a new region in the
1181          * gap between existing regions, or after the very last region.
1182          */
1183         for (;; start = (entry = next)->end) {
1184                 /*
1185                  * Adjust the proposed start by the requested alignment,
1186                  * be sure that we didn't wrap the address.
1187                  */
1188                 if (align_mask == (vm_offset_t)-1)
1189                         end = ((start + align - 1) / align) * align;
1190                 else
1191                         end = (start + align_mask) & ~align_mask;
1192                 if (end < start)
1193                         return (1);
1194                 start = end;
1195                 /*
1196                  * Find the end of the proposed new region.  Be sure we didn't
1197                  * go beyond the end of the map, or wrap around the address.
1198                  * Then check to see if this is the last entry or if the 
1199                  * proposed end fits in the gap between this and the next
1200                  * entry.
1201                  */
1202                 end = start + length;
1203                 if (end > map->max_offset || end < start)
1204                         return (1);
1205                 next = entry->next;
1206
1207                 /*
1208                  * If the next entry's start address is beyond the desired
1209                  * end address we may have found a good entry.
1210                  *
1211                  * If the next entry is a stack mapping we do not map into
1212                  * the stack's reserved space.
1213                  *
1214                  * XXX continue to allow mapping into the stack's reserved
1215                  * space if doing a MAP_STACK mapping inside a MAP_STACK
1216                  * mapping, for backwards compatibility.  But the caller
1217                  * really should use MAP_STACK | MAP_TRYFIXED if they
1218                  * want to do that.
1219                  */
1220                 if (next == &map->header)
1221                         break;
1222                 if (next->start >= end) {
1223                         if ((next->eflags & MAP_ENTRY_STACK) == 0)
1224                                 break;
1225                         if (flags & MAP_STACK)
1226                                 break;
1227                         if (next->start - next->aux.avail_ssize >= end)
1228                                 break;
1229                 }
1230         }
1231         map->hint = entry;
1232
1233         /*
1234          * Grow the kernel_map if necessary.  pmap_growkernel() will panic
1235          * if it fails.  The kernel_map is locked and nothing can steal
1236          * our address space if pmap_growkernel() blocks.
1237          *
1238          * NOTE: This may be unconditionally called for kldload areas on
1239          *       x86_64 because these do not bump kernel_vm_end (which would
1240          *       fill 128G worth of page tables!).  Therefore we must not
1241          *       retry.
1242          */
1243         if (map == &kernel_map) {
1244                 vm_offset_t kstop;
1245
1246                 kstop = round_page(start + length);
1247                 if (kstop > kernel_vm_end)
1248                         pmap_growkernel(start, kstop);
1249         }
1250         *addr = start;
1251         return (0);
1252 }
1253
1254 /*
1255  * vm_map_find finds an unallocated region in the target address map with
1256  * the given length and allocates it.  The search is defined to be first-fit
1257  * from the specified address; the region found is returned in the same
1258  * parameter.
1259  *
1260  * If object is non-NULL, ref count must be bumped by caller
1261  * prior to making call to account for the new entry.
1262  *
1263  * No requirements.  This function will lock the map temporarily.
1264  */
1265 int
1266 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1267             vm_offset_t *addr,  vm_size_t length, vm_size_t align,
1268             boolean_t fitit,
1269             vm_maptype_t maptype,
1270             vm_prot_t prot, vm_prot_t max,
1271             int cow)
1272 {
1273         vm_offset_t start;
1274         int result;
1275         int count;
1276
1277         start = *addr;
1278
1279         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1280         vm_map_lock(map);
1281         if (object)
1282                 vm_object_hold(object);
1283         if (fitit) {
1284                 if (vm_map_findspace(map, start, length, align, 0, addr)) {
1285                         if (object)
1286                                 vm_object_drop(object);
1287                         vm_map_unlock(map);
1288                         vm_map_entry_release(count);
1289                         return (KERN_NO_SPACE);
1290                 }
1291                 start = *addr;
1292         }
1293         result = vm_map_insert(map, &count, object, offset,
1294                                start, start + length,
1295                                maptype,
1296                                prot, max,
1297                                cow);
1298         if (object)
1299                 vm_object_drop(object);
1300         vm_map_unlock(map);
1301         vm_map_entry_release(count);
1302
1303         return (result);
1304 }
1305
1306 /*
1307  * Simplify the given map entry by merging with either neighbor.  This
1308  * routine also has the ability to merge with both neighbors.
1309  *
1310  * This routine guarentees that the passed entry remains valid (though
1311  * possibly extended).  When merging, this routine may delete one or
1312  * both neighbors.  No action is taken on entries which have their
1313  * in-transition flag set.
1314  *
1315  * The map must be exclusively locked.
1316  */
1317 void
1318 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1319 {
1320         vm_map_entry_t next, prev;
1321         vm_size_t prevsize, esize;
1322
1323         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1324                 ++mycpu->gd_cnt.v_intrans_coll;
1325                 return;
1326         }
1327
1328         if (entry->maptype == VM_MAPTYPE_SUBMAP)
1329                 return;
1330
1331         prev = entry->prev;
1332         if (prev != &map->header) {
1333                 prevsize = prev->end - prev->start;
1334                 if ( (prev->end == entry->start) &&
1335                      (prev->maptype == entry->maptype) &&
1336                      (prev->object.vm_object == entry->object.vm_object) &&
1337                      (!prev->object.vm_object ||
1338                         (prev->offset + prevsize == entry->offset)) &&
1339                      (prev->eflags == entry->eflags) &&
1340                      (prev->protection == entry->protection) &&
1341                      (prev->max_protection == entry->max_protection) &&
1342                      (prev->inheritance == entry->inheritance) &&
1343                      (prev->wired_count == entry->wired_count)) {
1344                         if (map->first_free == prev)
1345                                 map->first_free = entry;
1346                         if (map->hint == prev)
1347                                 map->hint = entry;
1348                         vm_map_entry_unlink(map, prev);
1349                         entry->start = prev->start;
1350                         entry->offset = prev->offset;
1351                         if (prev->object.vm_object)
1352                                 vm_object_deallocate(prev->object.vm_object);
1353                         vm_map_entry_dispose(map, prev, countp);
1354                 }
1355         }
1356
1357         next = entry->next;
1358         if (next != &map->header) {
1359                 esize = entry->end - entry->start;
1360                 if ((entry->end == next->start) &&
1361                     (next->maptype == entry->maptype) &&
1362                     (next->object.vm_object == entry->object.vm_object) &&
1363                      (!entry->object.vm_object ||
1364                         (entry->offset + esize == next->offset)) &&
1365                     (next->eflags == entry->eflags) &&
1366                     (next->protection == entry->protection) &&
1367                     (next->max_protection == entry->max_protection) &&
1368                     (next->inheritance == entry->inheritance) &&
1369                     (next->wired_count == entry->wired_count)) {
1370                         if (map->first_free == next)
1371                                 map->first_free = entry;
1372                         if (map->hint == next)
1373                                 map->hint = entry;
1374                         vm_map_entry_unlink(map, next);
1375                         entry->end = next->end;
1376                         if (next->object.vm_object)
1377                                 vm_object_deallocate(next->object.vm_object);
1378                         vm_map_entry_dispose(map, next, countp);
1379                 }
1380         }
1381 }
1382
1383 /*
1384  * Asserts that the given entry begins at or after the specified address.
1385  * If necessary, it splits the entry into two.
1386  */
1387 #define vm_map_clip_start(map, entry, startaddr, countp)                \
1388 {                                                                       \
1389         if (startaddr > entry->start)                                   \
1390                 _vm_map_clip_start(map, entry, startaddr, countp);      \
1391 }
1392
1393 /*
1394  * This routine is called only when it is known that the entry must be split.
1395  *
1396  * The map must be exclusively locked.
1397  */
1398 static void
1399 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start,
1400                    int *countp)
1401 {
1402         vm_map_entry_t new_entry;
1403
1404         /*
1405          * Split off the front portion -- note that we must insert the new
1406          * entry BEFORE this one, so that this entry has the specified
1407          * starting address.
1408          */
1409
1410         vm_map_simplify_entry(map, entry, countp);
1411
1412         /*
1413          * If there is no object backing this entry, we might as well create
1414          * one now.  If we defer it, an object can get created after the map
1415          * is clipped, and individual objects will be created for the split-up
1416          * map.  This is a bit of a hack, but is also about the best place to
1417          * put this improvement.
1418          */
1419         if (entry->object.vm_object == NULL && !map->system_map) {
1420                 vm_map_entry_allocate_object(entry);
1421         }
1422
1423         new_entry = vm_map_entry_create(map, countp);
1424         *new_entry = *entry;
1425
1426         new_entry->end = start;
1427         entry->offset += (start - entry->start);
1428         entry->start = start;
1429
1430         vm_map_entry_link(map, entry->prev, new_entry);
1431
1432         switch(entry->maptype) {
1433         case VM_MAPTYPE_NORMAL:
1434         case VM_MAPTYPE_VPAGETABLE:
1435                 if (new_entry->object.vm_object) {
1436                         vm_object_hold(new_entry->object.vm_object);
1437                         vm_object_chain_wait(new_entry->object.vm_object);
1438                         vm_object_reference_locked(new_entry->object.vm_object);
1439                         vm_object_drop(new_entry->object.vm_object);
1440                 }
1441                 break;
1442         default:
1443                 break;
1444         }
1445 }
1446
1447 /*
1448  * Asserts that the given entry ends at or before the specified address.
1449  * If necessary, it splits the entry into two.
1450  *
1451  * The map must be exclusively locked.
1452  */
1453 #define vm_map_clip_end(map, entry, endaddr, countp)            \
1454 {                                                               \
1455         if (endaddr < entry->end)                               \
1456                 _vm_map_clip_end(map, entry, endaddr, countp);  \
1457 }
1458
1459 /*
1460  * This routine is called only when it is known that the entry must be split.
1461  *
1462  * The map must be exclusively locked.
1463  */
1464 static void
1465 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end,
1466                  int *countp)
1467 {
1468         vm_map_entry_t new_entry;
1469
1470         /*
1471          * If there is no object backing this entry, we might as well create
1472          * one now.  If we defer it, an object can get created after the map
1473          * is clipped, and individual objects will be created for the split-up
1474          * map.  This is a bit of a hack, but is also about the best place to
1475          * put this improvement.
1476          */
1477
1478         if (entry->object.vm_object == NULL && !map->system_map) {
1479                 vm_map_entry_allocate_object(entry);
1480         }
1481
1482         /*
1483          * Create a new entry and insert it AFTER the specified entry
1484          */
1485
1486         new_entry = vm_map_entry_create(map, countp);
1487         *new_entry = *entry;
1488
1489         new_entry->start = entry->end = end;
1490         new_entry->offset += (end - entry->start);
1491
1492         vm_map_entry_link(map, entry, new_entry);
1493
1494         switch(entry->maptype) {
1495         case VM_MAPTYPE_NORMAL:
1496         case VM_MAPTYPE_VPAGETABLE:
1497                 if (new_entry->object.vm_object) {
1498                         vm_object_hold(new_entry->object.vm_object);
1499                         vm_object_chain_wait(new_entry->object.vm_object);
1500                         vm_object_reference_locked(new_entry->object.vm_object);
1501                         vm_object_drop(new_entry->object.vm_object);
1502                 }
1503                 break;
1504         default:
1505                 break;
1506         }
1507 }
1508
1509 /*
1510  * Asserts that the starting and ending region addresses fall within the
1511  * valid range for the map.
1512  */
1513 #define VM_MAP_RANGE_CHECK(map, start, end)     \
1514 {                                               \
1515         if (start < vm_map_min(map))            \
1516                 start = vm_map_min(map);        \
1517         if (end > vm_map_max(map))              \
1518                 end = vm_map_max(map);          \
1519         if (start > end)                        \
1520                 start = end;                    \
1521 }
1522
1523 /*
1524  * Used to block when an in-transition collison occurs.  The map
1525  * is unlocked for the sleep and relocked before the return.
1526  */
1527 void
1528 vm_map_transition_wait(vm_map_t map)
1529 {
1530         tsleep_interlock(map, 0);
1531         vm_map_unlock(map);
1532         tsleep(map, PINTERLOCKED, "vment", 0);
1533         vm_map_lock(map);
1534 }
1535
1536 /*
1537  * When we do blocking operations with the map lock held it is
1538  * possible that a clip might have occured on our in-transit entry,
1539  * requiring an adjustment to the entry in our loop.  These macros
1540  * help the pageable and clip_range code deal with the case.  The
1541  * conditional costs virtually nothing if no clipping has occured.
1542  */
1543
1544 #define CLIP_CHECK_BACK(entry, save_start)              \
1545     do {                                                \
1546             while (entry->start != save_start) {        \
1547                     entry = entry->prev;                \
1548                     KASSERT(entry != &map->header, ("bad entry clip")); \
1549             }                                           \
1550     } while(0)
1551
1552 #define CLIP_CHECK_FWD(entry, save_end)                 \
1553     do {                                                \
1554             while (entry->end != save_end) {            \
1555                     entry = entry->next;                \
1556                     KASSERT(entry != &map->header, ("bad entry clip")); \
1557             }                                           \
1558     } while(0)
1559
1560
1561 /*
1562  * Clip the specified range and return the base entry.  The
1563  * range may cover several entries starting at the returned base
1564  * and the first and last entry in the covering sequence will be
1565  * properly clipped to the requested start and end address.
1566  *
1567  * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1568  * flag.
1569  *
1570  * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1571  * covered by the requested range.
1572  *
1573  * The map must be exclusively locked on entry and will remain locked
1574  * on return. If no range exists or the range contains holes and you
1575  * specified that no holes were allowed, NULL will be returned.  This
1576  * routine may temporarily unlock the map in order avoid a deadlock when
1577  * sleeping.
1578  */
1579 static
1580 vm_map_entry_t
1581 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end, 
1582                   int *countp, int flags)
1583 {
1584         vm_map_entry_t start_entry;
1585         vm_map_entry_t entry;
1586
1587         /*
1588          * Locate the entry and effect initial clipping.  The in-transition
1589          * case does not occur very often so do not try to optimize it.
1590          */
1591 again:
1592         if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1593                 return (NULL);
1594         entry = start_entry;
1595         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1596                 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1597                 ++mycpu->gd_cnt.v_intrans_coll;
1598                 ++mycpu->gd_cnt.v_intrans_wait;
1599                 vm_map_transition_wait(map);
1600                 /*
1601                  * entry and/or start_entry may have been clipped while
1602                  * we slept, or may have gone away entirely.  We have
1603                  * to restart from the lookup.
1604                  */
1605                 goto again;
1606         }
1607
1608         /*
1609          * Since we hold an exclusive map lock we do not have to restart
1610          * after clipping, even though clipping may block in zalloc.
1611          */
1612         vm_map_clip_start(map, entry, start, countp);
1613         vm_map_clip_end(map, entry, end, countp);
1614         entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1615
1616         /*
1617          * Scan entries covered by the range.  When working on the next
1618          * entry a restart need only re-loop on the current entry which
1619          * we have already locked, since 'next' may have changed.  Also,
1620          * even though entry is safe, it may have been clipped so we
1621          * have to iterate forwards through the clip after sleeping.
1622          */
1623         while (entry->next != &map->header && entry->next->start < end) {
1624                 vm_map_entry_t next = entry->next;
1625
1626                 if (flags & MAP_CLIP_NO_HOLES) {
1627                         if (next->start > entry->end) {
1628                                 vm_map_unclip_range(map, start_entry,
1629                                         start, entry->end, countp, flags);
1630                                 return(NULL);
1631                         }
1632                 }
1633
1634                 if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1635                         vm_offset_t save_end = entry->end;
1636                         next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1637                         ++mycpu->gd_cnt.v_intrans_coll;
1638                         ++mycpu->gd_cnt.v_intrans_wait;
1639                         vm_map_transition_wait(map);
1640
1641                         /*
1642                          * clips might have occured while we blocked.
1643                          */
1644                         CLIP_CHECK_FWD(entry, save_end);
1645                         CLIP_CHECK_BACK(start_entry, start);
1646                         continue;
1647                 }
1648                 /*
1649                  * No restart necessary even though clip_end may block, we
1650                  * are holding the map lock.
1651                  */
1652                 vm_map_clip_end(map, next, end, countp);
1653                 next->eflags |= MAP_ENTRY_IN_TRANSITION;
1654                 entry = next;
1655         }
1656         if (flags & MAP_CLIP_NO_HOLES) {
1657                 if (entry->end != end) {
1658                         vm_map_unclip_range(map, start_entry,
1659                                 start, entry->end, countp, flags);
1660                         return(NULL);
1661                 }
1662         }
1663         return(start_entry);
1664 }
1665
1666 /*
1667  * Undo the effect of vm_map_clip_range().  You should pass the same
1668  * flags and the same range that you passed to vm_map_clip_range().
1669  * This code will clear the in-transition flag on the entries and
1670  * wake up anyone waiting.  This code will also simplify the sequence
1671  * and attempt to merge it with entries before and after the sequence.
1672  *
1673  * The map must be locked on entry and will remain locked on return.
1674  *
1675  * Note that you should also pass the start_entry returned by
1676  * vm_map_clip_range().  However, if you block between the two calls
1677  * with the map unlocked please be aware that the start_entry may
1678  * have been clipped and you may need to scan it backwards to find
1679  * the entry corresponding with the original start address.  You are
1680  * responsible for this, vm_map_unclip_range() expects the correct
1681  * start_entry to be passed to it and will KASSERT otherwise.
1682  */
1683 static
1684 void
1685 vm_map_unclip_range(vm_map_t map, vm_map_entry_t start_entry,
1686                     vm_offset_t start, vm_offset_t end,
1687                     int *countp, int flags)
1688 {
1689         vm_map_entry_t entry;
1690
1691         entry = start_entry;
1692
1693         KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1694         while (entry != &map->header && entry->start < end) {
1695                 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1696                         ("in-transition flag not set during unclip on: %p",
1697                         entry));
1698                 KASSERT(entry->end <= end,
1699                         ("unclip_range: tail wasn't clipped"));
1700                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1701                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1702                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1703                         wakeup(map);
1704                 }
1705                 entry = entry->next;
1706         }
1707
1708         /*
1709          * Simplification does not block so there is no restart case.
1710          */
1711         entry = start_entry;
1712         while (entry != &map->header && entry->start < end) {
1713                 vm_map_simplify_entry(map, entry, countp);
1714                 entry = entry->next;
1715         }
1716 }
1717
1718 /*
1719  * Mark the given range as handled by a subordinate map.
1720  *
1721  * This range must have been created with vm_map_find(), and no other
1722  * operations may have been performed on this range prior to calling
1723  * vm_map_submap().
1724  *
1725  * Submappings cannot be removed.
1726  *
1727  * No requirements.
1728  */
1729 int
1730 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1731 {
1732         vm_map_entry_t entry;
1733         int result = KERN_INVALID_ARGUMENT;
1734         int count;
1735
1736         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1737         vm_map_lock(map);
1738
1739         VM_MAP_RANGE_CHECK(map, start, end);
1740
1741         if (vm_map_lookup_entry(map, start, &entry)) {
1742                 vm_map_clip_start(map, entry, start, &count);
1743         } else {
1744                 entry = entry->next;
1745         }
1746
1747         vm_map_clip_end(map, entry, end, &count);
1748
1749         if ((entry->start == start) && (entry->end == end) &&
1750             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1751             (entry->object.vm_object == NULL)) {
1752                 entry->object.sub_map = submap;
1753                 entry->maptype = VM_MAPTYPE_SUBMAP;
1754                 result = KERN_SUCCESS;
1755         }
1756         vm_map_unlock(map);
1757         vm_map_entry_release(count);
1758
1759         return (result);
1760 }
1761
1762 /*
1763  * Sets the protection of the specified address region in the target map. 
1764  * If "set_max" is specified, the maximum protection is to be set;
1765  * otherwise, only the current protection is affected.
1766  *
1767  * The protection is not applicable to submaps, but is applicable to normal
1768  * maps and maps governed by virtual page tables.  For example, when operating
1769  * on a virtual page table our protection basically controls how COW occurs
1770  * on the backing object, whereas the virtual page table abstraction itself
1771  * is an abstraction for userland.
1772  *
1773  * No requirements.
1774  */
1775 int
1776 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1777                vm_prot_t new_prot, boolean_t set_max)
1778 {
1779         vm_map_entry_t current;
1780         vm_map_entry_t entry;
1781         int count;
1782
1783         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1784         vm_map_lock(map);
1785
1786         VM_MAP_RANGE_CHECK(map, start, end);
1787
1788         if (vm_map_lookup_entry(map, start, &entry)) {
1789                 vm_map_clip_start(map, entry, start, &count);
1790         } else {
1791                 entry = entry->next;
1792         }
1793
1794         /*
1795          * Make a first pass to check for protection violations.
1796          */
1797         current = entry;
1798         while ((current != &map->header) && (current->start < end)) {
1799                 if (current->maptype == VM_MAPTYPE_SUBMAP) {
1800                         vm_map_unlock(map);
1801                         vm_map_entry_release(count);
1802                         return (KERN_INVALID_ARGUMENT);
1803                 }
1804                 if ((new_prot & current->max_protection) != new_prot) {
1805                         vm_map_unlock(map);
1806                         vm_map_entry_release(count);
1807                         return (KERN_PROTECTION_FAILURE);
1808                 }
1809                 current = current->next;
1810         }
1811
1812         /*
1813          * Go back and fix up protections. [Note that clipping is not
1814          * necessary the second time.]
1815          */
1816         current = entry;
1817
1818         while ((current != &map->header) && (current->start < end)) {
1819                 vm_prot_t old_prot;
1820
1821                 vm_map_clip_end(map, current, end, &count);
1822
1823                 old_prot = current->protection;
1824                 if (set_max) {
1825                         current->protection =
1826                             (current->max_protection = new_prot) &
1827                             old_prot;
1828                 } else {
1829                         current->protection = new_prot;
1830                 }
1831
1832                 /*
1833                  * Update physical map if necessary. Worry about copy-on-write
1834                  * here -- CHECK THIS XXX
1835                  */
1836
1837                 if (current->protection != old_prot) {
1838 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1839                                                         VM_PROT_ALL)
1840
1841                         pmap_protect(map->pmap, current->start,
1842                             current->end,
1843                             current->protection & MASK(current));
1844 #undef  MASK
1845                 }
1846
1847                 vm_map_simplify_entry(map, current, &count);
1848
1849                 current = current->next;
1850         }
1851
1852         vm_map_unlock(map);
1853         vm_map_entry_release(count);
1854         return (KERN_SUCCESS);
1855 }
1856
1857 /*
1858  * This routine traverses a processes map handling the madvise
1859  * system call.  Advisories are classified as either those effecting
1860  * the vm_map_entry structure, or those effecting the underlying
1861  * objects.
1862  *
1863  * The <value> argument is used for extended madvise calls.
1864  *
1865  * No requirements.
1866  */
1867 int
1868 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
1869                int behav, off_t value)
1870 {
1871         vm_map_entry_t current, entry;
1872         int modify_map = 0;
1873         int error = 0;
1874         int count;
1875
1876         /*
1877          * Some madvise calls directly modify the vm_map_entry, in which case
1878          * we need to use an exclusive lock on the map and we need to perform 
1879          * various clipping operations.  Otherwise we only need a read-lock
1880          * on the map.
1881          */
1882
1883         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1884
1885         switch(behav) {
1886         case MADV_NORMAL:
1887         case MADV_SEQUENTIAL:
1888         case MADV_RANDOM:
1889         case MADV_NOSYNC:
1890         case MADV_AUTOSYNC:
1891         case MADV_NOCORE:
1892         case MADV_CORE:
1893         case MADV_SETMAP:
1894         case MADV_INVAL:
1895                 modify_map = 1;
1896                 vm_map_lock(map);
1897                 break;
1898         case MADV_WILLNEED:
1899         case MADV_DONTNEED:
1900         case MADV_FREE:
1901                 vm_map_lock_read(map);
1902                 break;
1903         default:
1904                 vm_map_entry_release(count);
1905                 return (EINVAL);
1906         }
1907
1908         /*
1909          * Locate starting entry and clip if necessary.
1910          */
1911
1912         VM_MAP_RANGE_CHECK(map, start, end);
1913
1914         if (vm_map_lookup_entry(map, start, &entry)) {
1915                 if (modify_map)
1916                         vm_map_clip_start(map, entry, start, &count);
1917         } else {
1918                 entry = entry->next;
1919         }
1920
1921         if (modify_map) {
1922                 /*
1923                  * madvise behaviors that are implemented in the vm_map_entry.
1924                  *
1925                  * We clip the vm_map_entry so that behavioral changes are
1926                  * limited to the specified address range.
1927                  */
1928                 for (current = entry;
1929                      (current != &map->header) && (current->start < end);
1930                      current = current->next
1931                 ) {
1932                         if (current->maptype == VM_MAPTYPE_SUBMAP)
1933                                 continue;
1934
1935                         vm_map_clip_end(map, current, end, &count);
1936
1937                         switch (behav) {
1938                         case MADV_NORMAL:
1939                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1940                                 break;
1941                         case MADV_SEQUENTIAL:
1942                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1943                                 break;
1944                         case MADV_RANDOM:
1945                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1946                                 break;
1947                         case MADV_NOSYNC:
1948                                 current->eflags |= MAP_ENTRY_NOSYNC;
1949                                 break;
1950                         case MADV_AUTOSYNC:
1951                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
1952                                 break;
1953                         case MADV_NOCORE:
1954                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
1955                                 break;
1956                         case MADV_CORE:
1957                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1958                                 break;
1959                         case MADV_INVAL:
1960                                 /*
1961                                  * Invalidate the related pmap entries, used
1962                                  * to flush portions of the real kernel's
1963                                  * pmap when the caller has removed or
1964                                  * modified existing mappings in a virtual
1965                                  * page table.
1966                                  */
1967                                 pmap_remove(map->pmap,
1968                                             current->start, current->end);
1969                                 break;
1970                         case MADV_SETMAP:
1971                                 /*
1972                                  * Set the page directory page for a map
1973                                  * governed by a virtual page table.  Mark
1974                                  * the entry as being governed by a virtual
1975                                  * page table if it is not.
1976                                  *
1977                                  * XXX the page directory page is stored
1978                                  * in the avail_ssize field if the map_entry.
1979                                  *
1980                                  * XXX the map simplification code does not
1981                                  * compare this field so weird things may
1982                                  * happen if you do not apply this function
1983                                  * to the entire mapping governed by the
1984                                  * virtual page table.
1985                                  */
1986                                 if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
1987                                         error = EINVAL;
1988                                         break;
1989                                 }
1990                                 current->aux.master_pde = value;
1991                                 pmap_remove(map->pmap,
1992                                             current->start, current->end);
1993                                 break;
1994                         default:
1995                                 error = EINVAL;
1996                                 break;
1997                         }
1998                         vm_map_simplify_entry(map, current, &count);
1999                 }
2000                 vm_map_unlock(map);
2001         } else {
2002                 vm_pindex_t pindex;
2003                 int count;
2004
2005                 /*
2006                  * madvise behaviors that are implemented in the underlying
2007                  * vm_object.
2008                  *
2009                  * Since we don't clip the vm_map_entry, we have to clip
2010                  * the vm_object pindex and count.
2011                  *
2012                  * NOTE!  We currently do not support these functions on
2013                  * virtual page tables.
2014                  */
2015                 for (current = entry;
2016                      (current != &map->header) && (current->start < end);
2017                      current = current->next
2018                 ) {
2019                         vm_offset_t useStart;
2020
2021                         if (current->maptype != VM_MAPTYPE_NORMAL)
2022                                 continue;
2023
2024                         pindex = OFF_TO_IDX(current->offset);
2025                         count = atop(current->end - current->start);
2026                         useStart = current->start;
2027
2028                         if (current->start < start) {
2029                                 pindex += atop(start - current->start);
2030                                 count -= atop(start - current->start);
2031                                 useStart = start;
2032                         }
2033                         if (current->end > end)
2034                                 count -= atop(current->end - end);
2035
2036                         if (count <= 0)
2037                                 continue;
2038
2039                         vm_object_madvise(current->object.vm_object,
2040                                           pindex, count, behav);
2041
2042                         /*
2043                          * Try to populate the page table.  Mappings governed
2044                          * by virtual page tables cannot be pre-populated
2045                          * without a lot of work so don't try.
2046                          */
2047                         if (behav == MADV_WILLNEED &&
2048                             current->maptype != VM_MAPTYPE_VPAGETABLE) {
2049                                 pmap_object_init_pt(
2050                                     map->pmap, 
2051                                     useStart,
2052                                     current->protection,
2053                                     current->object.vm_object,
2054                                     pindex, 
2055                                     (count << PAGE_SHIFT),
2056                                     MAP_PREFAULT_MADVISE
2057                                 );
2058                         }
2059                 }
2060                 vm_map_unlock_read(map);
2061         }
2062         vm_map_entry_release(count);
2063         return(error);
2064 }       
2065
2066
2067 /*
2068  * Sets the inheritance of the specified address range in the target map.
2069  * Inheritance affects how the map will be shared with child maps at the
2070  * time of vm_map_fork.
2071  */
2072 int
2073 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2074                vm_inherit_t new_inheritance)
2075 {
2076         vm_map_entry_t entry;
2077         vm_map_entry_t temp_entry;
2078         int count;
2079
2080         switch (new_inheritance) {
2081         case VM_INHERIT_NONE:
2082         case VM_INHERIT_COPY:
2083         case VM_INHERIT_SHARE:
2084                 break;
2085         default:
2086                 return (KERN_INVALID_ARGUMENT);
2087         }
2088
2089         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2090         vm_map_lock(map);
2091
2092         VM_MAP_RANGE_CHECK(map, start, end);
2093
2094         if (vm_map_lookup_entry(map, start, &temp_entry)) {
2095                 entry = temp_entry;
2096                 vm_map_clip_start(map, entry, start, &count);
2097         } else
2098                 entry = temp_entry->next;
2099
2100         while ((entry != &map->header) && (entry->start < end)) {
2101                 vm_map_clip_end(map, entry, end, &count);
2102
2103                 entry->inheritance = new_inheritance;
2104
2105                 vm_map_simplify_entry(map, entry, &count);
2106
2107                 entry = entry->next;
2108         }
2109         vm_map_unlock(map);
2110         vm_map_entry_release(count);
2111         return (KERN_SUCCESS);
2112 }
2113
2114 /*
2115  * Implement the semantics of mlock
2116  */
2117 int
2118 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
2119               boolean_t new_pageable)
2120 {
2121         vm_map_entry_t entry;
2122         vm_map_entry_t start_entry;
2123         vm_offset_t end;
2124         int rv = KERN_SUCCESS;
2125         int count;
2126
2127         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2128         vm_map_lock(map);
2129         VM_MAP_RANGE_CHECK(map, start, real_end);
2130         end = real_end;
2131
2132         start_entry = vm_map_clip_range(map, start, end, &count,
2133                                         MAP_CLIP_NO_HOLES);
2134         if (start_entry == NULL) {
2135                 vm_map_unlock(map);
2136                 vm_map_entry_release(count);
2137                 return (KERN_INVALID_ADDRESS);
2138         }
2139
2140         if (new_pageable == 0) {
2141                 entry = start_entry;
2142                 while ((entry != &map->header) && (entry->start < end)) {
2143                         vm_offset_t save_start;
2144                         vm_offset_t save_end;
2145
2146                         /*
2147                          * Already user wired or hard wired (trivial cases)
2148                          */
2149                         if (entry->eflags & MAP_ENTRY_USER_WIRED) {
2150                                 entry = entry->next;
2151                                 continue;
2152                         }
2153                         if (entry->wired_count != 0) {
2154                                 entry->wired_count++;
2155                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
2156                                 entry = entry->next;
2157                                 continue;
2158                         }
2159
2160                         /*
2161                          * A new wiring requires instantiation of appropriate
2162                          * management structures and the faulting in of the
2163                          * page.
2164                          */
2165                         if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2166                                 int copyflag = entry->eflags &
2167                                                MAP_ENTRY_NEEDS_COPY;
2168                                 if (copyflag && ((entry->protection &
2169                                                   VM_PROT_WRITE) != 0)) {
2170                                         vm_map_entry_shadow(entry, 0);
2171                                 } else if (entry->object.vm_object == NULL &&
2172                                            !map->system_map) {
2173                                         vm_map_entry_allocate_object(entry);
2174                                 }
2175                         }
2176                         entry->wired_count++;
2177                         entry->eflags |= MAP_ENTRY_USER_WIRED;
2178
2179                         /*
2180                          * Now fault in the area.  Note that vm_fault_wire()
2181                          * may release the map lock temporarily, it will be
2182                          * relocked on return.  The in-transition
2183                          * flag protects the entries. 
2184                          */
2185                         save_start = entry->start;
2186                         save_end = entry->end;
2187                         rv = vm_fault_wire(map, entry, TRUE);
2188                         if (rv) {
2189                                 CLIP_CHECK_BACK(entry, save_start);
2190                                 for (;;) {
2191                                         KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
2192                                         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2193                                         entry->wired_count = 0;
2194                                         if (entry->end == save_end)
2195                                                 break;
2196                                         entry = entry->next;
2197                                         KASSERT(entry != &map->header, ("bad entry clip during backout"));
2198                                 }
2199                                 end = save_start;       /* unwire the rest */
2200                                 break;
2201                         }
2202                         /*
2203                          * note that even though the entry might have been
2204                          * clipped, the USER_WIRED flag we set prevents
2205                          * duplication so we do not have to do a 
2206                          * clip check.
2207                          */
2208                         entry = entry->next;
2209                 }
2210
2211                 /*
2212                  * If we failed fall through to the unwiring section to
2213                  * unwire what we had wired so far.  'end' has already
2214                  * been adjusted.
2215                  */
2216                 if (rv)
2217                         new_pageable = 1;
2218
2219                 /*
2220                  * start_entry might have been clipped if we unlocked the
2221                  * map and blocked.  No matter how clipped it has gotten
2222                  * there should be a fragment that is on our start boundary.
2223                  */
2224                 CLIP_CHECK_BACK(start_entry, start);
2225         }
2226
2227         /*
2228          * Deal with the unwiring case.
2229          */
2230         if (new_pageable) {
2231                 /*
2232                  * This is the unwiring case.  We must first ensure that the
2233                  * range to be unwired is really wired down.  We know there
2234                  * are no holes.
2235                  */
2236                 entry = start_entry;
2237                 while ((entry != &map->header) && (entry->start < end)) {
2238                         if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2239                                 rv = KERN_INVALID_ARGUMENT;
2240                                 goto done;
2241                         }
2242                         KASSERT(entry->wired_count != 0, ("wired count was 0 with USER_WIRED set! %p", entry));
2243                         entry = entry->next;
2244                 }
2245
2246                 /*
2247                  * Now decrement the wiring count for each region. If a region
2248                  * becomes completely unwired, unwire its physical pages and
2249                  * mappings.
2250                  */
2251                 /*
2252                  * The map entries are processed in a loop, checking to
2253                  * make sure the entry is wired and asserting it has a wired
2254                  * count. However, another loop was inserted more-or-less in
2255                  * the middle of the unwiring path. This loop picks up the
2256                  * "entry" loop variable from the first loop without first
2257                  * setting it to start_entry. Naturally, the secound loop
2258                  * is never entered and the pages backing the entries are
2259                  * never unwired. This can lead to a leak of wired pages.
2260                  */
2261                 entry = start_entry;
2262                 while ((entry != &map->header) && (entry->start < end)) {
2263                         KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2264                                 ("expected USER_WIRED on entry %p", entry));
2265                         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2266                         entry->wired_count--;
2267                         if (entry->wired_count == 0)
2268                                 vm_fault_unwire(map, entry);
2269                         entry = entry->next;
2270                 }
2271         }
2272 done:
2273         vm_map_unclip_range(map, start_entry, start, real_end, &count,
2274                 MAP_CLIP_NO_HOLES);
2275         map->timestamp++;
2276         vm_map_unlock(map);
2277         vm_map_entry_release(count);
2278         return (rv);
2279 }
2280
2281 /*
2282  * Sets the pageability of the specified address range in the target map.
2283  * Regions specified as not pageable require locked-down physical
2284  * memory and physical page maps.
2285  *
2286  * The map must not be locked, but a reference must remain to the map
2287  * throughout the call.
2288  *
2289  * This function may be called via the zalloc path and must properly
2290  * reserve map entries for kernel_map.
2291  *
2292  * No requirements.
2293  */
2294 int
2295 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2296 {
2297         vm_map_entry_t entry;
2298         vm_map_entry_t start_entry;
2299         vm_offset_t end;
2300         int rv = KERN_SUCCESS;
2301         int count;
2302
2303         if (kmflags & KM_KRESERVE)
2304                 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2305         else
2306                 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2307         vm_map_lock(map);
2308         VM_MAP_RANGE_CHECK(map, start, real_end);
2309         end = real_end;
2310
2311         start_entry = vm_map_clip_range(map, start, end, &count,
2312                                         MAP_CLIP_NO_HOLES);
2313         if (start_entry == NULL) {
2314                 vm_map_unlock(map);
2315                 rv = KERN_INVALID_ADDRESS;
2316                 goto failure;
2317         }
2318         if ((kmflags & KM_PAGEABLE) == 0) {
2319                 /*
2320                  * Wiring.  
2321                  *
2322                  * 1.  Holding the write lock, we create any shadow or zero-fill
2323                  * objects that need to be created. Then we clip each map
2324                  * entry to the region to be wired and increment its wiring
2325                  * count.  We create objects before clipping the map entries
2326                  * to avoid object proliferation.
2327                  *
2328                  * 2.  We downgrade to a read lock, and call vm_fault_wire to
2329                  * fault in the pages for any newly wired area (wired_count is
2330                  * 1).
2331                  *
2332                  * Downgrading to a read lock for vm_fault_wire avoids a 
2333                  * possible deadlock with another process that may have faulted
2334                  * on one of the pages to be wired (it would mark the page busy,
2335                  * blocking us, then in turn block on the map lock that we
2336                  * hold).  Because of problems in the recursive lock package,
2337                  * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
2338                  * any actions that require the write lock must be done
2339                  * beforehand.  Because we keep the read lock on the map, the
2340                  * copy-on-write status of the entries we modify here cannot
2341                  * change.
2342                  */
2343                 entry = start_entry;
2344                 while ((entry != &map->header) && (entry->start < end)) {
2345                         /*
2346                          * Trivial case if the entry is already wired
2347                          */
2348                         if (entry->wired_count) {
2349                                 entry->wired_count++;
2350                                 entry = entry->next;
2351                                 continue;
2352                         }
2353
2354                         /*
2355                          * The entry is being newly wired, we have to setup
2356                          * appropriate management structures.  A shadow 
2357                          * object is required for a copy-on-write region,
2358                          * or a normal object for a zero-fill region.  We
2359                          * do not have to do this for entries that point to sub
2360                          * maps because we won't hold the lock on the sub map.
2361                          */
2362                         if (entry->maptype != VM_MAPTYPE_SUBMAP) {
2363                                 int copyflag = entry->eflags &
2364                                                MAP_ENTRY_NEEDS_COPY;
2365                                 if (copyflag && ((entry->protection &
2366                                                   VM_PROT_WRITE) != 0)) {
2367                                         vm_map_entry_shadow(entry, 0);
2368                                 } else if (entry->object.vm_object == NULL &&
2369                                            !map->system_map) {
2370                                         vm_map_entry_allocate_object(entry);
2371                                 }
2372                         }
2373
2374                         entry->wired_count++;
2375                         entry = entry->next;
2376                 }
2377
2378                 /*
2379                  * Pass 2.
2380                  */
2381
2382                 /*
2383                  * HACK HACK HACK HACK
2384                  *
2385                  * vm_fault_wire() temporarily unlocks the map to avoid
2386                  * deadlocks.  The in-transition flag from vm_map_clip_range
2387                  * call should protect us from changes while the map is
2388                  * unlocked.  T
2389                  *
2390                  * NOTE: Previously this comment stated that clipping might
2391                  *       still occur while the entry is unlocked, but from
2392                  *       what I can tell it actually cannot.
2393                  *
2394                  *       It is unclear whether the CLIP_CHECK_*() calls
2395                  *       are still needed but we keep them in anyway.
2396                  *
2397                  * HACK HACK HACK HACK
2398                  */
2399
2400                 entry = start_entry;
2401                 while (entry != &map->header && entry->start < end) {
2402                         /*
2403                          * If vm_fault_wire fails for any page we need to undo
2404                          * what has been done.  We decrement the wiring count
2405                          * for those pages which have not yet been wired (now)
2406                          * and unwire those that have (later).
2407                          */
2408                         vm_offset_t save_start = entry->start;
2409                         vm_offset_t save_end = entry->end;
2410
2411                         if (entry->wired_count == 1)
2412                                 rv = vm_fault_wire(map, entry, FALSE);
2413                         if (rv) {
2414                                 CLIP_CHECK_BACK(entry, save_start);
2415                                 for (;;) {
2416                                         KASSERT(entry->wired_count == 1, ("wired_count changed unexpectedly"));
2417                                         entry->wired_count = 0;
2418                                         if (entry->end == save_end)
2419                                                 break;
2420                                         entry = entry->next;
2421                                         KASSERT(entry != &map->header, ("bad entry clip during backout"));
2422                                 }
2423                                 end = save_start;
2424                                 break;
2425                         }
2426                         CLIP_CHECK_FWD(entry, save_end);
2427                         entry = entry->next;
2428                 }
2429
2430                 /*
2431                  * If a failure occured undo everything by falling through
2432                  * to the unwiring code.  'end' has already been adjusted
2433                  * appropriately.
2434                  */
2435                 if (rv)
2436                         kmflags |= KM_PAGEABLE;
2437
2438                 /*
2439                  * start_entry is still IN_TRANSITION but may have been 
2440                  * clipped since vm_fault_wire() unlocks and relocks the
2441                  * map.  No matter how clipped it has gotten there should
2442                  * be a fragment that is on our start boundary.
2443                  */
2444                 CLIP_CHECK_BACK(start_entry, start);
2445         }
2446
2447         if (kmflags & KM_PAGEABLE) {
2448                 /*
2449                  * This is the unwiring case.  We must first ensure that the
2450                  * range to be unwired is really wired down.  We know there
2451                  * are no holes.
2452                  */
2453                 entry = start_entry;
2454                 while ((entry != &map->header) && (entry->start < end)) {
2455                         if (entry->wired_count == 0) {
2456                                 rv = KERN_INVALID_ARGUMENT;
2457                                 goto done;
2458                         }
2459                         entry = entry->next;
2460                 }
2461
2462                 /*
2463                  * Now decrement the wiring count for each region. If a region
2464                  * becomes completely unwired, unwire its physical pages and
2465                  * mappings.
2466                  */
2467                 entry = start_entry;
2468                 while ((entry != &map->header) && (entry->start < end)) {
2469                         entry->wired_count--;
2470                         if (entry->wired_count == 0)
2471                                 vm_fault_unwire(map, entry);
2472                         entry = entry->next;
2473                 }
2474         }
2475 done:
2476         vm_map_unclip_range(map, start_entry, start, real_end,
2477                             &count, MAP_CLIP_NO_HOLES);
2478         map->timestamp++;
2479         vm_map_unlock(map);
2480 failure:
2481         if (kmflags & KM_KRESERVE)
2482                 vm_map_entry_krelease(count);
2483         else
2484                 vm_map_entry_release(count);
2485         return (rv);
2486 }
2487
2488 /*
2489  * Mark a newly allocated address range as wired but do not fault in
2490  * the pages.  The caller is expected to load the pages into the object.
2491  *
2492  * The map must be locked on entry and will remain locked on return.
2493  * No other requirements.
2494  */
2495 void
2496 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size,
2497                        int *countp)
2498 {
2499         vm_map_entry_t scan;
2500         vm_map_entry_t entry;
2501
2502         entry = vm_map_clip_range(map, addr, addr + size,
2503                                   countp, MAP_CLIP_NO_HOLES);
2504         for (scan = entry;
2505              scan != &map->header && scan->start < addr + size;
2506              scan = scan->next) {
2507             KKASSERT(scan->wired_count == 0);
2508             scan->wired_count = 1;
2509         }
2510         vm_map_unclip_range(map, entry, addr, addr + size,
2511                             countp, MAP_CLIP_NO_HOLES);
2512 }
2513
2514 /*
2515  * Push any dirty cached pages in the address range to their pager.
2516  * If syncio is TRUE, dirty pages are written synchronously.
2517  * If invalidate is TRUE, any cached pages are freed as well.
2518  *
2519  * This routine is called by sys_msync()
2520  *
2521  * Returns an error if any part of the specified range is not mapped.
2522  *
2523  * No requirements.
2524  */
2525 int
2526 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end,
2527              boolean_t syncio, boolean_t invalidate)
2528 {
2529         vm_map_entry_t current;
2530         vm_map_entry_t entry;
2531         vm_size_t size;
2532         vm_object_t object;
2533         vm_object_t tobj;
2534         vm_ooffset_t offset;
2535
2536         vm_map_lock_read(map);
2537         VM_MAP_RANGE_CHECK(map, start, end);
2538         if (!vm_map_lookup_entry(map, start, &entry)) {
2539                 vm_map_unlock_read(map);
2540                 return (KERN_INVALID_ADDRESS);
2541         }
2542         lwkt_gettoken(&map->token);
2543
2544         /*
2545          * Make a first pass to check for holes.
2546          */
2547         for (current = entry; current->start < end; current = current->next) {
2548                 if (current->maptype == VM_MAPTYPE_SUBMAP) {
2549                         lwkt_reltoken(&map->token);
2550                         vm_map_unlock_read(map);
2551                         return (KERN_INVALID_ARGUMENT);
2552                 }
2553                 if (end > current->end &&
2554                     (current->next == &map->header ||
2555                         current->end != current->next->start)) {
2556                         lwkt_reltoken(&map->token);
2557                         vm_map_unlock_read(map);
2558                         return (KERN_INVALID_ADDRESS);
2559                 }
2560         }
2561
2562         if (invalidate)
2563                 pmap_remove(vm_map_pmap(map), start, end);
2564
2565         /*
2566          * Make a second pass, cleaning/uncaching pages from the indicated
2567          * objects as we go.
2568          */
2569         for (current = entry; current->start < end; current = current->next) {
2570                 offset = current->offset + (start - current->start);
2571                 size = (end <= current->end ? end : current->end) - start;
2572                 if (current->maptype == VM_MAPTYPE_SUBMAP) {
2573                         vm_map_t smap;
2574                         vm_map_entry_t tentry;
2575                         vm_size_t tsize;
2576
2577                         smap = current->object.sub_map;
2578                         vm_map_lock_read(smap);
2579                         vm_map_lookup_entry(smap, offset, &tentry);
2580                         tsize = tentry->end - offset;
2581                         if (tsize < size)
2582                                 size = tsize;
2583                         object = tentry->object.vm_object;
2584                         offset = tentry->offset + (offset - tentry->start);
2585                         vm_map_unlock_read(smap);
2586                 } else {
2587                         object = current->object.vm_object;
2588                 }
2589
2590                 if (object)
2591                         vm_object_hold(object);
2592
2593                 /*
2594                  * Note that there is absolutely no sense in writing out
2595                  * anonymous objects, so we track down the vnode object
2596                  * to write out.
2597                  * We invalidate (remove) all pages from the address space
2598                  * anyway, for semantic correctness.
2599                  *
2600                  * note: certain anonymous maps, such as MAP_NOSYNC maps,
2601                  * may start out with a NULL object.
2602                  */
2603                 while (object && (tobj = object->backing_object) != NULL) {
2604                         vm_object_hold(tobj);
2605                         if (tobj == object->backing_object) {
2606                                 vm_object_lock_swap();
2607                                 offset += object->backing_object_offset;
2608                                 vm_object_drop(object);
2609                                 object = tobj;
2610                                 if (object->size < OFF_TO_IDX(offset + size))
2611                                         size = IDX_TO_OFF(object->size) -
2612                                                offset;
2613                                 break;
2614                         }
2615                         vm_object_drop(tobj);
2616                 }
2617                 if (object && (object->type == OBJT_VNODE) && 
2618                     (current->protection & VM_PROT_WRITE) &&
2619                     (object->flags & OBJ_NOMSYNC) == 0) {
2620                         /*
2621                          * Flush pages if writing is allowed, invalidate them
2622                          * if invalidation requested.  Pages undergoing I/O
2623                          * will be ignored by vm_object_page_remove().
2624                          *
2625                          * We cannot lock the vnode and then wait for paging
2626                          * to complete without deadlocking against vm_fault.
2627                          * Instead we simply call vm_object_page_remove() and
2628                          * allow it to block internally on a page-by-page 
2629                          * basis when it encounters pages undergoing async 
2630                          * I/O.
2631                          */
2632                         int flags;
2633
2634                         /* no chain wait needed for vnode objects */
2635                         vm_object_reference_locked(object);
2636                         vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2637                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2638                         flags |= invalidate ? OBJPC_INVAL : 0;
2639
2640                         /*
2641                          * When operating on a virtual page table just
2642                          * flush the whole object.  XXX we probably ought
2643                          * to 
2644                          */
2645                         switch(current->maptype) {
2646                         case VM_MAPTYPE_NORMAL:
2647                                 vm_object_page_clean(object,
2648                                     OFF_TO_IDX(offset),
2649                                     OFF_TO_IDX(offset + size + PAGE_MASK),
2650                                     flags);
2651                                 break;
2652                         case VM_MAPTYPE_VPAGETABLE:
2653                                 vm_object_page_clean(object, 0, 0, flags);
2654                                 break;
2655                         }
2656                         vn_unlock(((struct vnode *)object->handle));
2657                         vm_object_deallocate_locked(object);
2658                 }
2659                 if (object && invalidate &&
2660                    ((object->type == OBJT_VNODE) ||
2661                     (object->type == OBJT_DEVICE))) {
2662                         int clean_only = 
2663                                 (object->type == OBJT_DEVICE) ? FALSE : TRUE;
2664                         /* no chain wait needed for vnode/device objects */
2665                         vm_object_reference_locked(object);
2666                         switch(current->maptype) {
2667                         case VM_MAPTYPE_NORMAL:
2668                                 vm_object_page_remove(object,
2669                                     OFF_TO_IDX(offset),
2670                                     OFF_TO_IDX(offset + size + PAGE_MASK),
2671                                     clean_only);
2672                                 break;
2673                         case VM_MAPTYPE_VPAGETABLE:
2674                                 vm_object_page_remove(object, 0, 0, clean_only);
2675                                 break;
2676                         }
2677                         vm_object_deallocate_locked(object);
2678                 }
2679                 start += size;
2680                 if (object)
2681                         vm_object_drop(object);
2682         }
2683
2684         lwkt_reltoken(&map->token);
2685         vm_map_unlock_read(map);
2686
2687         return (KERN_SUCCESS);
2688 }
2689
2690 /*
2691  * Make the region specified by this entry pageable.
2692  *
2693  * The vm_map must be exclusively locked.
2694  */
2695 static void 
2696 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2697 {
2698         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2699         entry->wired_count = 0;
2700         vm_fault_unwire(map, entry);
2701 }
2702
2703 /*
2704  * Deallocate the given entry from the target map.
2705  *
2706  * The vm_map must be exclusively locked.
2707  */
2708 static void
2709 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2710 {
2711         vm_map_entry_unlink(map, entry);
2712         map->size -= entry->end - entry->start;
2713
2714         switch(entry->maptype) {
2715         case VM_MAPTYPE_NORMAL:
2716         case VM_MAPTYPE_VPAGETABLE:
2717                 vm_object_deallocate(entry->object.vm_object);
2718                 break;
2719         default:
2720                 break;
2721         }
2722
2723         vm_map_entry_dispose(map, entry, countp);
2724 }
2725
2726 /*
2727  * Deallocates the given address range from the target map.
2728  *
2729  * The vm_map must be exclusively locked.
2730  */
2731 int
2732 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2733 {
2734         vm_object_t object;
2735         vm_map_entry_t entry;
2736         vm_map_entry_t first_entry;
2737
2738         ASSERT_VM_MAP_LOCKED(map);
2739         lwkt_gettoken(&map->token);
2740 again:
2741         /*
2742          * Find the start of the region, and clip it.  Set entry to point
2743          * at the first record containing the requested address or, if no
2744          * such record exists, the next record with a greater address.  The
2745          * loop will run from this point until a record beyond the termination
2746          * address is encountered.
2747          *
2748          * map->hint must be adjusted to not point to anything we delete,
2749          * so set it to the entry prior to the one being deleted.
2750          *
2751          * GGG see other GGG comment.
2752          */
2753         if (vm_map_lookup_entry(map, start, &first_entry)) {
2754                 entry = first_entry;
2755                 vm_map_clip_start(map, entry, start, countp);
2756                 map->hint = entry->prev;        /* possible problem XXX */
2757         } else {
2758                 map->hint = first_entry;        /* possible problem XXX */
2759                 entry = first_entry->next;
2760         }
2761
2762         /*
2763          * If a hole opens up prior to the current first_free then
2764          * adjust first_free.  As with map->hint, map->first_free
2765          * cannot be left set to anything we might delete.
2766          */
2767         if (entry == &map->header) {
2768                 map->first_free = &map->header;
2769         } else if (map->first_free->start >= start) {
2770                 map->first_free = entry->prev;
2771         }
2772
2773         /*
2774          * Step through all entries in this region
2775          */
2776         while ((entry != &map->header) && (entry->start < end)) {
2777                 vm_map_entry_t next;
2778                 vm_offset_t s, e;
2779                 vm_pindex_t offidxstart, offidxend, count;
2780
2781                 /*
2782                  * If we hit an in-transition entry we have to sleep and
2783                  * retry.  It's easier (and not really slower) to just retry
2784                  * since this case occurs so rarely and the hint is already
2785                  * pointing at the right place.  We have to reset the
2786                  * start offset so as not to accidently delete an entry
2787                  * another process just created in vacated space.
2788                  */
2789                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2790                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2791                         start = entry->start;
2792                         ++mycpu->gd_cnt.v_intrans_coll;
2793                         ++mycpu->gd_cnt.v_intrans_wait;
2794                         vm_map_transition_wait(map);
2795                         goto again;
2796                 }
2797                 vm_map_clip_end(map, entry, end, countp);
2798
2799                 s = entry->start;
2800                 e = entry->end;
2801                 next = entry->next;
2802
2803                 offidxstart = OFF_TO_IDX(entry->offset);
2804                 count = OFF_TO_IDX(e - s);
2805                 object = entry->object.vm_object;
2806
2807                 /*
2808                  * Unwire before removing addresses from the pmap; otherwise,
2809                  * unwiring will put the entries back in the pmap.
2810                  */
2811                 if (entry->wired_count != 0)
2812                         vm_map_entry_unwire(map, entry);
2813
2814                 offidxend = offidxstart + count;
2815
2816                 if (object == &kernel_object) {
2817                         vm_object_hold(object);
2818                         vm_object_page_remove(object, offidxstart,
2819                                               offidxend, FALSE);
2820                         vm_object_drop(object);
2821                 } else if (object && object->type != OBJT_DEFAULT &&
2822                            object->type != OBJT_SWAP) {
2823                         /*
2824                          * vnode object routines cannot be chain-locked,
2825                          * but since we aren't removing pages from the
2826                          * object here we can use a shared hold.
2827                          */
2828                         vm_object_hold_shared(object);
2829                         pmap_remove(map->pmap, s, e);
2830                         vm_object_drop(object);
2831                 } else if (object) {
2832                         vm_object_hold(object);
2833                         vm_object_chain_acquire(object);
2834                         pmap_remove(map->pmap, s, e);
2835
2836                         if (object != NULL &&
2837                             object->ref_count != 1 &&
2838                             (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) ==
2839                              OBJ_ONEMAPPING &&
2840                             (object->type == OBJT_DEFAULT ||
2841                              object->type == OBJT_SWAP)) {
2842                                 vm_object_collapse(object, NULL);
2843                                 vm_object_page_remove(object, offidxstart,
2844                                                       offidxend, FALSE);
2845                                 if (object->type == OBJT_SWAP) {
2846                                         swap_pager_freespace(object,
2847                                                              offidxstart,
2848                                                              count);
2849                                 }
2850                                 if (offidxend >= object->size &&
2851                                     offidxstart < object->size) {
2852                                         object->size = offidxstart;
2853                                 }
2854                         }
2855                         vm_object_chain_release(object);
2856                         vm_object_drop(object);
2857                 }
2858
2859                 /*
2860                  * Delete the entry (which may delete the object) only after
2861                  * removing all pmap entries pointing to its pages.
2862                  * (Otherwise, its page frames may be reallocated, and any
2863                  * modify bits will be set in the wrong object!)
2864                  */
2865                 vm_map_entry_delete(map, entry, countp);
2866                 entry = next;
2867         }
2868         lwkt_reltoken(&map->token);
2869         return (KERN_SUCCESS);
2870 }
2871
2872 /*
2873  * Remove the given address range from the target map.
2874  * This is the exported form of vm_map_delete.
2875  *
2876  * No requirements.
2877  */
2878 int
2879 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2880 {
2881         int result;
2882         int count;
2883
2884         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2885         vm_map_lock(map);
2886         VM_MAP_RANGE_CHECK(map, start, end);
2887         result = vm_map_delete(map, start, end, &count);
2888         vm_map_unlock(map);
2889         vm_map_entry_release(count);
2890
2891         return (result);
2892 }
2893
2894 /*
2895  * Assert that the target map allows the specified privilege on the
2896  * entire address region given.  The entire region must be allocated.
2897  *
2898  * The caller must specify whether the vm_map is already locked or not.
2899  */
2900 boolean_t
2901 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2902                         vm_prot_t protection, boolean_t have_lock)
2903 {
2904         vm_map_entry_t entry;
2905         vm_map_entry_t tmp_entry;
2906         boolean_t result;
2907
2908         if (have_lock == FALSE)
2909                 vm_map_lock_read(map);
2910
2911         if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2912                 if (have_lock == FALSE)
2913                         vm_map_unlock_read(map);
2914                 return (FALSE);
2915         }
2916         entry = tmp_entry;
2917
2918         result = TRUE;
2919         while (start < end) {
2920                 if (entry == &map->header) {
2921                         result = FALSE;
2922                         break;
2923                 }
2924                 /*
2925                  * No holes allowed!
2926                  */
2927
2928                 if (start < entry->start) {
2929                         result = FALSE;
2930                         break;
2931                 }
2932                 /*
2933                  * Check protection associated with entry.
2934                  */
2935
2936                 if ((entry->protection & protection) != protection) {
2937                         result = FALSE;
2938                         break;
2939                 }
2940                 /* go to next entry */
2941
2942                 start = entry->end;
2943                 entry = entry->next;
2944         }
2945         if (have_lock == FALSE)
2946                 vm_map_unlock_read(map);
2947         return (result);
2948 }
2949
2950 /*
2951  * If appropriate this function shadows the original object with a new object
2952  * and moves the VM pages from the original object to the new object.
2953  * The original object will also be collapsed, if possible.
2954  *
2955  * We can only do this for normal memory objects with a single mapping, and
2956  * it only makes sense to do it if there are 2 or more refs on the original
2957  * object.  i.e. typically a memory object that has been extended into
2958  * multiple vm_map_entry's with non-overlapping ranges.
2959  *
2960  * This makes it easier to remove unused pages and keeps object inheritance
2961  * from being a negative impact on memory usage.
2962  *
2963  * On return the (possibly new) entry->object.vm_object will have an
2964  * additional ref on it for the caller to dispose of (usually by cloning
2965  * the vm_map_entry).  The additional ref had to be done in this routine
2966  * to avoid racing a collapse.  The object's ONEMAPPING flag will also be
2967  * cleared.
2968  *
2969  * The vm_map must be locked and its token held.
2970  */
2971 static void
2972 vm_map_split(vm_map_entry_t entry)
2973 {
2974 #if 0
2975         /* UNOPTIMIZED */
2976         vm_object_t oobject;
2977
2978         oobject = entry->object.vm_object;
2979         vm_object_hold(oobject);
2980         vm_object_chain_wait(oobject);
2981         vm_object_reference_locked(oobject);
2982         vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
2983         vm_object_drop(oobject);
2984 #else
2985         /* OPTIMIZED */
2986         vm_object_t oobject, nobject, bobject;
2987         vm_offset_t s, e;
2988         vm_page_t m;
2989         vm_pindex_t offidxstart, offidxend, idx;
2990         vm_size_t size;
2991         vm_ooffset_t offset;
2992
2993         /*
2994          * Setup.  Chain lock the original object throughout the entire
2995          * routine to prevent new page faults from occuring.
2996          *
2997          * XXX can madvise WILLNEED interfere with us too?
2998          */
2999         oobject = entry->object.vm_object;
3000         vm_object_hold(oobject);
3001         vm_object_chain_acquire(oobject);
3002
3003         /*
3004          * Original object cannot be split?
3005          */
3006         if (oobject->handle == NULL || (oobject->type != OBJT_DEFAULT &&
3007                                         oobject->type != OBJT_SWAP)) {
3008                 vm_object_chain_release(oobject);
3009                 vm_object_reference_locked(oobject);
3010                 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3011                 vm_object_drop(oobject);
3012                 return;
3013         }
3014
3015         /*
3016          * Collapse original object with its backing store as an
3017          * optimization to reduce chain lengths when possible.
3018          *
3019          * If ref_count <= 1 there aren't other non-overlapping vm_map_entry's
3020          * for oobject, so there's no point collapsing it.
3021          *
3022          * Then re-check whether the object can be split.
3023          */
3024         vm_object_collapse(oobject, NULL);
3025
3026         if (oobject->ref_count <= 1 ||
3027             (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) ||
3028             (oobject->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) != OBJ_ONEMAPPING) {
3029                 vm_object_chain_release(oobject);
3030                 vm_object_reference_locked(oobject);
3031                 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3032                 vm_object_drop(oobject);
3033                 return;
3034         }
3035
3036         /*
3037          * Acquire the chain lock on the backing object.
3038          *
3039          * Give bobject an additional ref count for when it will be shadowed
3040          * by nobject.
3041          */
3042         if ((bobject = oobject->backing_object) != NULL) {
3043                 vm_object_hold(bobject);
3044                 vm_object_chain_wait(bobject);
3045                 vm_object_reference_locked(bobject);
3046                 vm_object_chain_acquire(bobject);
3047                 KKASSERT(bobject->backing_object == bobject);
3048                 KKASSERT((bobject->flags & OBJ_DEAD) == 0);
3049         }
3050
3051         /*
3052          * Calculate the object page range and allocate the new object.
3053          */
3054         offset = entry->offset;
3055         s = entry->start;
3056         e = entry->end;
3057
3058         offidxstart = OFF_TO_IDX(offset);
3059         offidxend = offidxstart + OFF_TO_IDX(e - s);
3060         size = offidxend - offidxstart;
3061
3062         switch(oobject->type) {
3063         case OBJT_DEFAULT:
3064                 nobject = default_pager_alloc(NULL, IDX_TO_OFF(size),
3065                                               VM_PROT_ALL, 0);
3066                 break;
3067         case OBJT_SWAP:
3068                 nobject = swap_pager_alloc(NULL, IDX_TO_OFF(size),
3069                                            VM_PROT_ALL, 0);
3070                 break;
3071         default:
3072                 /* not reached */
3073                 nobject = NULL;
3074                 KKASSERT(0);
3075         }
3076
3077         if (nobject == NULL) {
3078                 if (bobject) {
3079                         vm_object_chain_release(bobject);
3080                         vm_object_deallocate(bobject);
3081                         vm_object_drop(bobject);
3082                 }
3083                 vm_object_chain_release(oobject);
3084                 vm_object_reference_locked(oobject);
3085                 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3086                 vm_object_drop(oobject);
3087                 return;
3088         }
3089
3090         /*
3091          * The new object will replace entry->object.vm_object so it needs
3092          * a second reference (the caller expects an additional ref).
3093          */
3094         vm_object_hold(nobject);
3095         vm_object_reference_locked(nobject);
3096         vm_object_chain_acquire(nobject);
3097
3098         /*
3099          * nobject shadows bobject (oobject already shadows bobject).
3100          */
3101         if (bobject) {
3102                 nobject->backing_object_offset =
3103                     oobject->backing_object_offset + IDX_TO_OFF(offidxstart);
3104                 nobject->backing_object = bobject;
3105                 bobject->shadow_count++;
3106                 bobject->generation++;
3107                 LIST_INSERT_HEAD(&bobject->shadow_head, nobject, shadow_list);
3108                 vm_object_clear_flag(bobject, OBJ_ONEMAPPING); /* XXX? */
3109                 vm_object_chain_release(bobject);
3110                 vm_object_drop(bobject);
3111         }
3112
3113         /*
3114          * Move the VM pages from oobject to nobject
3115          */
3116         for (idx = 0; idx < size; idx++) {
3117                 vm_page_t m;
3118
3119                 m = vm_page_lookup_busy_wait(oobject, offidxstart + idx,
3120                                              TRUE, "vmpg");
3121                 if (m == NULL)
3122                         continue;
3123
3124                 /*
3125                  * We must wait for pending I/O to complete before we can
3126                  * rename the page.
3127                  *
3128                  * We do not have to VM_PROT_NONE the page as mappings should
3129                  * not be changed by this operation.
3130                  *
3131                  * NOTE: The act of renaming a page updates chaingen for both
3132                  *       objects.
3133                  */
3134                 vm_page_rename(m, nobject, idx);
3135                 /* page automatically made dirty by rename and cache handled */
3136                 /* page remains busy */
3137         }
3138
3139         if (oobject->type == OBJT_SWAP) {
3140                 vm_object_pip_add(oobject, 1);
3141                 /*
3142                  * copy oobject pages into nobject and destroy unneeded
3143                  * pages in shadow object.
3144                  */
3145                 swap_pager_copy(oobject, nobject, offidxstart, 0);
3146                 vm_object_pip_wakeup(oobject);
3147         }
3148
3149         /*
3150          * Wakeup the pages we played with.  No spl protection is needed
3151          * for a simple wakeup.
3152          */
3153         for (idx = 0; idx < size; idx++) {
3154                 m = vm_page_lookup(nobject, idx);
3155                 if (m) {
3156                         KKASSERT(m->flags & PG_BUSY);
3157                         vm_page_wakeup(m);
3158                 }
3159         }
3160         entry->object.vm_object = nobject;
3161         entry->offset = 0LL;
3162
3163         /*
3164          * Cleanup
3165          *
3166          * NOTE: There is no need to remove OBJ_ONEMAPPING from oobject, the
3167          *       related pages were moved and are no longer applicable to the
3168          *       original object.
3169          *
3170          * NOTE: Deallocate oobject (due to its entry->object.vm_object being
3171          *       replaced by nobject).
3172          */
3173         vm_object_chain_release(nobject);
3174         vm_object_drop(nobject);
3175         if (bobject) {
3176                 vm_object_chain_release(bobject);
3177                 vm_object_drop(bobject);
3178         }
3179         vm_object_chain_release(oobject);
3180         /*vm_object_clear_flag(oobject, OBJ_ONEMAPPING);*/
3181         vm_object_deallocate_locked(oobject);
3182         vm_object_drop(oobject);
3183 #endif
3184 }
3185
3186 /*
3187  * Copies the contents of the source entry to the destination
3188  * entry.  The entries *must* be aligned properly.
3189  *
3190  * The vm_maps must be exclusively locked.
3191  * The vm_map's token must be held.
3192  *
3193  * Because the maps are locked no faults can be in progress during the
3194  * operation.
3195  */
3196 static void
3197 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
3198                   vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
3199 {
3200         vm_object_t src_object;
3201
3202         if (dst_entry->maptype == VM_MAPTYPE_SUBMAP)
3203                 return;
3204         if (src_entry->maptype == VM_MAPTYPE_SUBMAP)
3205                 return;
3206
3207         if (src_entry->wired_count == 0) {
3208                 /*
3209                  * If the source entry is marked needs_copy, it is already
3210                  * write-protected.
3211                  */
3212                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
3213                         pmap_protect(src_map->pmap,
3214                             src_entry->start,
3215                             src_entry->end,
3216                             src_entry->protection & ~VM_PROT_WRITE);
3217                 }
3218
3219                 /*
3220                  * Make a copy of the object.
3221                  *
3222                  * The object must be locked prior to checking the object type
3223                  * and for the call to vm_object_collapse() and vm_map_split().
3224                  * We cannot use *_hold() here because the split code will
3225                  * probably try to destroy the object.  The lock is a pool
3226                  * token and doesn't care.
3227                  *
3228                  * We must bump src_map->timestamp when setting
3229                  * MAP_ENTRY_NEEDS_COPY to force any concurrent fault
3230                  * to retry, otherwise the concurrent fault might improperly
3231                  * install a RW pte when its supposed to be a RO(COW) pte.
3232                  * This race can occur because a vnode-backed fault may have
3233                  * to temporarily release the map lock.
3234                  */
3235                 if (src_entry->object.vm_object != NULL) {
3236                         vm_map_split(src_entry);
3237                         src_object = src_entry->object.vm_object;
3238                         dst_entry->object.vm_object = src_object;
3239                         src_entry->eflags |= (MAP_ENTRY_COW |
3240                                               MAP_ENTRY_NEEDS_COPY);
3241                         dst_entry->eflags |= (MAP_ENTRY_COW |
3242                                               MAP_ENTRY_NEEDS_COPY);
3243                         dst_entry->offset = src_entry->offset;
3244                         ++src_map->timestamp;
3245                 } else {
3246                         dst_entry->object.vm_object = NULL;
3247                         dst_entry->offset = 0;
3248                 }
3249
3250                 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3251                     dst_entry->end - dst_entry->start, src_entry->start);
3252         } else {
3253                 /*
3254                  * Of course, wired down pages can't be set copy-on-write.
3255                  * Cause wired pages to be copied into the new map by
3256                  * simulating faults (the new pages are pageable)
3257                  */
3258                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
3259         }
3260 }
3261
3262 /*
3263  * vmspace_fork:
3264  * Create a new process vmspace structure and vm_map
3265  * based on those of an existing process.  The new map
3266  * is based on the old map, according to the inheritance
3267  * values on the regions in that map.
3268  *
3269  * The source map must not be locked.
3270  * No requirements.
3271  */
3272 struct vmspace *
3273 vmspace_fork(struct vmspace *vm1)
3274 {
3275         struct vmspace *vm2;
3276         vm_map_t old_map = &vm1->vm_map;
3277         vm_map_t new_map;
3278         vm_map_entry_t old_entry;
3279         vm_map_entry_t new_entry;
3280         vm_object_t object;
3281         int count;
3282
3283         lwkt_gettoken(&vm1->vm_map.token);
3284         vm_map_lock(old_map);
3285
3286         vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3287         lwkt_gettoken(&vm2->vm_map.token);
3288         bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
3289             (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
3290         new_map = &vm2->vm_map; /* XXX */
3291         new_map->timestamp = 1;
3292
3293         vm_map_lock(new_map);
3294
3295         count = 0;
3296         old_entry = old_map->header.next;
3297         while (old_entry != &old_map->header) {
3298                 ++count;
3299                 old_entry = old_entry->next;
3300         }
3301
3302         count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
3303
3304         old_entry = old_map->header.next;
3305         while (old_entry != &old_map->header) {
3306                 if (old_entry->maptype == VM_MAPTYPE_SUBMAP)
3307                         panic("vm_map_fork: encountered a submap");
3308
3309                 switch (old_entry->inheritance) {
3310                 case VM_INHERIT_NONE:
3311                         break;
3312                 case VM_INHERIT_SHARE:
3313                         /*
3314                          * Clone the entry, creating the shared object if
3315                          * necessary.
3316                          */
3317                         if (old_entry->object.vm_object == NULL)
3318                                 vm_map_entry_allocate_object(old_entry);
3319
3320                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3321                                 /*
3322                                  * Shadow a map_entry which needs a copy,
3323                                  * replacing its object with a new object
3324                                  * that points to the old one.  Ask the
3325                                  * shadow code to automatically add an
3326                                  * additional ref.  We can't do it afterwords
3327                                  * because we might race a collapse.  The call
3328                                  * to vm_map_entry_shadow() will also clear
3329                                  * OBJ_ONEMAPPING.
3330                                  */
3331                                 vm_map_entry_shadow(old_entry, 1);
3332                         } else {
3333                                 /*
3334                                  * We will make a shared copy of the object,
3335                                  * and must clear OBJ_ONEMAPPING.
3336                                  *
3337                                  * XXX assert that object.vm_object != NULL
3338                                  *     since we allocate it above.
3339                                  */
3340                                 if (old_entry->object.vm_object) {
3341                                         object = old_entry->object.vm_object;
3342                                         vm_object_hold(object);
3343                                         vm_object_chain_wait(object);
3344                                         vm_object_reference_locked(object);
3345                                         vm_object_clear_flag(object,
3346                                                              OBJ_ONEMAPPING);
3347                                         vm_object_drop(object);
3348                                 }
3349                         }
3350
3351                         /*
3352                          * Clone the entry.  We've already bumped the ref on
3353                          * any vm_object.
3354                          */
3355                         new_entry = vm_map_entry_create(new_map, &count);
3356                         *new_entry = *old_entry;
3357                         new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3358                         new_entry->wired_count = 0;
3359
3360                         /*
3361                          * Insert the entry into the new map -- we know we're
3362                          * inserting at the end of the new map.
3363                          */
3364
3365                         vm_map_entry_link(new_map, new_map->header.prev,
3366                                           new_entry);
3367
3368                         /*
3369                          * Update the physical map
3370                          */
3371                         pmap_copy(new_map->pmap, old_map->pmap,
3372                             new_entry->start,
3373                             (old_entry->end - old_entry->start),
3374                             old_entry->start);
3375                         break;
3376                 case VM_INHERIT_COPY:
3377                         /*
3378                          * Clone the entry and link into the map.
3379                          */
3380                         new_entry = vm_map_entry_create(new_map, &count);
3381                         *new_entry = *old_entry;
3382                         new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3383                         new_entry->wired_count = 0;
3384                         new_entry->object.vm_object = NULL;
3385                         vm_map_entry_link(new_map, new_map->header.prev,
3386                                           new_entry);
3387                         vm_map_copy_entry(old_map, new_map, old_entry,
3388                                           new_entry);
3389                         break;
3390                 }
3391                 old_entry = old_entry->next;
3392         }
3393
3394         new_map->size = old_map->size;
3395         vm_map_unlock(old_map);
3396         vm_map_unlock(new_map);
3397         vm_map_entry_release(count);
3398
3399         lwkt_reltoken(&vm2->vm_map.token);
3400         lwkt_reltoken(&vm1->vm_map.token);
3401
3402         return (vm2);
3403 }
3404
3405 /*
3406  * Create an auto-grow stack entry
3407  *
3408  * No requirements.
3409  */
3410 int
3411 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3412               int flags, vm_prot_t prot, vm_prot_t max, int cow)
3413 {
3414         vm_map_entry_t  prev_entry;
3415         vm_map_entry_t  new_stack_entry;
3416         vm_size_t       init_ssize;
3417         int             rv;
3418         int             count;
3419         vm_offset_t     tmpaddr;
3420
3421         cow |= MAP_IS_STACK;
3422
3423         if (max_ssize < sgrowsiz)
3424                 init_ssize = max_ssize;
3425         else
3426                 init_ssize = sgrowsiz;
3427
3428         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3429         vm_map_lock(map);
3430
3431         /*
3432          * Find space for the mapping
3433          */
3434         if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) {
3435                 if (vm_map_findspace(map, addrbos, max_ssize, 1,
3436                                      flags, &tmpaddr)) {
3437                         vm_map_unlock(map);
3438                         vm_map_entry_release(count);
3439                         return (KERN_NO_SPACE);
3440                 }
3441                 addrbos = tmpaddr;
3442         }
3443
3444         /* If addr is already mapped, no go */
3445         if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3446                 vm_map_unlock(map);
3447                 vm_map_entry_release(count);
3448                 return (KERN_NO_SPACE);
3449         }
3450
3451 #if 0
3452         /* XXX already handled by kern_mmap() */
3453         /* If we would blow our VMEM resource limit, no go */
3454         if (map->size + init_ssize >
3455             curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3456                 vm_map_unlock(map);
3457                 vm_map_entry_release(count);
3458                 return (KERN_NO_SPACE);
3459         }
3460 #endif
3461
3462         /*
3463          * If we can't accomodate max_ssize in the current mapping,
3464          * no go.  However, we need to be aware that subsequent user
3465          * mappings might map into the space we have reserved for
3466          * stack, and currently this space is not protected.  
3467          * 
3468          * Hopefully we will at least detect this condition 
3469          * when we try to grow the stack.
3470          */
3471         if ((prev_entry->next != &map->header) &&
3472             (prev_entry->next->start < addrbos + max_ssize)) {
3473                 vm_map_unlock(map);
3474                 vm_map_entry_release(count);
3475                 return (KERN_NO_SPACE);
3476         }
3477
3478         /*
3479          * We initially map a stack of only init_ssize.  We will
3480          * grow as needed later.  Since this is to be a grow 
3481          * down stack, we map at the top of the range.
3482          *
3483          * Note: we would normally expect prot and max to be
3484          * VM_PROT_ALL, and cow to be 0.  Possibly we should
3485          * eliminate these as input parameters, and just
3486          * pass these values here in the insert call.
3487          */
3488         rv = vm_map_insert(map, &count,
3489                            NULL, 0, addrbos + max_ssize - init_ssize,
3490                            addrbos + max_ssize,
3491                            VM_MAPTYPE_NORMAL,
3492                            prot, max,
3493                            cow);
3494
3495         /* Now set the avail_ssize amount */
3496         if (rv == KERN_SUCCESS) {
3497                 if (prev_entry != &map->header)
3498                         vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize, &count);
3499                 new_stack_entry = prev_entry->next;
3500                 if (new_stack_entry->end   != addrbos + max_ssize ||
3501                     new_stack_entry->start != addrbos + max_ssize - init_ssize)
3502                         panic ("Bad entry start/end for new stack entry");
3503                 else 
3504                         new_stack_entry->aux.avail_ssize = max_ssize - init_ssize;
3505         }
3506
3507         vm_map_unlock(map);
3508         vm_map_entry_release(count);
3509         return (rv);
3510 }
3511
3512 /*
3513  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3514  * desired address is already mapped, or if we successfully grow
3515  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3516  * stack range (this is strange, but preserves compatibility with
3517  * the grow function in vm_machdep.c).
3518  *
3519  * No requirements.
3520  */
3521 int
3522 vm_map_growstack (struct proc *p, vm_offset_t addr)
3523 {
3524         vm_map_entry_t prev_entry;
3525         vm_map_entry_t stack_entry;
3526         vm_map_entry_t new_stack_entry;
3527         struct vmspace *vm = p->p_vmspace;
3528         vm_map_t map = &vm->vm_map;
3529         vm_offset_t    end;
3530         int grow_amount;
3531         int rv = KERN_SUCCESS;
3532         int is_procstack;
3533         int use_read_lock = 1;
3534         int count;
3535
3536         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3537 Retry:
3538         if (use_read_lock)
3539                 vm_map_lock_read(map);
3540         else
3541                 vm_map_lock(map);
3542
3543         /* If addr is already in the entry range, no need to grow.*/
3544         if (vm_map_lookup_entry(map, addr, &prev_entry))
3545                 goto done;
3546
3547         if ((stack_entry = prev_entry->next) == &map->header)
3548                 goto done;
3549         if (prev_entry == &map->header) 
3550                 end = stack_entry->start - stack_entry->aux.avail_ssize;
3551         else
3552                 end = prev_entry->end;
3553
3554         /*
3555          * This next test mimics the old grow function in vm_machdep.c.
3556          * It really doesn't quite make sense, but we do it anyway
3557          * for compatibility.
3558          *
3559          * If not growable stack, return success.  This signals the
3560          * caller to proceed as he would normally with normal vm.
3561          */
3562         if (stack_entry->aux.avail_ssize < 1 ||
3563             addr >= stack_entry->start ||
3564             addr <  stack_entry->start - stack_entry->aux.avail_ssize) {
3565                 goto done;
3566         } 
3567         
3568         /* Find the minimum grow amount */
3569         grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3570         if (grow_amount > stack_entry->aux.avail_ssize) {
3571                 rv = KERN_NO_SPACE;
3572                 goto done;
3573         }
3574
3575         /*
3576          * If there is no longer enough space between the entries
3577          * nogo, and adjust the available space.  Note: this 
3578          * should only happen if the user has mapped into the
3579          * stack area after the stack was created, and is
3580          * probably an error.
3581          *
3582          * This also effectively destroys any guard page the user
3583          * might have intended by limiting the stack size.
3584          */
3585         if (grow_amount > stack_entry->start - end) {
3586                 if (use_read_lock && vm_map_lock_upgrade(map)) {
3587                         /* lost lock */
3588                         use_read_lock = 0;
3589                         goto Retry;
3590                 }
3591                 use_read_lock = 0;
3592                 stack_entry->aux.avail_ssize = stack_entry->start - end;
3593                 rv = KERN_NO_SPACE;
3594                 goto done;
3595         }
3596
3597         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
3598
3599         /* If this is the main process stack, see if we're over the 
3600          * stack limit.
3601          */
3602         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3603                              p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3604                 rv = KERN_NO_SPACE;
3605                 goto done;
3606         }
3607
3608         /* Round up the grow amount modulo SGROWSIZ */
3609         grow_amount = roundup (grow_amount, sgrowsiz);
3610         if (grow_amount > stack_entry->aux.avail_ssize) {
3611                 grow_amount = stack_entry->aux.avail_ssize;
3612         }
3613         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
3614                              p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
3615                 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
3616                               ctob(vm->vm_ssize);
3617         }
3618
3619         /* If we would blow our VMEM resource limit, no go */
3620         if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3621                 rv = KERN_NO_SPACE;
3622                 goto done;
3623         }
3624
3625         if (use_read_lock && vm_map_lock_upgrade(map)) {
3626                 /* lost lock */
3627                 use_read_lock = 0;
3628                 goto Retry;
3629         }
3630         use_read_lock = 0;
3631
3632         /* Get the preliminary new entry start value */
3633         addr = stack_entry->start - grow_amount;
3634
3635         /* If this puts us into the previous entry, cut back our growth
3636          * to the available space.  Also, see the note above.
3637          */
3638         if (addr < end) {
3639                 stack_entry->aux.avail_ssize = stack_entry->start - end;
3640                 addr = end;
3641         }
3642
3643         rv = vm_map_insert(map, &count,
3644                            NULL, 0, addr, stack_entry->start,
3645                            VM_MAPTYPE_NORMAL,
3646                            VM_PROT_ALL, VM_PROT_ALL,
3647                            0);
3648
3649         /* Adjust the available stack space by the amount we grew. */
3650         if (rv == KERN_SUCCESS) {
3651                 if (prev_entry != &map->header)
3652                         vm_map_clip_end(map, prev_entry, addr, &count);
3653                 new_stack_entry = prev_entry->next;
3654                 if (new_stack_entry->end   != stack_entry->start  ||
3655                     new_stack_entry->start != addr)
3656                         panic ("Bad stack grow start/end in new stack entry");
3657                 else {
3658                         new_stack_entry->aux.avail_ssize =
3659                                 stack_entry->aux.avail_ssize -
3660                                 (new_stack_entry->end - new_stack_entry->start);
3661                         if (is_procstack)
3662                                 vm->vm_ssize += btoc(new_stack_entry->end -
3663                                                      new_stack_entry->start);
3664                 }
3665
3666                 if (map->flags & MAP_WIREFUTURE)
3667                         vm_map_unwire(map, new_stack_entry->start,
3668                                       new_stack_entry->end, FALSE);
3669         }
3670
3671 done:
3672         if (use_read_lock)
3673                 vm_map_unlock_read(map);
3674         else
3675                 vm_map_unlock(map);
3676         vm_map_entry_release(count);
3677         return (rv);
3678 }
3679
3680 /*
3681  * Unshare the specified VM space for exec.  If other processes are
3682  * mapped to it, then create a new one.  The new vmspace is null.
3683  *
3684  * No requirements.
3685  */
3686 void
3687 vmspace_exec(struct proc *p, struct vmspace *vmcopy) 
3688 {
3689         struct vmspace *oldvmspace = p->p_vmspace;
3690         struct vmspace *newvmspace;
3691         vm_map_t map = &p->p_vmspace->vm_map;
3692
3693         /*
3694          * If we are execing a resident vmspace we fork it, otherwise
3695          * we create a new vmspace.  Note that exitingcnt is not
3696          * copied to the new vmspace.
3697          */
3698         lwkt_gettoken(&oldvmspace->vm_map.token);
3699         if (vmcopy)  {
3700                 newvmspace = vmspace_fork(vmcopy);
3701                 lwkt_gettoken(&newvmspace->vm_map.token);
3702         } else {
3703                 newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
3704                 lwkt_gettoken(&newvmspace->vm_map.token);
3705                 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
3706                       (caddr_t)&oldvmspace->vm_endcopy -
3707                        (caddr_t)&oldvmspace->vm_startcopy);
3708         }
3709
3710         /*
3711          * Finish initializing the vmspace before assigning it
3712          * to the process.  The vmspace will become the current vmspace
3713          * if p == curproc.
3714          */
3715         pmap_pinit2(vmspace_pmap(newvmspace));
3716         pmap_replacevm(p, newvmspace, 0);
3717         lwkt_reltoken(&newvmspace->vm_map.token);
3718         lwkt_reltoken(&oldvmspace->vm_map.token);
3719         vmspace_free(oldvmspace);
3720 }
3721
3722 /*
3723  * Unshare the specified VM space for forcing COW.  This
3724  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3725  */
3726 void
3727 vmspace_unshare(struct proc *p) 
3728 {
3729         struct vmspace *oldvmspace = p->p_vmspace;
3730         struct vmspace *newvmspace;
3731
3732         lwkt_gettoken(&oldvmspace->vm_map.token);
3733         if (oldvmspace->vm_sysref.refcnt == 1) {
3734                 lwkt_reltoken(&oldvmspace->vm_map.token);
3735                 return;
3736         }
3737         newvmspace = vmspace_fork(oldvmspace);
3738         lwkt_gettoken(&newvmspace->vm_map.token);
3739         pmap_pinit2(vmspace_pmap(newvmspace));
3740         pmap_replacevm(p, newvmspace, 0);
3741         lwkt_reltoken(&newvmspace->vm_map.token);
3742         lwkt_reltoken(&oldvmspace->vm_map.token);
3743         vmspace_free(oldvmspace);
3744 }
3745
3746 /*
3747  * vm_map_hint: return the beginning of the best area suitable for
3748  * creating a new mapping with "prot" protection.
3749  *
3750  * No requirements.
3751  */
3752 vm_offset_t
3753 vm_map_hint(struct proc *p, vm_offset_t addr, vm_prot_t prot)
3754 {
3755         struct vmspace *vms = p->p_vmspace;
3756
3757         if (!randomize_mmap) {
3758                 /*
3759                  * Set a reasonable start point for the hint if it was
3760                  * not specified or if it falls within the heap space.
3761                  * Hinted mmap()s do not allocate out of the heap space.
3762                  */
3763                 if (addr == 0 ||
3764                     (addr >= round_page((vm_offset_t)vms->vm_taddr) &&
3765                      addr < round_page((vm_offset_t)vms->vm_daddr + maxdsiz))) {
3766                         addr = round_page((vm_offset_t)vms->vm_daddr + maxdsiz);
3767                 }
3768
3769                 return addr;
3770         }
3771
3772         if (addr != 0 && addr >= (vm_offset_t)vms->vm_daddr)
3773                 return addr;
3774
3775 #ifdef notyet
3776 #ifdef __i386__
3777         /*
3778          * If executable skip first two pages, otherwise start
3779          * after data + heap region.
3780          */
3781         if ((prot & VM_PROT_EXECUTE) &&
3782             ((vm_offset_t)vms->vm_daddr >= I386_MAX_EXE_ADDR)) {
3783                 addr = (PAGE_SIZE * 2) +
3784                     (karc4random() & (I386_MAX_EXE_ADDR / 2 - 1));
3785                 return (round_page(addr));
3786         }
3787 #endif /* __i386__ */
3788 #endif /* notyet */
3789
3790         addr = (vm_offset_t)vms->vm_daddr + MAXDSIZ;
3791         addr += karc4random() & (MIN((256 * 1024 * 1024), MAXDSIZ) - 1);
3792
3793         return (round_page(addr));
3794 }
3795
3796 /*
3797  * Finds the VM object, offset, and protection for a given virtual address
3798  * in the specified map, assuming a page fault of the type specified.
3799  *
3800  * Leaves the map in question locked for read; return values are guaranteed
3801  * until a vm_map_lookup_done call is performed.  Note that the map argument
3802  * is in/out; the returned map must be used in the call to vm_map_lookup_done.
3803  *
3804  * A handle (out_entry) is returned for use in vm_map_lookup_done, to make
3805  * that fast.
3806  *
3807  * If a lookup is requested with "write protection" specified, the map may
3808  * be changed to perform virtual copying operations, although the data
3809  * referenced will remain the same.
3810  *
3811  * No requirements.
3812  */
3813 int
3814 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
3815               vm_offset_t vaddr,
3816               vm_prot_t fault_typea,
3817               vm_map_entry_t *out_entry,        /* OUT */
3818               vm_object_t *object,              /* OUT */
3819               vm_pindex_t *pindex,              /* OUT */
3820               vm_prot_t *out_prot,              /* OUT */
3821               boolean_t *wired)                 /* OUT */
3822 {
3823         vm_map_entry_t entry;
3824         vm_map_t map = *var_map;
3825         vm_prot_t prot;
3826         vm_prot_t fault_type = fault_typea;
3827         int use_read_lock = 1;
3828         int rv = KERN_SUCCESS;
3829
3830 RetryLookup:
3831         if (use_read_lock)
3832                 vm_map_lock_read(map);
3833         else
3834                 vm_map_lock(map);
3835
3836         /*
3837          * If the map has an interesting hint, try it before calling full
3838          * blown lookup routine.
3839          */
3840         entry = map->hint;
3841         cpu_ccfence();
3842         *out_entry = entry;
3843         *object = NULL;
3844
3845         if ((entry == &map->header) ||
3846             (vaddr < entry->start) || (vaddr >= entry->end)) {
3847                 vm_map_entry_t tmp_entry;
3848
3849                 /*
3850                  * Entry was either not a valid hint, or the vaddr was not
3851                  * contained in the entry, so do a full lookup.
3852                  */
3853                 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
3854                         rv = KERN_INVALID_ADDRESS;
3855                         goto done;
3856                 }
3857
3858                 entry = tmp_entry;
3859                 *out_entry = entry;
3860         }
3861         
3862         /*
3863          * Handle submaps.
3864          */
3865         if (entry->maptype == VM_MAPTYPE_SUBMAP) {
3866                 vm_map_t old_map = map;
3867
3868                 *var_map = map = entry->object.sub_map;
3869                 if (use_read_lock)
3870                         vm_map_unlock_read(old_map);
3871                 else
3872                         vm_map_unlock(old_map);
3873                 use_read_lock = 1;
3874                 goto RetryLookup;
3875         }
3876
3877         /*
3878          * Check whether this task is allowed to have this page.
3879          * Note the special case for MAP_ENTRY_COW
3880          * pages with an override.  This is to implement a forced
3881          * COW for debuggers.
3882          */
3883
3884         if (fault_type & VM_PROT_OVERRIDE_WRITE)
3885                 prot = entry->max_protection;
3886         else
3887                 prot = entry->protection;
3888
3889         fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3890         if ((fault_type & prot) != fault_type) {
3891                 rv = KERN_PROTECTION_FAILURE;
3892                 goto done;
3893         }
3894
3895         if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3896             (entry->eflags & MAP_ENTRY_COW) &&
3897             (fault_type & VM_PROT_WRITE) &&
3898             (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3899                 rv = KERN_PROTECTION_FAILURE;
3900                 goto done;
3901         }
3902
3903         /*
3904          * If this page is not pageable, we have to get it for all possible
3905          * accesses.
3906          */
3907         *wired = (entry->wired_count != 0);
3908         if (*wired)
3909                 prot = fault_type = entry->protection;
3910
3911         /*
3912          * Virtual page tables may need to update the accessed (A) bit
3913          * in a page table entry.  Upgrade the fault to a write fault for
3914          * that case if the map will support it.  If the map does not support
3915          * it the page table entry simply will not be updated.
3916          */
3917         if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
3918                 if (prot & VM_PROT_WRITE)
3919                         fault_type |= VM_PROT_WRITE;
3920         }
3921
3922         /*
3923          * If the entry was copy-on-write, we either ...
3924          */
3925         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3926                 /*
3927                  * If we want to write the page, we may as well handle that
3928                  * now since we've got the map locked.
3929                  *
3930                  * If we don't need to write the page, we just demote the
3931                  * permissions allowed.
3932                  */
3933
3934                 if (fault_type & VM_PROT_WRITE) {
3935                         /*
3936                          * Make a new object, and place it in the object
3937                          * chain.  Note that no new references have appeared
3938                          * -- one just moved from the map to the new
3939                          * object.
3940                          */
3941
3942                         if (use_read_lock && vm_map_lock_upgrade(map)) {
3943                                 /* lost lock */
3944                                 use_read_lock = 0;
3945                                 goto RetryLookup;
3946                         }
3947                         use_read_lock = 0;
3948
3949                         vm_map_entry_shadow(entry, 0);
3950                 } else {
3951                         /*
3952                          * We're attempting to read a copy-on-write page --
3953                          * don't allow writes.
3954                          */
3955
3956                         prot &= ~VM_PROT_WRITE;
3957                 }
3958         }
3959
3960         /*
3961          * Create an object if necessary.
3962          */
3963         if (entry->object.vm_object == NULL && !map->system_map) {
3964                 if (use_read_lock && vm_map_lock_upgrade(map))  {
3965                         /* lost lock */
3966                         use_read_lock = 0;
3967                         goto RetryLookup;
3968                 }
3969                 use_read_lock = 0;
3970                 vm_map_entry_allocate_object(entry);
3971         }
3972
3973         /*
3974          * Return the object/offset from this entry.  If the entry was
3975          * copy-on-write or empty, it has been fixed up.
3976          */
3977
3978         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3979         *object = entry->object.vm_object;
3980
3981         /*
3982          * Return whether this is the only map sharing this data.  On
3983          * success we return with a read lock held on the map.  On failure
3984          * we return with the map unlocked.
3985          */
3986         *out_prot = prot;
3987 done:
3988         if (rv == KERN_SUCCESS) {
3989                 if (use_read_lock == 0)
3990                         vm_map_lock_downgrade(map);
3991         } else if (use_read_lock) {
3992                 vm_map_unlock_read(map);
3993         } else {
3994                 vm_map_unlock(map);
3995         }
3996         return (rv);
3997 }
3998
3999 /*
4000  * Releases locks acquired by a vm_map_lookup()
4001  * (according to the handle returned by that lookup).
4002  *
4003  * No other requirements.
4004  */
4005 void
4006 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
4007 {
4008         /*
4009          * Unlock the main-level map
4010          */
4011         vm_map_unlock_read(map);
4012         if (count)
4013                 vm_map_entry_release(count);
4014 }
4015
4016 #include "opt_ddb.h"
4017 #ifdef DDB
4018 #include <sys/kernel.h>
4019
4020 #include <ddb/ddb.h>
4021
4022 /*
4023  * Debugging only
4024  */
4025 DB_SHOW_COMMAND(map, vm_map_print)
4026 {
4027         static int nlines;
4028         /* XXX convert args. */
4029         vm_map_t map = (vm_map_t)addr;
4030         boolean_t full = have_addr;
4031
4032         vm_map_entry_t entry;
4033
4034         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4035             (void *)map,
4036             (void *)map->pmap, map->nentries, map->timestamp);
4037         nlines++;
4038
4039         if (!full && db_indent)
4040                 return;
4041
4042         db_indent += 2;
4043         for (entry = map->header.next; entry != &map->header;
4044             entry = entry->next) {
4045                 db_iprintf("map entry %p: start=%p, end=%p\n",
4046                     (void *)entry, (void *)entry->start, (void *)entry->end);
4047                 nlines++;
4048                 {
4049                         static char *inheritance_name[4] =
4050                         {"share", "copy", "none", "donate_copy"};
4051
4052                         db_iprintf(" prot=%x/%x/%s",
4053                             entry->protection,
4054                             entry->max_protection,
4055                             inheritance_name[(int)(unsigned char)entry->inheritance]);
4056                         if (entry->wired_count != 0)
4057                                 db_printf(", wired");
4058                 }
4059                 if (entry->maptype == VM_MAPTYPE_SUBMAP) {
4060                         /* XXX no %qd in kernel.  Truncate entry->offset. */
4061                         db_printf(", share=%p, offset=0x%lx\n",
4062                             (void *)entry->object.sub_map,
4063                             (long)entry->offset);
4064                         nlines++;
4065                         if ((entry->prev == &map->header) ||
4066                             (entry->prev->object.sub_map !=
4067                                 entry->object.sub_map)) {
4068                                 db_indent += 2;
4069                                 vm_map_print((db_expr_t)(intptr_t)
4070                                              entry->object.sub_map,
4071                                              full, 0, NULL);
4072                                 db_indent -= 2;
4073                         }
4074                 } else {
4075                         /* XXX no %qd in kernel.  Truncate entry->offset. */
4076                         db_printf(", object=%p, offset=0x%lx",
4077                             (void *)entry->object.vm_object,
4078                             (long)entry->offset);
4079                         if (entry->eflags & MAP_ENTRY_COW)
4080                                 db_printf(", copy (%s)",
4081                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4082                         db_printf("\n");
4083                         nlines++;
4084
4085                         if ((entry->prev == &map->header) ||
4086                             (entry->prev->object.vm_object !=
4087                                 entry->object.vm_object)) {
4088                                 db_indent += 2;
4089                                 vm_object_print((db_expr_t)(intptr_t)
4090                                                 entry->object.vm_object,
4091                                                 full, 0, NULL);
4092                                 nlines += 4;
4093                                 db_indent -= 2;
4094                         }
4095                 }
4096         }
4097         db_indent -= 2;
4098         if (db_indent == 0)
4099                 nlines = 0;
4100 }
4101
4102 /*
4103  * Debugging only
4104  */
4105 DB_SHOW_COMMAND(procvm, procvm)
4106 {
4107         struct proc *p;
4108
4109         if (have_addr) {
4110                 p = (struct proc *) addr;
4111         } else {
4112                 p = curproc;
4113         }
4114
4115         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4116             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4117             (void *)vmspace_pmap(p->p_vmspace));
4118
4119         vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
4120 }
4121
4122 #endif /* DDB */