b2b90f78e28b7478f7fbf84b74f06f4fd6fb7589
[dragonfly.git] / sys / dev / raid / aac / aac.c
1 /*-
2  * Copyright (c) 2000 Michael Smith
3  * Copyright (c) 2001 Scott Long
4  * Copyright (c) 2000 BSDi
5  * Copyright (c) 2001 Adaptec, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *      $FreeBSD: src/sys/dev/aac/aac.c,v 1.9.2.14 2003/04/08 13:22:08 scottl Exp $
30  *      $DragonFly: src/sys/dev/raid/aac/aac.c,v 1.18 2005/06/09 20:55:05 swildner Exp $
31  */
32
33 /*
34  * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
35  */
36
37 #include "opt_aac.h"
38
39 /* #include <stddef.h> */
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>
44 #include <sys/kthread.h>
45 #include <sys/sysctl.h>
46 #include <sys/poll.h>
47 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005
48 #include <sys/selinfo.h>
49 #else
50 #include <sys/select.h>
51 #endif
52
53 #include "aac_compat.h"
54
55 #include <sys/bus.h>
56 #include <sys/conf.h>
57 #include <sys/devicestat.h>
58 #include <sys/disk.h>
59 #include <sys/signalvar.h>
60 #include <sys/time.h>
61 #include <sys/eventhandler.h>
62
63 #include <machine/bus_memio.h>
64 #include <machine/bus.h>
65 #include <machine/resource.h>
66
67 #include "aacreg.h"
68 #include "aac_ioctl.h"
69 #include "aacvar.h"
70 #include "aac_tables.h"
71 #include "aac_cam.h"
72
73 static void     aac_startup(void *arg);
74 static void     aac_add_container(struct aac_softc *sc,
75                                   struct aac_mntinforesp *mir, int f);
76 static void     aac_get_bus_info(struct aac_softc *sc);
77
78 /* Command Processing */
79 static void     aac_timeout(void *ssc);
80 static int      aac_start(struct aac_command *cm);
81 static void     aac_complete(void *context, int pending);
82 static int      aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
83 static void     aac_bio_complete(struct aac_command *cm);
84 static int      aac_wait_command(struct aac_command *cm, int timeout);
85 static void     aac_host_command(struct aac_softc *sc);
86 static void     aac_host_response(struct aac_softc *sc);
87
88 /* Command Buffer Management */
89 static void     aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
90                                        int nseg, int error);
91 static int      aac_alloc_commands(struct aac_softc *sc);
92 static void     aac_free_commands(struct aac_softc *sc);
93 static void     aac_map_command(struct aac_command *cm);
94 static void     aac_unmap_command(struct aac_command *cm);
95
96 /* Hardware Interface */
97 static void     aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
98                                int error);
99 static int      aac_check_firmware(struct aac_softc *sc);
100 static int      aac_init(struct aac_softc *sc);
101 static int      aac_sync_command(struct aac_softc *sc, u_int32_t command,
102                                  u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
103                                  u_int32_t arg3, u_int32_t *sp);
104 static int      aac_enqueue_fib(struct aac_softc *sc, int queue,
105                                 struct aac_command *cm);
106 static int      aac_dequeue_fib(struct aac_softc *sc, int queue,
107                                 u_int32_t *fib_size, struct aac_fib **fib_addr);
108 static int      aac_enqueue_response(struct aac_softc *sc, int queue,
109                                      struct aac_fib *fib);
110
111 /* Falcon/PPC interface */
112 static int      aac_fa_get_fwstatus(struct aac_softc *sc);
113 static void     aac_fa_qnotify(struct aac_softc *sc, int qbit);
114 static int      aac_fa_get_istatus(struct aac_softc *sc);
115 static void     aac_fa_clear_istatus(struct aac_softc *sc, int mask);
116 static void     aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
117                                    u_int32_t arg0, u_int32_t arg1,
118                                    u_int32_t arg2, u_int32_t arg3);
119 static int      aac_fa_get_mailbox(struct aac_softc *sc, int mb);
120 static void     aac_fa_set_interrupts(struct aac_softc *sc, int enable);
121
122 struct aac_interface aac_fa_interface = {
123         aac_fa_get_fwstatus,
124         aac_fa_qnotify,
125         aac_fa_get_istatus,
126         aac_fa_clear_istatus,
127         aac_fa_set_mailbox,
128         aac_fa_get_mailbox,
129         aac_fa_set_interrupts
130 };
131
132 /* StrongARM interface */
133 static int      aac_sa_get_fwstatus(struct aac_softc *sc);
134 static void     aac_sa_qnotify(struct aac_softc *sc, int qbit);
135 static int      aac_sa_get_istatus(struct aac_softc *sc);
136 static void     aac_sa_clear_istatus(struct aac_softc *sc, int mask);
137 static void     aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
138                                    u_int32_t arg0, u_int32_t arg1,
139                                    u_int32_t arg2, u_int32_t arg3);
140 static int      aac_sa_get_mailbox(struct aac_softc *sc, int mb);
141 static void     aac_sa_set_interrupts(struct aac_softc *sc, int enable);
142
143 struct aac_interface aac_sa_interface = {
144         aac_sa_get_fwstatus,
145         aac_sa_qnotify,
146         aac_sa_get_istatus,
147         aac_sa_clear_istatus,
148         aac_sa_set_mailbox,
149         aac_sa_get_mailbox,
150         aac_sa_set_interrupts
151 };
152
153 /* i960Rx interface */  
154 static int      aac_rx_get_fwstatus(struct aac_softc *sc);
155 static void     aac_rx_qnotify(struct aac_softc *sc, int qbit);
156 static int      aac_rx_get_istatus(struct aac_softc *sc);
157 static void     aac_rx_clear_istatus(struct aac_softc *sc, int mask);
158 static void     aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
159                                    u_int32_t arg0, u_int32_t arg1,
160                                    u_int32_t arg2, u_int32_t arg3);
161 static int      aac_rx_get_mailbox(struct aac_softc *sc, int mb);
162 static void     aac_rx_set_interrupts(struct aac_softc *sc, int enable);
163
164 struct aac_interface aac_rx_interface = {
165         aac_rx_get_fwstatus,
166         aac_rx_qnotify,
167         aac_rx_get_istatus,
168         aac_rx_clear_istatus,
169         aac_rx_set_mailbox,
170         aac_rx_get_mailbox,
171         aac_rx_set_interrupts
172 };
173
174 /* Debugging and Diagnostics */
175 static void     aac_describe_controller(struct aac_softc *sc);
176 static char     *aac_describe_code(struct aac_code_lookup *table,
177                                    u_int32_t code);
178
179 /* Management Interface */
180 static d_open_t         aac_open;
181 static d_close_t        aac_close;
182 static d_ioctl_t        aac_ioctl;
183 static d_poll_t         aac_poll;
184 static int              aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
185 static void             aac_handle_aif(struct aac_softc *sc,
186                                            struct aac_fib *fib);
187 static int              aac_rev_check(struct aac_softc *sc, caddr_t udata);
188 static int              aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
189 static int              aac_return_aif(struct aac_softc *sc, caddr_t uptr);
190 static int              aac_query_disk(struct aac_softc *sc, caddr_t uptr);
191
192 #define AAC_CDEV_MAJOR  150
193
194 static struct cdevsw aac_cdevsw = {
195         "aac",                  /* name */
196         AAC_CDEV_MAJOR,         /* major */
197         0,                      /* flags */
198         NULL,                   /* port */
199         NULL,                   /* clone */
200
201         aac_open,               /* open */
202         aac_close,              /* close */
203         noread,                 /* read */
204         nowrite,                /* write */
205         aac_ioctl,              /* ioctl */
206         aac_poll,               /* poll */
207         nommap,                 /* mmap */
208         nostrategy,             /* strategy */
209         nodump,                 /* dump */
210         nopsize                 /* psize */
211 };
212
213 DECLARE_DUMMY_MODULE(aac);
214
215 MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
216
217 /* sysctl node */
218 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
219
220 /*
221  * Device Interface
222  */
223
224 /*
225  * Initialise the controller and softc
226  */
227 int
228 aac_attach(struct aac_softc *sc)
229 {
230         int error, unit;
231
232         debug_called(1);
233         callout_init(&sc->aac_watchdog);
234
235         /*
236          * Initialise per-controller queues.
237          */
238         aac_initq_free(sc);
239         aac_initq_ready(sc);
240         aac_initq_busy(sc);
241         aac_initq_complete(sc);
242         aac_initq_bio(sc);
243
244 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005
245         /*
246          * Initialise command-completion task.
247          */
248         TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
249 #endif
250
251         /* disable interrupts before we enable anything */
252         AAC_MASK_INTERRUPTS(sc);
253
254         /* mark controller as suspended until we get ourselves organised */
255         sc->aac_state |= AAC_STATE_SUSPEND;
256
257         /*
258          * Check that the firmware on the card is supported.
259          */
260         if ((error = aac_check_firmware(sc)) != 0)
261                 return(error);
262
263         /* Init the sync fib lock */
264         AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
265
266         /*
267          * Initialise the adapter.
268          */
269         if ((error = aac_init(sc)) != 0)
270                 return(error);
271
272         /* 
273          * Print a little information about the controller.
274          */
275         aac_describe_controller(sc);
276
277         /*
278          * Register to probe our containers later.
279          */
280         TAILQ_INIT(&sc->aac_container_tqh);
281         AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
282
283         /*
284          * Lock for the AIF queue
285          */
286         AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
287
288         sc->aac_ich.ich_func = aac_startup;
289         sc->aac_ich.ich_arg = sc;
290         sc->aac_ich.ich_desc = "aac";
291         if (config_intrhook_establish(&sc->aac_ich) != 0) {
292                 device_printf(sc->aac_dev,
293                               "can't establish configuration hook\n");
294                 return(ENXIO);
295         }
296
297         /*
298          * Make the control device.
299          */
300         unit = device_get_unit(sc->aac_dev);
301         cdevsw_add(&aac_cdevsw, -1, unit);
302         sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_WHEEL, 0644,
303                                  "aac%d", unit);
304 #if defined(__FreeBSD__) && __FreeBSD_version > 500005
305         (void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
306         (void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
307 #endif
308         sc->aac_dev_t->si_drv1 = sc;
309         reference_dev(sc->aac_dev_t);
310
311         /* Create the AIF thread */
312 #if defined(__FreeBSD__) && __FreeBSD_version > 500005
313         if (kthread_create((void(*)(void *))aac_host_command, sc,
314                            &sc->aifthread, 0, "aac%daif", unit))
315 #else
316         if (kthread_create((void(*)(void *))aac_host_command, sc,
317                            &sc->aifthread, "aac%daif", unit))
318 #endif
319                 panic("Could not create AIF thread\n");
320
321         /* Register the shutdown method to only be called post-dump */
322         if ((EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown, sc->aac_dev,
323                                    SHUTDOWN_PRI_DEFAULT)) == NULL)
324         device_printf(sc->aac_dev, "shutdown event registration failed\n");
325
326         /* Register with CAM for the non-DASD devices */
327         if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0)
328                 aac_get_bus_info(sc);
329
330         return(0);
331 }
332
333 /*
334  * Probe for containers, create disks.
335  */
336 static void
337 aac_startup(void *arg)
338 {
339         struct aac_softc *sc;
340         struct aac_fib *fib;
341         struct aac_mntinfo *mi;
342         struct aac_mntinforesp *mir = NULL;
343         int i = 0;
344
345         debug_called(1);
346
347         sc = (struct aac_softc *)arg;
348
349         /* disconnect ourselves from the intrhook chain */
350         config_intrhook_disestablish(&sc->aac_ich);
351
352         aac_alloc_sync_fib(sc, &fib, 0);
353         mi = (struct aac_mntinfo *)&fib->data[0];
354
355         /* loop over possible containers */
356         do {
357                 /* request information on this container */
358                 bzero(mi, sizeof(struct aac_mntinfo));
359                 mi->Command = VM_NameServe;
360                 mi->MntType = FT_FILESYS;
361                 mi->MntCount = i;
362                 if (aac_sync_fib(sc, ContainerCommand, 0, fib,
363                                  sizeof(struct aac_mntinfo))) {
364                         debug(2, "error probing container %d", i);
365                         continue;
366                 }
367
368                 mir = (struct aac_mntinforesp *)&fib->data[0];
369                 aac_add_container(sc, mir, 0);
370                 i++;
371         } while ((i < mir->MntRespCount) && (i < AAC_MAX_CONTAINERS));
372
373         aac_release_sync_fib(sc);
374
375         /* poke the bus to actually attach the child devices */
376         if (bus_generic_attach(sc->aac_dev))
377                 device_printf(sc->aac_dev, "bus_generic_attach failed\n");
378
379         /* mark the controller up */
380         sc->aac_state &= ~AAC_STATE_SUSPEND;
381
382         /* enable interrupts now */
383         AAC_UNMASK_INTERRUPTS(sc);
384
385         /* enable the timeout watchdog */
386         callout_reset(&sc->aac_watchdog, AAC_PERIODIC_INTERVAL * hz,
387                       aac_timeout, sc);
388 }
389
390 /*
391  * Create a device to respresent a new container
392  */
393 static void
394 aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
395 {
396         struct aac_container *co;
397         device_t child;
398
399         /* 
400          * Check container volume type for validity.  Note that many of
401          * the possible types may never show up.
402          */
403         if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
404                 MALLOC(co, struct aac_container *, sizeof *co, M_AACBUF,
405                        M_INTWAIT);
406                 debug(1, "id %x  name '%.16s'  size %u  type %d", 
407                       mir->MntTable[0].ObjectId,
408                       mir->MntTable[0].FileSystemName,
409                       mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
410         
411                 if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
412                         device_printf(sc->aac_dev, "device_add_child failed\n");
413                 else
414                         device_set_ivars(child, co);
415                 device_set_desc(child, aac_describe_code(aac_container_types,
416                                 mir->MntTable[0].VolType));
417                 co->co_disk = child;
418                 co->co_found = f;
419                 bcopy(&mir->MntTable[0], &co->co_mntobj,
420                       sizeof(struct aac_mntobj));
421                 AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
422                 TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
423                 AAC_LOCK_RELEASE(&sc->aac_container_lock);
424         }
425 }
426
427 /*
428  * Free all of the resources associated with (sc)
429  *
430  * Should not be called if the controller is active.
431  */
432 void
433 aac_free(struct aac_softc *sc)
434 {
435         debug_called(1);
436
437         /* remove the control device */
438         if (sc->aac_dev_t != NULL)
439                 destroy_dev(sc->aac_dev_t);
440
441         /* throw away any FIB buffers, discard the FIB DMA tag */
442         if (sc->aac_fibs != NULL)
443                 aac_free_commands(sc);
444         if (sc->aac_fib_dmat)
445                 bus_dma_tag_destroy(sc->aac_fib_dmat);
446
447         /* destroy the common area */
448         if (sc->aac_common) {
449                 bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
450                 bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
451                                 sc->aac_common_dmamap);
452         }
453         if (sc->aac_common_dmat)
454                 bus_dma_tag_destroy(sc->aac_common_dmat);
455
456         /* disconnect the interrupt handler */
457         if (sc->aac_intr)
458                 bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
459         if (sc->aac_irq != NULL)
460                 bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
461                                      sc->aac_irq);
462
463         /* destroy data-transfer DMA tag */
464         if (sc->aac_buffer_dmat)
465                 bus_dma_tag_destroy(sc->aac_buffer_dmat);
466
467         /* destroy the parent DMA tag */
468         if (sc->aac_parent_dmat)
469                 bus_dma_tag_destroy(sc->aac_parent_dmat);
470
471         /* release the register window mapping */
472         if (sc->aac_regs_resource != NULL) {
473                 bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
474                                      sc->aac_regs_rid, sc->aac_regs_resource);
475         }
476         cdevsw_remove(&aac_cdevsw, -1, device_get_unit(sc->aac_dev));
477 }
478
479 /*
480  * Disconnect from the controller completely, in preparation for unload.
481  */
482 int
483 aac_detach(device_t dev)
484 {
485         struct aac_softc *sc;
486 #if AAC_BROKEN
487         int error;
488 #endif
489
490         debug_called(1);
491
492         sc = device_get_softc(dev);
493
494         callout_stop(&sc->aac_watchdog);
495
496         if (sc->aac_state & AAC_STATE_OPEN)
497         return(EBUSY);
498
499 #if AAC_BROKEN
500         if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
501                 sc->aifflags |= AAC_AIFFLAGS_EXIT;
502                 wakeup(sc->aifthread);
503                 tsleep(sc->aac_dev, PCATCH, "aacdch", 30 * hz);
504         }
505
506         if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
507                 panic("Cannot shutdown AIF thread\n");
508
509         if ((error = aac_shutdown(dev)))
510                 return(error);
511
512         aac_free(sc);
513
514         return(0);
515 #else
516         return (EBUSY);
517 #endif
518 }
519
520 /*
521  * Bring the controller down to a dormant state and detach all child devices.
522  *
523  * This function is called before detach or system shutdown.
524  *
525  * Note that we can assume that the bioq on the controller is empty, as we won't
526  * allow shutdown if any device is open.
527  */
528 int
529 aac_shutdown(device_t dev)
530 {
531         struct aac_softc *sc;
532         struct aac_fib *fib;
533         struct aac_close_command *cc;
534
535         debug_called(1);
536
537         sc = device_get_softc(dev);
538
539         crit_enter();
540
541         sc->aac_state |= AAC_STATE_SUSPEND;
542
543         /* 
544          * Send a Container shutdown followed by a HostShutdown FIB to the
545          * controller to convince it that we don't want to talk to it anymore.
546          * We've been closed and all I/O completed already
547          */
548         device_printf(sc->aac_dev, "shutting down controller...");
549
550         aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
551         cc = (struct aac_close_command *)&fib->data[0];
552
553         bzero(cc, sizeof(struct aac_close_command));
554         cc->Command = VM_CloseAll;
555         cc->ContainerId = 0xffffffff;
556         if (aac_sync_fib(sc, ContainerCommand, 0, fib,
557             sizeof(struct aac_close_command)))
558                 printf("FAILED.\n");
559         else {
560                 fib->data[0] = 0;
561                 /*
562                  * XXX Issuing this command to the controller makes it shut down
563                  * but also keeps it from coming back up without a reset of the
564                  * PCI bus.  This is not desirable if you are just unloading the
565                  * driver module with the intent to reload it later.
566                  */
567                 if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
568                     fib, 1)) {
569                         printf("FAILED.\n");
570                 } else {
571                         printf("done.\n");
572                 }
573         }
574
575         AAC_MASK_INTERRUPTS(sc);
576
577         crit_exit();
578         return(0);
579 }
580
581 /*
582  * Bring the controller to a quiescent state, ready for system suspend.
583  */
584 int
585 aac_suspend(device_t dev)
586 {
587         struct aac_softc *sc;
588
589         debug_called(1);
590
591         sc = device_get_softc(dev);
592
593         crit_enter();
594
595         sc->aac_state |= AAC_STATE_SUSPEND;
596         
597         AAC_MASK_INTERRUPTS(sc);
598         crit_exit();
599         return(0);
600 }
601
602 /*
603  * Bring the controller back to a state ready for operation.
604  */
605 int
606 aac_resume(device_t dev)
607 {
608         struct aac_softc *sc;
609
610         debug_called(1);
611
612         sc = device_get_softc(dev);
613
614         sc->aac_state &= ~AAC_STATE_SUSPEND;
615         AAC_UNMASK_INTERRUPTS(sc);
616         return(0);
617 }
618
619 /*
620  * Take an interrupt.
621  */
622 void
623 aac_intr(void *arg)
624 {
625         struct aac_softc *sc;
626         u_int16_t reason;
627         u_int32_t *resp_queue;
628
629         debug_called(2);
630
631         sc = (struct aac_softc *)arg;
632
633         /*
634          * Optimize the common case of adapter response interrupts.
635          * We must read from the card prior to processing the responses
636          * to ensure the clear is flushed prior to accessing the queues.
637          * Reading the queues from local memory might save us a PCI read.
638          */
639         resp_queue = sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE];
640         if (resp_queue[AAC_PRODUCER_INDEX] != resp_queue[AAC_CONSUMER_INDEX])
641                 reason = AAC_DB_RESPONSE_READY;
642         else 
643                 reason = AAC_GET_ISTATUS(sc);
644         AAC_CLEAR_ISTATUS(sc, reason);
645         (void)AAC_GET_ISTATUS(sc);
646
647         /* It's not ok to return here because of races with the previous step */
648         if (reason & AAC_DB_RESPONSE_READY)
649                 aac_host_response(sc);
650
651         /* controller wants to talk to the log */
652         if (reason & AAC_DB_PRINTF)
653                 aac_print_printf(sc);
654
655         /* controller has a message for us? */
656         if (reason & AAC_DB_COMMAND_READY) {
657                 /* XXX What happens if the thread is already awake? */
658                 if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
659                         sc->aifflags |= AAC_AIFFLAGS_PENDING;
660                         wakeup(sc->aifthread);
661                 }
662         }
663 }
664
665 /*
666  * Command Processing
667  */
668
669 /*
670  * Start as much queued I/O as possible on the controller
671  */
672 void
673 aac_startio(struct aac_softc *sc)
674 {
675         struct aac_command *cm;
676
677         debug_called(2);
678
679         for (;;) {
680                 /*
681                  * Try to get a command that's been put off for lack of 
682                  * resources
683                  */
684                 cm = aac_dequeue_ready(sc);
685
686                 /*
687                  * Try to build a command off the bio queue (ignore error 
688                  * return)
689                  */
690                 if (cm == NULL)
691                         aac_bio_command(sc, &cm);
692
693                 /* nothing to do? */
694                 if (cm == NULL)
695                         break;
696
697                 /* try to give the command to the controller */
698                 if (aac_start(cm) == EBUSY) {
699                         /* put it on the ready queue for later */
700                         aac_requeue_ready(cm);
701                         break;
702                 }
703         }
704 }
705
706 /*
707  * Deliver a command to the controller; allocate controller resources at the
708  * last moment when possible.
709  */
710 static int
711 aac_start(struct aac_command *cm)
712 {
713         struct aac_softc *sc;
714         int error;
715
716         debug_called(2);
717
718         sc = cm->cm_sc;
719
720         /* get the command mapped */
721         aac_map_command(cm);
722
723         /* fix up the address values in the FIB */
724         cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
725         cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
726
727         /* save a pointer to the command for speedy reverse-lookup */
728         cm->cm_fib->Header.SenderData = (u_int32_t)cm;  /* XXX 64-bit physical
729                                                          * address issue */
730         /* put the FIB on the outbound queue */
731         error = aac_enqueue_fib(sc, cm->cm_queue, cm);
732         return(error);
733 }
734
735 /*
736  * Handle notification of one or more FIBs coming from the controller.
737  */
738 static void
739 aac_host_command(struct aac_softc *sc)
740 {
741         struct aac_fib *fib;
742         u_int32_t fib_size;
743         int size;
744
745         debug_called(2);
746
747         sc->aifflags |= AAC_AIFFLAGS_RUNNING;
748
749         while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
750                 if (!(sc->aifflags & AAC_AIFFLAGS_PENDING))
751                         tsleep(sc->aifthread, 0, "aifthd", 15 * hz);
752
753                 sc->aifflags &= ~AAC_AIFFLAGS_PENDING;
754                 for (;;) {
755                         if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
756                                             &fib_size, &fib))
757                                 break;  /* nothing to do */
758         
759                         AAC_PRINT_FIB(sc, fib);
760         
761                         switch (fib->Header.Command) {
762                         case AifRequest:
763                                 aac_handle_aif(sc, fib);
764                                 break;
765                         default:
766                                 device_printf(sc->aac_dev, "unknown command "
767                                               "from controller\n");
768                                 break;
769                         }
770
771                         /* Return the AIF to the controller. */
772                         if ((fib->Header.XferState == 0) ||
773                             (fib->Header.StructType != AAC_FIBTYPE_TFIB))
774                                 break;
775
776                         if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
777                                 fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
778                                 *(AAC_FSAStatus*)fib->data = ST_OK;
779
780                                 /* XXX Compute the Size field? */
781                                 size = fib->Header.Size;
782                                 if (size > sizeof(struct aac_fib)) {
783                                         size = sizeof(struct aac_fib);
784                                         fib->Header.Size = size;
785                                 }
786                                 /*
787                                  * Since we did not generate this command, it
788                                  * cannot go through the normal
789                                  * enqueue->startio chain.
790                                  */
791                                 aac_enqueue_response(sc,
792                                                      AAC_ADAP_NORM_RESP_QUEUE,
793                                                      fib);
794                         }
795                 }
796         }
797         sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
798         wakeup(sc->aac_dev);
799
800 #if defined(__FreeBSD__) && __FreeBSD_version > 500005
801         mtx_lock(&Giant);
802 #endif
803         kthread_exit();
804 }
805
806 /*
807  * Handle notification of one or more FIBs completed by the controller
808  */
809 static void
810 aac_host_response(struct aac_softc *sc)
811 {
812         struct aac_command *cm;
813         struct aac_fib *fib;
814         u_int32_t fib_size;
815
816         debug_called(2);
817
818         for (;;) {
819                 /* look for completed FIBs on our queue */
820                 if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
821                                     &fib))
822                         break;  /* nothing to do */
823         
824                 /* get the command, unmap and queue for later processing */
825                 cm = (struct aac_command *)fib->Header.SenderData;
826                 if (cm == NULL) {
827                         AAC_PRINT_FIB(sc, fib);
828                 } else {
829                         aac_remove_busy(cm);
830                         aac_unmap_command(cm);          /* XXX defer? */
831                         aac_enqueue_complete(cm);
832                 }
833         }
834
835         /* handle completion processing */
836 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005
837         taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
838 #else
839         aac_complete(sc, 0);
840 #endif
841 }
842
843 /*
844  * Process completed commands.
845  */
846 static void
847 aac_complete(void *context, int pending)
848 {
849         struct aac_softc *sc;
850         struct aac_command *cm;
851         
852         debug_called(2);
853
854         sc = (struct aac_softc *)context;
855
856         /* pull completed commands off the queue */
857         for (;;) {
858                 cm = aac_dequeue_complete(sc);
859                 if (cm == NULL)
860                         break;
861                 cm->cm_flags |= AAC_CMD_COMPLETED;
862
863                 /* is there a completion handler? */
864                 if (cm->cm_complete != NULL) {
865                         cm->cm_complete(cm);
866                 } else {
867                         /* assume that someone is sleeping on this command */
868                         wakeup(cm);
869                 }
870         }
871
872         /* see if we can start some more I/O */
873         aac_startio(sc);
874 }
875
876 /*
877  * Handle a bio submitted from a disk device.
878  */
879 void
880 aac_submit_bio(struct bio *bp)
881 {
882         struct aac_disk *ad;
883         struct aac_softc *sc;
884
885         debug_called(2);
886
887         ad = (struct aac_disk *)bp->bio_dev->si_drv1;
888         sc = ad->ad_controller;
889
890         /* queue the BIO and try to get some work done */
891         aac_enqueue_bio(sc, bp);
892         aac_startio(sc);
893 }
894
895 /*
896  * Get a bio and build a command to go with it.
897  */
898 static int
899 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
900 {
901         struct aac_command *cm;
902         struct aac_fib *fib;
903         struct aac_blockread *br;
904         struct aac_blockwrite *bw;
905         struct aac_disk *ad;
906         struct bio *bp;
907
908         debug_called(2);
909
910         /* get the resources we will need */
911         cm = NULL;
912         if ((bp = aac_dequeue_bio(sc)) == NULL)
913                 goto fail;
914         if (aac_alloc_command(sc, &cm)) /* get a command */
915                 goto fail;
916
917         /* fill out the command */
918         cm->cm_data = (void *)bp->bio_data;
919         cm->cm_datalen = bp->bio_bcount;
920         cm->cm_complete = aac_bio_complete;
921         cm->cm_private = bp;
922         cm->cm_timestamp = time_second;
923         cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
924
925         /* build the FIB */
926         fib = cm->cm_fib;
927         fib->Header.XferState =  
928                 AAC_FIBSTATE_HOSTOWNED   | 
929                 AAC_FIBSTATE_INITIALISED | 
930                 AAC_FIBSTATE_EMPTY       | 
931                 AAC_FIBSTATE_FROMHOST    |
932                 AAC_FIBSTATE_REXPECTED   |
933                 AAC_FIBSTATE_NORM        |
934                 AAC_FIBSTATE_ASYNC       |
935                 AAC_FIBSTATE_FAST_RESPONSE;
936         fib->Header.Command = ContainerCommand;
937         fib->Header.Size = sizeof(struct aac_fib_header);
938
939         /* build the read/write request */
940         ad = (struct aac_disk *)bp->bio_dev->si_drv1;
941         if (BIO_IS_READ(bp)) {
942                 br = (struct aac_blockread *)&fib->data[0];
943                 br->Command = VM_CtBlockRead;
944                 br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
945                 br->BlockNumber = bp->bio_pblkno;
946                 br->ByteCount = bp->bio_bcount;
947                 fib->Header.Size += sizeof(struct aac_blockread);
948                 cm->cm_sgtable = &br->SgMap;
949                 cm->cm_flags |= AAC_CMD_DATAIN;
950         } else {
951                 bw = (struct aac_blockwrite *)&fib->data[0];
952                 bw->Command = VM_CtBlockWrite;
953                 bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
954                 bw->BlockNumber = bp->bio_pblkno;
955                 bw->ByteCount = bp->bio_bcount;
956                 bw->Stable = CUNSTABLE; /* XXX what's appropriate here? */
957                 fib->Header.Size += sizeof(struct aac_blockwrite);
958                 cm->cm_flags |= AAC_CMD_DATAOUT;
959                 cm->cm_sgtable = &bw->SgMap;
960         }
961
962         *cmp = cm;
963         return(0);
964
965 fail:
966         if (bp != NULL)
967                 aac_enqueue_bio(sc, bp);
968         if (cm != NULL)
969                 aac_release_command(cm);
970         return(ENOMEM);
971 }
972
973 /*
974  * Handle a bio-instigated command that has been completed.
975  */
976 static void
977 aac_bio_complete(struct aac_command *cm)
978 {
979         struct aac_blockread_response *brr;
980         struct aac_blockwrite_response *bwr;
981         struct bio *bp;
982         AAC_FSAStatus status;
983
984         /* fetch relevant status and then release the command */
985         bp = (struct bio *)cm->cm_private;
986         if (BIO_IS_READ(bp)) {
987                 brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
988                 status = brr->Status;
989         } else {
990                 bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
991                 status = bwr->Status;
992         }
993         aac_release_command(cm);
994
995         /* fix up the bio based on status */
996         if (status == ST_OK) {
997                 bp->bio_resid = 0;
998         } else {
999                 bp->bio_error = EIO;
1000                 bp->bio_flags |= BIO_ERROR;
1001                 /* pass an error string out to the disk layer */
1002                 bp->bio_driver1 = aac_describe_code(aac_command_status_table,
1003                                                     status);
1004         }
1005         aac_biodone(bp);
1006 }
1007
1008 /*
1009  * Dump a block of data to the controller.  If the queue is full, tell the
1010  * caller to hold off and wait for the queue to drain.
1011  */
1012 int
1013 aac_dump_enqueue(struct aac_disk *ad, u_int32_t lba, void *data, int dumppages)
1014 {
1015         struct aac_softc *sc;
1016         struct aac_command *cm;
1017         struct aac_fib *fib;
1018         struct aac_blockwrite *bw;
1019
1020         sc = ad->ad_controller;
1021         cm = NULL;
1022
1023         if (aac_alloc_command(sc, &cm))
1024                 return (EBUSY);
1025
1026         /* fill out the command */
1027         cm->cm_data = data;
1028         cm->cm_datalen = dumppages * PAGE_SIZE;
1029         cm->cm_complete = NULL;
1030         cm->cm_private = NULL;
1031         cm->cm_timestamp = time_second;
1032         cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1033
1034         /* build the FIB */
1035         fib = cm->cm_fib;
1036         fib->Header.XferState =  
1037         AAC_FIBSTATE_HOSTOWNED   | 
1038         AAC_FIBSTATE_INITIALISED | 
1039         AAC_FIBSTATE_FROMHOST    |
1040         AAC_FIBSTATE_REXPECTED   |
1041         AAC_FIBSTATE_NORM;
1042         fib->Header.Command = ContainerCommand;
1043         fib->Header.Size = sizeof(struct aac_fib_header);
1044
1045         bw = (struct aac_blockwrite *)&fib->data[0];
1046         bw->Command = VM_CtBlockWrite;
1047         bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1048         bw->BlockNumber = lba;
1049         bw->ByteCount = dumppages * PAGE_SIZE;
1050         bw->Stable = CUNSTABLE;         /* XXX what's appropriate here? */
1051         fib->Header.Size += sizeof(struct aac_blockwrite);
1052         cm->cm_flags |= AAC_CMD_DATAOUT;
1053         cm->cm_sgtable = &bw->SgMap;
1054
1055         return (aac_start(cm));
1056 }
1057
1058 /*
1059  * Wait for the card's queue to drain when dumping.  Also check for monitor
1060  * printf's
1061  */
1062 void
1063 aac_dump_complete(struct aac_softc *sc)
1064 {
1065         struct aac_fib *fib;
1066         struct aac_command *cm;
1067         u_int16_t reason;
1068         u_int32_t pi, ci, fib_size;
1069
1070         do {
1071                 reason = AAC_GET_ISTATUS(sc);
1072                 if (reason & AAC_DB_RESPONSE_READY) {
1073                         AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY);
1074                         for (;;) {
1075                                 if (aac_dequeue_fib(sc,
1076                                                     AAC_HOST_NORM_RESP_QUEUE,
1077                                                     &fib_size, &fib))
1078                                         break;
1079                                 cm = (struct aac_command *)
1080                                         fib->Header.SenderData;
1081                                 if (cm == NULL)
1082                                         AAC_PRINT_FIB(sc, fib);
1083                                 else {
1084                                         aac_remove_busy(cm);
1085                                         aac_unmap_command(cm);
1086                                         aac_enqueue_complete(cm);
1087                                         aac_release_command(cm);
1088                                 }
1089                         }
1090                 }
1091                 if (reason & AAC_DB_PRINTF) {
1092                         AAC_CLEAR_ISTATUS(sc, AAC_DB_PRINTF);
1093                         aac_print_printf(sc);
1094                 }
1095                 pi = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][
1096                         AAC_PRODUCER_INDEX];
1097                 ci = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][        
1098                         AAC_CONSUMER_INDEX];
1099         } while (ci != pi);
1100
1101         return;
1102 }
1103
1104 /*
1105  * Submit a command to the controller, return when it completes.
1106  * XXX This is very dangerous!  If the card has gone out to lunch, we could
1107  *     be stuck here forever.  At the same time, signals are not caught
1108  *     because there is a risk that a signal could wakeup the tsleep before
1109  *     the card has a chance to complete the command.  The passed in timeout
1110  *     is ignored for the same reason.  Since there is no way to cancel a
1111  *     command in progress, we should probably create a 'dead' queue where
1112  *     commands go that have been interrupted/timed-out/etc, that keeps them
1113  *     out of the free pool.  That way, if the card is just slow, it won't
1114  *     spam the memory of a command that has been recycled.
1115  */
1116 static int
1117 aac_wait_command(struct aac_command *cm, int timeout)
1118 {
1119         int error = 0;
1120
1121         debug_called(2);
1122
1123         /* Put the command on the ready queue and get things going */
1124         cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1125         aac_enqueue_ready(cm);
1126         aac_startio(cm->cm_sc);
1127         crit_enter();
1128         while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1129                 error = tsleep(cm, 0, "aacwait", 0);
1130         }
1131         crit_exit();
1132         return(error);
1133 }
1134
1135 /*
1136  *Command Buffer Management
1137  */
1138
1139 /*
1140  * Allocate a command.
1141  */
1142 int
1143 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1144 {
1145         struct aac_command *cm;
1146
1147         debug_called(3);
1148
1149         if ((cm = aac_dequeue_free(sc)) == NULL)
1150                 return(ENOMEM);
1151
1152         *cmp = cm;
1153         return(0);
1154 }
1155
1156 /*
1157  * Release a command back to the freelist.
1158  */
1159 void
1160 aac_release_command(struct aac_command *cm)
1161 {
1162         debug_called(3);
1163
1164         /* (re)initialise the command/FIB */
1165         cm->cm_sgtable = NULL;
1166         cm->cm_flags = 0;
1167         cm->cm_complete = NULL;
1168         cm->cm_private = NULL;
1169         cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1170         cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1171         cm->cm_fib->Header.Flags = 0;
1172         cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1173
1174         /* 
1175          * These are duplicated in aac_start to cover the case where an
1176          * intermediate stage may have destroyed them.  They're left
1177          * initialised here for debugging purposes only.
1178          */
1179         cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
1180         cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1181         cm->cm_fib->Header.SenderData = 0;
1182
1183         aac_enqueue_free(cm);
1184 }
1185
1186 /*
1187  * Map helper for command/FIB allocation.
1188  */
1189 static void
1190 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1191 {
1192         struct aac_softc *sc;
1193
1194         sc = (struct aac_softc *)arg;
1195
1196         debug_called(3);
1197
1198         sc->aac_fibphys = segs[0].ds_addr;
1199 }
1200
1201 /*
1202  * Allocate and initialise commands/FIBs for this adapter.
1203  */
1204 static int
1205 aac_alloc_commands(struct aac_softc *sc)
1206 {
1207         struct aac_command *cm;
1208         int i;
1209  
1210         debug_called(1);
1211
1212         /* allocate the FIBs in DMAable memory and load them */
1213         if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&sc->aac_fibs,
1214                          BUS_DMA_NOWAIT, &sc->aac_fibmap)) {
1215                 return(ENOMEM);
1216         }
1217
1218         bus_dmamap_load(sc->aac_fib_dmat, sc->aac_fibmap, sc->aac_fibs, 
1219                         AAC_FIB_COUNT * sizeof(struct aac_fib),
1220                         aac_map_command_helper, sc, 0);
1221
1222         /* initialise constant fields in the command structure */
1223         bzero(sc->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1224         for (i = 0; i < AAC_FIB_COUNT; i++) {
1225                 cm = &sc->aac_command[i];
1226                 cm->cm_sc = sc;
1227                 cm->cm_fib = sc->aac_fibs + i;
1228                 cm->cm_fibphys = sc->aac_fibphys + (i * sizeof(struct aac_fib));
1229
1230                 if (!bus_dmamap_create(sc->aac_buffer_dmat, 0, &cm->cm_datamap))
1231                         aac_release_command(cm);
1232         }
1233         return(0);
1234 }
1235
1236 /*
1237  * Free FIBs owned by this adapter.
1238  */
1239 static void
1240 aac_free_commands(struct aac_softc *sc)
1241 {
1242         int i;
1243
1244         debug_called(1);
1245
1246         for (i = 0; i < AAC_FIB_COUNT; i++)
1247                 bus_dmamap_destroy(sc->aac_buffer_dmat,
1248                                    sc->aac_command[i].cm_datamap);
1249
1250         bus_dmamap_unload(sc->aac_fib_dmat, sc->aac_fibmap);
1251         bus_dmamem_free(sc->aac_fib_dmat, sc->aac_fibs, sc->aac_fibmap);
1252 }
1253
1254 /*
1255  * Command-mapping helper function - populate this command's s/g table.
1256  */
1257 static void
1258 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1259 {
1260         struct aac_command *cm;
1261         struct aac_fib *fib;
1262         struct aac_sg_table *sg;
1263         int i;
1264
1265         debug_called(3);
1266
1267         cm = (struct aac_command *)arg;
1268         fib = cm->cm_fib;
1269
1270         /* find the s/g table */
1271         sg = cm->cm_sgtable;
1272
1273         /* copy into the FIB */
1274         if (sg != NULL) {
1275                 sg->SgCount = nseg;
1276                 for (i = 0; i < nseg; i++) {
1277                         sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1278                         sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1279                 }
1280                 /* update the FIB size for the s/g count */
1281                 fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1282         }
1283
1284 }
1285
1286 /*
1287  * Map a command into controller-visible space.
1288  */
1289 static void
1290 aac_map_command(struct aac_command *cm)
1291 {
1292         struct aac_softc *sc;
1293
1294         debug_called(2);
1295
1296         sc = cm->cm_sc;
1297
1298         /* don't map more than once */
1299         if (cm->cm_flags & AAC_CMD_MAPPED)
1300                 return;
1301
1302         if (cm->cm_datalen != 0) {
1303                 bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
1304                                 cm->cm_data, cm->cm_datalen,
1305                                 aac_map_command_sg, cm, 0);
1306
1307                 if (cm->cm_flags & AAC_CMD_DATAIN)
1308                         bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1309                                         BUS_DMASYNC_PREREAD);
1310                 if (cm->cm_flags & AAC_CMD_DATAOUT)
1311                         bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1312                                         BUS_DMASYNC_PREWRITE);
1313         }
1314         cm->cm_flags |= AAC_CMD_MAPPED;
1315 }
1316
1317 /*
1318  * Unmap a command from controller-visible space.
1319  */
1320 static void
1321 aac_unmap_command(struct aac_command *cm)
1322 {
1323         struct aac_softc *sc;
1324
1325         debug_called(2);
1326
1327         sc = cm->cm_sc;
1328
1329         if (!(cm->cm_flags & AAC_CMD_MAPPED))
1330                 return;
1331
1332         if (cm->cm_datalen != 0) {
1333                 if (cm->cm_flags & AAC_CMD_DATAIN)
1334                         bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1335                                         BUS_DMASYNC_POSTREAD);
1336                 if (cm->cm_flags & AAC_CMD_DATAOUT)
1337                         bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1338                                         BUS_DMASYNC_POSTWRITE);
1339
1340                 bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1341         }
1342         cm->cm_flags &= ~AAC_CMD_MAPPED;
1343 }
1344
1345 /*
1346  * Hardware Interface
1347  */
1348
1349 /*
1350  * Initialise the adapter.
1351  */
1352 static void
1353 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1354 {
1355         struct aac_softc *sc;
1356
1357         debug_called(1);
1358
1359         sc = (struct aac_softc *)arg;
1360
1361         sc->aac_common_busaddr = segs[0].ds_addr;
1362 }
1363
1364 static int
1365 aac_check_firmware(struct aac_softc *sc)
1366 {
1367         u_int32_t major, minor, options;
1368
1369         debug_called(1);
1370
1371         /*
1372          * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1373          * firmware version 1.x are not compatible with this driver.
1374          */
1375         if (sc->flags & AAC_FLAGS_PERC2QC) {
1376                 if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1377                                      NULL)) {
1378                         device_printf(sc->aac_dev,
1379                                       "Error reading firmware version\n");
1380                         return (EIO);
1381                 }
1382
1383                 /* These numbers are stored as ASCII! */
1384                 major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
1385                 minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
1386                 if (major == 1) {
1387                         device_printf(sc->aac_dev,
1388                             "Firmware version %d.%d is not supported.\n",
1389                             major, minor);
1390                         return (EINVAL);
1391                 }
1392         }
1393
1394         /*
1395          * Retrieve the capabilities/supported options word so we know what
1396          * work-arounds to enable.
1397          */
1398         if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, NULL)) {
1399                 device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
1400                 return (EIO);
1401         }
1402         options = AAC_GET_MAILBOX(sc, 1);
1403         sc->supported_options = options;
1404
1405         if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
1406             (sc->flags & AAC_FLAGS_NO4GB) == 0)
1407                 sc->flags |= AAC_FLAGS_4GB_WINDOW;
1408         if (options & AAC_SUPPORTED_NONDASD)
1409                 sc->flags |= AAC_FLAGS_ENABLE_CAM;
1410
1411         return (0);
1412 }
1413
1414 static int
1415 aac_init(struct aac_softc *sc)
1416 {
1417         struct aac_adapter_init *ip;
1418         time_t then;
1419         u_int32_t code;
1420         u_int8_t *qaddr;
1421         int error;
1422
1423         debug_called(1);
1424
1425         /*
1426          * First wait for the adapter to come ready.
1427          */
1428         then = time_second;
1429         do {
1430                 code = AAC_GET_FWSTATUS(sc);
1431                 if (code & AAC_SELF_TEST_FAILED) {
1432                         device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1433                         return(ENXIO);
1434                 }
1435                 if (code & AAC_KERNEL_PANIC) {
1436                         device_printf(sc->aac_dev,
1437                                       "FATAL: controller kernel panic\n");
1438                         return(ENXIO);
1439                 }
1440                 if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1441                         device_printf(sc->aac_dev,
1442                                       "FATAL: controller not coming ready, "
1443                                            "status %x\n", code);
1444                         return(ENXIO);
1445                 }
1446         } while (!(code & AAC_UP_AND_RUNNING));
1447
1448         error = ENOMEM;
1449         /*
1450          * Create DMA tag for mapping buffers into controller-addressable space.
1451          */
1452         if (bus_dma_tag_create(sc->aac_parent_dmat,     /* parent */
1453                                1, 0,                    /* algnmnt, boundary */
1454                                BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
1455                                BUS_SPACE_MAXADDR,       /* highaddr */
1456                                NULL, NULL,              /* filter, filterarg */
1457                                MAXBSIZE,                /* maxsize */
1458                                AAC_MAXSGENTRIES,        /* nsegments */
1459                                MAXBSIZE,                /* maxsegsize */
1460                                BUS_DMA_ALLOCNOW,        /* flags */
1461                                &sc->aac_buffer_dmat)) {
1462                 device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
1463                 goto out;
1464         }
1465  
1466         /*
1467          * Create DMA tag for mapping FIBs into controller-addressable space..
1468          */
1469         if (bus_dma_tag_create(sc->aac_parent_dmat,     /* parent */
1470                                1, 0,                    /* algnmnt, boundary */
1471                                (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1472                                BUS_SPACE_MAXADDR_32BIT :
1473                                0x7fffffff,              /* lowaddr */
1474                                BUS_SPACE_MAXADDR,       /* highaddr */
1475                                NULL, NULL,              /* filter, filterarg */
1476                                AAC_FIB_COUNT *
1477                                sizeof(struct aac_fib),  /* maxsize */
1478                                1,                       /* nsegments */
1479                                AAC_FIB_COUNT *
1480                                sizeof(struct aac_fib),  /* maxsegsize */
1481                                BUS_DMA_ALLOCNOW,        /* flags */
1482                                &sc->aac_fib_dmat)) {
1483                 device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");;
1484                 goto out;
1485         }
1486  
1487         /*
1488          * Create DMA tag for the common structure and allocate it.
1489          */
1490         if (bus_dma_tag_create(sc->aac_parent_dmat,     /* parent */
1491                                1, 0,                    /* algnmnt, boundary */
1492                                (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1493                                BUS_SPACE_MAXADDR_32BIT :
1494                                0x7fffffff,              /* lowaddr */
1495                                BUS_SPACE_MAXADDR,       /* highaddr */
1496                                NULL, NULL,              /* filter, filterarg */
1497                                8192 + sizeof(struct aac_common), /* maxsize */
1498                                1,                       /* nsegments */
1499                                BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
1500                                BUS_DMA_ALLOCNOW,        /* flags */
1501                                &sc->aac_common_dmat)) {
1502                 device_printf(sc->aac_dev,
1503                               "can't allocate common structure DMA tag\n");
1504                 goto out;
1505         }
1506         if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1507                              BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1508                 device_printf(sc->aac_dev, "can't allocate common structure\n");
1509                 goto out;
1510         }
1511         /*
1512          * Work around a bug in the 2120 and 2200 that cannot DMA commands
1513          * below address 8192 in physical memory.
1514          * XXX If the padding is not needed, can it be put to use instead
1515          * of ignored?
1516          */
1517         bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1518                         sc->aac_common, 8192 + sizeof(*sc->aac_common),
1519                         aac_common_map, sc, 0);
1520
1521         if (sc->aac_common_busaddr < 8192) {
1522                 sc->aac_common =
1523                     (struct aac_common *)((uint8_t *)sc->aac_common + 8192);
1524                 sc->aac_common_busaddr += 8192;
1525         }
1526         bzero(sc->aac_common, sizeof(*sc->aac_common));
1527
1528         /* Allocate some FIBs and associated command structs */
1529         if (aac_alloc_commands(sc) != 0)
1530                 goto out;
1531
1532         /*
1533          * Fill in the init structure.  This tells the adapter about the
1534          * physical location of various important shared data structures.
1535          */
1536         ip = &sc->aac_common->ac_init;
1537         ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1538         ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1539
1540         ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1541                                          offsetof(struct aac_common, ac_fibs);
1542         ip->AdapterFibsVirtualAddress = (aac_phys_addr_t)&sc->aac_common->ac_fibs[0];
1543         ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1544         ip->AdapterFibAlign = sizeof(struct aac_fib);
1545
1546         ip->PrintfBufferAddress = sc->aac_common_busaddr +
1547                                   offsetof(struct aac_common, ac_printf);
1548         ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1549
1550         /* The adapter assumes that pages are 4K in size */
1551         ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1552         ip->HostElapsedSeconds = time_second;   /* reset later if invalid */
1553
1554         /*
1555          * Initialise FIB queues.  Note that it appears that the layout of the
1556          * indexes and the segmentation of the entries may be mandated by the
1557          * adapter, which is only told about the base of the queue index fields.
1558          *
1559          * The initial values of the indices are assumed to inform the adapter
1560          * of the sizes of the respective queues, and theoretically it could 
1561          * work out the entire layout of the queue structures from this.  We
1562          * take the easy route and just lay this area out like everyone else
1563          * does.
1564          *
1565          * The Linux driver uses a much more complex scheme whereby several 
1566          * header records are kept for each queue.  We use a couple of generic 
1567          * list manipulation functions which 'know' the size of each list by
1568          * virtue of a table.
1569          */
1570         qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1571         qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1572         sc->aac_queues = (struct aac_queue_table *)qaddr;
1573         ip->CommHeaderAddress = sc->aac_common_busaddr +
1574                                 ((u_int32_t)sc->aac_queues -
1575                                 (u_int32_t)sc->aac_common);
1576         bzero(sc->aac_queues, sizeof(struct aac_queue_table));
1577
1578         sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1579                 AAC_HOST_NORM_CMD_ENTRIES;
1580         sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1581                 AAC_HOST_NORM_CMD_ENTRIES;
1582         sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1583                 AAC_HOST_HIGH_CMD_ENTRIES;
1584         sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1585                 AAC_HOST_HIGH_CMD_ENTRIES;
1586         sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1587                 AAC_ADAP_NORM_CMD_ENTRIES;
1588         sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1589                 AAC_ADAP_NORM_CMD_ENTRIES;
1590         sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1591                 AAC_ADAP_HIGH_CMD_ENTRIES;
1592         sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1593                 AAC_ADAP_HIGH_CMD_ENTRIES;
1594         sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1595                 AAC_HOST_NORM_RESP_ENTRIES;
1596         sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1597                 AAC_HOST_NORM_RESP_ENTRIES;
1598         sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1599                 AAC_HOST_HIGH_RESP_ENTRIES;
1600         sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1601                 AAC_HOST_HIGH_RESP_ENTRIES;
1602         sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1603                 AAC_ADAP_NORM_RESP_ENTRIES;
1604         sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1605                 AAC_ADAP_NORM_RESP_ENTRIES;
1606         sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1607                 AAC_ADAP_HIGH_RESP_ENTRIES;
1608         sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1609                 AAC_ADAP_HIGH_RESP_ENTRIES;
1610         sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1611                 &sc->aac_queues->qt_HostNormCmdQueue[0];
1612         sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1613                 &sc->aac_queues->qt_HostHighCmdQueue[0];
1614         sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1615                 &sc->aac_queues->qt_AdapNormCmdQueue[0];
1616         sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1617                 &sc->aac_queues->qt_AdapHighCmdQueue[0];
1618         sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1619                 &sc->aac_queues->qt_HostNormRespQueue[0];
1620         sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1621                 &sc->aac_queues->qt_HostHighRespQueue[0];
1622         sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1623                 &sc->aac_queues->qt_AdapNormRespQueue[0];
1624         sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1625                 &sc->aac_queues->qt_AdapHighRespQueue[0];
1626
1627         /*
1628          * Do controller-type-specific initialisation
1629          */
1630         switch (sc->aac_hwif) {
1631         case AAC_HWIF_I960RX:
1632                 AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1633                 break;
1634         }
1635
1636         /*
1637          * Give the init structure to the controller.
1638          */
1639         if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT, 
1640                              sc->aac_common_busaddr +
1641                              offsetof(struct aac_common, ac_init), 0, 0, 0,
1642                              NULL)) {
1643                 device_printf(sc->aac_dev,
1644                               "error establishing init structure\n");
1645                 error = EIO;
1646                 goto out;
1647         }
1648
1649         error = 0;
1650 out:
1651         return(error);
1652 }
1653
1654 /*
1655  * Send a synchronous command to the controller and wait for a result.
1656  */
1657 static int
1658 aac_sync_command(struct aac_softc *sc, u_int32_t command,
1659                  u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1660                  u_int32_t *sp)
1661 {
1662         time_t then;
1663         u_int32_t status;
1664
1665         debug_called(3);
1666
1667         /* populate the mailbox */
1668         AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1669
1670         /* ensure the sync command doorbell flag is cleared */
1671         AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1672
1673         /* then set it to signal the adapter */
1674         AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1675
1676         /* spin waiting for the command to complete */
1677         then = time_second;
1678         do {
1679                 if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1680                         debug(1, "timed out");
1681                         return(EIO);
1682                 }
1683         } while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1684
1685         /* clear the completion flag */
1686         AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1687
1688         /* get the command status */
1689         status = AAC_GET_MAILBOX(sc, 0);
1690         if (sp != NULL)
1691                 *sp = status;
1692         return(0);
1693 }
1694
1695 /*
1696  * Grab the sync fib area.
1697  */
1698 int
1699 aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1700 {
1701
1702         /*
1703          * If the force flag is set, the system is shutting down, or in
1704          * trouble.  Ignore the mutex.
1705          */
1706         if (!(flags & AAC_SYNC_LOCK_FORCE))
1707                 AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1708
1709         *fib = &sc->aac_common->ac_sync_fib;
1710
1711         return (1);
1712 }
1713
1714 /*
1715  * Release the sync fib area.
1716  */
1717 void
1718 aac_release_sync_fib(struct aac_softc *sc)
1719 {
1720
1721         AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1722 }
1723
1724 /*
1725  * Send a synchronous FIB to the controller and wait for a result.
1726  */
1727 int
1728 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate, 
1729                  struct aac_fib *fib, u_int16_t datasize)
1730 {
1731         debug_called(3);
1732
1733         if (datasize > AAC_FIB_DATASIZE)
1734                 return(EINVAL);
1735
1736         /*
1737          * Set up the sync FIB
1738          */
1739         fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1740                                 AAC_FIBSTATE_INITIALISED |
1741                                 AAC_FIBSTATE_EMPTY;
1742         fib->Header.XferState |= xferstate;
1743         fib->Header.Command = command;
1744         fib->Header.StructType = AAC_FIBTYPE_TFIB;
1745         fib->Header.Size = sizeof(struct aac_fib) + datasize;
1746         fib->Header.SenderSize = sizeof(struct aac_fib);
1747         fib->Header.SenderFibAddress = (u_int32_t)fib;
1748         fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1749                                          offsetof(struct aac_common,
1750                                                   ac_sync_fib);
1751
1752         /*
1753          * Give the FIB to the controller, wait for a response.
1754          */
1755         if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1756                              fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1757                 debug(2, "IO error");
1758                 return(EIO);
1759         }
1760
1761         return (0);
1762 }
1763
1764 /*
1765  * Adapter-space FIB queue manipulation
1766  *
1767  * Note that the queue implementation here is a little funky; neither the PI or
1768  * CI will ever be zero.  This behaviour is a controller feature.
1769  */
1770 static struct {
1771         int             size;
1772         int             notify;
1773 } aac_qinfo[] = {
1774         {AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1775         {AAC_HOST_HIGH_CMD_ENTRIES, 0},
1776         {AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1777         {AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1778         {AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1779         {AAC_HOST_HIGH_RESP_ENTRIES, 0},
1780         {AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1781         {AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1782 };
1783
1784 /*
1785  * Atomically insert an entry into the nominated queue, returns 0 on success or
1786  * EBUSY if the queue is full.
1787  *
1788  * Note: it would be more efficient to defer notifying the controller in
1789  *       the case where we may be inserting several entries in rapid succession,
1790  *       but implementing this usefully may be difficult (it would involve a
1791  *       separate queue/notify interface).
1792  */
1793 static int
1794 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1795 {
1796         u_int32_t pi, ci;
1797         int error;
1798         u_int32_t fib_size;
1799         u_int32_t fib_addr;
1800
1801         debug_called(3);
1802
1803         fib_size = cm->cm_fib->Header.Size; 
1804         fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1805
1806         crit_enter();
1807
1808         /* get the producer/consumer indices */
1809         pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1810         ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1811
1812         /* wrap the queue? */
1813         if (pi >= aac_qinfo[queue].size)
1814                 pi = 0;
1815
1816         /* check for queue full */
1817         if ((pi + 1) == ci) {
1818                 error = EBUSY;
1819                 goto out;
1820         }
1821
1822         /* populate queue entry */
1823         (sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1824         (sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1825
1826         /* update producer index */
1827         sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1828
1829         /*
1830          * To avoid a race with its completion interrupt, place this command on
1831          * the busy queue prior to advertising it to the controller.
1832          */
1833         aac_enqueue_busy(cm);
1834
1835         /* notify the adapter if we know how */
1836         if (aac_qinfo[queue].notify != 0)
1837                 AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1838
1839         error = 0;
1840
1841 out:
1842         crit_exit();
1843         return(error);
1844 }
1845
1846 /*
1847  * Atomically remove one entry from the nominated queue, returns 0 on
1848  * success or ENOENT if the queue is empty.
1849  */
1850 static int
1851 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1852                 struct aac_fib **fib_addr)
1853 {
1854         u_int32_t pi, ci;
1855         int error;
1856         int notify;
1857
1858         debug_called(3);
1859
1860         crit_enter();
1861
1862         /* get the producer/consumer indices */
1863         pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1864         ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1865
1866         /* check for queue empty */
1867         if (ci == pi) {
1868                 error = ENOENT;
1869                 goto out;
1870         }
1871         
1872         notify = 0;
1873         if (ci == pi + 1)
1874                 notify++;
1875
1876         /* wrap the queue? */
1877         if (ci >= aac_qinfo[queue].size)
1878                 ci = 0;
1879
1880         /* fetch the entry */
1881         *fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1882         *fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] +
1883                                        ci)->aq_fib_addr;
1884
1885         /*
1886          * Is this a fast response? If it is, update the fib fields in
1887          * local memory so the whole fib doesn't have to be DMA'd back up.
1888          */
1889         if (*(uintptr_t *)fib_addr & 0x01) {
1890                 *(uintptr_t *)fib_addr &= ~0x01;
1891                 (*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1892                 *((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1893         }
1894         /* update consumer index */
1895         sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1896
1897         /* if we have made the queue un-full, notify the adapter */
1898         if (notify && (aac_qinfo[queue].notify != 0))
1899                 AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1900         error = 0;
1901
1902 out:
1903         crit_exit();
1904         return(error);
1905 }
1906
1907 /*
1908  * Put our response to an Adapter Initialed Fib on the response queue
1909  */
1910 static int
1911 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1912 {
1913         u_int32_t pi, ci;
1914         int error;
1915         u_int32_t fib_size;
1916         u_int32_t fib_addr;
1917
1918         debug_called(1);
1919
1920         /* Tell the adapter where the FIB is */
1921         fib_size = fib->Header.Size; 
1922         fib_addr = fib->Header.SenderFibAddress;
1923         fib->Header.ReceiverFibAddress = fib_addr;
1924
1925         crit_enter();
1926
1927         /* get the producer/consumer indices */
1928         pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1929         ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1930
1931         /* wrap the queue? */
1932         if (pi >= aac_qinfo[queue].size)
1933                 pi = 0;
1934
1935         /* check for queue full */
1936         if ((pi + 1) == ci) {
1937                 error = EBUSY;
1938                 goto out;
1939         }
1940
1941         /* populate queue entry */
1942         (sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1943         (sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1944
1945         /* update producer index */
1946         sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1947
1948         /* notify the adapter if we know how */
1949         if (aac_qinfo[queue].notify != 0)
1950                 AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1951
1952         error = 0;
1953
1954 out:
1955         crit_exit();
1956         return(error);
1957 }
1958
1959 /*
1960  * Check for commands that have been outstanding for a suspiciously long time,
1961  * and complain about them.
1962  */
1963 static void
1964 aac_timeout(void *xsc)
1965 {
1966         struct aac_softc *sc = xsc;
1967         struct aac_command *cm;
1968         time_t deadline;
1969
1970 #if 0
1971         /* simulate an interrupt to handle possibly-missed interrupts */
1972         /*
1973          * XXX This was done to work around another bug which has since been
1974          * fixed.  It is dangerous anyways because you don't want multiple
1975          * threads in the interrupt handler at the same time!  If calling
1976          * is deamed neccesary in the future, proper mutexes must be used.
1977          */
1978         crit_enter();
1979         aac_intr(sc);
1980         crit_exit();
1981
1982         /* kick the I/O queue to restart it in the case of deadlock */
1983         aac_startio(sc);
1984 #endif
1985
1986         /*
1987          * traverse the busy command list, bitch about late commands once
1988          * only.
1989          */
1990         deadline = time_second - AAC_CMD_TIMEOUT;
1991         crit_enter();
1992         TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
1993                 if ((cm->cm_timestamp  < deadline)
1994                         /* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
1995                         cm->cm_flags |= AAC_CMD_TIMEDOUT;
1996                         device_printf(sc->aac_dev,
1997                                       "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
1998                                       cm, (int)(time_second-cm->cm_timestamp));
1999                         AAC_PRINT_FIB(sc, cm->cm_fib);
2000                 }
2001         }
2002         crit_exit();
2003
2004         /* reset the timer for next time */
2005         callout_reset(&sc->aac_watchdog, AAC_PERIODIC_INTERVAL * hz,
2006                       aac_timeout, sc);
2007 }
2008
2009 /*
2010  * Interface Function Vectors
2011  */
2012
2013 /*
2014  * Read the current firmware status word.
2015  */
2016 static int
2017 aac_sa_get_fwstatus(struct aac_softc *sc)
2018 {
2019         debug_called(3);
2020
2021         return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
2022 }
2023
2024 static int
2025 aac_rx_get_fwstatus(struct aac_softc *sc)
2026 {
2027         debug_called(3);
2028
2029         return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
2030 }
2031
2032 static int
2033 aac_fa_get_fwstatus(struct aac_softc *sc)
2034 {
2035         int val;
2036
2037         debug_called(3);
2038
2039         val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
2040         return (val);
2041 }
2042
2043 /*
2044  * Notify the controller of a change in a given queue
2045  */
2046
2047 static void
2048 aac_sa_qnotify(struct aac_softc *sc, int qbit)
2049 {
2050         debug_called(3);
2051
2052         AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
2053 }
2054
2055 static void
2056 aac_rx_qnotify(struct aac_softc *sc, int qbit)
2057 {
2058         debug_called(3);
2059
2060         AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
2061 }
2062
2063 static void
2064 aac_fa_qnotify(struct aac_softc *sc, int qbit)
2065 {
2066         debug_called(3);
2067
2068         AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
2069         AAC_FA_HACK(sc);
2070 }
2071
2072 /*
2073  * Get the interrupt reason bits
2074  */
2075 static int
2076 aac_sa_get_istatus(struct aac_softc *sc)
2077 {
2078         debug_called(3);
2079
2080         return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
2081 }
2082
2083 static int
2084 aac_rx_get_istatus(struct aac_softc *sc)
2085 {
2086         debug_called(3);
2087
2088         return(AAC_GETREG4(sc, AAC_RX_ODBR));
2089 }
2090
2091 static int
2092 aac_fa_get_istatus(struct aac_softc *sc)
2093 {
2094         int val;
2095
2096         debug_called(3);
2097
2098         val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
2099         return (val);
2100 }
2101
2102 /*
2103  * Clear some interrupt reason bits
2104  */
2105 static void
2106 aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2107 {
2108         debug_called(3);
2109
2110         AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2111 }
2112
2113 static void
2114 aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2115 {
2116         debug_called(3);
2117
2118         AAC_SETREG4(sc, AAC_RX_ODBR, mask);
2119 }
2120
2121 static void
2122 aac_fa_clear_istatus(struct aac_softc *sc, int mask)
2123 {
2124         debug_called(3);
2125
2126         AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
2127         AAC_FA_HACK(sc);
2128 }
2129
2130 /*
2131  * Populate the mailbox and set the command word
2132  */
2133 static void
2134 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2135                 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2136 {
2137         debug_called(4);
2138
2139         AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2140         AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2141         AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2142         AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2143         AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2144 }
2145
2146 static void
2147 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2148                 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2149 {
2150         debug_called(4);
2151
2152         AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2153         AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2154         AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2155         AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2156         AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2157 }
2158
2159 static void
2160 aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2161                 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2162 {
2163         debug_called(4);
2164
2165         AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2166         AAC_FA_HACK(sc);
2167         AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2168         AAC_FA_HACK(sc);
2169         AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2170         AAC_FA_HACK(sc);
2171         AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2172         AAC_FA_HACK(sc);
2173         AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2174         AAC_FA_HACK(sc);
2175 }
2176
2177 /*
2178  * Fetch the immediate command status word
2179  */
2180 static int
2181 aac_sa_get_mailbox(struct aac_softc *sc, int mb)
2182 {
2183         debug_called(4);
2184
2185         return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
2186 }
2187
2188 static int
2189 aac_rx_get_mailbox(struct aac_softc *sc, int mb)
2190 {
2191         debug_called(4);
2192
2193         return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
2194 }
2195
2196 static int
2197 aac_fa_get_mailbox(struct aac_softc *sc, int mb)
2198 {
2199         int val;
2200
2201         debug_called(4);
2202
2203         val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4));
2204         return (val);
2205 }
2206
2207 /*
2208  * Set/clear interrupt masks
2209  */
2210 static void
2211 aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2212 {
2213         debug(2, "%sable interrupts", enable ? "en" : "dis");
2214
2215         if (enable) {
2216                 AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2217         } else {
2218                 AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2219         }
2220 }
2221
2222 static void
2223 aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2224 {
2225         debug(2, "%sable interrupts", enable ? "en" : "dis");
2226
2227         if (enable) {
2228                 AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2229         } else {
2230                 AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2231         }
2232 }
2233
2234 static void
2235 aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2236 {
2237         debug(2, "%sable interrupts", enable ? "en" : "dis");
2238
2239         if (enable) {
2240                 AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2241                 AAC_FA_HACK(sc);
2242         } else {
2243                 AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2244                 AAC_FA_HACK(sc);
2245         }
2246 }
2247
2248 /*
2249  * Debugging and Diagnostics
2250  */
2251
2252 /*
2253  * Print some information about the controller.
2254  */
2255 static void
2256 aac_describe_controller(struct aac_softc *sc)
2257 {
2258         struct aac_fib *fib;
2259         struct aac_adapter_info *info;
2260
2261         debug_called(2);
2262
2263         aac_alloc_sync_fib(sc, &fib, 0);
2264
2265         fib->data[0] = 0;
2266         if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2267                 device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2268                 aac_release_sync_fib(sc);
2269                 return;
2270         }
2271         info = (struct aac_adapter_info *)&fib->data[0];   
2272
2273         device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n", 
2274                       aac_describe_code(aac_cpu_variant, info->CpuVariant),
2275                       info->ClockSpeed, info->BufferMem / (1024 * 1024), 
2276                       aac_describe_code(aac_battery_platform,
2277                                         info->batteryPlatform));
2278
2279         /* save the kernel revision structure for later use */
2280         sc->aac_revision = info->KernelRevision;
2281         device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2282                       info->KernelRevision.external.comp.major,
2283                       info->KernelRevision.external.comp.minor,
2284                       info->KernelRevision.external.comp.dash,
2285                       info->KernelRevision.buildNumber,
2286                       (u_int32_t)(info->SerialNumber & 0xffffff));
2287
2288         aac_release_sync_fib(sc);
2289
2290         if (1 || bootverbose) {
2291                 device_printf(sc->aac_dev, "Supported Options=%b\n",
2292                               sc->supported_options,
2293                               "\20"
2294                               "\1SNAPSHOT"
2295                               "\2CLUSTERS"
2296                               "\3WCACHE"
2297                               "\4DATA64"
2298                               "\5HOSTTIME"
2299                               "\6RAID50"
2300                               "\7WINDOW4GB"
2301                               "\10SCSIUPGD"
2302                               "\11SOFTERR"
2303                               "\12NORECOND"
2304                               "\13SGMAP64"
2305                               "\14ALARM"
2306                               "\15NONDASD");
2307         }
2308 }
2309
2310 /*
2311  * Look up a text description of a numeric error code and return a pointer to
2312  * same.
2313  */
2314 static char *
2315 aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2316 {
2317         int i;
2318
2319         for (i = 0; table[i].string != NULL; i++)
2320                 if (table[i].code == code)
2321                         return(table[i].string);
2322         return(table[i + 1].string);
2323 }
2324
2325 /*
2326  * Management Interface
2327  */
2328
2329 static int
2330 aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2331 {
2332         struct aac_softc *sc;
2333
2334         debug_called(2);
2335
2336         sc = dev->si_drv1;
2337
2338         /* Check to make sure the device isn't already open */
2339         if (sc->aac_state & AAC_STATE_OPEN) {
2340                 return EBUSY;
2341         }
2342         sc->aac_state |= AAC_STATE_OPEN;
2343
2344         return 0;
2345 }
2346
2347 static int
2348 aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2349 {
2350         struct aac_softc *sc;
2351
2352         debug_called(2);
2353
2354         sc = dev->si_drv1;
2355
2356         /* Mark this unit as no longer open  */
2357         sc->aac_state &= ~AAC_STATE_OPEN;
2358
2359         return 0;
2360 }
2361
2362 static int
2363 aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2364 {
2365         struct aac_softc *sc = dev->si_drv1;
2366         int error = 0;
2367         int i;
2368
2369         debug_called(2);
2370
2371         if (cmd == AACIO_STATS) {
2372                 union aac_statrequest *as = (union aac_statrequest *)arg;
2373
2374                 switch (as->as_item) {
2375                 case AACQ_FREE:
2376                 case AACQ_BIO:
2377                 case AACQ_READY:
2378                 case AACQ_BUSY:
2379                 case AACQ_COMPLETE:
2380                         bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2381                               sizeof(struct aac_qstat));
2382                         break;
2383                 default:
2384                         error = ENOENT;
2385                         break;
2386                 }
2387                 return(error);
2388         }
2389
2390         arg = *(caddr_t *)arg;
2391
2392         switch (cmd) {
2393         /* AACIO_STATS already handled above */
2394         case FSACTL_SENDFIB:
2395                 debug(1, "FSACTL_SENDFIB");
2396                 error = aac_ioctl_sendfib(sc, arg);
2397                 break;
2398         case FSACTL_AIF_THREAD:
2399                 debug(1, "FSACTL_AIF_THREAD");
2400                 error = EINVAL;
2401                 break;
2402         case FSACTL_OPEN_GET_ADAPTER_FIB:
2403                 debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2404                 /*
2405                  * Pass the caller out an AdapterFibContext.
2406                  *
2407                  * Note that because we only support one opener, we
2408                  * basically ignore this.  Set the caller's context to a magic
2409                  * number just in case.
2410                  *
2411                  * The Linux code hands the driver a pointer into kernel space,
2412                  * and then trusts it when the caller hands it back.  Aiee!
2413                  * Here, we give it the proc pointer of the per-adapter aif 
2414                  * thread. It's only used as a sanity check in other calls.
2415                  */
2416                 i = (int)sc->aifthread;
2417                 error = copyout(&i, arg, sizeof(i));
2418                 break;
2419         case FSACTL_GET_NEXT_ADAPTER_FIB:
2420                 debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2421                 error = aac_getnext_aif(sc, arg);
2422                 break;
2423         case FSACTL_CLOSE_GET_ADAPTER_FIB:
2424                 debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2425                 /* don't do anything here */
2426                 break;
2427         case FSACTL_MINIPORT_REV_CHECK:
2428                 debug(1, "FSACTL_MINIPORT_REV_CHECK");
2429                 error = aac_rev_check(sc, arg);
2430                 break;
2431         case FSACTL_QUERY_DISK:
2432                 debug(1, "FSACTL_QUERY_DISK");
2433                 error = aac_query_disk(sc, arg);
2434                         break;
2435         case FSACTL_DELETE_DISK:
2436                 /*
2437                  * We don't trust the underland to tell us when to delete a
2438                  * container, rather we rely on an AIF coming from the 
2439                  * controller
2440                  */
2441                 error = 0;
2442                 break;
2443         default:
2444                 debug(1, "unsupported cmd 0x%lx\n", cmd);
2445                 error = EINVAL;
2446                 break;
2447         }
2448         return(error);
2449 }
2450
2451 static int
2452 aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2453 {
2454         struct aac_softc *sc;
2455         int revents;
2456
2457         sc = dev->si_drv1;
2458         revents = 0;
2459
2460         AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2461         if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2462                 if (sc->aac_aifq_tail != sc->aac_aifq_head)
2463                         revents |= poll_events & (POLLIN | POLLRDNORM);
2464         }
2465         AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2466
2467         if (revents == 0) {
2468                 if (poll_events & (POLLIN | POLLRDNORM))
2469                         selrecord(td, &sc->rcv_select);
2470         }
2471
2472         return (revents);
2473 }
2474
2475 /*
2476  * Send a FIB supplied from userspace
2477  */
2478 static int
2479 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2480 {
2481         struct aac_command *cm;
2482         int size, error;
2483
2484         debug_called(2);
2485
2486         cm = NULL;
2487
2488         /*
2489          * Get a command
2490          */
2491         if (aac_alloc_command(sc, &cm)) {
2492                 error = EBUSY;
2493                 goto out;
2494         }
2495
2496         /*
2497          * Fetch the FIB header, then re-copy to get data as well.
2498          */
2499         if ((error = copyin(ufib, cm->cm_fib,
2500                             sizeof(struct aac_fib_header))) != 0)
2501                 goto out;
2502         size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2503         if (size > sizeof(struct aac_fib)) {
2504                 device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
2505                               size, sizeof(struct aac_fib));
2506                 size = sizeof(struct aac_fib);
2507         }
2508         if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2509                 goto out;
2510         cm->cm_fib->Header.Size = size;
2511         cm->cm_timestamp = time_second;
2512
2513         /*
2514          * Pass the FIB to the controller, wait for it to complete.
2515          */
2516         if ((error = aac_wait_command(cm, 30)) != 0) {  /* XXX user timeout? */
2517                 printf("aac_wait_command return %d\n", error);
2518                 goto out;
2519         }
2520
2521         /*
2522          * Copy the FIB and data back out to the caller.
2523          */
2524         size = cm->cm_fib->Header.Size;
2525         if (size > sizeof(struct aac_fib)) {
2526                 device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
2527                               size, sizeof(struct aac_fib));
2528                 size = sizeof(struct aac_fib);
2529         }
2530         error = copyout(cm->cm_fib, ufib, size);
2531
2532 out:
2533         if (cm != NULL) {
2534                 aac_release_command(cm);
2535         }
2536         return(error);
2537 }
2538
2539 /*
2540  * Handle an AIF sent to us by the controller; queue it for later reference.
2541  * If the queue fills up, then drop the older entries.
2542  */
2543 static void
2544 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2545 {
2546         struct aac_aif_command *aif;
2547         struct aac_container *co, *co_next;
2548         struct aac_mntinfo *mi;
2549         struct aac_mntinforesp *mir = NULL;
2550         u_int16_t rsize;
2551         int next, found;
2552         int added = 0, i = 0;
2553
2554         debug_called(2);
2555
2556         aif = (struct aac_aif_command*)&fib->data[0];
2557         aac_print_aif(sc, aif);
2558
2559         /* Is it an event that we should care about? */
2560         switch (aif->command) {
2561         case AifCmdEventNotify:
2562                 switch (aif->data.EN.type) {
2563                 case AifEnAddContainer:
2564                 case AifEnDeleteContainer:
2565                         /*
2566                          * A container was added or deleted, but the message 
2567                          * doesn't tell us anything else!  Re-enumerate the
2568                          * containers and sort things out.
2569                          */
2570                         aac_alloc_sync_fib(sc, &fib, 0);
2571                         mi = (struct aac_mntinfo *)&fib->data[0];
2572                         do {
2573                                 /*
2574                                  * Ask the controller for its containers one at
2575                                  * a time.
2576                                  * XXX What if the controller's list changes
2577                                  * midway through this enumaration?
2578                                  * XXX This should be done async.
2579                                  */
2580                                 bzero(mi, sizeof(struct aac_mntinfo));
2581                                 mi->Command = VM_NameServe;
2582                                 mi->MntType = FT_FILESYS;
2583                                 mi->MntCount = i;
2584                                 rsize = sizeof(mir);
2585                                 if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2586                                                  sizeof(struct aac_mntinfo))) {
2587                                         debug(2, "Error probing container %d\n",
2588                                               i);
2589                                         continue;
2590                                 }
2591                                 mir = (struct aac_mntinforesp *)&fib->data[0];
2592                                 /*
2593                                  * Check the container against our list.
2594                                  * co->co_found was already set to 0 in a
2595                                  * previous run.
2596                                  */
2597                                 if ((mir->Status == ST_OK) &&
2598                                     (mir->MntTable[0].VolType != CT_NONE)) {
2599                                         found = 0;
2600                                         TAILQ_FOREACH(co,
2601                                                       &sc->aac_container_tqh, 
2602                                                       co_link) {
2603                                                 if (co->co_mntobj.ObjectId ==
2604                                                     mir->MntTable[0].ObjectId) {
2605                                                         co->co_found = 1;
2606                                                         found = 1;
2607                                                         break;
2608                                                 }
2609                                         }
2610                                         /*
2611                                          * If the container matched, continue
2612                                          * in the list.
2613                                          */
2614                                         if (found) {
2615                                                 i++;
2616                                                 continue;
2617                                         }
2618
2619                                         /*
2620                                          * This is a new container.  Do all the
2621                                          * appropriate things to set it up.                                              */
2622                                         aac_add_container(sc, mir, 1);
2623                                         added = 1;
2624                                 }
2625                                 i++;
2626                         } while ((i < mir->MntRespCount) &&
2627                                  (i < AAC_MAX_CONTAINERS));
2628                         aac_release_sync_fib(sc);
2629
2630                         /*
2631                          * Go through our list of containers and see which ones
2632                          * were not marked 'found'.  Since the controller didn't
2633                          * list them they must have been deleted.  Do the
2634                          * appropriate steps to destroy the device.  Also reset
2635                          * the co->co_found field.
2636                          */
2637                         co = TAILQ_FIRST(&sc->aac_container_tqh);
2638                         while (co != NULL) {
2639                                 if (co->co_found == 0) {
2640                                         device_delete_child(sc->aac_dev,
2641                                                             co->co_disk);
2642                                         co_next = TAILQ_NEXT(co, co_link);
2643                                         AAC_LOCK_ACQUIRE(&sc->
2644                                                         aac_container_lock);
2645                                         TAILQ_REMOVE(&sc->aac_container_tqh, co,
2646                                                      co_link);
2647                                         AAC_LOCK_RELEASE(&sc->
2648                                                          aac_container_lock);
2649                                         FREE(co, M_AACBUF);
2650                                         co = co_next;
2651                                 } else {
2652                                         co->co_found = 0;
2653                                         co = TAILQ_NEXT(co, co_link);
2654                                 }
2655                         }
2656
2657                         /* Attach the newly created containers */
2658                         if (added)
2659                                 bus_generic_attach(sc->aac_dev);
2660         
2661                                 break;
2662
2663                 default:
2664                         break;
2665                 }
2666
2667         default:
2668                 break;
2669         }
2670
2671         /* Copy the AIF data to the AIF queue for ioctl retrieval */
2672         AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2673         next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2674         if (next != sc->aac_aifq_tail) {
2675                 bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2676                 sc->aac_aifq_head = next;
2677
2678                 /* On the off chance that someone is sleeping for an aif... */
2679                 if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2680                         wakeup(sc->aac_aifq);
2681                 /* token may have been lost */
2682                 /* Wakeup any poll()ers */
2683                 selwakeup(&sc->rcv_select);
2684                 /* token may have been lost */
2685         }
2686         AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2687
2688         return;
2689 }
2690
2691 /*
2692  * Return the Revision of the driver to userspace and check to see if the
2693  * userspace app is possibly compatible.  This is extremely bogus since
2694  * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2695  * returning what the card reported.
2696  */
2697 static int
2698 aac_rev_check(struct aac_softc *sc, caddr_t udata)
2699 {
2700         struct aac_rev_check rev_check;
2701         struct aac_rev_check_resp rev_check_resp;
2702         int error = 0;
2703
2704         debug_called(2);
2705
2706         /*
2707          * Copyin the revision struct from userspace
2708          */
2709         if ((error = copyin(udata, (caddr_t)&rev_check,
2710                         sizeof(struct aac_rev_check))) != 0) {
2711                 return error;
2712         }
2713
2714         debug(2, "Userland revision= %d\n",
2715               rev_check.callingRevision.buildNumber);
2716
2717         /*
2718          * Doctor up the response struct.
2719          */
2720         rev_check_resp.possiblyCompatible = 1;
2721         rev_check_resp.adapterSWRevision.external.ul =
2722             sc->aac_revision.external.ul;
2723         rev_check_resp.adapterSWRevision.buildNumber =
2724             sc->aac_revision.buildNumber;
2725
2726         return(copyout((caddr_t)&rev_check_resp, udata,
2727                         sizeof(struct aac_rev_check_resp)));
2728 }
2729
2730 /*
2731  * Pass the caller the next AIF in their queue
2732  */
2733 static int
2734 aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2735 {
2736         struct get_adapter_fib_ioctl agf;
2737         int error;
2738
2739         debug_called(2);
2740
2741         if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2742
2743                 /*
2744                  * Check the magic number that we gave the caller.
2745                  */
2746                 if (agf.AdapterFibContext != (int)sc->aifthread) {
2747                         error = EFAULT;
2748                 } else {
2749         
2750                         crit_enter();
2751                         error = aac_return_aif(sc, agf.AifFib);
2752         
2753                         if ((error == EAGAIN) && (agf.Wait)) {
2754                                 sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2755                                 while (error == EAGAIN) {
2756                                         error = tsleep(sc->aac_aifq,
2757                                                        PCATCH, "aacaif", 0);
2758                                         if (error == 0)
2759                                                 error = aac_return_aif(sc,
2760                                                     agf.AifFib);
2761                                 }
2762                                 sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2763                         }
2764                         crit_exit();
2765                 }
2766         }
2767         return(error);
2768 }
2769
2770 /*
2771  * Hand the next AIF off the top of the queue out to userspace.
2772  *
2773  * YYY token could be lost during copyout
2774  */
2775 static int
2776 aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2777 {
2778         int error;
2779
2780         debug_called(2);
2781
2782         AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2783         if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2784                 error = EAGAIN;
2785         } else {
2786                 error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2787                                 sizeof(struct aac_aif_command));
2788                 if (error)
2789                         printf("aac_return_aif: copyout returned %d\n", error);
2790                 if (!error)
2791                         sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2792                                             AAC_AIFQ_LENGTH;
2793         }
2794         AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2795         return(error);
2796 }
2797
2798 /*
2799  * Give the userland some information about the container.  The AAC arch
2800  * expects the driver to be a SCSI passthrough type driver, so it expects
2801  * the containers to have b:t:l numbers.  Fake it.
2802  */
2803 static int
2804 aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2805 {
2806         struct aac_query_disk query_disk;
2807         struct aac_container *co;
2808         struct aac_disk *disk;
2809         int error, id;
2810
2811         debug_called(2);
2812
2813         disk = NULL;
2814
2815         error = copyin(uptr, (caddr_t)&query_disk,
2816                        sizeof(struct aac_query_disk));
2817         if (error)
2818                 return (error);
2819
2820         id = query_disk.ContainerNumber;
2821         if (id == -1)
2822                 return (EINVAL);
2823
2824         AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2825         TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2826                 if (co->co_mntobj.ObjectId == id)
2827                         break;
2828                 }
2829
2830                 if (co == NULL) {
2831                         query_disk.Valid = 0;
2832                         query_disk.Locked = 0;
2833                         query_disk.Deleted = 1;         /* XXX is this right? */
2834                 } else {
2835                         disk = device_get_softc(co->co_disk);
2836                         query_disk.Valid = 1;
2837                         query_disk.Locked =
2838                             (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2839                         query_disk.Deleted = 0;
2840                         query_disk.Bus = device_get_unit(sc->aac_dev);
2841                         query_disk.Target = disk->unit;
2842                         query_disk.Lun = 0;
2843                         query_disk.UnMapped = 0;
2844                         bcopy(disk->ad_dev_t->si_name,
2845                               &query_disk.diskDeviceName[0], 10);
2846                 }
2847         AAC_LOCK_RELEASE(&sc->aac_container_lock);
2848
2849         error = copyout((caddr_t)&query_disk, uptr,
2850                         sizeof(struct aac_query_disk));
2851
2852         return (error);
2853 }
2854
2855 static void
2856 aac_get_bus_info(struct aac_softc *sc)
2857 {
2858         struct aac_fib *fib;
2859         struct aac_ctcfg *c_cmd;
2860         struct aac_ctcfg_resp *c_resp;
2861         struct aac_vmioctl *vmi;
2862         struct aac_vmi_businf_resp *vmi_resp;
2863         struct aac_getbusinf businfo;
2864         struct aac_cam_inf *caminf;
2865         device_t child;
2866         int i, found, error;
2867
2868         aac_alloc_sync_fib(sc, &fib, 0);
2869         c_cmd = (struct aac_ctcfg *)&fib->data[0];
2870         bzero(c_cmd, sizeof(struct aac_ctcfg));
2871
2872         c_cmd->Command = VM_ContainerConfig;
2873         c_cmd->cmd = CT_GET_SCSI_METHOD;
2874         c_cmd->param = 0;
2875
2876         error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2877             sizeof(struct aac_ctcfg));
2878         if (error) {
2879                 device_printf(sc->aac_dev, "Error %d sending "
2880                     "VM_ContainerConfig command\n", error);
2881                 aac_release_sync_fib(sc);
2882                 return;
2883         }
2884
2885         c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2886         if (c_resp->Status != ST_OK) {
2887                 device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2888                     c_resp->Status);
2889                 aac_release_sync_fib(sc);
2890                 return;
2891         }
2892
2893         sc->scsi_method_id = c_resp->param;
2894
2895         vmi = (struct aac_vmioctl *)&fib->data[0];
2896         bzero(vmi, sizeof(struct aac_vmioctl));
2897
2898         vmi->Command = VM_Ioctl;
2899         vmi->ObjType = FT_DRIVE;
2900         vmi->MethId = sc->scsi_method_id;
2901         vmi->ObjId = 0;
2902         vmi->IoctlCmd = GetBusInfo;
2903
2904         error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2905             sizeof(struct aac_vmioctl));
2906         if (error) {
2907                 device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2908                     error);
2909                 aac_release_sync_fib(sc);
2910                 return;
2911         }
2912
2913         vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2914         if (vmi_resp->Status != ST_OK) {
2915                 debug(1, "VM_Ioctl returned %d\n", vmi_resp->Status);
2916                 aac_release_sync_fib(sc);
2917                 return;
2918         }
2919
2920         bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2921         aac_release_sync_fib(sc);
2922
2923         found = 0;
2924         for (i = 0; i < businfo.BusCount; i++) {
2925                 if (businfo.BusValid[i] != AAC_BUS_VALID)
2926                         continue;
2927
2928                 MALLOC(caminf, struct aac_cam_inf *,
2929                     sizeof(struct aac_cam_inf), M_AACBUF, M_INTWAIT | M_ZERO);
2930
2931                 child = device_add_child(sc->aac_dev, "aacp", -1);
2932                 if (child == NULL) {
2933                         device_printf(sc->aac_dev, "device_add_child failed\n");
2934                         continue;
2935                 }
2936
2937                 caminf->TargetsPerBus = businfo.TargetsPerBus;
2938                 caminf->BusNumber = i;
2939                 caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2940                 caminf->aac_sc = sc;
2941
2942                 device_set_ivars(child, caminf);
2943                 device_set_desc(child, "SCSI Passthrough Bus");
2944
2945                 found = 1;
2946         }
2947
2948         if (found)
2949                 bus_generic_attach(sc->aac_dev);
2950
2951         return;
2952 }