FreeBSD and NetBSD both use derivates of Sun's math library. On FreeBSD,
[dragonfly.git] / lib / libm / src / s_erf.c
1 /* @(#)s_erf.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  *
12  * $NetBSD: s_erf.c,v 1.11 2002/05/26 22:01:55 wiz Exp $
13  * $DragonFly: src/lib/libm/src/s_erf.c,v 1.1 2005/07/26 21:15:20 joerg Exp $
14  */
15
16 /* double erf(double x)
17  * double erfc(double x)
18  *                           x
19  *                    2      |\
20  *     erf(x)  =  ---------  | exp(-t*t)dt
21  *                 sqrt(pi) \|
22  *                           0
23  *
24  *     erfc(x) =  1-erf(x)
25  *  Note that
26  *              erf(-x) = -erf(x)
27  *              erfc(-x) = 2 - erfc(x)
28  *
29  * Method:
30  *      1. For |x| in [0, 0.84375]
31  *          erf(x)  = x + x*R(x^2)
32  *          erfc(x) = 1 - erf(x)           if x in [-.84375,0.25]
33  *                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375]
34  *         where R = P/Q where P is an odd poly of degree 8 and
35  *         Q is an odd poly of degree 10.
36  *                                               -57.90
37  *                      | R - (erf(x)-x)/x | <= 2
38  *
39  *
40  *         Remark. The formula is derived by noting
41  *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
42  *         and that
43  *          2/sqrt(pi) = 1.128379167095512573896158903121545171688
44  *         is close to one. The interval is chosen because the fix
45  *         point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
46  *         near 0.6174), and by some experiment, 0.84375 is chosen to
47  *         guarantee the error is less than one ulp for erf.
48  *
49  *      2. For |x| in [0.84375,1.25], let s = |x| - 1, and
50  *         c = 0.84506291151 rounded to single (24 bits)
51  *              erf(x)  = sign(x) * (c  + P1(s)/Q1(s))
52  *              erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0
53  *                        1+(c+P1(s)/Q1(s))    if x < 0
54  *              |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
55  *         Remark: here we use the taylor series expansion at x=1.
56  *              erf(1+s) = erf(1) + s*Poly(s)
57  *                       = 0.845.. + P1(s)/Q1(s)
58  *         That is, we use rational approximation to approximate
59  *                      erf(1+s) - (c = (single)0.84506291151)
60  *         Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
61  *         where
62  *              P1(s) = degree 6 poly in s
63  *              Q1(s) = degree 6 poly in s
64  *
65  *      3. For x in [1.25,1/0.35(~2.857143)],
66  *              erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
67  *              erf(x)  = 1 - erfc(x)
68  *         where
69  *              R1(z) = degree 7 poly in z, (z=1/x^2)
70  *              S1(z) = degree 8 poly in z
71  *
72  *      4. For x in [1/0.35,28]
73  *              erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
74  *                      = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
75  *                      = 2.0 - tiny            (if x <= -6)
76  *              erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6, else
77  *              erf(x)  = sign(x)*(1.0 - tiny)
78  *         where
79  *              R2(z) = degree 6 poly in z, (z=1/x^2)
80  *              S2(z) = degree 7 poly in z
81  *
82  *      Note1:
83  *         To compute exp(-x*x-0.5625+R/S), let s be a single
84  *         precision number and s := x; then
85  *              -x*x = -s*s + (s-x)*(s+x)
86  *              exp(-x*x-0.5626+R/S) =
87  *                      exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
88  *      Note2:
89  *         Here 4 and 5 make use of the asymptotic series
90  *                        exp(-x*x)
91  *              erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
92  *                        x*sqrt(pi)
93  *         We use rational approximation to approximate
94  *              g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
95  *         Here is the error bound for R1/S1 and R2/S2
96  *              |R1/S1 - f(x)|  < 2**(-62.57)
97  *              |R2/S2 - f(x)|  < 2**(-61.52)
98  *
99  *      5. For inf > x >= 28
100  *              erf(x)  = sign(x) *(1 - tiny)  (raise inexact)
101  *              erfc(x) = tiny*tiny (raise underflow) if x > 0
102  *                      = 2 - tiny if x<0
103  *
104  *      7. Special case:
105  *              erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
106  *              erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
107  *              erfc/erf(NaN) is NaN
108  */
109
110
111 #include <math.h>
112 #include "math_private.h"
113
114 static const double
115 tiny        = 1e-300,
116 half=  5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
117 one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
118 two =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
119         /* c = (float)0.84506291151 */
120 erx =  8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
121 /*
122  * Coefficients for approximation to  erf on [0,0.84375]
123  */
124 efx =  1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */
125 efx8=  1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
126 pp0  =  1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
127 pp1  = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
128 pp2  = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
129 pp3  = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
130 pp4  = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
131 qq1  =  3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
132 qq2  =  6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
133 qq3  =  5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
134 qq4  =  1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
135 qq5  = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
136 /*
137  * Coefficients for approximation to  erf  in [0.84375,1.25]
138  */
139 pa0  = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
140 pa1  =  4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
141 pa2  = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
142 pa3  =  3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
143 pa4  = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
144 pa5  =  3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
145 pa6  = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
146 qa1  =  1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
147 qa2  =  5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
148 qa3  =  7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
149 qa4  =  1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
150 qa5  =  1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
151 qa6  =  1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
152 /*
153  * Coefficients for approximation to  erfc in [1.25,1/0.35]
154  */
155 ra0  = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
156 ra1  = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
157 ra2  = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
158 ra3  = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
159 ra4  = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
160 ra5  = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
161 ra6  = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
162 ra7  = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
163 sa1  =  1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
164 sa2  =  1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
165 sa3  =  4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
166 sa4  =  6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
167 sa5  =  4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
168 sa6  =  1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
169 sa7  =  6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
170 sa8  = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
171 /*
172  * Coefficients for approximation to  erfc in [1/.35,28]
173  */
174 rb0  = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
175 rb1  = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
176 rb2  = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
177 rb3  = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
178 rb4  = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
179 rb5  = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
180 rb6  = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
181 sb1  =  3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
182 sb2  =  3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
183 sb3  =  1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
184 sb4  =  3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
185 sb5  =  2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
186 sb6  =  4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
187 sb7  = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
188
189 double
190 erf(double x)
191 {
192         int32_t hx,ix,i;
193         double R,S,P,Q,s,y,z,r;
194         GET_HIGH_WORD(hx,x);
195         ix = hx&0x7fffffff;
196         if(ix>=0x7ff00000) {            /* erf(nan)=nan */
197             i = ((u_int32_t)hx>>31)<<1;
198             return (double)(1-i)+one/x; /* erf(+-inf)=+-1 */
199         }
200
201         if(ix < 0x3feb0000) {           /* |x|<0.84375 */
202             if(ix < 0x3e300000) {       /* |x|<2**-28 */
203                 if (ix < 0x00800000)
204                     return 0.125*(8.0*x+efx8*x);  /*avoid underflow */
205                 return x + efx*x;
206             }
207             z = x*x;
208             r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
209             s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
210             y = r/s;
211             return x + x*y;
212         }
213         if(ix < 0x3ff40000) {           /* 0.84375 <= |x| < 1.25 */
214             s = fabs(x)-one;
215             P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
216             Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
217             if(hx>=0) return erx + P/Q; else return -erx - P/Q;
218         }
219         if (ix >= 0x40180000) {         /* inf>|x|>=6 */
220             if(hx>=0) return one-tiny; else return tiny-one;
221         }
222         x = fabs(x);
223         s = one/(x*x);
224         if(ix< 0x4006DB6E) {    /* |x| < 1/0.35 */
225             R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
226                                 ra5+s*(ra6+s*ra7))))));
227             S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
228                                 sa5+s*(sa6+s*(sa7+s*sa8)))))));
229         } else {        /* |x| >= 1/0.35 */
230             R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
231                                 rb5+s*rb6)))));
232             S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
233                                 sb5+s*(sb6+s*sb7))))));
234         }
235         z  = x;
236         SET_LOW_WORD(z,0);
237         r  =  exp(-z*z-0.5625)*exp((z-x)*(z+x)+R/S);
238         if(hx>=0) return one-r/x; else return  r/x-one;
239 }
240
241 double
242 erfc(double x)
243 {
244         int32_t hx,ix;
245         double R,S,P,Q,s,y,z,r;
246         GET_HIGH_WORD(hx,x);
247         ix = hx&0x7fffffff;
248         if(ix>=0x7ff00000) {                    /* erfc(nan)=nan */
249                                                 /* erfc(+-inf)=0,2 */
250             return (double)(((u_int32_t)hx>>31)<<1)+one/x;
251         }
252
253         if(ix < 0x3feb0000) {           /* |x|<0.84375 */
254             if(ix < 0x3c700000)         /* |x|<2**-56 */
255                 return one-x;
256             z = x*x;
257             r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
258             s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
259             y = r/s;
260             if(hx < 0x3fd00000) {       /* x<1/4 */
261                 return one-(x+x*y);
262             } else {
263                 r = x*y;
264                 r += (x-half);
265                 return half - r ;
266             }
267         }
268         if(ix < 0x3ff40000) {           /* 0.84375 <= |x| < 1.25 */
269             s = fabs(x)-one;
270             P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
271             Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
272             if(hx>=0) {
273                 z  = one-erx; return z - P/Q;
274             } else {
275                 z = erx+P/Q; return one+z;
276             }
277         }
278         if (ix < 0x403c0000) {          /* |x|<28 */
279             x = fabs(x);
280             s = one/(x*x);
281             if(ix< 0x4006DB6D) {        /* |x| < 1/.35 ~ 2.857143*/
282                 R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
283                                 ra5+s*(ra6+s*ra7))))));
284                 S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
285                                 sa5+s*(sa6+s*(sa7+s*sa8)))))));
286             } else {                    /* |x| >= 1/.35 ~ 2.857143 */
287                 if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */
288                 R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
289                                 rb5+s*rb6)))));
290                 S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
291                                 sb5+s*(sb6+s*sb7))))));
292             }
293             z  = x;
294             SET_LOW_WORD(z,0);
295             r  =  exp(-z*z-0.5625)*
296                         exp((z-x)*(z+x)+R/S);
297             if(hx>0) return r/x; else return two-r/x;
298         } else {
299             if(hx>0) return tiny*tiny; else return two-tiny;
300         }
301 }