kernel: Clean up a few headers a bit.
[dragonfly.git] / sys / sys / thread.h
1 /*
2  * SYS/THREAD.H
3  *
4  *      Implements the architecture independant portion of the LWKT
5  *      subsystem.
6  */
7
8 #ifndef _SYS_THREAD_H_
9 #define _SYS_THREAD_H_
10
11 #ifndef _SYS_PARAM_H_
12 #include <sys/param.h>          /* MAXCOMLEN */
13 #endif
14 #ifndef _SYS_QUEUE_H_
15 #include <sys/queue.h>          /* TAILQ_* macros */
16 #endif
17 #ifndef _SYS_MSGPORT_H_
18 #include <sys/msgport.h>        /* lwkt_port */
19 #endif
20 #ifndef _SYS_TIME_H_
21 #include <sys/time.h>           /* struct timeval */
22 #endif
23 #ifndef _SYS_LOCK_H
24 #include <sys/lock.h>
25 #endif
26 #ifndef _SYS_SPINLOCK_H_
27 #include <sys/spinlock.h>
28 #endif
29 #ifndef _SYS_IOSCHED_H_
30 #include <sys/iosched.h>
31 #endif
32 #include <machine/thread.h>     /* md_thread */
33 #include <machine/stdint.h>
34
35 struct globaldata;
36 struct lwp;
37 struct proc;
38 struct thread;
39 struct lwkt_queue;
40 struct lwkt_token;
41 struct lwkt_tokref;
42 struct lwkt_ipiq;
43 #if 0
44 struct lwkt_cpu_msg;
45 struct lwkt_cpu_port;
46 #endif
47 struct lwkt_cpusync;
48 struct fdnode;
49 union sysunion;
50
51 typedef struct lwkt_queue       *lwkt_queue_t;
52 typedef struct lwkt_token       *lwkt_token_t;
53 typedef struct lwkt_tokref      *lwkt_tokref_t;
54 #if 0
55 typedef struct lwkt_cpu_msg     *lwkt_cpu_msg_t;
56 typedef struct lwkt_cpu_port    *lwkt_cpu_port_t;
57 #endif
58 typedef struct lwkt_ipiq        *lwkt_ipiq_t;
59 typedef struct lwkt_cpusync     *lwkt_cpusync_t;
60 typedef struct thread           *thread_t;
61
62 typedef TAILQ_HEAD(lwkt_queue, thread) lwkt_queue;
63
64 /*
65  * Differentiation between kernel threads and user threads.  Userland
66  * programs which want to access to kernel structures have to define
67  * _KERNEL_STRUCTURES.  This is a kinda safety valve to prevent badly
68  * written user programs from getting an LWKT thread that is neither the
69  * kernel nor the user version.
70  */
71 #if defined(_KERNEL) || defined(_KERNEL_STRUCTURES)
72 #ifndef _SYS_CPUMASK_H_
73 #include <sys/cpumask.h>        /* cpumask_t */
74 #endif
75 #ifndef _CPU_FRAME_H_
76 #include <machine/frame.h>
77 #endif
78 #else
79 struct intrframe;
80 #endif
81
82 /*
83  * Tokens are used to serialize access to information.  They are 'soft'
84  * serialization entities that only stay in effect while a thread is
85  * running.  If the thread blocks, other threads can run holding the same
86  * token(s).  The tokens are reacquired when the original thread resumes.
87  *
88  * Tokens guarantee that no deadlock can happen regardless of type or
89  * ordering.  However, obtaining the same token first shared, then
90  * stacking exclusive, is not allowed and will panic.
91  *
92  * A thread can depend on its serialization remaining intact through a
93  * preemption.  An interrupt which attempts to use the same token as the
94  * thread being preempted will reschedule itself for non-preemptive
95  * operation, so the new token code is capable of interlocking against
96  * interrupts as well as other cpus.  This means that your token can only
97  * be (temporarily) lost if you *explicitly* block.
98  *
99  * Tokens are managed through a helper reference structure, lwkt_tokref.  Each
100  * thread has a stack of tokref's to keep track of acquired tokens.  Multiple
101  * tokref's may reference the same token.
102  *
103  * EXCLUSIVE TOKENS
104  *      Acquiring an exclusive token requires acquiring the EXCLUSIVE bit
105  *      with count == 0.  If the exclusive bit cannot be acquired, EXCLREQ
106  *      is set.  Once acquired, EXCLREQ is cleared (but could get set by
107  *      another thread also trying for an exclusive lock at any time).
108  *
109  * SHARED TOKENS
110  *      Acquiring a shared token requires waiting for the EXCLUSIVE bit
111  *      to be cleared and then acquiring a count.  A shared lock request
112  *      can temporarily acquire a count and then back it out if it is
113  *      unable to obtain the EXCLUSIVE bit, allowing fetchadd to be used.
114  *
115  *      A thread attempting to get a single shared token will defer to
116  *      pending exclusive requesters.  However, a thread already holding
117  *      one or more tokens and trying to get an additional shared token
118  *      cannot defer to exclusive requesters because doing so can lead
119  *      to a deadlock.
120  *
121  * Multiple exclusive tokens are handled by treating the additional tokens
122  * as a special case of the shared token, incrementing the count value.  This
123  * reduces the complexity of the token release code.
124  */
125
126 struct lwkt_token {
127     long                t_count;        /* Shared/exclreq/exclusive access */
128     struct lwkt_tokref  *t_ref;         /* Exclusive ref */
129     long                t_collisions;   /* Collision counter */
130     const char          *t_desc;        /* Descriptive name */
131 };
132
133 #define TOK_EXCLUSIVE   0x00000001      /* Exclusive lock held */
134 #define TOK_EXCLREQ     0x00000002      /* Exclusive request pending */
135 #define TOK_INCR        4               /* Shared count increment */
136 #define TOK_COUNTMASK   (~(long)(TOK_EXCLUSIVE|TOK_EXCLREQ))
137
138 /*
139  * Static initialization for a lwkt_token.
140  */
141 #define LWKT_TOKEN_INITIALIZER(name)    \
142 {                                       \
143         .t_count = 0,                   \
144         .t_ref = NULL,                  \
145         .t_collisions = 0,              \
146         .t_desc = #name                 \
147 }
148
149 /*
150  * Assert that a particular token is held
151  */
152 #define LWKT_TOKEN_HELD_ANY(tok)        _lwkt_token_held_any(tok, curthread)
153 #define LWKT_TOKEN_HELD_EXCL(tok)       _lwkt_token_held_excl(tok, curthread)
154
155 #define ASSERT_LWKT_TOKEN_HELD(tok)             \
156         KKASSERT(LWKT_TOKEN_HELD_ANY(tok))
157
158 #define ASSERT_LWKT_TOKEN_HELD_EXCL(tok)        \
159         KKASSERT(LWKT_TOKEN_HELD_EXCL(tok))
160
161 #define ASSERT_NO_TOKENS_HELD(td)       \
162         KKASSERT((td)->td_toks_stop == &td->td_toks_array[0])
163
164 struct lwkt_tokref {
165     lwkt_token_t        tr_tok;         /* token in question */
166     long                tr_count;       /* TOK_EXCLUSIVE|TOK_EXCLREQ or 0 */
167     struct thread       *tr_owner;      /* me */
168 };
169
170 #define MAXCPUFIFO      256     /* power of 2 */
171 #define MAXCPUFIFO_MASK (MAXCPUFIFO - 1)
172 #define LWKT_MAXTOKENS  32      /* max tokens beneficially held by thread */
173
174 #if defined(_KERNEL) || defined(_KERNEL_STRUCTURES)
175 /*
176  * Always cast to ipifunc_t when registering an ipi.  The actual ipi function
177  * is called with both the data and an interrupt frame, but the ipi function
178  * that is registered might only declare a data argument.
179  */
180 typedef void (*ipifunc1_t)(void *arg);
181 typedef void (*ipifunc2_t)(void *arg, int arg2);
182 typedef void (*ipifunc3_t)(void *arg, int arg2, struct intrframe *frame);
183
184 struct lwkt_ipiq {
185     int         ip_rindex;      /* only written by target cpu */
186     int         ip_xindex;      /* written by target, indicates completion */
187     int         ip_windex;      /* only written by source cpu */
188     int         ip_drain;       /* drain source limit */
189     struct {
190         ipifunc3_t      func;
191         void            *arg1;
192         int             arg2;
193         char            filler[32 - sizeof(int) - sizeof(void *) * 2];
194     } ip_info[MAXCPUFIFO];
195 };
196
197 /*
198  * CPU Synchronization structure.  See lwkt_cpusync_init() and
199  * lwkt_cpusync_interlock() for more information.
200  */
201 typedef void (*cpusync_func_t)(void *arg);
202
203 struct lwkt_cpusync {
204     cpumask_t   cs_mask;                /* cpus running the sync */
205     cpumask_t   cs_mack;                /* mask acknowledge */
206     cpusync_func_t cs_func;             /* function to execute */
207     void        *cs_data;               /* function data */
208 };
209 #endif /* _KERNEL || _KERNEL_STRUCTURES */
210
211 /*
212  * The standard message and queue structure used for communications between
213  * cpus.  Messages are typically queued via a machine-specific non-linked
214  * FIFO matrix allowing any cpu to send a message to any other cpu without
215  * blocking.
216  */
217 #if 0
218 typedef struct lwkt_cpu_msg {
219     void        (*cm_func)(lwkt_cpu_msg_t msg); /* primary dispatch function */
220     int         cm_code;                /* request code if applicable */
221     int         cm_cpu;                 /* reply to cpu */
222     thread_t    cm_originator;          /* originating thread for wakeup */
223 } lwkt_cpu_msg;
224 #endif
225
226 /*
227  * per-thread file descriptor cache
228  */
229 struct fdcache {
230         int     fd;                     /* descriptor being cached */
231         int     locked;
232         struct file *fp;                /* cached referenced fp */
233         int     lru;
234         int     unused[3];
235 } __cachealign;
236
237 #define NFDCACHE        4               /* max fd's cached by a thread */
238
239 /*
240  * Thread structure.  Note that ownership of a thread structure is special
241  * cased and there is no 'token'.  A thread is always owned by the cpu
242  * represented by td_gd, any manipulation of the thread by some other cpu
243  * must be done through cpu_*msg() functions.  e.g. you could request
244  * ownership of a thread that way, or hand a thread off to another cpu.
245  *
246  * NOTE: td_ucred is synchronized from the p_ucred on user->kernel syscall,
247  *       trap, and AST/signal transitions to provide a stable ucred for
248  *       (primarily) system calls.  This field will be NULL for pure kernel
249  *       threads.
250  */
251 struct md_intr_info;
252
253 struct thread {
254     TAILQ_ENTRY(thread) td_threadq;
255     TAILQ_ENTRY(thread) td_allq;
256     TAILQ_ENTRY(thread) td_sleepq;
257     lwkt_port   td_msgport;     /* built-in message port for replies */
258     struct lwp  *td_lwp;        /* (optional) associated lwp */
259     struct proc *td_proc;       /* (optional) associated process */
260     struct pcb  *td_pcb;        /* points to pcb and top of kstack */
261     struct globaldata *td_gd;   /* associated with this cpu */
262     const char  *td_wmesg;      /* string name for blockage */
263     const volatile void *td_wchan;      /* waiting on channel */
264     int         td_pri;         /* 0-31, 31=highest priority (note 1) */
265     int         td_critcount;   /* critical section priority */
266     u_int       td_flags;       /* TDF flags */
267     int         td_wdomain;     /* domain for wchan address (typ 0) */
268     void        (*td_preemptable)(struct thread *td, int critcount);
269     void        (*td_release)(struct thread *td);
270     char        *td_kstack;     /* kernel stack */
271     int         td_kstack_size; /* size of kernel stack */
272     char        *td_sp;         /* kernel stack pointer for LWKT restore */
273     thread_t    (*td_switch)(struct thread *ntd);
274     __uint64_t  td_uticks;      /* Statclock hits in user mode (uS) */
275     __uint64_t  td_sticks;      /* Statclock hits in system mode (uS) */
276     __uint64_t  td_iticks;      /* Statclock hits processing intr (uS) */
277     int         td_locks;       /* lockmgr lock debugging */
278     struct plimit *td_limit;    /* synchronized from proc->p_limit */
279     int         td_refs;        /* hold position in gd_tdallq / hold free */
280     int         td_nest_count;  /* prevent splz nesting */
281     u_int       td_contended;   /* token contention count */
282     u_int       td_mpflags;     /* flags can be set by foreign cpus */
283     int         td_cscount;     /* cpu synchronization master */
284     int         td_wakefromcpu; /* who woke me up? */
285     int         td_upri;        /* user priority (sub-priority under td_pri) */
286     int         td_type;        /* thread type, TD_TYPE_ */
287     int         td_tracker;     /* misc use (base value 0), recursion count */
288     int         td_fdcache_lru;
289     int         td_unused03[3]; /* for future fields */
290     struct iosched_data td_iosdata;     /* Dynamic I/O scheduling data */
291     struct timeval td_start;    /* start time for a thread/process */
292     char        td_comm[MAXCOMLEN+1]; /* typ 16+1 bytes */
293     struct thread *td_preempted; /* we preempted this thread */
294     struct ucred *td_ucred;     /* synchronized from proc->p_ucred */
295     void         *td_vmm;       /* vmm private data */
296     lwkt_tokref_t td_toks_have;         /* tokens we own */
297     lwkt_tokref_t td_toks_stop;         /* tokens we want */
298     struct lwkt_tokref td_toks_array[LWKT_MAXTOKENS];
299     int         td_fairq_load;          /* fairq */
300     int         td_fairq_count;         /* fairq */
301     struct globaldata *td_migrate_gd;   /* target gd for thread migration */
302     struct fdcache    td_fdcache[NFDCACHE];
303     void        *td_linux_task;         /* drm/linux support */
304 #ifdef DEBUG_CRIT_SECTIONS
305 #define CRIT_DEBUG_ARRAY_SIZE   32
306 #define CRIT_DEBUG_ARRAY_MASK   (CRIT_DEBUG_ARRAY_SIZE - 1)
307     const char  *td_crit_debug_array[CRIT_DEBUG_ARRAY_SIZE];
308     int         td_crit_debug_index;
309     int         td_in_crit_report;
310 #endif
311     struct md_thread td_mach;
312 #ifdef DEBUG_LOCKS
313 #define SPINLOCK_DEBUG_ARRAY_SIZE       32
314    int  td_spinlock_stack_id[SPINLOCK_DEBUG_ARRAY_SIZE];
315    struct spinlock *td_spinlock_stack[SPINLOCK_DEBUG_ARRAY_SIZE];
316    void         *td_spinlock_caller_pc[SPINLOCK_DEBUG_ARRAY_SIZE];
317
318     /*
319      * Track lockmgr locks held; lk->lk_filename:lk->lk_lineno is the holder
320      */
321 #define LOCKMGR_DEBUG_ARRAY_SIZE        8
322     int         td_lockmgr_stack_id[LOCKMGR_DEBUG_ARRAY_SIZE];
323     struct lock *td_lockmgr_stack[LOCKMGR_DEBUG_ARRAY_SIZE];
324 #endif
325 };
326
327 #define td_toks_base            td_toks_array[0]
328 #define td_toks_end             td_toks_array[LWKT_MAXTOKENS]
329
330 #define TD_TOKS_HELD(td)        ((td)->td_toks_stop != &(td)->td_toks_base)
331 #define TD_TOKS_NOT_HELD(td)    ((td)->td_toks_stop == &(td)->td_toks_base)
332
333 /*
334  * Thread flags.  Note that TDF_RUNNING is cleared on the old thread after
335  * we switch to the new one, which is necessary because LWKTs don't need
336  * to hold the BGL.  This flag is used by the exit code and the managed
337  * thread migration code.  Note in addition that preemption will cause
338  * TDF_RUNNING to be cleared temporarily, so any code checking TDF_RUNNING
339  * must also check TDF_PREEMPT_LOCK.
340  *
341  * LWKT threads stay on their (per-cpu) run queue while running, not to
342  * be confused with user processes which are removed from the user scheduling
343  * run queue while actually running.
344  *
345  * td_threadq can represent the thread on one of three queues... the LWKT
346  * run queue, a tsleep queue, or an lwkt blocking queue.  The LWKT subsystem
347  * does not allow a thread to be scheduled if it already resides on some
348  * queue.
349  */
350 #define TDF_RUNNING             0x00000001      /* thread still active */
351 #define TDF_RUNQ                0x00000002      /* on an LWKT run queue */
352 #define TDF_PREEMPT_LOCK        0x00000004      /* I have been preempted */
353 #define TDF_PREEMPT_DONE        0x00000008      /* ac preemption complete */
354 #define TDF_NOSTART             0x00000010      /* do not schedule on create */
355 #define TDF_MIGRATING           0x00000020      /* thread is being migrated */
356 #define TDF_SINTR               0x00000040      /* interruptability for 'ps' */
357 #define TDF_TSLEEPQ             0x00000080      /* on a tsleep wait queue */
358
359 #define TDF_SYSTHREAD           0x00000100      /* reserve memory may be used */
360 #define TDF_ALLOCATED_THREAD    0x00000200      /* objcache allocated thread */
361 #define TDF_ALLOCATED_STACK     0x00000400      /* objcache allocated stack */
362 #define TDF_FPU_HEUR            0x00000800      /* active restore on switch */
363 #define TDF_DEADLKTREAT         0x00001000      /* special lockmgr treatment */
364 #define TDF_MARKER              0x00002000      /* tdallq list scan marker */
365 #define TDF_TIMEOUT_RUNNING     0x00004000      /* tsleep timeout race */
366 #define TDF_TIMEOUT             0x00008000      /* tsleep timeout */
367 #define TDF_INTTHREAD           0x00010000      /* interrupt thread */
368 #define TDF_TSLEEP_DESCHEDULED  0x00020000      /* tsleep core deschedule */
369 #define TDF_BLOCKED             0x00040000      /* Thread is blocked */
370 #define TDF_PANICWARN           0x00080000      /* panic warning in switch */
371 #define TDF_BLOCKQ              0x00100000      /* on block queue */
372 #define TDF_FORCE_SPINPORT      0x00200000
373 #define TDF_EXITING             0x00400000      /* thread exiting */
374 #define TDF_USINGFP             0x00800000      /* thread using fp coproc */
375 #define TDF_KERNELFP            0x01000000      /* kernel using fp coproc */
376 #define TDF_DELAYED_WAKEUP      0x02000000
377 #define TDF_FIXEDCPU            0x04000000      /* running cpu is fixed */
378 #define TDF_USERMODE            0x08000000      /* in or entering user mode */
379 #define TDF_NOFAULT             0x10000000      /* force onfault on fault */
380 #define TDF_CLKTHREAD           0x20000000      /* detect INTTHREAD clock */
381
382 #define TDF_MP_STOPREQ          0x00000001      /* suspend_kproc */
383 #define TDF_MP_WAKEREQ          0x00000002      /* resume_kproc */
384 #define TDF_MP_EXITWAIT         0x00000004      /* reaper, see lwp_wait() */
385 #define TDF_MP_EXITSIG          0x00000008      /* reaper, see lwp_wait() */
386 #define TDF_MP_BATCH_DEMARC     0x00000010      /* batch mode handling */
387 #define TDF_MP_DIDYIELD         0x00000020      /* effects scheduling */
388
389 #define TD_TYPE_GENERIC         0               /* generic thread */
390 #define TD_TYPE_CRYPTO          1               /* crypto thread */
391 #define TD_TYPE_NETISR          2               /* netisr thread */
392
393 /*
394  * Thread priorities.  Typically only one thread from any given
395  * user process scheduling queue is on the LWKT run queue at a time.
396  * Remember that there is one LWKT run queue per cpu.
397  *
398  * Critical sections are handled by bumping td_pri above TDPRI_MAX, which
399  * causes interrupts to be masked as they occur.  When this occurs a
400  * rollup flag will be set in mycpu->gd_reqflags.
401  */
402 #define TDPRI_IDLE_THREAD       0       /* the idle thread */
403 #define TDPRI_IDLE_WORK         1       /* idle work (page zero, etc) */
404 #define TDPRI_USER_SCHEDULER    2       /* user scheduler helper */
405 #define TDPRI_USER_IDLE         4       /* user scheduler idle */
406 #define TDPRI_USER_NORM         6       /* user scheduler normal */
407 #define TDPRI_USER_REAL         8       /* user scheduler real time */
408 #define TDPRI_KERN_LPSCHED      9       /* (comparison point only) */
409 #define TDPRI_KERN_USER         10      /* kernel / block in syscall */
410 #define TDPRI_KERN_DAEMON       12      /* kernel daemon (pageout, etc) */
411 #define TDPRI_SOFT_NORM         14      /* kernel / normal */
412 #define TDPRI_SOFT_TIMER        16      /* kernel / timer */
413 #define TDPRI_UNUSED19          19
414 #define TDPRI_INT_SUPPORT       20      /* kernel / high priority support */
415 #define TDPRI_INT_LOW           27      /* low priority interrupt */
416 #define TDPRI_INT_MED           28      /* medium priority interrupt */
417 #define TDPRI_INT_HIGH          29      /* high priority interrupt */
418 #define TDPRI_MAX               31
419
420 #define LWKT_THREAD_STACK       (UPAGES * PAGE_SIZE)
421
422 #define IN_CRITICAL_SECT(td)    ((td)->td_critcount)
423
424 #ifdef _KERNEL
425
426 extern void (*linux_task_drop_callback)(struct thread *);
427 extern void (*linux_proc_drop_callback)(struct proc *);
428
429 /*
430  * Global tokens
431  */
432 extern struct lwkt_token mp_token;
433 extern struct lwkt_token pmap_token;
434 extern struct lwkt_token dev_token;
435 extern struct lwkt_token vm_token;
436 extern struct lwkt_token vmspace_token;
437 extern struct lwkt_token kvm_token;
438 extern struct lwkt_token sigio_token;
439 extern struct lwkt_token tty_token;
440 extern struct lwkt_token vnode_token;
441 extern struct lwkt_token revoke_token;
442 extern struct lwkt_token kbd_token;
443 extern struct lwkt_token vga_token;
444
445 /*
446  * Procedures
447  */
448 struct thread *lwkt_alloc_thread(struct thread *, int, int, int);
449 void lwkt_init_thread(struct thread *, void *, int, int, struct globaldata *);
450 void lwkt_set_interrupt_support_thread(void);
451 void lwkt_set_comm(thread_t, const char *, ...) __printflike(2, 3);
452 void lwkt_free_thread(struct thread *);
453 void lwkt_gdinit(struct globaldata *);
454 void lwkt_switch(void);
455 void lwkt_switch_return(struct thread *);
456 void lwkt_preempt(thread_t, int);
457 void lwkt_schedule(thread_t);
458 void lwkt_schedule_noresched(thread_t);
459 void lwkt_schedule_self(thread_t);
460 void lwkt_deschedule(thread_t);
461 void lwkt_deschedule_self(thread_t);
462 void lwkt_yield(void);
463 void lwkt_yield_quick(void);
464 void lwkt_user_yield(void);
465 void lwkt_hold(thread_t);
466 void lwkt_rele(thread_t);
467 void lwkt_passive_release(thread_t);
468 void lwkt_maybe_splz(thread_t);
469
470 void lwkt_gettoken(lwkt_token_t);
471 void lwkt_gettoken_shared(lwkt_token_t);
472 int  lwkt_trytoken(lwkt_token_t);
473 void lwkt_reltoken(lwkt_token_t);
474 int  lwkt_cnttoken(lwkt_token_t, thread_t);
475 int  lwkt_getalltokens(thread_t, int);
476 void lwkt_relalltokens(thread_t);
477 void lwkt_token_init(lwkt_token_t, const char *);
478 void lwkt_token_uninit(lwkt_token_t);
479
480 void lwkt_token_pool_init(void);
481 lwkt_token_t lwkt_token_pool_lookup(void *);
482 lwkt_token_t lwkt_getpooltoken(void *);
483 void lwkt_relpooltoken(void *);
484
485 void lwkt_token_swap(void);
486
487 void lwkt_setpri(thread_t, int);
488 void lwkt_setpri_initial(thread_t, int);
489 void lwkt_setpri_self(int);
490 void lwkt_schedulerclock(thread_t td);
491 void lwkt_setcpu_self(struct globaldata *);
492 void lwkt_migratecpu(int);
493
494 void lwkt_giveaway(struct thread *);
495 void lwkt_acquire(struct thread *);
496 int  lwkt_send_ipiq3(struct globaldata *, ipifunc3_t, void *, int);
497 int  lwkt_send_ipiq3_passive(struct globaldata *, ipifunc3_t, void *, int);
498 int  lwkt_send_ipiq3_bycpu(int, ipifunc3_t, void *, int);
499 int  lwkt_send_ipiq3_mask(cpumask_t, ipifunc3_t, void *, int);
500 void lwkt_wait_ipiq(struct globaldata *, int);
501 void lwkt_process_ipiq(void);
502 void lwkt_process_ipiq_frame(struct intrframe *);
503 void lwkt_smp_stopped(void);
504 void lwkt_synchronize_ipiqs(const char *);
505
506 /* lwkt_cpusync_init() - inline function in sys/thread2.h */
507 void lwkt_cpusync_simple(cpumask_t, cpusync_func_t, void *);
508 void lwkt_cpusync_interlock(lwkt_cpusync_t);
509 void lwkt_cpusync_deinterlock(lwkt_cpusync_t);
510 void lwkt_cpusync_quick(lwkt_cpusync_t);
511
512 void crit_panic(void) __dead2;
513 struct lwp *lwkt_preempted_proc(void);
514
515 int  lwkt_create(void (*)(void *), void *, struct thread **, struct thread *,
516         int, int, const char *, ...) __printflike(7, 8);
517 void lwkt_exit(void) __dead2;
518 void lwkt_remove_tdallq(struct thread *);
519
520 #endif /* _KERNEL */
521
522 #endif /* !_SYS_THREAD_H_ */
523