Fix a little redundancy from my last commit. The border cannot be outside
[dragonfly.git] / sys / netinet / ip_input.c
1 /*
2  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
3  * Copyright (c) 2003, 2004 The DragonFly Project.  All rights reserved.
4  *
5  * This code is derived from software contributed to The DragonFly Project
6  * by Jeffrey M. Hsu.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of The DragonFly Project nor the names of its
17  *    contributors may be used to endorse or promote products derived
18  *    from this software without specific, prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
24  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33
34 /*
35  * Copyright (c) 2003, 2004 Jeffrey M. Hsu.  All rights reserved.
36  *
37  * License terms: all terms for the DragonFly license above plus the following:
38  *
39  * 4. All advertising materials mentioning features or use of this software
40  *    must display the following acknowledgement:
41  *
42  *      This product includes software developed by Jeffrey M. Hsu
43  *      for the DragonFly Project.
44  *
45  *    This requirement may be waived with permission from Jeffrey Hsu.
46  *    This requirement will sunset and may be removed on July 8 2005,
47  *    after which the standard DragonFly license (as shown above) will
48  *    apply.
49  */
50
51 /*
52  * Copyright (c) 1982, 1986, 1988, 1993
53  *      The Regents of the University of California.  All rights reserved.
54  *
55  * Redistribution and use in source and binary forms, with or without
56  * modification, are permitted provided that the following conditions
57  * are met:
58  * 1. Redistributions of source code must retain the above copyright
59  *    notice, this list of conditions and the following disclaimer.
60  * 2. Redistributions in binary form must reproduce the above copyright
61  *    notice, this list of conditions and the following disclaimer in the
62  *    documentation and/or other materials provided with the distribution.
63  * 3. All advertising materials mentioning features or use of this software
64  *    must display the following acknowledgement:
65  *      This product includes software developed by the University of
66  *      California, Berkeley and its contributors.
67  * 4. Neither the name of the University nor the names of its contributors
68  *    may be used to endorse or promote products derived from this software
69  *    without specific prior written permission.
70  *
71  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
72  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
74  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
75  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
76  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
77  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
78  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
79  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
80  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
81  * SUCH DAMAGE.
82  *
83  *      @(#)ip_input.c  8.2 (Berkeley) 1/4/94
84  * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
85  * $DragonFly: src/sys/netinet/ip_input.c,v 1.46 2005/02/11 22:25:57 joerg Exp $
86  */
87
88 #define _IP_VHL
89
90 #include "opt_bootp.h"
91 #include "opt_ipfw.h"
92 #include "opt_ipdn.h"
93 #include "opt_ipdivert.h"
94 #include "opt_ipfilter.h"
95 #include "opt_ipstealth.h"
96 #include "opt_ipsec.h"
97 #include "opt_random_ip_id.h"
98
99 #include <sys/param.h>
100 #include <sys/systm.h>
101 #include <sys/mbuf.h>
102 #include <sys/malloc.h>
103 #include <sys/mpipe.h>
104 #include <sys/domain.h>
105 #include <sys/protosw.h>
106 #include <sys/socket.h>
107 #include <sys/time.h>
108 #include <sys/globaldata.h>
109 #include <sys/thread.h>
110 #include <sys/kernel.h>
111 #include <sys/syslog.h>
112 #include <sys/sysctl.h>
113 #include <sys/in_cksum.h>
114
115 #include <sys/thread2.h>
116 #include <sys/msgport2.h>
117
118 #include <machine/stdarg.h>
119
120 #include <net/if.h>
121 #include <net/if_types.h>
122 #include <net/if_var.h>
123 #include <net/if_dl.h>
124 #include <net/pfil.h>
125 #include <net/route.h>
126 #include <net/netisr.h>
127 #include <net/intrq.h>
128
129 #include <netinet/in.h>
130 #include <netinet/in_systm.h>
131 #include <netinet/in_var.h>
132 #include <netinet/ip.h>
133 #include <netinet/in_pcb.h>
134 #include <netinet/ip_var.h>
135 #include <netinet/ip_icmp.h>
136
137
138 #include <sys/socketvar.h>
139
140 #include <net/ipfw/ip_fw.h>
141 #include <net/dummynet/ip_dummynet.h>
142
143 #ifdef IPSEC
144 #include <netinet6/ipsec.h>
145 #include <netproto/key/key.h>
146 #endif
147
148 #ifdef FAST_IPSEC
149 #include <netproto/ipsec/ipsec.h>
150 #include <netproto/ipsec/key.h>
151 #endif
152
153 int rsvp_on = 0;
154 static int ip_rsvp_on;
155 struct socket *ip_rsvpd;
156
157 int ipforwarding = 0;
158 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
159     &ipforwarding, 0, "Enable IP forwarding between interfaces");
160
161 static int ipsendredirects = 1; /* XXX */
162 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
163     &ipsendredirects, 0, "Enable sending IP redirects");
164
165 int ip_defttl = IPDEFTTL;
166 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
167     &ip_defttl, 0, "Maximum TTL on IP packets");
168
169 static int ip_dosourceroute = 0;
170 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
171     &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
172
173 static int ip_acceptsourceroute = 0;
174 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
175     CTLFLAG_RW, &ip_acceptsourceroute, 0,
176     "Enable accepting source routed IP packets");
177
178 static int ip_keepfaith = 0;
179 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
180     &ip_keepfaith, 0,
181     "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
182
183 static int nipq = 0;    /* total # of reass queues */
184 static int maxnipq;
185 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
186     &maxnipq, 0,
187     "Maximum number of IPv4 fragment reassembly queue entries");
188
189 static int maxfragsperpacket;
190 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
191     &maxfragsperpacket, 0,
192     "Maximum number of IPv4 fragments allowed per packet");
193
194 static int ip_sendsourcequench = 0;
195 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
196     &ip_sendsourcequench, 0,
197     "Enable the transmission of source quench packets");
198
199 /*
200  * XXX - Setting ip_checkinterface mostly implements the receive side of
201  * the Strong ES model described in RFC 1122, but since the routing table
202  * and transmit implementation do not implement the Strong ES model,
203  * setting this to 1 results in an odd hybrid.
204  *
205  * XXX - ip_checkinterface currently must be disabled if you use ipnat
206  * to translate the destination address to another local interface.
207  *
208  * XXX - ip_checkinterface must be disabled if you add IP aliases
209  * to the loopback interface instead of the interface where the
210  * packets for those addresses are received.
211  */
212 static int ip_checkinterface = 0;
213 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
214     &ip_checkinterface, 0, "Verify packet arrives on correct interface");
215
216 #ifdef DIAGNOSTIC
217 static int ipprintfs = 0;
218 #endif
219
220 static struct ifqueue ipintrq;
221 static int ipqmaxlen = IFQ_MAXLEN;
222
223 extern  struct domain inetdomain;
224 extern  struct protosw inetsw[];
225 u_char  ip_protox[IPPROTO_MAX];
226 struct  in_ifaddrhead in_ifaddrhead;            /* first inet address */
227 struct  in_ifaddrhashhead *in_ifaddrhashtbl;    /* inet addr hash table */
228 u_long  in_ifaddrhmask;                         /* mask for hash table */
229
230 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
231     &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
232 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
233     &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
234
235 struct ip_stats ipstats_ary[MAXCPU];
236 #ifdef SMP
237 static int
238 sysctl_ipstats(SYSCTL_HANDLER_ARGS)
239 {
240         int cpu, error = 0;
241
242         for (cpu = 0; cpu < ncpus; ++cpu) {
243                 if ((error = SYSCTL_OUT(req, &ipstats_ary[cpu],
244                                         sizeof(struct ip_stats))))
245                         break;
246                 if ((error = SYSCTL_IN(req, &ipstats_ary[cpu],
247                                        sizeof(struct ip_stats))))
248                         break;
249         }
250
251         return (error);
252 }
253 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
254     0, 0, sysctl_ipstats, "S,ip_stats", "IP statistics");
255 #else
256 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
257     &ipstat, ip_stats, "IP statistics");
258 #endif
259
260 /* Packet reassembly stuff */
261 #define IPREASS_NHASH_LOG2      6
262 #define IPREASS_NHASH           (1 << IPREASS_NHASH_LOG2)
263 #define IPREASS_HMASK           (IPREASS_NHASH - 1)
264 #define IPREASS_HASH(x,y)                                               \
265     (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
266
267 static struct ipq ipq[IPREASS_NHASH];
268 const  int    ipintrq_present = 1;
269
270 #ifdef IPCTL_DEFMTU
271 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
272     &ip_mtu, 0, "Default MTU");
273 #endif
274
275 #ifdef IPSTEALTH
276 static int ipstealth = 0;
277 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, &ipstealth, 0, "");
278 #else
279 static const int ipstealth = 0;
280 #endif
281
282
283 /* Firewall hooks */
284 ip_fw_chk_t *ip_fw_chk_ptr;
285 int fw_enable = 1;
286 int fw_one_pass = 1;
287
288 /* Dummynet hooks */
289 ip_dn_io_t *ip_dn_io_ptr;
290
291 struct pfil_head inet_pfil_hook;
292
293 /*
294  * XXX this is ugly -- the following two global variables are
295  * used to store packet state while it travels through the stack.
296  * Note that the code even makes assumptions on the size and
297  * alignment of fields inside struct ip_srcrt so e.g. adding some
298  * fields will break the code. This needs to be fixed.
299  *
300  * We need to save the IP options in case a protocol wants to respond
301  * to an incoming packet over the same route if the packet got here
302  * using IP source routing.  This allows connection establishment and
303  * maintenance when the remote end is on a network that is not known
304  * to us.
305  */
306 static int ip_nhops = 0;
307
308 static  struct ip_srcrt {
309         struct  in_addr dst;                    /* final destination */
310         char    nop;                            /* one NOP to align */
311         char    srcopt[IPOPT_OFFSET + 1];       /* OPTVAL, OLEN and OFFSET */
312         struct  in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
313 } ip_srcrt;
314
315 static MALLOC_DEFINE(M_IPQ, "ipq", "IP Fragment Management");
316 static struct malloc_pipe ipq_mpipe;
317
318 static void             save_rte (u_char *, struct in_addr);
319 static int              ip_dooptions (struct mbuf *m, int,
320                                         struct sockaddr_in *next_hop);
321 static void             ip_forward (struct mbuf *m, int srcrt,
322                                         struct sockaddr_in *next_hop);
323 static void             ip_freef (struct ipq *);
324 static int              ip_input_handler (struct netmsg *);
325 static struct mbuf      *ip_reass (struct mbuf *, struct ipq *,
326                                         struct ipq *, u_int32_t *, u_int16_t *);
327
328 /*
329  * IP initialization: fill in IP protocol switch table.
330  * All protocols not implemented in kernel go to raw IP protocol handler.
331  */
332 void
333 ip_init(void)
334 {
335         struct protosw *pr;
336         int i;
337 #ifdef SMP
338         int cpu;
339 #endif
340
341         /*
342          * Make sure we can handle a reasonable number of fragments but
343          * cap it at 4000 (XXX).
344          */
345         mpipe_init(&ipq_mpipe, M_IPQ, sizeof(struct ipq),
346                     IFQ_MAXLEN, 4000, 0, NULL);
347         TAILQ_INIT(&in_ifaddrhead);
348         in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
349         pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
350         if (pr == NULL)
351                 panic("ip_init");
352         for (i = 0; i < IPPROTO_MAX; i++)
353                 ip_protox[i] = pr - inetsw;
354         for (pr = inetdomain.dom_protosw;
355              pr < inetdomain.dom_protoswNPROTOSW; pr++)
356                 if (pr->pr_domain->dom_family == PF_INET &&
357                     pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
358                         ip_protox[pr->pr_protocol] = pr - inetsw;
359
360         inet_pfil_hook.ph_type = PFIL_TYPE_AF;
361         inet_pfil_hook.ph_af = AF_INET;
362         if ((i = pfil_head_register(&inet_pfil_hook)) != 0) {
363                 printf("%s: WARNING: unable to register pfil hook, "
364                         "error %d\n", __func__, i);
365         }
366
367         for (i = 0; i < IPREASS_NHASH; i++)
368             ipq[i].next = ipq[i].prev = &ipq[i];
369
370         maxnipq = nmbclusters / 32;
371         maxfragsperpacket = 16;
372
373 #ifndef RANDOM_IP_ID
374         ip_id = time_second & 0xffff;
375 #endif
376         ipintrq.ifq_maxlen = ipqmaxlen;
377
378         /*
379          * Initialize IP statistics.
380          *
381          * It is layed out as an array which is has one element for UP,
382          * and SMP_MAXCPU elements for SMP.  This allows us to retain
383          * the access mechanism from userland for both UP and SMP.
384          */
385 #ifdef SMP
386         for (cpu = 0; cpu < ncpus; ++cpu) {
387                 bzero(&ipstats_ary[cpu], sizeof(struct ip_stats));
388         }
389 #else
390         bzero(&ipstat, sizeof(struct ip_stats));
391 #endif
392
393         netisr_register(NETISR_IP, ip_mport, ip_input_handler);
394 }
395
396 /*
397  * XXX watch out this one. It is perhaps used as a cache for
398  * the most recently used route ? it is cleared in in_addroute()
399  * when a new route is successfully created.
400  */
401 struct route ipforward_rt;
402
403 /* Do transport protocol processing. */
404 static void
405 transport_processing_oncpu(struct mbuf *m, int hlen, struct ip *ip,
406                            struct sockaddr_in *nexthop)
407 {
408         /*
409          * Switch out to protocol's input routine.
410          */
411         if (nexthop && ip->ip_p == IPPROTO_TCP) {
412                 /* TCP needs IPFORWARD info if available */
413                 struct m_hdr tag;
414
415                 tag.mh_type = MT_TAG;
416                 tag.mh_flags = PACKET_TAG_IPFORWARD;
417                 tag.mh_data = (caddr_t)nexthop;
418                 tag.mh_next = m;
419
420                 (*inetsw[ip_protox[ip->ip_p]].pr_input)
421                     ((struct mbuf *)&tag, hlen, ip->ip_p);
422         } else {
423                 (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen, ip->ip_p);
424         }
425 }
426
427 struct netmsg_transport_packet {
428         struct lwkt_msg         nm_lmsg;
429         struct mbuf             *nm_mbuf;
430         int                     nm_hlen;
431         boolean_t               nm_hasnexthop;
432         struct sockaddr_in      nm_nexthop;
433 };
434
435 static int
436 transport_processing_handler(lwkt_msg_t lmsg)
437 {
438         struct netmsg_transport_packet *msg = (void *)lmsg;
439         struct sockaddr_in *nexthop;
440         struct ip *ip;
441
442         ip = mtod(msg->nm_mbuf, struct ip *);
443         nexthop = msg->nm_hasnexthop ? &msg->nm_nexthop : NULL;
444         transport_processing_oncpu(msg->nm_mbuf, msg->nm_hlen, ip, nexthop);
445         lwkt_replymsg(lmsg, 0);
446         return(EASYNC);
447 }
448
449 static int
450 ip_input_handler(struct netmsg *msg0)
451 {
452         struct mbuf *m = ((struct netmsg_packet *)msg0)->nm_packet;
453
454         ip_input(m);
455         lwkt_replymsg(&msg0->nm_lmsg, 0);
456         return(EASYNC);
457 }
458
459 /*
460  * IP input routine.  Checksum and byte swap header.  If fragmented
461  * try to reassemble.  Process options.  Pass to next level.
462  */
463 void
464 ip_input(struct mbuf *m)
465 {
466         struct ip *ip;
467         struct ipq *fp;
468         struct in_ifaddr *ia = NULL;
469         struct ifaddr *ifa;
470         int i, hlen, checkif;
471         u_short sum;
472         struct in_addr pkt_dst;
473         u_int32_t divert_info = 0;              /* packet divert/tee info */
474         struct ip_fw_args args;
475         boolean_t using_srcrt = FALSE;          /* forward (by PFIL_HOOKS) */
476         boolean_t needredispatch = FALSE;
477         struct in_addr odst;                    /* original dst address(NAT) */
478 #ifdef FAST_IPSEC
479         struct m_tag *mtag;
480         struct tdb_ident *tdbi;
481         struct secpolicy *sp;
482         int s, error;
483 #endif
484
485         args.eh = NULL;
486         args.oif = NULL;
487         args.rule = NULL;
488         args.divert_rule = 0;                   /* divert cookie */
489         args.next_hop = NULL;
490
491         /* Grab info from MT_TAG mbufs prepended to the chain. */
492         while (m != NULL && m->m_type == MT_TAG) {
493                 switch(m->_m_tag_id) {
494                 case PACKET_TAG_DUMMYNET:
495                         args.rule = ((struct dn_pkt *)m)->rule;
496                         break;
497                 case PACKET_TAG_DIVERT:
498                         args.divert_rule = (int)m->m_hdr.mh_data & 0xffff;
499                         break;
500                 case PACKET_TAG_IPFORWARD:
501                         args.next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
502                         break;
503                 default:
504                         printf("ip_input: unrecognised MT_TAG tag %d\n",
505                             m->_m_tag_id);
506                         break;
507                 }
508                 m = m->m_next;
509         }
510         KASSERT(m != NULL && (m->m_flags & M_PKTHDR), ("ip_input: no HDR"));
511
512         if (args.rule != NULL) {        /* dummynet already filtered us */
513                 ip = mtod(m, struct ip *);
514                 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
515                 goto iphack;
516         }
517
518         ipstat.ips_total++;
519
520         /* length checks already done in ip_demux() */
521         KASSERT(m->m_len >= sizeof(ip), ("IP header not in one mbuf"));
522
523         ip = mtod(m, struct ip *);
524
525         if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
526                 ipstat.ips_badvers++;
527                 goto bad;
528         }
529
530         hlen = IP_VHL_HL(ip->ip_vhl) << 2;
531         /* length checks already done in ip_demux() */
532         KASSERT(hlen >= sizeof(struct ip), ("IP header len too small"));
533         KASSERT(m->m_len >= hlen, ("packet shorter than IP header length"));
534
535         /* 127/8 must not appear on wire - RFC1122 */
536         if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
537             (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
538                 if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK)) {
539                         ipstat.ips_badaddr++;
540                         goto bad;
541                 }
542         }
543
544         if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
545                 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
546         } else {
547                 if (hlen == sizeof(struct ip)) {
548                         sum = in_cksum_hdr(ip);
549                 } else {
550                         sum = in_cksum(m, hlen);
551                 }
552         }
553         if (sum != 0) {
554                 ipstat.ips_badsum++;
555                 goto bad;
556         }
557
558 #ifdef ALTQ
559         if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
560                 /* packet is dropped by traffic conditioner */
561                 return;
562         }
563 #endif
564         /*
565          * Convert fields to host representation.
566          */
567         ip->ip_len = ntohs(ip->ip_len);
568         if (ip->ip_len < hlen) {
569                 ipstat.ips_badlen++;
570                 goto bad;
571         }
572         ip->ip_off = ntohs(ip->ip_off);
573
574         /*
575          * Check that the amount of data in the buffers
576          * is as at least much as the IP header would have us expect.
577          * Trim mbufs if longer than we expect.
578          * Drop packet if shorter than we expect.
579          */
580         if (m->m_pkthdr.len < ip->ip_len) {
581                 ipstat.ips_tooshort++;
582                 goto bad;
583         }
584         if (m->m_pkthdr.len > ip->ip_len) {
585                 if (m->m_len == m->m_pkthdr.len) {
586                         m->m_len = ip->ip_len;
587                         m->m_pkthdr.len = ip->ip_len;
588                 } else
589                         m_adj(m, ip->ip_len - m->m_pkthdr.len);
590         }
591 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
592         /*
593          * Bypass packet filtering for packets from a tunnel (gif).
594          */
595         if (ipsec_gethist(m, NULL))
596                 goto pass;
597 #endif
598
599         /*
600          * IpHack's section.
601          * Right now when no processing on packet has done
602          * and it is still fresh out of network we do our black
603          * deals with it.
604          * - Firewall: deny/allow/divert
605          * - Xlate: translate packet's addr/port (NAT).
606          * - Pipe: pass pkt through dummynet.
607          * - Wrap: fake packet's addr/port <unimpl.>
608          * - Encapsulate: put it in another IP and send out. <unimp.>
609          */
610
611 iphack:
612
613         /*
614          * Run through list of hooks for input packets.
615          *
616          * NB: Beware of the destination address changing (e.g.
617          *     by NAT rewriting). When this happens, tell
618          *     ip_forward to do the right thing.
619          */
620         if (pfil_has_hooks(&inet_pfil_hook)) {
621                 odst = ip->ip_dst;
622                 if (pfil_run_hooks(&inet_pfil_hook, &m,
623                     m->m_pkthdr.rcvif, PFIL_IN)) {
624                         return;
625                 }
626                 if (m == NULL)                  /* consumed by filter */
627                         return;
628                 ip = mtod(m, struct ip *);
629                 using_srcrt = (odst.s_addr != ip->ip_dst.s_addr);
630         }
631
632         if (fw_enable && IPFW_LOADED) {
633                 /*
634                  * If we've been forwarded from the output side, then
635                  * skip the firewall a second time
636                  */
637                 if (args.next_hop != NULL)
638                         goto ours;
639
640                 args.m = m;
641                 i = ip_fw_chk_ptr(&args);
642                 m = args.m;
643
644                 if ((i & IP_FW_PORT_DENY_FLAG) || m == NULL) {  /* drop */
645                         if (m != NULL)
646                                 m_freem(m);
647                         return;
648                 }
649                 ip = mtod(m, struct ip *);      /* just in case m changed */
650                 if (i == 0 && args.next_hop == NULL)    /* common case */
651                         goto pass;
652                 if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG)) {
653                         /* Send packet to the appropriate pipe */
654                         ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
655                         return;
656                 }
657 #ifdef IPDIVERT
658                 if (i != 0 && !(i & IP_FW_PORT_DYNT_FLAG)) {
659                         /* Divert or tee packet */
660                         divert_info = i;
661                         goto ours;
662                 }
663 #endif
664                 if (i == 0 && args.next_hop != NULL)
665                         goto pass;
666                 /*
667                  * if we get here, the packet must be dropped
668                  */
669                 m_freem(m);
670                 return;
671         }
672 pass:
673
674         /*
675          * Process options and, if not destined for us,
676          * ship it on.  ip_dooptions returns 1 when an
677          * error was detected (causing an icmp message
678          * to be sent and the original packet to be freed).
679          */
680         ip_nhops = 0;           /* for source routed packets */
681         if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, args.next_hop))
682                 return;
683
684         /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
685          * matter if it is destined to another node, or whether it is
686          * a multicast one, RSVP wants it! and prevents it from being forwarded
687          * anywhere else. Also checks if the rsvp daemon is running before
688          * grabbing the packet.
689          */
690         if (rsvp_on && ip->ip_p == IPPROTO_RSVP)
691                 goto ours;
692
693         /*
694          * Check our list of addresses, to see if the packet is for us.
695          * If we don't have any addresses, assume any unicast packet
696          * we receive might be for us (and let the upper layers deal
697          * with it).
698          */
699         if (TAILQ_EMPTY(&in_ifaddrhead) && !(m->m_flags & (M_MCAST | M_BCAST)))
700                 goto ours;
701
702         /*
703          * Cache the destination address of the packet; this may be
704          * changed by use of 'ipfw fwd'.
705          */
706         pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
707
708         /*
709          * Enable a consistency check between the destination address
710          * and the arrival interface for a unicast packet (the RFC 1122
711          * strong ES model) if IP forwarding is disabled and the packet
712          * is not locally generated and the packet is not subject to
713          * 'ipfw fwd'.
714          *
715          * XXX - Checking also should be disabled if the destination
716          * address is ipnat'ed to a different interface.
717          *
718          * XXX - Checking is incompatible with IP aliases added
719          * to the loopback interface instead of the interface where
720          * the packets are received.
721          */
722         checkif = ip_checkinterface &&
723                   !ipforwarding &&
724                   m->m_pkthdr.rcvif != NULL &&
725                   !(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
726                   (args.next_hop == NULL);
727
728         /*
729          * Check for exact addresses in the hash bucket.
730          */
731         LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
732                 /*
733                  * If the address matches, verify that the packet
734                  * arrived via the correct interface if checking is
735                  * enabled.
736                  */
737                 if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
738                     (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
739                         goto ours;
740         }
741         /*
742          * Check for broadcast addresses.
743          *
744          * Only accept broadcast packets that arrive via the matching
745          * interface.  Reception of forwarded directed broadcasts would
746          * be handled via ip_forward() and ether_output() with the loopback
747          * into the stack for SIMPLEX interfaces handled by ether_output().
748          */
749         if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
750                 TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
751                         if (ifa->ifa_addr == NULL) /* shutdown/startup race */
752                                 continue;
753                         if (ifa->ifa_addr->sa_family != AF_INET)
754                                 continue;
755                         ia = ifatoia(ifa);
756                         if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
757                                                                 pkt_dst.s_addr)
758                                 goto ours;
759                         if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
760                                 goto ours;
761 #ifdef BOOTP_COMPAT
762                         if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
763                                 goto ours;
764 #endif
765                 }
766         }
767         if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
768                 struct in_multi *inm;
769
770                 if (ip_mrouter != NULL) {
771                         /*
772                          * If we are acting as a multicast router, all
773                          * incoming multicast packets are passed to the
774                          * kernel-level multicast forwarding function.
775                          * The packet is returned (relatively) intact; if
776                          * ip_mforward() returns a non-zero value, the packet
777                          * must be discarded, else it may be accepted below.
778                          */
779                         if (ip_mforward != NULL &&
780                             ip_mforward(ip, m->m_pkthdr.rcvif, m, NULL) != 0) {
781                                 ipstat.ips_cantforward++;
782                                 m_freem(m);
783                                 return;
784                         }
785
786                         /*
787                          * The process-level routing daemon needs to receive
788                          * all multicast IGMP packets, whether or not this
789                          * host belongs to their destination groups.
790                          */
791                         if (ip->ip_p == IPPROTO_IGMP)
792                                 goto ours;
793                         ipstat.ips_forward++;
794                 }
795                 /*
796                  * See if we belong to the destination multicast group on the
797                  * arrival interface.
798                  */
799                 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
800                 if (inm == NULL) {
801                         ipstat.ips_notmember++;
802                         m_freem(m);
803                         return;
804                 }
805                 goto ours;
806         }
807         if (ip->ip_dst.s_addr == INADDR_BROADCAST)
808                 goto ours;
809         if (ip->ip_dst.s_addr == INADDR_ANY)
810                 goto ours;
811
812         /*
813          * FAITH(Firewall Aided Internet Translator)
814          */
815         if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
816                 if (ip_keepfaith) {
817                         if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
818                                 goto ours;
819                 }
820                 m_freem(m);
821                 return;
822         }
823
824         /*
825          * Not for us; forward if possible and desirable.
826          */
827         if (!ipforwarding) {
828                 ipstat.ips_cantforward++;
829                 m_freem(m);
830         } else {
831 #ifdef IPSEC
832                 /*
833                  * Enforce inbound IPsec SPD.
834                  */
835                 if (ipsec4_in_reject(m, NULL)) {
836                         ipsecstat.in_polvio++;
837                         goto bad;
838                 }
839 #endif
840 #ifdef FAST_IPSEC
841                 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
842                 s = splnet();
843                 if (mtag != NULL) {
844                         tdbi = (struct tdb_ident *)(mtag + 1);
845                         sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
846                 } else {
847                         sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
848                                                    IP_FORWARDING, &error);
849                 }
850                 if (sp == NULL) {       /* NB: can happen if error */
851                         splx(s);
852                         /*XXX error stat???*/
853                         DPRINTF(("ip_input: no SP for forwarding\n"));  /*XXX*/
854                         goto bad;
855                 }
856
857                 /*
858                  * Check security policy against packet attributes.
859                  */
860                 error = ipsec_in_reject(sp, m);
861                 KEY_FREESP(&sp);
862                 splx(s);
863                 if (error) {
864                         ipstat.ips_cantforward++;
865                         goto bad;
866                 }
867 #endif
868                 ip_forward(m, using_srcrt, args.next_hop);
869         }
870         return;
871
872 ours:
873
874         /*
875          * IPSTEALTH: Process non-routing options only
876          * if the packet is destined for us.
877          */
878         if (ipstealth &&
879             hlen > sizeof(struct ip) &&
880             ip_dooptions(m, 1, args.next_hop))
881                 return;
882
883         /* Count the packet in the ip address stats */
884         if (ia != NULL) {
885                 ia->ia_ifa.if_ipackets++;
886                 ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
887         }
888
889         /*
890          * If offset or IP_MF are set, must reassemble.
891          * Otherwise, nothing need be done.
892          * (We could look in the reassembly queue to see
893          * if the packet was previously fragmented,
894          * but it's not worth the time; just let them time out.)
895          */
896         if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
897
898                 /* If maxnipq is 0, never accept fragments. */
899                 if (maxnipq == 0) {
900                         ipstat.ips_fragments++;
901                         ipstat.ips_fragdropped++;
902                         goto bad;
903                 }
904
905                 sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
906                 /*
907                  * Look for queue of fragments
908                  * of this datagram.
909                  */
910                 for (fp = ipq[sum].next; fp != &ipq[sum]; fp = fp->next)
911                         if (ip->ip_id == fp->ipq_id &&
912                             ip->ip_src.s_addr == fp->ipq_src.s_addr &&
913                             ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
914                             ip->ip_p == fp->ipq_p)
915                                 goto found;
916
917                 fp = NULL;
918
919                 /*
920                  * Enforce upper bound on number of fragmented packets
921                  * for which we attempt reassembly;
922                  * If maxnipq is -1, accept all fragments without limitation.
923                  */
924                 if ((nipq > maxnipq) && (maxnipq > 0)) {
925                         /*
926                          * drop something from the tail of the current queue
927                          * before proceeding further
928                          */
929                         if (ipq[sum].prev == &ipq[sum]) {   /* gak */
930                                 for (i = 0; i < IPREASS_NHASH; i++) {
931                                         if (ipq[i].prev != &ipq[i]) {
932                                                 ipstat.ips_fragtimeout +=
933                                                     ipq[i].prev->ipq_nfrags;
934                                                 ip_freef(ipq[i].prev);
935                                                 break;
936                                         }
937                                 }
938                         } else {
939                                 ipstat.ips_fragtimeout +=
940                                     ipq[sum].prev->ipq_nfrags;
941                                 ip_freef(ipq[sum].prev);
942                         }
943                 }
944 found:
945                 /*
946                  * Adjust ip_len to not reflect header,
947                  * convert offset of this to bytes.
948                  */
949                 ip->ip_len -= hlen;
950                 if (ip->ip_off & IP_MF) {
951                         /*
952                          * Make sure that fragments have a data length
953                          * that's a non-zero multiple of 8 bytes.
954                          */
955                         if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
956                                 ipstat.ips_toosmall++; /* XXX */
957                                 goto bad;
958                         }
959                         m->m_flags |= M_FRAG;
960                 } else
961                         m->m_flags &= ~M_FRAG;
962                 ip->ip_off <<= 3;
963
964                 /*
965                  * Attempt reassembly; if it succeeds, proceed.
966                  * ip_reass() will return a different mbuf, and update
967                  * the divert info in divert_info and args.divert_rule.
968                  */
969                 ipstat.ips_fragments++;
970                 m->m_pkthdr.header = ip;
971                 m = ip_reass(m, fp, &ipq[sum], &divert_info, &args.divert_rule);
972                 if (m == NULL)
973                         return;
974                 ipstat.ips_reassembled++;
975                 needredispatch = TRUE;
976                 ip = mtod(m, struct ip *);
977                 /* Get the header length of the reassembled packet */
978                 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
979 #ifdef IPDIVERT
980                 /* Restore original checksum before diverting packet */
981                 if (divert_info != 0) {
982                         ip->ip_len += hlen;
983                         ip->ip_len = htons(ip->ip_len);
984                         ip->ip_off = htons(ip->ip_off);
985                         ip->ip_sum = 0;
986                         if (hlen == sizeof(struct ip))
987                                 ip->ip_sum = in_cksum_hdr(ip);
988                         else
989                                 ip->ip_sum = in_cksum(m, hlen);
990                         ip->ip_off = ntohs(ip->ip_off);
991                         ip->ip_len = ntohs(ip->ip_len);
992                         ip->ip_len -= hlen;
993                 }
994 #endif
995         } else {
996                 ip->ip_len -= hlen;
997         }
998
999 #ifdef IPDIVERT
1000         /*
1001          * Divert or tee packet to the divert protocol if required.
1002          */
1003         if (divert_info != 0) {
1004                 struct mbuf *clone = NULL;
1005
1006                 /* Clone packet if we're doing a 'tee' */
1007                 if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
1008                         clone = m_dup(m, MB_DONTWAIT);
1009
1010                 /* Restore packet header fields to original values */
1011                 ip->ip_len += hlen;
1012                 ip->ip_len = htons(ip->ip_len);
1013                 ip->ip_off = htons(ip->ip_off);
1014
1015                 /* Deliver packet to divert input routine */
1016                 divert_packet(m, 1, divert_info & 0xffff, args.divert_rule);
1017                 ipstat.ips_delivered++;
1018
1019                 /* If 'tee', continue with original packet */
1020                 if (clone == NULL)
1021                         return;
1022                 m = clone;
1023                 ip = mtod(m, struct ip *);
1024                 ip->ip_len += hlen;
1025                 /*
1026                  * Jump backwards to complete processing of the
1027                  * packet. But first clear divert_info to avoid
1028                  * entering this block again.
1029                  * We do not need to clear args.divert_rule
1030                  * or args.next_hop as they will not be used.
1031                  */
1032                 divert_info = 0;
1033                 goto pass;
1034         }
1035 #endif
1036
1037 #ifdef IPSEC
1038         /*
1039          * enforce IPsec policy checking if we are seeing last header.
1040          * note that we do not visit this with protocols with pcb layer
1041          * code - like udp/tcp/raw ip.
1042          */
1043         if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) &&
1044             ipsec4_in_reject(m, NULL)) {
1045                 ipsecstat.in_polvio++;
1046                 goto bad;
1047         }
1048 #endif
1049 #if FAST_IPSEC
1050         /*
1051          * enforce IPsec policy checking if we are seeing last header.
1052          * note that we do not visit this with protocols with pcb layer
1053          * code - like udp/tcp/raw ip.
1054          */
1055         if (inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) {
1056                 /*
1057                  * Check if the packet has already had IPsec processing
1058                  * done.  If so, then just pass it along.  This tag gets
1059                  * set during AH, ESP, etc. input handling, before the
1060                  * packet is returned to the ip input queue for delivery.
1061                  */
1062                 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
1063                 s = splnet();
1064                 if (mtag != NULL) {
1065                         tdbi = (struct tdb_ident *)(mtag + 1);
1066                         sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
1067                 } else {
1068                         sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
1069                                                    IP_FORWARDING, &error);
1070                 }
1071                 if (sp != NULL) {
1072                         /*
1073                          * Check security policy against packet attributes.
1074                          */
1075                         error = ipsec_in_reject(sp, m);
1076                         KEY_FREESP(&sp);
1077                 } else {
1078                         /* XXX error stat??? */
1079                         error = EINVAL;
1080 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
1081                         goto bad;
1082                 }
1083                 splx(s);
1084                 if (error)
1085                         goto bad;
1086         }
1087 #endif /* FAST_IPSEC */
1088
1089         ipstat.ips_delivered++;
1090         if (needredispatch) {
1091                 struct netmsg_transport_packet *msg;
1092                 lwkt_port_t port;
1093
1094                 msg = malloc(sizeof(struct netmsg_transport_packet),
1095                                 M_LWKTMSG, M_INTWAIT | M_NULLOK);
1096                 if (msg == NULL)
1097                         goto bad;
1098
1099                 lwkt_initmsg(&msg->nm_lmsg, &netisr_afree_rport, 0,
1100                         lwkt_cmd_func(transport_processing_handler),
1101                         lwkt_cmd_op_none);
1102                 msg->nm_hlen = hlen;
1103                 msg->nm_hasnexthop = (args.next_hop != NULL);
1104                 if (msg->nm_hasnexthop)
1105                         msg->nm_nexthop = *args.next_hop;  /* structure copy */
1106
1107                 ip->ip_off = htons(ip->ip_off);
1108                 ip->ip_len = htons(ip->ip_len);
1109                 port = ip_mport(&m);
1110                 if (port) {
1111                     msg->nm_mbuf = m;
1112                     ip = mtod(m, struct ip *);
1113                     ip->ip_len = ntohs(ip->ip_len);
1114                     ip->ip_off = ntohs(ip->ip_off);
1115                     lwkt_sendmsg(port, &msg->nm_lmsg);
1116                 }
1117         } else {
1118                 transport_processing_oncpu(m, hlen, ip, args.next_hop);
1119         }
1120         return;
1121
1122 bad:
1123         m_freem(m);
1124 }
1125
1126 /*
1127  * Take incoming datagram fragment and try to reassemble it into
1128  * whole datagram.  If a chain for reassembly of this datagram already
1129  * exists, then it is given as fp; otherwise have to make a chain.
1130  *
1131  * When IPDIVERT enabled, keep additional state with each packet that
1132  * tells us if we need to divert or tee the packet we're building.
1133  * In particular, *divinfo includes the port and TEE flag,
1134  * *divert_rule is the number of the matching rule.
1135  */
1136
1137 static struct mbuf *
1138 ip_reass(struct mbuf *m, struct ipq *fp, struct ipq *where,
1139          u_int32_t *divinfo, u_int16_t *divert_rule)
1140 {
1141         struct ip *ip = mtod(m, struct ip *);
1142         struct mbuf *p = NULL, *q, *nq;
1143         struct mbuf *n;
1144         int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1145         int i, next;
1146
1147         /*
1148          * Presence of header sizes in mbufs
1149          * would confuse code below.
1150          */
1151         m->m_data += hlen;
1152         m->m_len -= hlen;
1153
1154         /*
1155          * If first fragment to arrive, create a reassembly queue.
1156          */
1157         if (fp == NULL) {
1158                 if ((fp = mpipe_alloc_nowait(&ipq_mpipe)) == NULL)
1159                         goto dropfrag;
1160                 insque(fp, where);
1161                 nipq++;
1162                 fp->ipq_nfrags = 1;
1163                 fp->ipq_ttl = IPFRAGTTL;
1164                 fp->ipq_p = ip->ip_p;
1165                 fp->ipq_id = ip->ip_id;
1166                 fp->ipq_src = ip->ip_src;
1167                 fp->ipq_dst = ip->ip_dst;
1168                 fp->ipq_frags = m;
1169                 m->m_nextpkt = NULL;
1170 #ifdef IPDIVERT
1171                 fp->ipq_div_info = 0;
1172                 fp->ipq_div_cookie = 0;
1173 #endif
1174                 goto inserted;
1175         } else {
1176                 fp->ipq_nfrags++;
1177         }
1178
1179 #define GETIP(m)        ((struct ip*)((m)->m_pkthdr.header))
1180
1181         /*
1182          * Find a segment which begins after this one does.
1183          */
1184         for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1185                 if (GETIP(q)->ip_off > ip->ip_off)
1186                         break;
1187
1188         /*
1189          * If there is a preceding segment, it may provide some of
1190          * our data already.  If so, drop the data from the incoming
1191          * segment.  If it provides all of our data, drop us, otherwise
1192          * stick new segment in the proper place.
1193          *
1194          * If some of the data is dropped from the the preceding
1195          * segment, then it's checksum is invalidated.
1196          */
1197         if (p) {
1198                 i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1199                 if (i > 0) {
1200                         if (i >= ip->ip_len)
1201                                 goto dropfrag;
1202                         m_adj(m, i);
1203                         m->m_pkthdr.csum_flags = 0;
1204                         ip->ip_off += i;
1205                         ip->ip_len -= i;
1206                 }
1207                 m->m_nextpkt = p->m_nextpkt;
1208                 p->m_nextpkt = m;
1209         } else {
1210                 m->m_nextpkt = fp->ipq_frags;
1211                 fp->ipq_frags = m;
1212         }
1213
1214         /*
1215          * While we overlap succeeding segments trim them or,
1216          * if they are completely covered, dequeue them.
1217          */
1218         for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1219              q = nq) {
1220                 i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1221                 if (i < GETIP(q)->ip_len) {
1222                         GETIP(q)->ip_len -= i;
1223                         GETIP(q)->ip_off += i;
1224                         m_adj(q, i);
1225                         q->m_pkthdr.csum_flags = 0;
1226                         break;
1227                 }
1228                 nq = q->m_nextpkt;
1229                 m->m_nextpkt = nq;
1230                 ipstat.ips_fragdropped++;
1231                 fp->ipq_nfrags--;
1232                 m_freem(q);
1233         }
1234
1235 inserted:
1236
1237 #ifdef IPDIVERT
1238         /*
1239          * Transfer firewall instructions to the fragment structure.
1240          * Only trust info in the fragment at offset 0.
1241          */
1242         if (ip->ip_off == 0) {
1243                 fp->ipq_div_info = *divinfo;
1244                 fp->ipq_div_cookie = *divert_rule;
1245         }
1246         *divinfo = 0;
1247         *divert_rule = 0;
1248 #endif
1249
1250         /*
1251          * Check for complete reassembly and perform frag per packet
1252          * limiting.
1253          *
1254          * Frag limiting is performed here so that the nth frag has
1255          * a chance to complete the packet before we drop the packet.
1256          * As a result, n+1 frags are actually allowed per packet, but
1257          * only n will ever be stored. (n = maxfragsperpacket.)
1258          *
1259          */
1260         next = 0;
1261         for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1262                 if (GETIP(q)->ip_off != next) {
1263                         if (fp->ipq_nfrags > maxfragsperpacket) {
1264                                 ipstat.ips_fragdropped += fp->ipq_nfrags;
1265                                 ip_freef(fp);
1266                         }
1267                         return (NULL);
1268                 }
1269                 next += GETIP(q)->ip_len;
1270         }
1271         /* Make sure the last packet didn't have the IP_MF flag */
1272         if (p->m_flags & M_FRAG) {
1273                 if (fp->ipq_nfrags > maxfragsperpacket) {
1274                         ipstat.ips_fragdropped += fp->ipq_nfrags;
1275                         ip_freef(fp);
1276                 }
1277                 return (NULL);
1278         }
1279
1280         /*
1281          * Reassembly is complete.  Make sure the packet is a sane size.
1282          */
1283         q = fp->ipq_frags;
1284         ip = GETIP(q);
1285         if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1286                 ipstat.ips_toolong++;
1287                 ipstat.ips_fragdropped += fp->ipq_nfrags;
1288                 ip_freef(fp);
1289                 return (NULL);
1290         }
1291
1292         /*
1293          * Concatenate fragments.
1294          */
1295         m = q;
1296         n = m->m_next;
1297         m->m_next = NULL;
1298         m_cat(m, n);
1299         nq = q->m_nextpkt;
1300         q->m_nextpkt = NULL;
1301         for (q = nq; q != NULL; q = nq) {
1302                 nq = q->m_nextpkt;
1303                 q->m_nextpkt = NULL;
1304                 m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1305                 m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1306                 m_cat(m, q);
1307         }
1308
1309 #ifdef IPDIVERT
1310         /*
1311          * Extract firewall instructions from the fragment structure.
1312          */
1313         *divinfo = fp->ipq_div_info;
1314         *divert_rule = fp->ipq_div_cookie;
1315 #endif
1316
1317         /*
1318          * Create header for new ip packet by
1319          * modifying header of first packet;
1320          * dequeue and discard fragment reassembly header.
1321          * Make header visible.
1322          */
1323         ip->ip_len = next;
1324         ip->ip_src = fp->ipq_src;
1325         ip->ip_dst = fp->ipq_dst;
1326         remque(fp);
1327         nipq--;
1328         mpipe_free(&ipq_mpipe, fp);
1329         m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1330         m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1331         /* some debugging cruft by sklower, below, will go away soon */
1332         if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1333                 int plen = 0;
1334
1335                 for (n = m; n; n = n->m_next)
1336                         plen += n->m_len;
1337                 m->m_pkthdr.len = plen;
1338         }
1339         return (m);
1340
1341 dropfrag:
1342 #ifdef IPDIVERT
1343         *divinfo = 0;
1344         *divert_rule = 0;
1345 #endif
1346         ipstat.ips_fragdropped++;
1347         if (fp != NULL)
1348                 fp->ipq_nfrags--;
1349         m_freem(m);
1350         return (NULL);
1351
1352 #undef GETIP
1353 }
1354
1355 /*
1356  * Free a fragment reassembly header and all
1357  * associated datagrams.
1358  */
1359 static void
1360 ip_freef(struct ipq *fp)
1361 {
1362         struct mbuf *q;
1363
1364         while (fp->ipq_frags) {
1365                 q = fp->ipq_frags;
1366                 fp->ipq_frags = q->m_nextpkt;
1367                 m_freem(q);
1368         }
1369         remque(fp);
1370         mpipe_free(&ipq_mpipe, fp);
1371         nipq--;
1372 }
1373
1374 /*
1375  * IP timer processing;
1376  * if a timer expires on a reassembly
1377  * queue, discard it.
1378  */
1379 void
1380 ip_slowtimo(void)
1381 {
1382         struct ipq *fp;
1383         int s = splnet();
1384         int i;
1385
1386         for (i = 0; i < IPREASS_NHASH; i++) {
1387                 fp = ipq[i].next;
1388                 if (fp == NULL)
1389                         continue;
1390                 while (fp != &ipq[i]) {
1391                         --fp->ipq_ttl;
1392                         fp = fp->next;
1393                         if (fp->prev->ipq_ttl == 0) {
1394                                 ipstat.ips_fragtimeout += fp->prev->ipq_nfrags;
1395                                 ip_freef(fp->prev);
1396                         }
1397                 }
1398         }
1399         /*
1400          * If we are over the maximum number of fragments
1401          * (due to the limit being lowered), drain off
1402          * enough to get down to the new limit.
1403          */
1404         if (maxnipq >= 0 && nipq > maxnipq) {
1405                 for (i = 0; i < IPREASS_NHASH; i++) {
1406                         while (nipq > maxnipq &&
1407                                 (ipq[i].next != &ipq[i])) {
1408                                 ipstat.ips_fragdropped +=
1409                                     ipq[i].next->ipq_nfrags;
1410                                 ip_freef(ipq[i].next);
1411                         }
1412                 }
1413         }
1414         ipflow_slowtimo();
1415         splx(s);
1416 }
1417
1418 /*
1419  * Drain off all datagram fragments.
1420  */
1421 void
1422 ip_drain(void)
1423 {
1424         int i;
1425
1426         for (i = 0; i < IPREASS_NHASH; i++) {
1427                 while (ipq[i].next != &ipq[i]) {
1428                         ipstat.ips_fragdropped += ipq[i].next->ipq_nfrags;
1429                         ip_freef(ipq[i].next);
1430                 }
1431         }
1432         in_rtqdrain();
1433 }
1434
1435 /*
1436  * Do option processing on a datagram,
1437  * possibly discarding it if bad options are encountered,
1438  * or forwarding it if source-routed.
1439  * The pass argument is used when operating in the IPSTEALTH
1440  * mode to tell what options to process:
1441  * [LS]SRR (pass 0) or the others (pass 1).
1442  * The reason for as many as two passes is that when doing IPSTEALTH,
1443  * non-routing options should be processed only if the packet is for us.
1444  * Returns 1 if packet has been forwarded/freed,
1445  * 0 if the packet should be processed further.
1446  */
1447 static int
1448 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1449 {
1450         struct sockaddr_in ipaddr = { sizeof ipaddr, AF_INET };
1451         struct ip *ip = mtod(m, struct ip *);
1452         u_char *cp;
1453         struct in_ifaddr *ia;
1454         int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB;
1455         boolean_t forward = FALSE;
1456         struct in_addr *sin, dst;
1457         n_time ntime;
1458
1459         dst = ip->ip_dst;
1460         cp = (u_char *)(ip + 1);
1461         cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1462         for (; cnt > 0; cnt -= optlen, cp += optlen) {
1463                 opt = cp[IPOPT_OPTVAL];
1464                 if (opt == IPOPT_EOL)
1465                         break;
1466                 if (opt == IPOPT_NOP)
1467                         optlen = 1;
1468                 else {
1469                         if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1470                                 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1471                                 goto bad;
1472                         }
1473                         optlen = cp[IPOPT_OLEN];
1474                         if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1475                                 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1476                                 goto bad;
1477                         }
1478                 }
1479                 switch (opt) {
1480
1481                 default:
1482                         break;
1483
1484                 /*
1485                  * Source routing with record.
1486                  * Find interface with current destination address.
1487                  * If none on this machine then drop if strictly routed,
1488                  * or do nothing if loosely routed.
1489                  * Record interface address and bring up next address
1490                  * component.  If strictly routed make sure next
1491                  * address is on directly accessible net.
1492                  */
1493                 case IPOPT_LSRR:
1494                 case IPOPT_SSRR:
1495                         if (ipstealth && pass > 0)
1496                                 break;
1497                         if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1498                                 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1499                                 goto bad;
1500                         }
1501                         if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1502                                 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1503                                 goto bad;
1504                         }
1505                         ipaddr.sin_addr = ip->ip_dst;
1506                         ia = (struct in_ifaddr *)
1507                                 ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1508                         if (ia == NULL) {
1509                                 if (opt == IPOPT_SSRR) {
1510                                         type = ICMP_UNREACH;
1511                                         code = ICMP_UNREACH_SRCFAIL;
1512                                         goto bad;
1513                                 }
1514                                 if (!ip_dosourceroute)
1515                                         goto nosourcerouting;
1516                                 /*
1517                                  * Loose routing, and not at next destination
1518                                  * yet; nothing to do except forward.
1519                                  */
1520                                 break;
1521                         }
1522                         off--;                  /* 0 origin */
1523                         if (off > optlen - (int)sizeof(struct in_addr)) {
1524                                 /*
1525                                  * End of source route.  Should be for us.
1526                                  */
1527                                 if (!ip_acceptsourceroute)
1528                                         goto nosourcerouting;
1529                                 save_rte(cp, ip->ip_src);
1530                                 break;
1531                         }
1532                         if (ipstealth)
1533                                 goto dropit;
1534                         if (!ip_dosourceroute) {
1535                                 if (ipforwarding) {
1536                                         char buf[sizeof "aaa.bbb.ccc.ddd"];
1537
1538                                         /*
1539                                          * Acting as a router, so generate ICMP
1540                                          */
1541 nosourcerouting:
1542                                         strcpy(buf, inet_ntoa(ip->ip_dst));
1543                                         log(LOG_WARNING,
1544                                             "attempted source route from %s to %s\n",
1545                                             inet_ntoa(ip->ip_src), buf);
1546                                         type = ICMP_UNREACH;
1547                                         code = ICMP_UNREACH_SRCFAIL;
1548                                         goto bad;
1549                                 } else {
1550                                         /*
1551                                          * Not acting as a router,
1552                                          * so silently drop.
1553                                          */
1554 dropit:
1555                                         ipstat.ips_cantforward++;
1556                                         m_freem(m);
1557                                         return (1);
1558                                 }
1559                         }
1560
1561                         /*
1562                          * locate outgoing interface
1563                          */
1564                         memcpy(&ipaddr.sin_addr, cp + off,
1565                             sizeof ipaddr.sin_addr);
1566
1567                         if (opt == IPOPT_SSRR) {
1568 #define INA     struct in_ifaddr *
1569 #define SA      struct sockaddr *
1570                                 if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr))
1571                                                                         == NULL)
1572                                         ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1573                         } else
1574                                 ia = ip_rtaddr(ipaddr.sin_addr, &ipforward_rt);
1575                         if (ia == NULL) {
1576                                 type = ICMP_UNREACH;
1577                                 code = ICMP_UNREACH_SRCFAIL;
1578                                 goto bad;
1579                         }
1580                         ip->ip_dst = ipaddr.sin_addr;
1581                         memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1582                             sizeof(struct in_addr));
1583                         cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1584                         /*
1585                          * Let ip_intr's mcast routing check handle mcast pkts
1586                          */
1587                         forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1588                         break;
1589
1590                 case IPOPT_RR:
1591                         if (ipstealth && pass == 0)
1592                                 break;
1593                         if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1594                                 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1595                                 goto bad;
1596                         }
1597                         if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1598                                 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1599                                 goto bad;
1600                         }
1601                         /*
1602                          * If no space remains, ignore.
1603                          */
1604                         off--;                  /* 0 origin */
1605                         if (off > optlen - (int)sizeof(struct in_addr))
1606                                 break;
1607                         memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1608                             sizeof ipaddr.sin_addr);
1609                         /*
1610                          * locate outgoing interface; if we're the destination,
1611                          * use the incoming interface (should be same).
1612                          */
1613                         if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1614                             (ia = ip_rtaddr(ipaddr.sin_addr, &ipforward_rt))
1615                                                                      == NULL) {
1616                                 type = ICMP_UNREACH;
1617                                 code = ICMP_UNREACH_HOST;
1618                                 goto bad;
1619                         }
1620                         memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1621                             sizeof(struct in_addr));
1622                         cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1623                         break;
1624
1625                 case IPOPT_TS:
1626                         if (ipstealth && pass == 0)
1627                                 break;
1628                         code = cp - (u_char *)ip;
1629                         if (optlen < 4 || optlen > 40) {
1630                                 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1631                                 goto bad;
1632                         }
1633                         if ((off = cp[IPOPT_OFFSET]) < 5) {
1634                                 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1635                                 goto bad;
1636                         }
1637                         if (off > optlen - (int)sizeof(int32_t)) {
1638                                 cp[IPOPT_OFFSET + 1] += (1 << 4);
1639                                 if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1640                                         code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1641                                         goto bad;
1642                                 }
1643                                 break;
1644                         }
1645                         off--;                          /* 0 origin */
1646                         sin = (struct in_addr *)(cp + off);
1647                         switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1648
1649                         case IPOPT_TS_TSONLY:
1650                                 break;
1651
1652                         case IPOPT_TS_TSANDADDR:
1653                                 if (off + sizeof(n_time) +
1654                                     sizeof(struct in_addr) > optlen) {
1655                                         code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1656                                         goto bad;
1657                                 }
1658                                 ipaddr.sin_addr = dst;
1659                                 ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1660                                                             m->m_pkthdr.rcvif);
1661                                 if (ia == NULL)
1662                                         continue;
1663                                 memcpy(sin, &IA_SIN(ia)->sin_addr,
1664                                     sizeof(struct in_addr));
1665                                 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1666                                 off += sizeof(struct in_addr);
1667                                 break;
1668
1669                         case IPOPT_TS_PRESPEC:
1670                                 if (off + sizeof(n_time) +
1671                                     sizeof(struct in_addr) > optlen) {
1672                                         code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1673                                         goto bad;
1674                                 }
1675                                 memcpy(&ipaddr.sin_addr, sin,
1676                                     sizeof(struct in_addr));
1677                                 if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1678                                         continue;
1679                                 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1680                                 off += sizeof(struct in_addr);
1681                                 break;
1682
1683                         default:
1684                                 code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1685                                 goto bad;
1686                         }
1687                         ntime = iptime();
1688                         memcpy(cp + off, &ntime, sizeof(n_time));
1689                         cp[IPOPT_OFFSET] += sizeof(n_time);
1690                 }
1691         }
1692         if (forward && ipforwarding) {
1693                 ip_forward(m, 1, next_hop);
1694                 return (1);
1695         }
1696         return (0);
1697 bad:
1698         icmp_error(m, type, code, 0, NULL);
1699         ipstat.ips_badoptions++;
1700         return (1);
1701 }
1702
1703 /*
1704  * Given address of next destination (final or next hop),
1705  * return internet address info of interface to be used to get there.
1706  */
1707 struct in_ifaddr *
1708 ip_rtaddr(struct in_addr dst, struct route *rt)
1709 {
1710         struct sockaddr_in *sin;
1711
1712         sin = (struct sockaddr_in *)&rt->ro_dst;
1713
1714         if (rt->ro_rt == NULL || dst.s_addr != sin->sin_addr.s_addr) {
1715                 if (rt->ro_rt != NULL) {
1716                         RTFREE(rt->ro_rt);
1717                         rt->ro_rt = NULL;
1718                 }
1719                 sin->sin_family = AF_INET;
1720                 sin->sin_len = sizeof *sin;
1721                 sin->sin_addr = dst;
1722                 rtalloc_ign(rt, RTF_PRCLONING);
1723         }
1724
1725         if (rt->ro_rt == NULL)
1726                 return (NULL);
1727
1728         return (ifatoia(rt->ro_rt->rt_ifa));
1729 }
1730
1731 /*
1732  * Save incoming source route for use in replies,
1733  * to be picked up later by ip_srcroute if the receiver is interested.
1734  */
1735 void
1736 save_rte(u_char *option, struct in_addr dst)
1737 {
1738         unsigned olen;
1739
1740         olen = option[IPOPT_OLEN];
1741 #ifdef DIAGNOSTIC
1742         if (ipprintfs)
1743                 printf("save_rte: olen %d\n", olen);
1744 #endif
1745         if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1746                 return;
1747         bcopy(option, ip_srcrt.srcopt, olen);
1748         ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1749         ip_srcrt.dst = dst;
1750 }
1751
1752 /*
1753  * Retrieve incoming source route for use in replies,
1754  * in the same form used by setsockopt.
1755  * The first hop is placed before the options, will be removed later.
1756  */
1757 struct mbuf *
1758 ip_srcroute(void)
1759 {
1760         struct in_addr *p, *q;
1761         struct mbuf *m;
1762
1763         if (ip_nhops == 0)
1764                 return (NULL);
1765         m = m_get(MB_DONTWAIT, MT_HEADER);
1766         if (m == NULL)
1767                 return (NULL);
1768
1769 #define OPTSIZ  (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1770
1771         /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1772         m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1773             OPTSIZ;
1774 #ifdef DIAGNOSTIC
1775         if (ipprintfs)
1776                 printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1777 #endif
1778
1779         /*
1780          * First save first hop for return route
1781          */
1782         p = &ip_srcrt.route[ip_nhops - 1];
1783         *(mtod(m, struct in_addr *)) = *p--;
1784 #ifdef DIAGNOSTIC
1785         if (ipprintfs)
1786                 printf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1787 #endif
1788
1789         /*
1790          * Copy option fields and padding (nop) to mbuf.
1791          */
1792         ip_srcrt.nop = IPOPT_NOP;
1793         ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1794         memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &ip_srcrt.nop,
1795             OPTSIZ);
1796         q = (struct in_addr *)(mtod(m, caddr_t) +
1797             sizeof(struct in_addr) + OPTSIZ);
1798 #undef OPTSIZ
1799         /*
1800          * Record return path as an IP source route,
1801          * reversing the path (pointers are now aligned).
1802          */
1803         while (p >= ip_srcrt.route) {
1804 #ifdef DIAGNOSTIC
1805                 if (ipprintfs)
1806                         printf(" %x", ntohl(q->s_addr));
1807 #endif
1808                 *q++ = *p--;
1809         }
1810         /*
1811          * Last hop goes to final destination.
1812          */
1813         *q = ip_srcrt.dst;
1814 #ifdef DIAGNOSTIC
1815         if (ipprintfs)
1816                 printf(" %x\n", ntohl(q->s_addr));
1817 #endif
1818         return (m);
1819 }
1820
1821 /*
1822  * Strip out IP options.
1823  */
1824 void
1825 ip_stripoptions(struct mbuf *m)
1826 {
1827         int datalen;
1828         struct ip *ip = mtod(m, struct ip *);
1829         caddr_t opts;
1830         int optlen;
1831
1832         optlen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1833         opts = (caddr_t)(ip + 1);
1834         datalen = m->m_len - (sizeof(struct ip) + optlen);
1835         bcopy(opts + optlen, opts, datalen);
1836         m->m_len -= optlen;
1837         if (m->m_flags & M_PKTHDR)
1838                 m->m_pkthdr.len -= optlen;
1839         ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1840 }
1841
1842 u_char inetctlerrmap[PRC_NCMDS] = {
1843         0,              0,              0,              0,
1844         0,              EMSGSIZE,       EHOSTDOWN,      EHOSTUNREACH,
1845         EHOSTUNREACH,   EHOSTUNREACH,   ECONNREFUSED,   ECONNREFUSED,
1846         EMSGSIZE,       EHOSTUNREACH,   0,              0,
1847         0,              0,              0,              0,
1848         ENOPROTOOPT,    ECONNREFUSED
1849 };
1850
1851 /*
1852  * Forward a packet.  If some error occurs return the sender
1853  * an icmp packet.  Note we can't always generate a meaningful
1854  * icmp message because icmp doesn't have a large enough repertoire
1855  * of codes and types.
1856  *
1857  * If not forwarding, just drop the packet.  This could be confusing
1858  * if ipforwarding was zero but some routing protocol was advancing
1859  * us as a gateway to somewhere.  However, we must let the routing
1860  * protocol deal with that.
1861  *
1862  * The using_srcrt parameter indicates whether the packet is being forwarded
1863  * via a source route.
1864  */
1865 static void
1866 ip_forward(struct mbuf *m, int using_srcrt, struct sockaddr_in *next_hop)
1867 {
1868         struct ip *ip = mtod(m, struct ip *);
1869         struct sockaddr_in *sin;
1870         struct rtentry *rt;
1871         int error, type = 0, code = 0;
1872         struct mbuf *mcopy;
1873         n_long dest;
1874         struct in_addr pkt_dst;
1875         struct ifnet *destifp;
1876         struct m_hdr tag;
1877 #if defined(IPSEC) || defined(FAST_IPSEC)
1878         struct ifnet dummyifp;
1879 #endif
1880
1881         dest = 0;
1882         /*
1883          * Cache the destination address of the packet; this may be
1884          * changed by use of 'ipfw fwd'.
1885          */
1886         pkt_dst = (next_hop != NULL) ? next_hop->sin_addr : ip->ip_dst;
1887
1888 #ifdef DIAGNOSTIC
1889         if (ipprintfs)
1890                 printf("forward: src %x dst %x ttl %x\n",
1891                        ip->ip_src.s_addr, pkt_dst.s_addr, ip->ip_ttl);
1892 #endif
1893
1894         if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
1895                 ipstat.ips_cantforward++;
1896                 m_freem(m);
1897                 return;
1898         }
1899         if (!ipstealth && ip->ip_ttl <= IPTTLDEC) {
1900                 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, NULL);
1901                 return;
1902         }
1903
1904         sin = (struct sockaddr_in *)&ipforward_rt.ro_dst;
1905         if ((rt = ipforward_rt.ro_rt) == NULL ||
1906             pkt_dst.s_addr != sin->sin_addr.s_addr) {
1907                 if (ipforward_rt.ro_rt != NULL) {
1908                         RTFREE(ipforward_rt.ro_rt);
1909                         ipforward_rt.ro_rt = NULL;
1910                 }
1911                 sin->sin_family = AF_INET;
1912                 sin->sin_len = sizeof(*sin);
1913                 sin->sin_addr = pkt_dst;
1914
1915                 rtalloc_ign(&ipforward_rt, RTF_PRCLONING);
1916                 if (ipforward_rt.ro_rt == NULL) {
1917                         icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest,
1918                                    NULL);
1919                         return;
1920                 }
1921                 rt = ipforward_rt.ro_rt;
1922         }
1923
1924         /*
1925          * Save the IP header and at most 8 bytes of the payload,
1926          * in case we need to generate an ICMP message to the src.
1927          *
1928          * XXX this can be optimized a lot by saving the data in a local
1929          * buffer on the stack (72 bytes at most), and only allocating the
1930          * mbuf if really necessary. The vast majority of the packets
1931          * are forwarded without having to send an ICMP back (either
1932          * because unnecessary, or because rate limited), so we are
1933          * really we are wasting a lot of work here.
1934          *
1935          * We don't use m_copy() because it might return a reference
1936          * to a shared cluster. Both this function and ip_output()
1937          * assume exclusive access to the IP header in `m', so any
1938          * data in a cluster may change before we reach icmp_error().
1939          */
1940         MGET(mcopy, MB_DONTWAIT, m->m_type);
1941         if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, MB_DONTWAIT)) {
1942                 /*
1943                  * It's probably ok if the pkthdr dup fails (because
1944                  * the deep copy of the tag chain failed), but for now
1945                  * be conservative and just discard the copy since
1946                  * code below may some day want the tags.
1947                  */
1948                 m_free(mcopy);
1949                 mcopy = NULL;
1950         }
1951         if (mcopy != NULL) {
1952                 mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1953                     (int)ip->ip_len);
1954                 mcopy->m_pkthdr.len = mcopy->m_len;
1955                 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1956         }
1957
1958         if (!ipstealth)
1959                 ip->ip_ttl -= IPTTLDEC;
1960
1961         /*
1962          * If forwarding packet using same interface that it came in on,
1963          * perhaps should send a redirect to sender to shortcut a hop.
1964          * Only send redirect if source is sending directly to us,
1965          * and if packet was not source routed (or has any options).
1966          * Also, don't send redirect if forwarding using a default route
1967          * or a route modified by a redirect.
1968          */
1969         if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1970             !(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
1971             satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
1972             ipsendredirects && !using_srcrt && next_hop == NULL) {
1973                 u_long src = ntohl(ip->ip_src.s_addr);
1974
1975 #define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa))
1976                 if (RTA(rt) != NULL &&
1977                     (src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
1978                         if (rt->rt_flags & RTF_GATEWAY)
1979                                 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1980                         else
1981                                 dest = pkt_dst.s_addr;
1982                         /*
1983                          * Router requirements says to only send
1984                          * host redirects.
1985                          */
1986                         type = ICMP_REDIRECT;
1987                         code = ICMP_REDIRECT_HOST;
1988 #ifdef DIAGNOSTIC
1989                         if (ipprintfs)
1990                                 printf("redirect (%d) to %x\n", code, dest);
1991 #endif
1992                 }
1993         }
1994
1995         if (next_hop != NULL) {
1996                 /* Pass IPFORWARD info if available */
1997                 tag.mh_type = MT_TAG;
1998                 tag.mh_flags = PACKET_TAG_IPFORWARD;
1999                 tag.mh_data = (caddr_t)next_hop;
2000                 tag.mh_next = m;
2001                 m = (struct mbuf *)&tag;
2002         }
2003
2004         error = ip_output(m, NULL, &ipforward_rt, IP_FORWARDING, NULL, NULL);
2005
2006         if (error)
2007                 ipstat.ips_cantforward++;
2008         else {
2009                 ipstat.ips_forward++;
2010                 if (type)
2011                         ipstat.ips_redirectsent++;
2012                 else {
2013                         if (mcopy) {
2014                                 ipflow_create(&ipforward_rt, mcopy);
2015                                 m_freem(mcopy);
2016                         }
2017                         return;
2018                 }
2019         }
2020         if (mcopy == NULL)
2021                 return;
2022         destifp = NULL;
2023
2024         switch (error) {
2025
2026         case 0:                         /* forwarded, but need redirect */
2027                 /* type, code set above */
2028                 break;
2029
2030         case ENETUNREACH:               /* shouldn't happen, checked above */
2031         case EHOSTUNREACH:
2032         case ENETDOWN:
2033         case EHOSTDOWN:
2034         default:
2035                 type = ICMP_UNREACH;
2036                 code = ICMP_UNREACH_HOST;
2037                 break;
2038
2039         case EMSGSIZE:
2040                 type = ICMP_UNREACH;
2041                 code = ICMP_UNREACH_NEEDFRAG;
2042 #ifdef IPSEC
2043                 /*
2044                  * If the packet is routed over IPsec tunnel, tell the
2045                  * originator the tunnel MTU.
2046                  *      tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2047                  * XXX quickhack!!!
2048                  */
2049                 if (ipforward_rt.ro_rt != NULL) {
2050                         struct secpolicy *sp = NULL;
2051                         int ipsecerror;
2052                         int ipsechdr;
2053                         struct route *ro;
2054
2055                         sp = ipsec4_getpolicybyaddr(mcopy,
2056                                                     IPSEC_DIR_OUTBOUND,
2057                                                     IP_FORWARDING,
2058                                                     &ipsecerror);
2059
2060                         if (sp == NULL)
2061                                 destifp = ipforward_rt.ro_rt->rt_ifp;
2062                         else {
2063                                 /* count IPsec header size */
2064                                 ipsechdr = ipsec4_hdrsiz(mcopy,
2065                                                          IPSEC_DIR_OUTBOUND,
2066                                                          NULL);
2067
2068                                 /*
2069                                  * find the correct route for outer IPv4
2070                                  * header, compute tunnel MTU.
2071                                  *
2072                                  * XXX BUG ALERT
2073                                  * The "dummyifp" code relies upon the fact
2074                                  * that icmp_error() touches only ifp->if_mtu.
2075                                  */
2076                                 /*XXX*/
2077                                 destifp = NULL;
2078                                 if (sp->req != NULL && sp->req->sav != NULL &&
2079                                     sp->req->sav->sah != NULL) {
2080                                         ro = &sp->req->sav->sah->sa_route;
2081                                         if (ro->ro_rt != NULL &&
2082                                             ro->ro_rt->rt_ifp != NULL) {
2083                                                 dummyifp.if_mtu =
2084                                                     ro->ro_rt->rt_ifp->if_mtu;
2085                                                 dummyifp.if_mtu -= ipsechdr;
2086                                                 destifp = &dummyifp;
2087                                         }
2088                                 }
2089
2090                                 key_freesp(sp);
2091                         }
2092                 }
2093 #elif FAST_IPSEC
2094                 /*
2095                  * If the packet is routed over IPsec tunnel, tell the
2096                  * originator the tunnel MTU.
2097                  *      tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2098                  * XXX quickhack!!!
2099                  */
2100                 if (ipforward_rt.ro_rt != NULL) {
2101                         struct secpolicy *sp = NULL;
2102                         int ipsecerror;
2103                         int ipsechdr;
2104                         struct route *ro;
2105
2106                         sp = ipsec_getpolicybyaddr(mcopy,
2107                                                    IPSEC_DIR_OUTBOUND,
2108                                                    IP_FORWARDING,
2109                                                    &ipsecerror);
2110
2111                         if (sp == NULL)
2112                                 destifp = ipforward_rt.ro_rt->rt_ifp;
2113                         else {
2114                                 /* count IPsec header size */
2115                                 ipsechdr = ipsec4_hdrsiz(mcopy,
2116                                                          IPSEC_DIR_OUTBOUND,
2117                                                          NULL);
2118
2119                                 /*
2120                                  * find the correct route for outer IPv4
2121                                  * header, compute tunnel MTU.
2122                                  *
2123                                  * XXX BUG ALERT
2124                                  * The "dummyifp" code relies upon the fact
2125                                  * that icmp_error() touches only ifp->if_mtu.
2126                                  */
2127                                 /*XXX*/
2128                                 destifp = NULL;
2129                                 if (sp->req != NULL &&
2130                                     sp->req->sav != NULL &&
2131                                     sp->req->sav->sah != NULL) {
2132                                         ro = &sp->req->sav->sah->sa_route;
2133                                         if (ro->ro_rt != NULL &&
2134                                             ro->ro_rt->rt_ifp != NULL) {
2135                                                 dummyifp.if_mtu =
2136                                                     ro->ro_rt->rt_ifp->if_mtu;
2137                                                 dummyifp.if_mtu -= ipsechdr;
2138                                                 destifp = &dummyifp;
2139                                         }
2140                                 }
2141
2142                                 KEY_FREESP(&sp);
2143                         }
2144                 }
2145 #else /* !IPSEC && !FAST_IPSEC */
2146                 if (ipforward_rt.ro_rt != NULL)
2147                         destifp = ipforward_rt.ro_rt->rt_ifp;
2148 #endif /*IPSEC*/
2149                 ipstat.ips_cantfrag++;
2150                 break;
2151
2152         case ENOBUFS:
2153                 /*
2154                  * A router should not generate ICMP_SOURCEQUENCH as
2155                  * required in RFC1812 Requirements for IP Version 4 Routers.
2156                  * Source quench could be a big problem under DoS attacks,
2157                  * or if the underlying interface is rate-limited.
2158                  * Those who need source quench packets may re-enable them
2159                  * via the net.inet.ip.sendsourcequench sysctl.
2160                  */
2161                 if (!ip_sendsourcequench) {
2162                         m_freem(mcopy);
2163                         return;
2164                 } else {
2165                         type = ICMP_SOURCEQUENCH;
2166                         code = 0;
2167                 }
2168                 break;
2169
2170         case EACCES:                    /* ipfw denied packet */
2171                 m_freem(mcopy);
2172                 return;
2173         }
2174         icmp_error(mcopy, type, code, dest, destifp);
2175 }
2176
2177 void
2178 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2179                struct mbuf *m)
2180 {
2181         if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2182                 struct timeval tv;
2183
2184                 microtime(&tv);
2185                 *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2186                     SCM_TIMESTAMP, SOL_SOCKET);
2187                 if (*mp)
2188                         mp = &(*mp)->m_next;
2189         }
2190         if (inp->inp_flags & INP_RECVDSTADDR) {
2191                 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2192                     sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2193                 if (*mp)
2194                         mp = &(*mp)->m_next;
2195         }
2196 #ifdef notyet
2197         /* XXX
2198          * Moving these out of udp_input() made them even more broken
2199          * than they already were.
2200          */
2201         /* options were tossed already */
2202         if (inp->inp_flags & INP_RECVOPTS) {
2203                 *mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2204                     sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2205                 if (*mp)
2206                         mp = &(*mp)->m_next;
2207         }
2208         /* ip_srcroute doesn't do what we want here, need to fix */
2209         if (inp->inp_flags & INP_RECVRETOPTS) {
2210                 *mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2211                     sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2212                 if (*mp)
2213                         mp = &(*mp)->m_next;
2214         }
2215 #endif
2216         if (inp->inp_flags & INP_RECVIF) {
2217                 struct ifnet *ifp;
2218                 struct sdlbuf {
2219                         struct sockaddr_dl sdl;
2220                         u_char  pad[32];
2221                 } sdlbuf;
2222                 struct sockaddr_dl *sdp;
2223                 struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2224
2225                 if (((ifp = m->m_pkthdr.rcvif)) &&
2226                     ((ifp->if_index != 0) && (ifp->if_index <= if_index))) {
2227                         sdp = (struct sockaddr_dl *)
2228                             ifnet_addrs[ifp->if_index - 1]->ifa_addr;
2229                         /*
2230                          * Change our mind and don't try copy.
2231                          */
2232                         if ((sdp->sdl_family != AF_LINK) ||
2233                             (sdp->sdl_len > sizeof(sdlbuf))) {
2234                                 goto makedummy;
2235                         }
2236                         bcopy(sdp, sdl2, sdp->sdl_len);
2237                 } else {
2238 makedummy:
2239                         sdl2->sdl_len =
2240                             offsetof(struct sockaddr_dl, sdl_data[0]);
2241                         sdl2->sdl_family = AF_LINK;
2242                         sdl2->sdl_index = 0;
2243                         sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2244                 }
2245                 *mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2246                         IP_RECVIF, IPPROTO_IP);
2247                 if (*mp)
2248                         mp = &(*mp)->m_next;
2249         }
2250 }
2251
2252 /*
2253  * XXX these routines are called from the upper part of the kernel.
2254  *
2255  * They could also be moved to ip_mroute.c, since all the RSVP
2256  *  handling is done there already.
2257  */
2258 int
2259 ip_rsvp_init(struct socket *so)
2260 {
2261         if (so->so_type != SOCK_RAW ||
2262             so->so_proto->pr_protocol != IPPROTO_RSVP)
2263                 return EOPNOTSUPP;
2264
2265         if (ip_rsvpd != NULL)
2266                 return EADDRINUSE;
2267
2268         ip_rsvpd = so;
2269         /*
2270          * This may seem silly, but we need to be sure we don't over-increment
2271          * the RSVP counter, in case something slips up.
2272          */
2273         if (!ip_rsvp_on) {
2274                 ip_rsvp_on = 1;
2275                 rsvp_on++;
2276         }
2277
2278         return 0;
2279 }
2280
2281 int
2282 ip_rsvp_done(void)
2283 {
2284         ip_rsvpd = NULL;
2285         /*
2286          * This may seem silly, but we need to be sure we don't over-decrement
2287          * the RSVP counter, in case something slips up.
2288          */
2289         if (ip_rsvp_on) {
2290                 ip_rsvp_on = 0;
2291                 rsvp_on--;
2292         }
2293         return 0;
2294 }
2295
2296 void
2297 rsvp_input(struct mbuf *m, ...) /* XXX must fixup manually */
2298 {
2299         int off, proto;
2300         __va_list ap;
2301
2302         __va_start(ap, m);
2303         off = __va_arg(ap, int);
2304         proto = __va_arg(ap, int);
2305         __va_end(ap);
2306
2307         if (rsvp_input_p) { /* call the real one if loaded */
2308                 rsvp_input_p(m, off, proto);
2309                 return;
2310         }
2311
2312         /* Can still get packets with rsvp_on = 0 if there is a local member
2313          * of the group to which the RSVP packet is addressed.  But in this
2314          * case we want to throw the packet away.
2315          */
2316
2317         if (!rsvp_on) {
2318                 m_freem(m);
2319                 return;
2320         }
2321
2322         if (ip_rsvpd != NULL) {
2323                 rip_input(m, off, proto);
2324                 return;
2325         }
2326         /* Drop the packet */
2327         m_freem(m);
2328 }